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Ensuring Conditional Independence (CI) constraints is pivotal for the development of fair and trustworthy
machine learning models. In this paper, we introduce OTClean, a framework that harnesses optimal transport
theory for data repair under CI constraints. Optimal transport theory provides a rigorous framework for
measuring the discrepancy between probability distributions, thereby ensuring control over data utility. We
formulate the data repair problem concerning CIs as a Quadratically Constrained Linear Program (QCLP)
and propose an alternating method for its solution. However, this approach faces scalability issues due to the
computational cost associated with computing optimal transport distances, such as the Wasserstein distance.
To overcome these scalability challenges, we reframe our problem as a regularized optimization problem,
enabling us to develop an iterative algorithm inspired by Sinkhorn’s matrix scaling algorithm, which efficiently
addresses high-dimensional and large-scale data. Through extensive experiments, we demonstrate the efficacy
and efficiency of our proposed methods, showcasing their practical utility in real-world data cleaning and
preprocessing tasks. Furthermore, we provide comparisons with traditional approaches, highlighting the
superiority of our techniques in terms of preserving data utility while ensuring adherence to the desired CI
constraints.
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1 INTRODUCTION
Conditional Independence (CI) plays a pivotal role in probability and statistics. At its core, a CI
statement, represented as (𝑋⊥⊥𝑌 | 𝑍 ), implies that when 𝑍 is known, the knowledge of 𝑋 doesn’t
provide any further insight into 𝑌 , and vice versa. To illustrate, consider rainfall (𝑍 ) influencing
both the wetness of grass (𝑋 ) and the decision to use an umbrella (𝑌 ). If we’re already aware that
it rained, then determining that the grass is wet doesn’t shed any additional light on a person’s
choice to carry an umbrella. CI is foundational in numerous areas. It underpins causal reasoning
and graphical models, serving as a cornerstone for efficient probabilistic inference [34, 41]. In the
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realm of machine learning (ML), CI’s significance spans across feature selection [35], algorithmic
fairness [13, 27, 29, 45–47, 51], representation learning [43], model interpretability [6, 24, 26],
transfer learning [44], and domain adaptation [39].

CIs in statistics can be analogized with integrity constraints in databases [55]. Specifically, in the
context of databases, dependencies such as Functional Dependencies (FDs), Conditional Functional
Dependencies (CFDs), and Multivalued Dependencies (MVDs) encapsulate critical semantic and
structural constraints. These constraints are imperative for maintaining data integrity in relational
databases and play a pivotal role in tasks like data quality management and data cleaning [8, 10, 20].
In a parallel vein, CI represents key statistical constraints that are indispensable for ensuring the
robustness and validity of datasets in domains like ML and statistical inference. To elucidate this
analogy further, consider the following example.

Example 1.1. In this example, we underscore the significance of maintaining and enforcing CI
constraints in data pipelines as essential steps in constructing fair and and reliableMLmodels, illustrated
within the contexts of medical diagnosis and job applications.
Medical Diagnosis. Consider a dataset used for predicting patient recovery from respiratory

infections, consists of attributes such as patient demographics, including their ZIP code, health
measurements, the bacterial strain causing the infection, the prescribed antibiotic, and the recov-
ery outcome. Based on domain knowledge, one would expect that the patient’s ZIP code should be
independent of the recovery outcome given all causal factors that affect the patient’s recovery, i.e.,
(ZIP code ⊥⊥ Recovery | Causal factors). However, existing biases, such as certain ZIP codes having
better healthcare access or particular residents’ health behaviors, can introduce spurious associations.
Additionally, data quality issues, including incorrect ZIP code entries or inaccurately recorded recovery
outcomes, or even systematic data quality issues on other attributes that are distributed non-randomly
for patients with different ZIP codes, can also violate this expected independence. Training a model on
this dataset may lead to a model that picks up spurious correlations between recovery outcomes and
ZIP codes rather than the actual causal factors, affecting the model’s performance during deployment.
Furthermore, simply dropping ZIP code and not using it for training ML models does not resolve the
issue if the constraint is violated due to data quality issues on the selected features. In that case, the
performance of the model during deployment becomes different for different subpopulations with
different ZIP codes, leading to potential geographic biases.
Job Application. Consider a dataset used for making hiring decisions. This dataset consists

of attributes from applicants’ CVs and insights from interviews, encompassing variables such as
hobby, hometown, previous companies worked at, project experiences, and other qualifications. In
an ideal scenario, factors considered extraneous, like hobby, university attended, and hometown,
should be independent of the hiring decision when conditioned on the applicant’s qualifications, i.e.,
(Extraneous Factors ⊥⊥ Hiring Decision | Qualifications) However, this constraint can be violated in
the dataset due to various reasons. Biases may emerge if, for example, a significant proportion of
successful candidates in the dataset share hobbies perceived as technical or come from specific renowned
hometowns. Data quality issues, such as inconsistent categorization of qualifications or historical
biases in hiring practices, further compound the issue. These extraneous factors not only divert the
model’s focus from genuine qualifications but can also inadvertently introduce biases. When these
factors correlate with sensitive attributes, such as race and gender, the resulting model may become
profoundly unfair.

In this paper,we address the problem of repairing a dataset with respect to CI constraints.

Given a dataset that violates a CI constraint due to data biases and data quality issues, our goal is to
clean the data to ensure adherence to CI constraints while preserving data utility. Much research
has been dedicated to computing optimal repairs for data dependencies, particularly functional
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dependencies and conditional functional dependencies [10, 33, 37, 38]. However, the challenge
of repairs concerning CI remains relatively unexplored. A significant contribution in this area
is the work by Salimi et al. [47]. Their study links CI to Multi-valued dependencies (MVDs) and
provides methods to compute optimal repairs by minimizing the number of tuple deletion

and insertion to ensure consistency with an MVD [47].
A significant challenge in data cleaning for ML is how to ensure that these operations do not

distort the inherent statistical properties of datasets and preserve data utility. This challenge
becomes especially more noticeable when considering that, in this context, the significance

of individual data tuples is secondary to the underlying distribution they collectively

represent [19]. Achieving the goal of preserving these statistical properties requires a method
to quantify the distance between the distributions of the original and repaired data. Traditional
criteria in databases, such as subset minimality and minimum cardinality repair, often fall short in
effectively addressing this requirement [8]. While various methods exist for measuring the distance
between probability distributions, including information theoretic measures like Kullback-Leibler
(KL) and Jensen-Shannon (JS) divergences [17], Optimal Transport (OT) metrics, such as the

Wasserstein (or Earth Mover’s) distance, have demonstrated their superiority in various

ML tasks [7, 23].
OT provides a metric for comparing probability distributions by determining the most efficient

way to convert one distribution into another. This transformation is facilitated through the use of a
transport plan, which is a probabilistic mapping that specifies how much mass is moved from each
data point in one distribution to its corresponding point in the second distribution. This mapping
is optimized according to a designated cost function. One distinctive feature of OT is its capability
to transform a domain-specific metric between individual data points into a comprehensive metric
between entire distributions [7]. This adaptability empowers OT to preserve the topological and
structural properties of the data that cannot be captured and maintained using other divergences
and distances between distributions.
In our paper, we introduce OTClean, a novel framework that leverages OT theory for data

cleaning to enforce CI constraints. OTClean addresses datasets that violate CI constraints by
learning a probabilistic data cleaner. This cleaner probabilistically updates attribute values to ensure
adherence to CI constraints. It finds an optimal repair, aiming to satisfy the CI constraint while
minimizing the OT distance from the original dataset, which indicates minimal alteration to the
data. This approach is versatile, allowing for user-defined metrics to tailor cleaning to specific
needs and preserving data integrity, which is crucial for subsequent applications. Additionally,
OTClean’s probabilistic mapping operates at the tuple level, making it well-suited for streaming
environments and scenarios that require model retraining on newly acquired data.
A primary hurdle in employing OT in ML is its considerable computational cost. Specifically,

for discrete data, OT necessitates solving a linear program. Techniques like the network simplex
or interior point methods are frequently applied, but their computational intensity is significant
for high-dimensional data. In fact, their cost scales as 𝑂 (𝑑3 log(𝑑)) when comparing histograms of
dimension 𝑑 [42].We demonstrate that using OT, the problem of repairing data under CI

constraints can be formulated as a Quadratically Constrained Linear Program (QCLP) [11,
53]. Although this problem can be tackled using established optimization techniques, it is important
to note that solving a QCLP is generally NP-hard, presenting challenges in terms of scalability and
computational feasibility for high-dimensional datasets.

To address the scalability challenges, we propose the use of approximate algorithms for solving
our repair problem efficiently. At the core of our approach is the Sinkhorn distance [18], an
approximate OT metric that introduces entropy regularization, penalizing transport plans based
on their entropy. This regularization intuitively smoothens the OT problem, making it more
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manageable. Importantly, it allows us to leverage Sinkhorn’s matrix scaling algorithm [50], which
operates at speeds several orders of magnitude faster than conventional methods. Expanding on
this, we formulate our repair problem as a regularized optimization problem that employs

a relaxed version of OT along with entropic regularization. This optimization problem
remains non-convex; however, we have developed an alternating algorithm with guaranteed

convergence. Remarkably, our approach exhibits a substantial improvement in efficiency compared
to the QCLP formulation, making it scalable to high-dimensional data.
To assess the effectiveness of our approach, we apply it to two distinct domains: algorithmic

fairness [47], where CI constraints play a crucial role, and data cleaning, where the utilization of CI
as a statistical constraint has proven to be beneficial [56]. Our experiments reveal that our techniques
outperform the current state-of-the-art database repair methods that involve CI [47]. In the realm
of algorithmic fairness, our approach not only yields fairer algorithms but also maintains

superior performance compared to baseline methods. As for data cleaning, our findings
demonstrate that enforcing CI constraints results in more accurate data representations,

thereby helping prevent ML models from relying on spurious correlations. Furthermore,
we have shown that our methods can complement existing data cleaning techniques and address
their limitations by effectively removing spurious correlations.

2 BACKGROUND
The notation used is summarized in Table 1. We use uppercase letters (𝑋 ,𝑌 ,𝑍 ,𝑉 ) to denote variables
and lowercase letters (𝑥 , 𝑦, 𝑧, 𝑣) to represent their values. When referring to sets of variables or
values, we use boldface notation (X or x). The support or domain of a variable V is given by V .
We use 𝑑V to refer to |V|, i.e., the size of V’s support. For any discrete random variable 𝑋 , its
probability distribution is represented by 𝑃𝑋 (𝑥); in some contexts, we might simply use 𝑃 , indicating
the probability of 𝑋 assuming the value 𝑥 . It’s essential to note that such a probability distribution
𝑃 can be equivalently seen as a point in the probability Simplex ΔV = {X ∈ R𝑑V | ∀𝑣 ∈ V,X𝑣 ≥
0 and

∑
𝑣∈V X𝑣 = 1}, where, X𝑣 is the probability assigned to value 𝑣 . Intuitively, ΔV defines the

set of all possible probability distributions over the finite domainV .
Given a probability distribution 𝑃 ∈ ΔV over a set of variables V, and considering non-empty

and disjoint subsets X,Y,Z within V, the distribution 𝑃 is said to be consistent with a conditional
independence (CI) constraint (𝜎 : Y⊥⊥X | Z), denoted as 𝑃 |= 𝜎 , if and only if, for all values 𝑥 ∈ X,
𝑦 ∈ Y, and 𝑧 ∈ Z, the condition 𝑃X,Y |Z (𝑥,𝑦 | 𝑧) = 𝑃X |Z (𝑥 | 𝑧) · 𝑃Y |Z (𝑦 | 𝑧) is satisfied. If the entire
set V is precisely the union of the subsets X,Y, and Z, i.e., V = X ∪ Y ∪ Z, then the constraint 𝜎 is
termed as saturated.

When 𝑃 is inconsistent with the constraint 𝜎 : 𝑌⊥⊥𝑋 | 𝑍 , the degree of inconsistency of 𝑃 , denoted
𝛿𝜎 (𝑃), can be quantified using the conditional mutual information (CMI), denoted as 𝐼 (𝑋 ;𝑌 | 𝑍 ),
which measures the amount of information about 𝑌 obtained by knowing 𝑋 , given 𝑍 . Formally,

𝐼 (𝑋 ;𝑌 | 𝑍 ) =
∑︁

𝑥∈X,𝑦∈Y,𝑧∈Z
𝑃 (𝑥,𝑦, 𝑧) log

(
𝑃𝑋,𝑌 |𝑍 (𝑥,𝑦 | 𝑧)

𝑃𝑋 |𝑍 (𝑥 | 𝑧)𝑃𝑌 |𝑍 (𝑦 | 𝑧)

)
= 𝐷KL [𝑃 (𝑋,𝑌, 𝑍 ) | 𝑃 (𝑋,𝑍 )𝑃 (𝑌 | 𝑍 )]

where 𝐷KL is the Kullback–Leibler divergence1.
The probability distribution 𝑃 is consistent with the constraint 𝜎 : 𝑌⊥⊥𝑋 | 𝑍 if and only if
𝐼 (𝑋 ;𝑌 | 𝑍 ) = 0.

1The Kullback–Leibler divergence between two distribution 𝑄 (𝑋 ) and 𝑃 (𝑋 ) is defined as: 𝐷KL (𝑃 ∥ 𝑄 ) =∑
𝑥 ∈X 𝑃 (𝑥 ) log

(
𝑃 (𝑥 )
𝑄 (𝑥 )

)
.
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Table 1. Summary of notation and symbols.

Symbol Description

𝑋,𝑌, 𝑍,𝑉 Variables
X,Y,Z,V Sets of variables
X Domain of a variable 𝑋
𝑑X Size of the domain of a variable 𝑋
𝑥 ∈ X Their values
𝑃 Probability distributions
ΔV A probability simplex over a domain of variables V
p ∈ ΔV A probability vector
𝜋 Transport plan
𝜎 : (𝑋⊥⊥𝑌 | 𝑍 ) A CI constraint
𝛿𝜎 (𝑃) Degree of inconsistency of 𝑃 to a CI constraint 𝜎
𝑐,C Cost function and cost matrix

Given a dataset 𝐷 = {v𝑖 }𝑛𝑖=1 consisting of i.i.d. samples drawn from a distribution 𝑃 ∈ ΔV,
each sample v𝑖 corresponds to an element in the domainV . The empirical distribution 𝑃𝐷 of the
dataset 𝐷 is defined as: 𝑃𝐷

V (v) = 1
𝑛

∑𝑛
𝑖=1 I(v𝑖 = v), where I is the indicator function that returns 1

if its argument is true and 0 otherwise. For each value v in the domain V , 𝑃𝐷
V (v) computes the

fraction of times v appears in the dataset 𝐷 . This empirical distribution provides an estimate of
the true underlying distribution 𝑃 from which the samples in 𝐷 were drawn. Given a conditional
independence constraint 𝜎 : Y⊥⊥X | Z, we say 𝐷 is consistent with 𝜎 if the empirical distribution
𝑃𝐷 associated with 𝐷 is consistent with it. This is also denoted as 𝐷 |= 𝜎 .

2.1 Background on Optimal Transport
This section provides an overview of optimal transport, serving as the foundational theory for
OTClean. We further delve into Sinkhorn regularization and the concept of relaxed optimal
transport, which underpin the approximate repair methods introduced in Section 4.2.

Monge problem: The Optimal Transport (OT) problem seeks themost efficient way of transferring
mass from a probability distribution 𝑃 to another while preserving the total mass. The OT problem’s
classical formulation is the Monge problem where the objective is to identify a transport map 𝑇 that
pushes a distribution 𝑃 ∈ ΔX forward to a distribution 𝑄 ∈ ΔY while minimizing the total cost of
transporting mass. Formally, 𝑄 , known as the pushforward of 𝑃 under the transport map 𝑇 , is a
new distribution defined as 𝑄 (𝐴) = 𝑃 (𝑇 −1 (𝐴)) for any 𝐴 ⊆ Y. In other words, the pushforward
𝑄 characterizes the distribution of the images of 𝑃 under the map 𝑇 . The Monge problem can be
formally defined as follows: Given two distributions 𝑃 and 𝑄 with discrete supports X and Y,
respectively, and a cost function 𝑐 : X × Y → R≥0, the goal is to find a transport map 𝑇 : X → Y
that pushes forward 𝑃 to 𝑄 , such that the total cost of transporting mass is minimized, i.e.,

OTMonge (𝑃,𝑄) = argmin
𝑇 :X→Y

∑︁
x𝑖 ∈X

𝑐 (x𝑖 ,𝑇 (x𝑖 )), (1)

where 𝑇 is a transport map and 𝑇#𝑃 = 𝑄 .

Kantorovich Formulation. The deterministic transport approach in Monge’s problem might
not always admit a solution. Specifically, there may be cases where finding a pushforward between
two distinct probability distributions is not feasible. To overcome this limitation, Kantorovich
introduced a more flexible formulation by considering probabilistic transport methods. Unlike the
deterministic approach, which requires a direct one-to-one mapping between elements, probabilistic
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transport allows for a more versatile mapping where elements from one distribution can be mapped
tomultiple elements in another distribution, reflecting real-world scenarios where such distributions
cannot always be perfectly aligned. This approach is operationalized through the concept of
transport plans or couplings. Here, a coupling refers to a joint distribution, denoted as 𝜋 , over the
product space X ×Y. This coupling ensures that its marginals match the given distributions 𝑃 and
𝑄 , meaning 𝑃 = 𝜋 (X) and 𝑄 = 𝜋 (Y). Denote Π(𝑃,𝑄) as the space of all possible couplings. In this
context, the primal Kantorovich formulation of the OT problem is defined as follows:

OT(𝑃,𝑄) = argmin
𝜋∈Π (𝑃,𝑄 )

∑︁
x𝑖 ∈X

∑︁
y𝑗 ∈Y

𝑐 (x𝑖 , y𝑗 )𝜋 (x𝑖 , y𝑗 ) . (2)

The goal of the OT plan 𝜋 is to minimize the overall transport cost, as expressed in Equation 2,
while adhering to the probabilistic nature of the transport. When the cost 𝑐 represents the Euclidean
distance, the OT distance is recognized as theWasserstein distance.

2
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1 = 0.0001
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Fig. 1. The coefficient 1/𝜌 in regularized OT impacts the mapping between distributions 𝑃 and 𝑄 : higher

coefficients (on the right) lead to smoother mappings and spread mass more evenly between 𝑃 and 𝑄 .

Entropic Regularization: OT problems, as described by Equation 2, essentially involve solving
a linear program. The computational complexity of solving such a linear program𝑂 (𝑛3 log𝑛) using
the network simplex, where𝑛 represents the number of variables or constraints [42]. This complexity
can become a significant challenge, especially for high-dimensional datasets. To mitigate this
computational burden, entropic regularization has been introduced as an effective strategy [18]. By
incorporating an entropy term into the optimal transport formulation, the problem is transformed
into a nonlinear but smooth optimization problem, which can be solved more efficiently. This
adjustment not only reduces the complexity of the problem but also enables its solution using
linear-time algorithms. In the case of entropic regularization, the added entropy term effectively
spreads out the transport plan, preventing the concentration of mass in a few narrow pathways.
This spreading leads to a more evenly distributed plan, reducing the presence of sharp peaks and
troughs in the optimization landscape. As a result, the optimization problem becomes more regular,
with a smoother surface that is easier to navigate using optimization algorithms.

In more formal terms, the entropic OT is defined by:

argmin
𝜋∈Π (𝑃,𝑄 )

∑︁
x𝑖 ∈X

∑︁
y𝑗 ∈Y

𝑐 (x𝑖 , y𝑗 )𝜋 (x𝑖 , y𝑗 ) −
1
𝜌
𝐻 (𝜋) . (3)

where 𝐻 (𝜋) is the entropic regularizer:

𝐻 (𝜋) = −
∑︁
x𝑖 ∈X

∑︁
y𝑗 ∈Y

𝜋 (x𝑖 , y𝑗 ) log(𝜋 (x𝑖 , y𝑗 ))
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and 1/𝜌 is the entropic regularization parameter. A smaller value means that we emphasize the
accuracy of the transport plan, while a larger value leans towards computational efficiency.
Importantly, the OT plan 𝜋∗, which solves the constrained optimization problem defined in (3),

manifests as a diagonal scaling of the matrix K := 𝑒
− C

𝜌 . Specifically, it has been shown that the
solution to (3) is unique and takes the form 𝜋∗ = diag(u) · K · diag(v), with u and v acting as
scaling vectors. These scaling vectors are identified through an iterative process, which ensures
that the resultant transport plan complies with marginal probability constraints. The Sinkhorn
Algorithm, crucial for this process, iteratively adjusts u and v to ensure that the resultant transport
matrix, 𝜋∗, adheres to the given marginal constraints. Lines 4 and 5 of Algorithm 1 represent these
adjustments. Specifically, u and v are updated iteratively to balance the rows and columns of K,
ensuring that the marginals of the scaled coupling matrix 𝜋 closely match p and q.

Algorithm 1: Sinkhorn Algorithm
Input: Probability distributions 𝑃,𝑄 and cost function 𝑐
Output: A transport plan between 𝑃 and 𝑄

1 p := vector(𝑃);q := vector(𝑄);C := matrix(𝑐);
2 u := 1𝑑X ; v := 1𝑑Y ;K := 𝑒

− C

𝜌 ; ⊲ Initialization
3 while u and v are not converged do ⊲ Sinkhorn iterations
4 u := p ⊘ (K · v); ⊲ ⊘: Element-wise division
5 v := q ⊘ (K · u);
6 𝜋 := diag(u) · K · diag(v);
7 return 𝜋 ;

Example 2.1. Figure 1 presents the optimal transport between two Gaussian mixture model distribu-
tions, 𝑃 and 𝑄 . Each distribution is a mixture of two Gaussians, providing a basis for examining the
effects of entropic regularization on transport plans. The leftmost graph in Figure 1 shows the original
OT plan without entropic regularization. The optimal plan is more deterministic and sharp in mapping
elements between the distributions. As we introduce and increase the entropic regularization coefficient,
the subsequent transport plans become more spread out. This spread is visually observable in Figure 1,
where higher coefficients lead to transport plans that are less focused and more distributed across the
space. This effect illustrates the principle of entropic regularization: a lower coefficient results in a
transport plan that closely aligns specific elements of the distributions, whereas a higher coefficient
allows for a broader, more generalized mapping. The intuition behind these transport plans can be
understood by considering how the elements of one distribution, say ranging between −2 and 3 in
𝑃 , might be transported to another distribution 𝑄 with values ranging between 0 and 6. Without
regularization, the transport plan seeks to map these elements in a direct and specific manner. However,
with entropic regularization, the mapping allows for the mass from one value in 𝑃 to be spread across
the target distribution and to be transported to many values in 𝑃 , thereby avoiding overly precise
mappings that might not generalize well across different scenarios. This approach is particularly useful
when dealing with high-dimensional data, where overly specific mappings can lead to overfitting and
reduced model robustness.

Relaxed Optimal Transport: Relaxed OT, introduced in [23], provides a loss function for
supervised learning grounded in OT principles. Rather than relying on hard marginal constraints
typical of entropic regularized OT, it adopts softer penalties, using regularization based on the
Kullback-Leibler (KL) divergence. This approach leads to:
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argmin
𝜋∈J

∑︁
x𝑖 ∈X

∑︁
y𝑗 ∈Y

𝑐 (x𝑖 , y𝑗 )𝜋 (x𝑖 , y𝑗 ) −
1
𝜌
𝐻 (𝜋) +

𝜆(𝐷KL (𝜋 (𝑌 ), 𝑄) + 𝐷KL (𝜋 (𝑋 ), 𝑃)). (4)

where 𝜆 is the relaxation regularization coefficient, and 𝐷KL denotes the KL divergence between
two probability distributions. Contrasting this with the entropic OT outlined in Equation 3, the
transport plan 𝜋 in relaxed OT can be an element of J , which includes all possible joint probability
distributions over the product space ΔX × ΔY. It has been shown in [23] that Sinkhorn algorithm
also works for the relaxed version of the entropic OT in Equation 3 but with different update rules
for u and v [23, Proposition 4.2]:

u = (p ⊘ (K · v))
𝜌𝜆

𝜌𝜆+1 and v = (q ⊘ (K⊤ · u))
𝜌𝜆

𝜌𝜆+1 (5)

3 PROBLEM DEFINITION
Given a database 𝐷 that is inconsistent with a CI constraint 𝜎 : (X⊥⊥Y | Z), our objective is to
resolve this inconsistency by updating the attribute values of each datapoint in 𝐷 to derive a
repaired database 𝐷̂ which is consistent with 𝜎 . To ensure minimal distortion and maintain the
utility of the data, we assume we are given a user-defined cost function that quantifies the cost
of updating a datapoint (this cost function generalizes the minimality criteria in update-based
data repair in databases [8]). Leveraging the principles of OT, our goal is to develop a data cleaner,
envisioned as a transport map, that repairs 𝐷 at a minimum cost. Next, we define the problem of
learning an optimal data cleaner for a CI constraint.

Definition 3.1 (CI Data Cleaner). Consider a database 𝐷 = {v𝑖 }𝑛𝑖=1 that violates a CI constraint 𝜎 ,
i.e., 𝐷 ̸ |= 𝜎 , and a user-defined cost function 𝑐 : V ×V → R≥0 that assigns a cost to transforming
or perturbing one tuple in V to another tuple in V . The CI data cleaner of 𝐷 with respect to 𝜎 is
a transport map 𝑇 ∗ : V → V that transforms 𝐷 into a database 𝐷̂ = 𝑇 ∗ (𝐷) = {v̂𝑖 = 𝑇 ∗ (v𝑖 )}𝑛𝑖=1
such that 𝐷̂ |= 𝜎 and has the minimum transportation cost, i.e., 𝑇 ∗ is the solution to the following
constrained optimization problem:

argmin
𝑇

𝑛∑︁
𝑖=1

𝑐 (v𝑖 ,𝑇 (v𝑖 )) s.t. 𝑇 (𝐷) |= 𝜎. (6)

We illustrate an optimal data cleaner with an example:

Example 3.2. Let’s consider a database 𝐷1 = {(0, 0, 1), (1, 0, 1), (0, 1, 1), (0, 1, 0)} defined over
binary variables 𝑋 , 𝑌 , and 𝑍 . 𝐷1 violates the CI constraint 𝜎 : 𝑌⊥⊥𝑍 because the probability
𝑃𝑌,𝑍 (1, 0) is 1

4 , which is not equivalent to the product of the marginal probabilities 𝑃𝑌 (1) = 2
4 and

𝑃𝑍 (0) = 1
4 . Further, suppose cost is measured using Euclidean distance. An optimal CI repair can

be obtained using the transport map 𝑇 , which maps (0, 0, 1) → (0, 0, 0) and other tuples to their
current values. As a result, by updating one attribute value, 𝑇 transforms 𝐷1 into a repaired database
𝐷1 = {(0, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 1)}, which is consistent with 𝜎 .

However, the CI data cleaner defined in Definition (3.1) might not lead to a minimum cost repair.
This is especially true if 𝐷 is a bag, which is typically the case with databases used for ML. These
databases are either bags or projections onto a subset of features that yield a bag. We illustrate this
with an example:
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Example 3.3. Continuing with Example 3.2, now consider a database𝐷2 = {(1, 0, 0), (1, 0, 1), (1, 1, 0),
(1, 1, 0)}, which is now a bag, and is inconsistent with the constraint 𝑌⊥⊥𝑍 . Similarly, 𝐷2 = {(1, 0, 0),
(1, 0, 1), (1, 1, 0), (1, 1, 1)} is a minimum cost repair for 𝐷2, obtained by modifying only one attribute
value. However, no transport map exists that can transport 𝐷2 into 𝐷2 simply because (1, 1, 0) cannot
be mapped to both itself and (1, 1, 1). Upon close examination, it becomes evident that no transport
map can lead to a repair for 𝐷2 with cost 1.

Probabilistic Optimal Data Cleaner. As demonstrated in Example 3.3, the transport map
defined in Definition 3.1 does not always yield the minimum cost repair (although it can always
produce a trivial repair by mapping every tuple to a single tuple, which completely distorts the
distribution). Indeed, it’s possible for the minimum cost repair to be outside the feasible region
defined by the problem in Equation (6). Drawing from the Kantorovich relaxation of OT, we
shift our approach to seeking a transport plan, or transport coupling, denoted as 𝜋 (v′, v), as
an alternative to a deterministic transport map 𝑇 . Here, the marginal distribution 𝜋 (v) = 𝑃𝐷

represents the empirical distribution of the database 𝐷 , and 𝜋 (v′) is the target distribution that
is consistent with the CI constraint. This transport plan yields a probabilistic mapping, 𝜋 (v′ | v),
which probabilistically updates a data point v ∈ 𝐷 to v′ following the mapping. The repaired
database is then obtained by applying this mapping to 𝐷 , by sampling. In essence, Definition 3.1
transitions into a problemwhere the aim is to (1) identify a transport plan 𝜋 (v′, v) that pushforwards
the distribution 𝜋 (v) = 𝑃𝐷 , i.e., the empirical distribution associated with 𝐷 into one consistent
with the CI constraints, and (2) among all distributions with the same support and consistent with
the constraint, find the distribution 𝜋 (v′) with the minimum OT distance to 𝜋 (v) = 𝑃𝐷 . Formally,
an optimal probabilistic data cleaner for CI constraint seeks to clean data using a probabilistic
mapping 𝜋 (v′ | v) associated with a transport plan or probabilistic coupling 𝜋 (v′, v), obtained by
solving the following optimization problem:

argmin
𝜋

𝑑V∑︁
𝑖=1

𝑑V∑︁
𝑗=1

𝑐 (v𝑖 , v′𝑗 )𝜋 (v𝑖 , v
′
𝑗 ) s.t. 𝜋 (v) = 𝑃D, 𝜋 (v′) |= 𝜎. (7)

The feasible region of the optimization problem defined in Equation 7 consists of all possible
probability distributions that satisfy the constraint, hence including a distribution associated with
a minimal cost repair. Therefore, one can find a mapping that transforms the empirical distribution
of 𝐷 into a consistent distribution with the minimum cost. Moreover, the optimal probabilistic
mapping, derived from solving Equation 7, provides an approach for probabilistic data cleaning.
For large datasets, samples drawn from this probabilistic cleaner will lead to a dataset 𝐷̂ whose
empirical distribution 𝑃 𝐷̂ closely aligns with the target distribution 𝑃 (v′), in line with the law of
large numbers. Consequently, the resulting dataset is approximately consistent with the constraint.
In ML applications, this level of approximation is generally adequate.

Example 3.4. Consider𝐷2 = {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 0)} from Example 3.3. The probabilistic
mapping 𝜋 (v, v′) is graphically represented in Figure 2, which depicts the bipartite graph constructed
from the elements of the domain V . Labeled red edges illustrate the joint probabilities 𝜋 (v, v′), while
dashed directed edges showcase the corresponding probabilistic mapping 𝜋 (v | v′). The graph only
includes nodes and edges for which 𝜋 (v, v′) and 𝜋 (v | v′) are non-zero to maintain clarity. It’s evident
that the marginal distribution 𝜋 (v) displayed in Figure 2 matches the empirical distribution 𝑃𝐷2

associated to 𝐷2. Furthermore, 𝜋 (v | v′) primarily maps all elements to themselves with a probability
of 1. However, it transports half of the mass from (1, 1, 0) to itself and the other half to (1, 1, 1) to repair
the constraint violation. This results in a distribution 𝜋 (v′) consistent with the constraint. Notably, the
OT cost of this repair is 1/4 since just 1/4 of the mass with cost 1 transitions from (1, 1, 0) to (1, 1, 1).
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(1, 0, 0)

(1, 0, 1)

...

(1, 1, 0)

(1, 0, 0)

(1, 0, 1)

...

(1, 1, 0)

(1, 1, 1)

1/4

1

1/4

1

1/4

1/2

1/4

1/2

v v′
v 𝜋 (v)

(1, 0, 0) 1/4
(1, 0, 1) 1/4
(1, 1, 0) 1/2

v′ 𝜋 (v′)
(1, 0, 0) 1/4
(1, 0, 1) 1/4
(1, 1, 0) 1/4
(1, 1, 1) 1/4

Fig. 2. Graphical representation of the plan 𝜋 (v, v′) for 𝐷2. Nodes represent elements inV . Labeled red edges

indicate joint probabilities 𝜋 (v, v′), while dashed directed edges depict the probabilistic mapping 𝜋 (v | v′).
Only nodes and edges with non-zero probabilities are shown for clarity.

The mapping 𝜋 (v | v′) can be employed to clean 𝐷2 probabilistically. Due to the limited sample
size, this doesn’t guarantee consistency. Still, for a larger database, the repaired database becomes
representative of 𝜋 (v′) and hence becomes consistent with the constraint. To illustrate this, consider
another database 𝐷3 echoing the tuples in 𝐷2, but each tuple is now replicated 𝑛 times. This mirrors
the empirical distribution of 𝐷2 and still violates the constraint. In such a scenario, repairing 𝐷3 with
𝜋 (v | v′) likely results in a consistent database. Probabilistically repairing the 2𝑛 instances of (1, 1, 0)
in 𝐷3 through the mapping 𝜋 (v′ | v) can be interpreted as a sequence of 2𝑛 Bernoulli trials with a 1/2
probability. On average, this yields 𝑛 tuples of (1, 1, 0) and 𝑛 tuples of (1, 1, 1), ensuring consistency
with the constraints.

Discussion on Complexity. Designing scalable algorithms to solve the optimization problem
outlined in (7) and subsequently computing optimal repairs for CI constraints presents significant
challenges. A straightforward approach entails exploring the vast space of all distributions consistent
with the CI, computing OT distance in relation to the empirical distribution of 𝐷 , and identifying
the optimal solution. This method, however, is not feasible primarily due to the intractable nature
of the space of consistent distributions. Furthermore, as discussed in 1, the computation of OT
is computationally demanding. In our context, the transport plan involves 𝑑2V variables, thereby
exacerbating the inherent complexity.
Although a detailed complexity analysis of the optimization problem 7 is not addressed in this

paper, it is worth noting that our problem is akin to the computation of minimum update-based
repair (U-repair) for MVDs [8]. U-repair aims to identify a repair that necessitates the fewest
attribute value modifications to enforce an MVD. Specifically, given a database 𝐷 with attributes
𝑋𝑌𝑍 and an MVD𝑋 ↠ 𝑌 , the decision problem is whether𝐷 has an optimal U-repair with no more
than 𝑘 modifications. This decision problem can be translated to our repair challenge by presuming
a uniform distribution over 𝐷 , considering a cost function 𝑐 (𝑥,𝑦, 𝑧, 𝑥 ′, 𝑦′, 𝑧′) that enumerates the
number of modifications required to obtain (𝑥 ′, 𝑦′, 𝑧′) from (𝑥,𝑦, 𝑧), and checking if 𝐷 can achieve
an optimal repair at a cost lesser than 𝑘 given the conditional independence 𝑋⊥⊥𝑌 | 𝑍 . Under the
specified assumptions, it is easy to check 𝐷 |= (𝑋⊥⊥𝑌 | 𝑍 ) if and only if 𝐷 |= 𝑋 ↠ 𝑌 . While there’s
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𝜋 (v, v′)

𝑃𝐷2 (v) = 𝜋 (v)


𝜋̃1,1 · · · 𝜋̃1,7 𝜋̃1,8
𝜋̃2,1 · · · 𝜋̃2,7 𝜋̃2,8
𝜋̃3,1 · · · 𝜋̃3,7 𝜋̃3,8


𝑄̃ (v′) = 𝜋 (v′)

v′ 𝑄̃ = 𝜋 (v′)
(0, 0, 0) 𝑄̃ (0, 0, 0)

...
...

(1, 1, 0) 𝑄̃ (1, 1, 0)
(1, 1, 1) 𝑄̃ (1, 1, 1)

Objective:

min𝜋̃ (1×𝜋̃1,1 + 2×𝜋̃1,2+
2×𝜋̃2,1 + ... + 1×𝜋̃3,8)

Validity constraints:

𝜋̃1,1 ≥ 0, 𝜋̃1,2 ≥ 0, · · · , 𝜋̃3,8 ≥ 0

Marginal constraints:

𝜋̃1,1 + 𝜋̃1,2 + · · · + 𝜋̃1,8=
1
4

𝜋̃2,1 + 𝜋̃2,2 + · · · + 𝜋̃1,8=
1
4

𝜋̃3,1 + 𝜋̃3,2 + · · · + 𝜋̃3,8=
1
2

Independence constraints:

𝑄̃𝑌,𝑍 (0, 0) = 𝑄̃𝑌 (0) × 𝑄̃𝑍 (0)
𝑄̃𝑌,𝑍 (0, 1) = 𝑄̃𝑌 (0) × 𝑄̃𝑍 (1)
𝑄̃𝑌,𝑍 (1, 0) = 𝑄̃𝑌 (1) × 𝑄̃𝑍 (0)
𝑄̃𝑌,𝑍 (1, 1) = 𝑄̃𝑌 (1) × 𝑄̃𝑍 (1)

Fig. 3. The QCLP for Example 4.1. The top left is the transport plan defined by the decision variables. The top

right is 𝑄̃ definitions. The rest are the objective and constraints.

extensive literature on the U-repair problem for Functional Dependencies [33, 38], to the best of
our knowledge, it hasn’t been studied for MVDs.

4 EFFICIENT COMPUTATION OF PROBABILISTIC OPTIMAL DATA CLEANER
In this section, we introduce efficient methods for computing the optimal data cleaner for CI
constraints as described in (7). In Section 4.1, we formulate the problem as a Quadratically Con-
strained Linear Program (QCLP). This formulation allows for the derivation of an exact solution
using existing efficient algorithms designed for QCLP. Subsequently, in Section 4.2, we present an
approximate version of the optimization problem in (7). This approach facilitates the development
of scalable and efficient solutions using iterative algorithms, particularly those based on Sinkhorn’s
matrix scaling.

4.1 QCLP Formulation
We present a QCLP designed to find an optimal data cleaner, as outlined in Section 3. This program
takes three inputs: a database 𝐷 , a CI constraint 𝜎 , and a cost function 𝑐 . We assume that 𝜎 is a
saturated CI constraint (i.e., it contains all attributes of 𝐷 cf. 2), with discussions on extending to
unsaturated CI in Section 5.

To formulate the QCLP, we first describe the decision variables in the program, followed by an
explanation of the constraints and the objective function. For clarity and better understanding, we
use 𝐷2 from Example 3.4 to demonstrate the QCLP formulation.

Decision Variables. In the QCLP, decision variables are represented as 𝜋̃𝑖, 𝑗 , where both 𝑖 and 𝑗

span from 1 up to 𝑑V (reflecting the size of the support ofV). These variables are the transport
plan’s probabilities representing the optimal data cleaning strategy. Since this plan has non-zero
probabilities exclusively for the values present in 𝐷’s active domain, 𝑖’s range can be limited to the
size of 𝐷’s active domain. The following example clarifies this.

Example 4.1. In the QCLP for the optimal cleaner of 𝐷2 from Example 3.4, the transport plan is
defined by an 8 × 8 variable matrix. However, given that 𝐷2 contains only three records, we use a
3 × 8 decision variable matrix, with the remaining rows of the initial matrix being zero. These decision
variables indicate possible modifications to the three records in 𝐷2, enabling them to align with any of
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the eight potential records in 𝐷̂2. The QCLP considers all eight potential records in 𝐷̂2, each associated
with its distinct variable.

Constraints. The QCLP incorporates three types of constraints to encode the conditions in our
data cleaner formulation in (7):
• Validity Constraints: These constraints, together with marginal constraints, ensure that 𝜋̃ makes
a valid transport plan. Specifically, the decision variables must be non-negative real values:

𝜋̃𝑖, 𝑗 ≥ 0 ∀𝑖 ∈ [1, 𝑑V ], 𝑗 ∈ [1, 𝑑V ] (8)

• Marginal Constraints: These constraints are included to guarantee that the marginals of the
transport plan, as described by 𝜋̃ , align with 𝑃𝐷 (the empirical distribution of 𝐷):

𝑑V∑︁
𝑗=1

𝜋̃𝑖, 𝑗= 𝑃𝐷 (v𝑖 ) ∀𝑖 ∈ [1, 𝑑V ] (9)

• Independence Constraints: These constraints are formulated to ensure that the probability dis-
tribution 𝜋 (v′) satisfies the CI constraint 𝜎 : (𝑋⊥⊥𝑌 | 𝑍 ). To express these constraints, we
introduce 𝑄̃ as the marginal probability distribution obtained from the decision variables 𝜋̃ . The
independence constraints express the equation 𝑄̃𝑋,𝑍 (𝑥 ′, 𝑧′) ×𝑄̃𝑌,𝑍 (𝑦′, 𝑧′) = 𝑄̃ (𝑥 ′, 𝑦′, 𝑧′) ×𝑄̃𝑍 (𝑧′)
and guarantee the marginal probability distribution satisfies 𝜎 . We use the notation 𝑄̃ instead of
𝑄 to emphasize that the decision variables in 𝜋̃ specify the marginal probability distribution.

Objective. The objective of the QCLP is to minimize the transport cost, which is represented as
follows:

min
𝜋̃

𝑑V∑︁
𝑖=1

𝑑V∑︁
𝑗=1

𝑐 (v𝑖 , v 𝑗)×𝜋̃𝑖, 𝑗 (10)

In this expression, the transport cost is calculated by summing the product of the cost function
𝑐 (v𝑖 , v 𝑗) and the decision variables 𝜋̃𝑖, 𝑗 , over all elements in the setV .

Example 4.2. Expanding on Example 4.1, Figure 3 shows the constraints and objective present in the
QCLP for𝐷2. Specifically, the validity constraints ensure that 24 decision variables are non-negative. The
three marginal constraints verify the alignment of the marginal probability, as defined by the transport
plan, with the probabilities of the three input records in 𝐷2. The independence constraints ensure that
the probability distribution specified by 𝑄̃ satisfies 𝜎 : 𝑋⊥⊥𝑌 | 𝑍 . For example, four independence
constraints in this example guarantee 𝜎 : 𝑌⊥⊥𝑍 holds for all possible values of 𝑌 and 𝑍 . The first
independence constraint is 𝑄̃𝑌,𝑍 (0, 0) = 𝑄̃𝑌 (0) × 𝑄̃𝑍 (0), where the marginals 𝑄̃𝑌,𝑍 (0, 0), 𝑄̃𝑌 (0), and
𝑄̃𝑍 (0) are defined as sums of decision variables in 𝜋̃ . The costs in the objective are the Euclidean
distance between the input records and their possible repair, e.g., the cost 1 in 1×𝜋̃1,1 is the Euclidean
distance between (1, 0, 0), as the first record in 𝐷2, and (0, 0, 0), as the first possible repair. Similarly 2
in 2×𝜋̃1,2 reflects the Euclidean distance between (1, 0, 0) and (0, 0, 1).

The above program is classified as a QCLP because, while the objective function and the validity
and marginal constraints are linear with respect to the decision variables, the independence
constraints are non-linear (quadratic). This is due to each side of the constraint consisting of
a product of values in 𝑄̃ , that each is, in turn, a sum of the variables in 𝜋̃ . QCLP represents a
distinct subtype of Quadratically Constrained Quadratic Programs (QCQPs) or Second-Order Cone
Programs (SOCPs) that feature quadratic constraints and objectives. Addressing a QCLP is a non-
convex optimization problem and is NP-hard [11, 53]. Diverse, efficient methodologies, including
sequential quadratic programming, augmented Lagrangian, interior-point, and active set, have
been employed to derive sub-optimal solutions for such programs [11].
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We implemented an alternating algorithm to compute the optimal repair by solving the QCLP
program. This method iteratively transforms the quadratic independence constraints into linear
ones, similar to the Alternating Direction Method of Multipliers (ADMM) [12]. The process begins
with initial variable estimates for 𝜋̃ , ensuring the marginal distribution 𝑄̃ satisfies 𝜎 . These initial
values can be derived from the marginal probabilities of 𝑃𝐷 . In each iteration, we partition the
variables in 𝜋̃ into two subsets. We substitute the variables with their current estimates for the first
subset, effectively linearizing the constraints. This transformation allows us to treat the second
subset as variables within a linear program. In subsequent iterations, we alternate roles: treating
variables of the second subset as constants and updating the first subset’s values by solving a
distinct linear program. This alternating process continues until the variables stabilize, indicating
convergence. We have omitted the algorithm’s specifics for brevity. The algorithm’s convergence
proof is similar to that of ADMM as presented in [12].

4.1.1 Analysis of the QCLP Solution. The QCLP formulation, though convergent, encounters
scalability challenges. Specifically, in each iteration, it necessitates solving an OT problem which
is structured as a linear program. The computational complexity of determining the OT scales
as 𝑂 (𝑑3 log(𝑑)) when comparing histograms of dimension 𝑑 [42]. In the following section, we
introduce an alternative formulation that mitigates this scalability issue and obviates the need for
solving a linear program.

4.2 Fast Approximation via Relaxed OT using Sinkhorn Iterations
In this section, we present an approximate algorithm for computing optimal repairs by casting
the problem into a regularized optimization. This approach integrates the CI constraint and the
constraint on marginals as regularizers, drawing inspiration from the relaxed optimal transport
discussed in Section 2. Specifically, we formulate the problem of computing the optimal cleaner in
(7) as the following regularized optimization problem:

argmin
𝜋∈Π,𝑄∈ΔV

∑︁
v𝑖 ∈V

∑︁
v
′
𝑗
∈V

𝑐 (v𝑖 , v′𝑗 )𝜋 (v𝑖 , v
′
𝑗 ) −

1
𝜌
𝐻 (𝜋) +

𝜆(𝐷KL (𝜋 (v′), 𝑄) + 𝐷KL (𝜋 (v), 𝑃𝐷 )) + 𝜇 𝛿𝜎 (𝑄), (11)

In the above formulation, 𝑃𝐷 denotes the empirical distribution of the dataset 𝐷 . The target
distribution, represented by 𝑄 , functions as a decision variable, while 𝜋 is the transport plan.
The regularization term 𝐷KL (𝜋 (v′), 𝑄) + 𝐷KL (𝜋 (v), 𝑃𝐷 ) penalizes the objective when there are
deviations of its marginals 𝜋 (v) and 𝜋 (v′) from 𝑃𝐷 and 𝑄 , respectively. Additionally, the CI
constraint, represented by 𝜎 , is imposed on 𝑄 through the regularization term 𝛿𝜎 (𝑄) within the
objective (recall from Section 1 that 𝛿𝜎 (𝑄) = 𝐷KL [𝑄 (𝑋,𝑌, 𝑍 ) | 𝑄 (𝑋,𝑍 )𝑄 (𝑌 | 𝑍 )]). This term
measures the degree of inconsistency of 𝑄 in relation to 𝜎 by utilizing the conditional mutual
information, as discussed in Section 2. This method is in contrast from the hard constraints used in
the QCLP formulation Section 4.1. The hyperparameters 𝜆 and 𝜇 serve as regularization coefficients,
adjusting for discrepancies from the marginals and the degree of inconsistency in the target
distribution 𝑄 . The methodology for tuning these hyperparameters is discussed in Section 6.
Intuitively, the optimization problem aims to find a distribution 𝑄 that aligns closely with the

empirical distribution 𝑃𝐷 while being consistent with the imposed constraint. The relaxed OT
distance serves as a measure of this alignment, and the objective is to minimize this distance,
ensuring that 𝑄 is a faithful representation of 𝑃𝐷 that simultaneously satisfies the constraint.
The inclusion of the CI constraint term makes our new formulation non-convex. We address

this non-convexity with an alternating algorithm, FastOTClean. Before we detail FastOTClean
in Algorithm 2, we describe its main idea. In this algorithm, we sequentially focus on either the
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transport plan 𝜋 or the resulting distribution 𝑄 , optimizing one while holding the other constant.
Initially, we can set 𝑄 to a distribution that meets the CI constraint 𝜎 . With this fixed value, our
objective becomes a convex function, which we solve using the Sinkhorn matrix scaling algorithm
discussed in Section 2. When we alternate, our goal becomes minimizing the divergence between
𝑄 and 𝜋 (v′). In this stage, 𝑄 must also align with the CI constraint 𝜎 .

To address this problem, we adopt an alternating minimization strategy. Initiating with an initial
guess for 𝑄 , the algorithm first determines the optimal transport plan 𝜋 (v, v′) between 𝑃𝐷 and 𝑄
through Sinkhorn iterations. In the subsequent iteration, a new𝑄 is constructed based on the target
distribution of 𝜋 , denoted 𝜋 (v′). Specifically, this 𝑄 is identified to be proximate to 𝜋 (v′) based on
the KL divergence while also ensuring it either approximately or strictly satisfies the independence
constraint. In subsequent iterations, the transport plan is recalibrated with respect to the revised
𝑄 . Hence, the procedure can be viewed as a two-layered iterative process where the outer loop
identifies a relaxed OT map, and the inner loop refines the target distribution of this map to enforce
the constraint. The core intuition behind this approach is twofold. Firstly, the outer loop endeavors
to determine a transport plan that maps the empirical distribution of data to a target distribution
proximate to 𝑄 , influenced by the regularization coefficient; its primary objective is to minimize
the transport cost. Conversely, the inner loop evaluates the target distribution derived from the
outer mapping and formulates a distribution in close alignment with it, ensuring adherence to the
constraint. In essence, while the outer loop emphasizes on minimizing the transportation cost, the
inner loop focuses on enforcing independence constraints.

The inner loop of this alternating algorithm, which reconstructs 𝑄 based on 𝜋 (v′) to satisfy the
CI constraint, can be interpreted as a rank-one non-negative matrix factorization (as highlighted in
Capuchin [47]). Specifically, when dealing with conditional mutual information, the problem aligns
with non-negative matrix factorization using the KL divergence objective, which is inherently
non-convex but is typically addressed using alternating algorithms (for approximate enforcement
of a CI constraint, one can use approximate matrix factorization techniques [22]). For a specific
value 𝑧 ∈ Z, we aim to determine matricesW𝑧 of size 𝑑𝑋 × 1 and H𝑧 of size 𝑑𝑌 × 1. These matrices
represent the joint and conditional distributions 𝑄 (𝑋 ′, 𝑍 ′ = 𝑧) and 𝑄 (𝑌 ′ | 𝑍 ′ = 𝑧). They are
chosen to minimize the divergence 𝐷KL (𝜋 (𝑋 ′, 𝑌 ′, 𝑍 ′ = 𝑧) | W𝑧 ·H𝑇

𝑧 ). While the 𝐷KL is convex with
respect to eitherW𝑧 or H𝑧 , it is not jointly convex for the pair (W𝑧,H𝑧). Established alternating
methods, along with their associated update rules from the matrix factorization domain, such as
those highlighted by Lee [36], can be employed. Starting with a random setup, these methods
update W𝑧 and H𝑧 until they converge. The final matrices help us shape a new 𝑄 that satisfies the
independence constraint.
We outline the algorithm to solve the optimization problem in (11), denoted by FastOTClean,

in Algorithm 2. It begins by setting initial values for the vectors p, q, and the cost matrix C (see
Lines 1 to 2). The vector q is set up to represent probabilities in a distribution satisfying 𝜎 , which
serves as a first guess for the resulting distributions 𝑄 . The vectors u and v, and the matrix K are
then prepared for Sinkhorn iterations (Line 3). The Sinkhorn method find a plan 𝜋 between our
original p and the estimate q by updating u and v until they stabilize (Line 6). See Section 2 on
checking convergence. After this, the algorithm computes the transport plan 𝜋 (Line 7) and shifts
its focus to reconstructing q. The reconstruction step (Line 13) employed an alternating algorithm
as described before to update q.

4.2.1 Analysis of the algorithm. We prove that the algorithm converges. In Section 6, we empirically
demonstrate this algorithm’s inner workings and convergence properties. In Section 5, we propose
efficient strategies to optimize this algorithm further.

Theorem 4.3. For the optimization problem outlined in Equation (11), Algorithm 2 converges.
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Proof. Algorithm 2 can be understood as an iterative optimization over one variable, either
the transport plan 𝜋 or the distribution 𝑄 , while holding the other variable constant. When 𝑄 is
fixed, optimization concerning the transport plan is smooth, differentiable, and strictly convex,
ensuring that the Sinkhorn iterations converge, as established by [23]. Conversely, with a fixed 𝜋 ,
the inner problem breaks down into an objective function that remains strictly convex with respect
to each matrix separately, and the adopted update rule ensures convergence to a stationary point,
as elaborated in [28]. This approach mirrors the Coordinate Descent method, where the objective
function is convex for each individual coordinate. As per [52][theorem 5.1], this process guarantees
convergence to a coordinate-wise minimum of the objective function. □

Algorithm 2: FastOTClean: Fast Computation of Probabilistic Data Cleaner for Condi-
tional Independence
Input: Database 𝐷 , cost function 𝑐 , and CI constraint 𝜎 : 𝑋⊥⊥𝑌 | 𝑍
Output: Transport plan (probabilistic data cleaner) 𝜋

1 p := vector(𝑃𝐷 ); C := matrix(𝑐);
2 Randomly initialize q ⊲ An initial guess for 𝑄
3 u := 1𝑑X ; v := 1𝑑Y ;K := 𝑒

− C

𝜌 ; ⊲ Sinkhorn Initialization
4 while q is not converged do ⊲ Sinkhorn iterations
5 while u and v are not converged do

6 u := (p ⊘ (K · v))
𝜌𝜆

𝜌𝜆+1 , v := (q ⊘ (K · u))
𝜌𝜆

𝜌𝜆+1 ;
7 𝜋 = diag(u) · K · diag(v);
8 for each 𝑧 ∈ Z do

9 InitializeW𝑧 , H𝑧 randomly.
10 while W𝑧 and H𝑧 are not converged do

11 UpdateW𝑧 to minimize 𝐷KL (𝜋 (𝑋 ′, 𝑌 ′, 𝑍 ′ = 𝑧) | W𝑧 · H𝑇
𝑧 ) with H𝑧 fixed

12 Update H𝑧 to minimize 𝐷KL (𝜋 (𝑋 ′, 𝑌 ′, 𝑍 ′ = 𝑧) | W𝑧 · H𝑇
𝑧 ) withW𝑧 fixed

13 Construct q usingW𝑧s and H𝑧s computed in the previous step
14 return 𝜋 ;

5 OPTIMIZATIONS
We applied several optimizations to improve FastOTClean that we briefly explain below and show
their efficacy in Section 6.
Default Optimization. We applied two straightforward yet effective optimizations: 1) Con-

fining the transport plan’s size to restrict mass movement solely within 𝐷’s active domain toV ,
excluding movement to the entire support. We explained this in the context of QCLP while defining
decision variables in Section 4.1. This restriction can be further narrowed down to allow mass
movement within a more limited subset. 2) Rather than randomly initializing the target distribution
𝑄 in FastOTClean, we initiated it with a distribution satisfying the CI constraint by applying
Non-negative Matrix Factorization (NMF) to the empirical distribution of 𝐷 , which our results
demonstrated to aid faster convergence.

Warm Starting Sinkhorn. Convergence of the Sinkhorn iteration is a significant bottleneck in
FastOTClean. We observe that our alternating algorithm, while it changes 𝑄 in each iteration in
which we fix the transport plan, only makes slight adjustments, implying that the transport plan
should undergo minor changes in the next iteration. Therefore, instead of initializing the Sinkhorn
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Dataset #tuples #attr. avg. dom init. CMI

Adult 48,842 14 5.42 0.18770
COMPAS 10,000 12 2.4 0.05484
Car 1,728 6 3.67 0.03617
Boston 506 14 4.5 0.05983

Table 2. Datasets characteristics

scaling factors u and v with vectors of ones, adopting a warm starting approach by initializing
them with the u and v from the previous iteration can significantly accelerate convergence. Our
evaluation results indicate that this is a highly effective idea.
Unsaturated CI Constraints. So far, we assumed that 𝜎 : 𝑋⊥⊥𝑌 | 𝑍 represents a saturated CI

constraint, implying V = {𝑋,𝑌, 𝑍 }. However, in many real-world scenarios, especially with high
dimensional data, CI constraints may not be saturated.
For unsaturated constraints, we split V, the set of attributes in the database 𝐷 , into two sets:

U = {𝑋,𝑌, 𝑍 } (the attributes in 𝜎) and W = V \ U (those not in 𝜎). A naive method is to compute a
transport plan 𝜋 of size 𝑑2V , considering all attributes in V, includingW. Adapting methods from
Section 4 for this scenario is straightforward but computationally expensive with high-dimensional
data.
A more efficient strategy is to run FastOTClean for the marginal distribution 𝑃𝐷

U instead of
𝑃𝐷 . This results in a smaller transport plan 𝜋𝑠 of size 𝑑2U compared to 𝜋 . With 𝜋𝑠 , we construct
𝜋 as follows: 𝜋 (v, v′) = 0 if w ≠ w

′, and 𝜋 (v, v′) = 𝜋𝑠 (u,u′)𝑃W |U (w | u) otherwise. This ensures
no additional transport cost for moving masses between different values ofW as there is no mass
moved for w ≠ w

′. Thus, the cost associated with 𝜋 is the same as 𝜋𝑠 , making it optimal if 𝜋𝑠 is
optimal. Note that this requires the cost function to satisfy some basic properties, such as the cost
of uw → u

′
w being equal to the cost of u → u

′, which is satisfied by the Euclidean distance and
other cost functions in our work. Additionally, the use of 𝑃W |U (w | u) ensures that 𝜋 satisfies the
marginal constraint 𝑃𝐷 (v) = 𝜋 (v). The resulting distribution𝑄 from 𝜋 satisfies 𝜎 as its marginal is
𝑄U which is known to satisfy 𝜎 .

6 EXPERIMENTS
In our experimental evaluation of OTClean, we seek to answer the following research questions:
Q1 How does the end-to-end performance of OTClean in terms of algorithmic fairness compare
with baseline approaches? (Section 6.2) Q2 In data cleaning tasks related to CIs, how does the
performance of OTClean compare with the baselines? (Section 6.3) Q3 How effective is OTClean
in determining optimal repairs? This encompasses evaluating its convergence behavior, runtime
performance, and efficacy of the optimizations. (Section 6.5)
Datasets. We used four datasets. The Adult and COMPAS datasets highlight the fairness aspect

of OTClean’s application, while the datasets Car and Boston showcase the efficacy of OTClean
in data cleaning tasks. Table 2 provides an overview of these datasets.

Adult [1]. In the Adult dataset, or “Census Income,”, each entry captures details like age, work
class, education level, marital status, occupation, relationship status, race, gender, weekly working
hours, and country of origin. The dataset’s main objective is to predict if an individual earns over
$50K annually.

COMPAS [4]. The COMPAS dataset from the Broward County Sheriff’s Office in Florida predicts the
likelihood of an individual re-offending. Key attributes include age, gender, race, criminal history,
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risk scores, charge degree, and jail history. COMPAS is essential for studies focusing on the fairness
implications of predictive policing.

Car [3]. The Car Evaluation dataset evaluates cars based on attributes like buying price, mainte-
nance cost, number of doors, person capacity, and safety. Cars are classified based on their overall
condition into unacceptable, acceptable, good, or very good.

Boston [2]. The Boston Housing dataset provides insights into the housing market in Boston,
Massachusetts. It covers attributes like crime rate, residential zoning, average room count, distance
to employment centers, and median home value. It’s frequently used for regression analysis in
predicting housing prices.

Baselines. We use baselines that we briefly review here.
Algorithmic fairness. In the realm of algorithmic fairness, the objective is to guarantee that

decision-making algorithms operate equitably, avoiding discrimination based on sensitive attributes
like race or gender. While there are myriad definitions of fairness in the literature, this study
primarily focuses on interventional fairness, as articulated in [47]. This particular notion underscores
the importance of enforcing CI within data. Consider a sensitive attribute 𝑆 . Without loss of
generality, let’s assume 𝑆 is binary where 𝑆 = 1 denotes the protected (or sensitive) group and 𝑆 = 0
the unprotected group. Further, consider an ML model with output 𝑌 trained on a set of features X.
The notion of interventional fairness dividesX into two sets: admissible variablesA and inadmissible
variablesN. Admissible variables are those where the effect of the sensitive attribute on the outcome,
mediated by these variables, is considered fair. In [47], the extent to which an ML model deviates
from this fairness standard is quantified using the Ratio of Observational Discrimination (ROD),
defined as:

ROD =
1

|𝑑𝑜𝑚(𝐴) |
∑︁
𝑎∈𝐴

𝑃 (𝑌 = 1|𝑆 = 0, 𝑎)𝑃 (𝑌 = 0|𝑆 = 1, 𝑎)
𝑃 (𝑌 = 0|𝑆 = 0, 𝑎)𝑃 (𝑌 = 1|𝑆 = 1, 𝑎)

A ROD value of 1 signals the absence of any bias and is in correspondence to the conditional
independence (𝑌⊥⊥𝑆 | A). In this paper, we employ the logarithm of the ROD for our analyses. A
logarithmic ROD value of 0 is indicative of the absence of discrimination, while progressively higher
values of the log ROD signify increasing levels of bias. The approach detailed in [47] reduces the
challenge of training a fair ML model to the task of enforcing a CI constraint on the training data.
They introduced several methods in this context, which we adopt as baselines for our evaluations.
Their methods fall into two categories: Methods based on matrix factorization and MaxSat methods.
From the first category, the “Cap(MF)” factorizes each joint probability distribution of 𝑃𝐷 for a fixed
value of Z by minimizing Euclidean norm, while “Cap(IC)” does the factorization by using marginals
of the initial distribution. They also propose a problem reduction of repairing w.r.t a CI constraint
to solving a general CNF formula, and they solve it using their MaxSat method “Cap(MS)”. We also
included a naive baseline referred to as “Dropped,” where the model is trained solely on admissible
variables, which is sufficient for enforcing intervention fairness, as demonstrated in [47].

Data Cleaning. In our data cleaning evaluation, we assess the performance of OTClean and
compare it with various imputation and data cleaning methods. We consider five baselines for
handling missing values: 1) Most frequent (MF) fills missing values with the most frequent values
within the attribute, 2) k-nearest neighbors (kNN) identifies the most frequent values among
neighboring data points for imputation, 3) GAIN uses Generative Adversarial Networks [57],
and 4) Hyperimputation is a method that integrates multiple imputation techniques, blending
traditional iterative imputation with deep learning [31]. We selected kNN and MF as basic, widely-
used baselines. We compared OTClean with GAIN since it is a leading imputation method and
Hyperimpute since it is known for its ability to surpass various imputation techniques. We also use
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two baselines in scenarios with attribute noise: 1) using the dirty dataset as a simple baseline, and 2)
Baran [40] as an advanced data cleaning method that utilizes comprehensive context information,
including the value, co-occurring values, and attribute type, to generate correction candidates with
high precision.
6.1 Tuning OTClean

Cost function. We employ two cost functions in our experiments. The first function calculates the
cost as the Euclidean distance between two records after normalizing their attributes by dividing
them by their standard deviation. The second function utilizes a distance learned through MLKR
(Metric Learning for Kernel Regression [54]), a supervised metric learning technique that minimizes
the leave-one-out regression error. We chose MLKR because it is widely used for distance learning
and designed explicitly for supervised tasks like those in our settings. We label the results from the
first cost function as OTClean-C1, while the cost function using the learned distance is labeled as
OTClean-C2.
Regularization Coeffients. Two tuning parameters of FastOTClean are 𝜆 and 1

𝜌
. As 𝜆 and 𝜌

grow, our formulation of OTClean gets closer to the OT distance, and FastOTClean gives better
results. However, as their values grow, the cost of running FastOTClean increases due to slower
convergence. To find parameter values that balance runtime and fast convergence, we perform a
grid search for each dataset to tune OTClean. OTClean has another parameter, 𝜇, that quantifies
the dissatisfaction of the CI constraint.

6.2 Algorithmic Fairness
We evaluate the effectiveness of OTClean within the domain of algorithmic fairness. To harness
OTClean for training interventionally fair algorithms, we utilize our probabilistic data cleaning ap-
proach to modify the data, ensuring its consistency with the CI constraint (𝑆⊥⊥N | A). This enforced
independence ensures the sensitive attribute does not influence the inadmissible variable, except
through A. If this independence is maintained, any valuable predictive information encapsulated
within the inadmissible variables N cannot be sourced from the sensitive attribute. The flexibility
of our approach, underpinned by OT, allows us to craft specific cost functions for probabilistic
data cleaning to preserve as much predictive capability as possible. Specifically, we designed a cost
function to modify the inadmissible variables and keep sensitive attributes and admissible variables
unchanged, ensuring that while fairness is achieved, all relevant predictive information within A is
retained. Additionally, it ensures that any remaining predictive value within N is not derived from
the sensitive attribute 𝑆 .

We applied OTClean to establish a probabilistic data cleaner for the training data. This cleaner
was subsequently used to pre-process the dataset. The subsequent sections present evaluation
results on the Adult and COMPAS datasets. Our evaluation metrics include cross-validated AUC
and the mean ROD averaged over iterations derived from cross-validation outcomes. Besides ROD,
we also assess other fairness measures, such as equality of odds and demographic parity. Notably,
our approach incidentally enhances these fairness metrics as well. We also report other popular
fairness measures, such as equality of odds— which requires that classifiers have equal false positive
and false negative rates across protected groups—and demographic parity, which ensures that the
decision outcome is independent of the protected attribute.
Figure 4 showcases our evaluation results for the COMPAS and Adult datasets. In the Adult

dataset, the sensitive attribute is “sex”, “marital-status” is inadmissible, and the admissible attributes
include “occupation”, “education-num”, “hours-per-week”, and “age”. For COMPAS, we treat “race” as
sensitive, “age-cat” and “priors-count" as inadmissible, and “charge-degree” as admissible. Notably,
OTClean demonstrates superiority over the baseline, achieving models that are at least as fair,
if not fairer, and exhibit an elevated AUC. This improvement can be attributed to our OT-based
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approach, which empowers our method to retain considerable predictive value while rigorously
enforcing fairness constraints. Furthermore, Figure 5 shows OTClean’s reasonable performance
on other fairness notions, specifically Equality of Opportunity (EO) and Demographic Parity (DP).
On both datasets, our methodology consistently surpasses the baseline in these respects. (Note:
the result of “Cap(MS)" is not plotted in Figure 4b as it achieved a constant AUC of 0.5 in all
cross-validation iterations.)
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Fig. 4. Comparison of OTClean’s performance with the baselines showing higher AUC and lower ROD (bias)
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Fig. 5. Fairness metrics inOTClean, indicating lower biases (ROD, EO, and DP) compared to baseline methods

6.3 Data Cleaning
To evaluate the performance of OTClean in data cleaning, we conducted experiments using
semi-synthetic datasets that featured two types of dirty data: attribute noise and missing val-
ues. These datasets were derived from the Car and Boston datasets. We used these datasets
to train ML models for predicting the labels “class” (indicating the car’s condition in the Car
dataset) and “medv” (representing median house price in the Boston dataset), respectively. In
each case, we introduced noise errors and missing values into the training data, while the orig-
inal clean data served as the test set for assessing model generalization. For Car, we consid-
ered the CI constraint (doors⊥⊥class | the remaining attributes). This constraint implies that the
number of car doors should not significantly impact the class label when considering other
factors such as buying price and safety. For the Boston dataset, we examined the constraint
(B⊥⊥medv | the remaining attributes), which suggests that the “B” attribute (indicating the percent-
age of blacks per town) should not influence the “medv” label. Initially, these constraints were
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approximately held in the original datasets. To introduce attribute noise, we deliberately added
non-random noise that led to violations of the CI constraints. Additionally, we injected two types
of missingness: missing at random (MAR) and missing not at random (MNAR).
We chose to use a semi-synthetic dataset, where we added errors to real-world data, to create

both “dirty” datasets and their accurate ground truths. This was essential because it is difficult to
find real datasets with both genuine errors and ground truth. A limitation of this approach is that
the injected error patterns may not exactly replicate those in actual datasets. However, our cleaning
system is designed to be effective regardless of the specific error types. It primarily targets fixing
spurious correlations and reducing the impact of any differences in error patterns on our goals.
To create a dependency between two attributes through attribute noise, we introduce random

noise into one based on the values of the other. Our approach to adding missing data depends on
the type. In MAR scenarios, where another attribute influences an attribute’s missingness, we add
missing values based on the other attribute’s values in the same record. In MNAR cases, where an
attribute’s missingness is affected by its own value and other attributes, we randomly select records
and determine missingness based on these factors. This method systematically creates relationships
between attributes, effectively incorporating noise and addressing different missing data situations.

To assess the efficacy of OTClean, we utilized the “Dirty” datasets to train various ML models,
including logistic regression, random forest, SVM, and MLP, and reported results for the best-
performing model. When dealing with missing values, we employed two imputation methods:
most frequent values (MF) and kNN, as explained previously. The dirty model is labeled with
the imputation method used for training the dataset. In all experiments, the models were tested
on ground truth data (the data before adding noise or missing values), and the models trained
on the ground truth were denoted as “Clean.” Additionally, we applied OTClean to enforce the
corresponding CI constraint before training the ML models. This step aimed to remove spurious
correlations induced by violations of CI, which could lead to poor performance of the ML model.
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Fig. 6. Attribute noise

Attribute Noise. Figure 6 shows our results for cleaning data with attribute noise. We compared
the performance, in terms of AUC and F1-score, of models using “Clean” data, “Dirty” data, and
data cleaned by OTClean and Baran. Our cleaning algorithm only applies the CI constraint and
does not need prior information about the noise type. However, it can also use knowledge about
which attribute is noisy for repair. We tested OTClean in two ways: “blind”, without knowing the
noisy attribute, and with background knowledge (BG), where the noisy attribute is identified. The
figures show how accuracy changes with different levels of noise. As noise increases, the model
trained on dirty data performs worse. In contrast, the model trained on OTClean-cleaned data in
both scenarios closely matches the ground truth model’s behavior. This is because the dirty data
model might learn false patterns not present in clean test data. However, using OTClean to apply
the CI constraint helps the model focus on the correct data patterns. While OTClean improves
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accuracy in both the blind and BG-informed settings, using background knowledge generally leads
to better performance than the blind approach and Baran.
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Fig. 7. Missing at random (MAR) in Boston dataset
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Fig. 8. Missing Not at Random (MNAR) in Car dataset

Missing Values. In our missing value experiments (Figures 7 for MAR and 8 for MNAR), we
tested model performance at different missing data levels. We compared “Dirty” models (trained
with missing values filled using methods like MF, kNN, GAIN, and Hyperimpute) against OTClean-
enhanced models (OTClean-MF, OTClean-KNN, OTClean-GAIN, and OTClean-Hyperimpute).
For MAR, all imputation methods struggled with high missing data rates, affecting performance.
However, combining them with OTClean improved results, closely matching the ground truth
regardless of missing data amount. The slight advantage over ground truth models in Figure 7 is
due to limited data size. For MNAR, as shown in Figure 8, our approach performed better than the
baseline but declined as missing data increased. This is because MNAR issues are generally harder
to address. While using OTClean helps reduce false correlations, differences in training and test
data distributions can still affect performance.

6.4 Evaluation using Statistical Distortion
Dasu et al. [19] proposed a way to evaluate data cleaning methods, focusing on how they statistically
distort data. They used measurements like the Earth Mover Distance (EMD) to see how much a
method changes the original data distribution; less change is better. Their approach starts with a
dirty dataset and its cleaned version. Using sampling, they generate pairs of these datasets, called
replications, and clean the dirty ones. Using several replications instead of a single dataset pair
ensures a more comprehensive and robust evaluation, avoiding biases that might arise from the
unique characteristics of a single dataset. They then measure how much these strategies alter the
data and improve error correction.
In our experiments, we applied this framework to test OTClean as a data cleaning method.

We compared its effect on data distortion to other methods. Instead of looking at repaired errors,
we focused on the accuracy (AUC) using the cleaned data. We ran 100 replications with attribute
noise. The results are in Figure 9, where each cluster represents a cleaning method (the black point
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shows the original dirty data). Each point shows the balance between data distortion and AUC
improvement for replication. The figure indicates that OTClean generally improves performance
more than Baran in most cases and is closer to the clean datasets, though with a bit more distortion.
This increased distortion is due to moving the data closer to the ideal clean dataset, leading to
better accuracy.
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Fig. 9. Comparing OTClean and the competing

cleaning methods based on their statistical dis-

tortion

Dataset

FastOTClean

MF IC MS QCLP

C1 C2

Adult 4963 2158 66 66 700 NA
COMPAS 1137 846 7 6 1227 2

Table 3. Runtime (sec) for the fairness application

6.5 OTClean’s Runtime and Performance
Runtime. In Table 3, we provide the runtime results of FastOTClean for Adult and COMPAS

datasets, comparing themwith the baselines. While our algorithm’s runtime is somewhat higher due
to the complex nature of OT, it remains reasonably fast and offers a practical means for employing
OT in data cleaning for CI constraints. Our algorithm’s runtime is mainly influenced by the number
of attributes in the CI constraints rather than the data size. This is because the size of the transport
plan we use stays the same no matter how large the data is; it only changes based on the number
of attributes. In our experiments, the main factor we consider is the domain size, which depends
on the number of attributes in the CI constraints and how many values these attributes can have.
Figure 10 shows how FastOTClean’s runtime and memory usage change with increasing domain
size for the Adult and COMPAS datasets. Figures 10a,10b, and10c demonstrate that FastOTClean
can handle large domain sizes efficiently. Figures 10a and 10b display the runtime for different
cost functions, C1 and C2, showing that the choice of cost function affects the runtime. Figure 10c
shows memory usage, which does not vary with the cost function. We can further reduce memory
needs and speed up processing by using a sparse representation of the transport plan, since it is
naturally sparse. We plan to explore this approach in our future work.

Convergence andOptimization. Figure 12 demonstrates the convergence behavior of our main
FastOTClean, affirming the result presented in Theorem 4.3. It shows the monotonic decrease of
the objective function, which represents the cost of the transport plan with the number of iterations.
Additionally, the graph compares the convergence properties of FastOTClean with two different
initializations: one with a random initialization of q and another using NMF. Notably, initializing
with NMF reduces the total convergence iterations by nearly 30%. We also highlight optimizations
aimed at reducing runtime. The first optimization involves updating 𝑞 slices in parallel, achieving a
significant speedup of ×7 in our Adult data. Another optimization focuses on unsaturated CIs.
Figure 11a illustrates the substantial runtime improvement achieved by employing the proposed
optimization for unsaturated CI constraints while maintaining the same outcome. In this scenario,
we initiate with a CI constraint and constructW using attributes with varying domain sizes. We
then evaluate the runtime of both the naive and saturation approaches. The saturation approach
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consistently solves the same problem, optimizing 𝜋𝑠 , regardless of growing 𝜋 ’s size, contributing to
its stable performance. In our final experiment, we investigate the impact of warm start optimization
on Sinkhorn iteration numbers. Figure 11b shows warm start reduces the number of iterations by
more than sevenfold.
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7 RELATED WORK
Our research connects with two main areas of study.

Data Cleaning. Data cleaning in the database domain traditionally revolves around enforcing
integrity constraints, such as functional dependencies and conditional functional dependencies [10,
33, 37, 38]. Nonetheless, the domain of data cleaning for CI has only recently gained attention.
Notable works in this emerging field include [47] and [56]. SCODED [56] employs statistical
constraints to represent conditional dependence or independence and uses them to detect errors
within datasets. However, it primarily focuses on ranking individual data tuples based on their
relevance to CI violations, differing from our more general data-centric approach. The work in [47],
on the other hand, aims to find optimal repairs for CI violations involving the addition or removal
of tuples to satisfy the constraint. However, their method lacks the application of specific statistical
divergence or distance measures to assess the quality of the repaired data. In a somewhat distinct
vein, [5] utilizes generative adversarial networks (GANs) to generate data adhering to CI constraints.
Their primary objective is to train these generative models effectively, particularly emphasizing
the minimization of Jensen–Shannon divergence in continuous data. However, their focus is on
training generative models rather than cleaning existing data.
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Fairness and Optimal Transport. Algorithmic fairness research has primarily focused on
detecting and mitigating biases in machine learning models, utilizing pre-, post-, and in-processing
techniques. Pre-processing methods [15, 30] aims to eliminate bias from training data before model
training. While model-agnostic approaches such as [14, 21, 47] exist, they often lack insights into
the root causes of biases. These strategies typically address basic fairness criteria and may not delve
into enforcing CI tests or incorporating OT methods. Notably, the authors in [49] employ OT as a
regularizer duringMLmodel training, focusing on a different aspect than our data cleaning objective.
Additionally, studies like [9, 48] use OT to quantify unfairness, making them less aligned with
our core research goal. The Wasserstein distance and barycenter are widely used in fair machine
learning as solutions to the OT problem. For example, the study in [16] employs a fair classification
approach that minimizes Wasserstein-1 distances to decouple classifier outputs from sensitive
information, demonstrating strong empirical performance across various datasets. Similarly, the
research in [25] uses the Wasserstein barycenter to preprocess training data to achieve statistical
parity, though it does not delve into the complexities of conditional statistical inference in high-
dimensional datasets, which sets it apart from our approach. Additionally, barycenters are utilized
in [32] for learning real-valued functions that meet the Demographic Parity constraint. This work
leverages OT theory to identify the optimal fair predictor, shown as the Wasserstein barycenter of
distributions from sensitive groups. The paper also introduces a straightforward post-processing
algorithm that effectively balances fairness with minimal increases in error rates, supported by
empirical evidence.
8 CONCLUSION
In this paper, we formalize the problem of repairing and cleaning data with respect to conditional
independence (CI) constraints using optimal transport theory. Optimal transport provides a mathe-
matically rigorous framework for measuring the discrepancy between probability distributions,
which is crucial for adjusting datasets while preserving their statistical properties. We developed an
efficient algorithm that leverages approximations based on the Sinkhorn’s matrix scaling technique,
which is particularly suited for handling discrete data. This algorithm enables us to efficiently
align data distributions with desired CI constraints without extensive computational costs typically
associated with optimal transport solutions. Through experimental evaluation, we demonstrated
that our approach not only adheres closely to CI constraints but also maintains the utility and
accuracy of the data, surpassing the baseline methods in both performance and efficiency. As we
look ahead, our research will expand OTClean to effectively manage the challenges associated
with continuous data, which are prevalent in real-world applications. This expansion is critical
for preserving the integrity and distribution of continuous datasets, ensuring that our data clean-
ing methods remain effective across different data types. Furthermore, we intend to explore the
simultaneous enforcement of multiple CI constraints, a necessity in practical settings where data
quality issues and biases are often intertwined and complex. This effort will involve developing
robust data cleaning methods that can handle not only CI violations but also the intricacies of other
database dependencies, such as functional and multivalued dependencies. Such dependencies are
vital considerations in machine learning applications, where the accuracy and reliability of models
heavily depend on the correct representation and distribution of the underlying data.
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