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Abstract

Particle-based Bayesian inference methods by

sampling from a partition-free target (posterior)

distribution, e.g., Stein variational gradient de-

scent (SVGD), have attracted significant atten-

tion. We propose a path-guided particle-based

sampling (PGPS) method based on a novel Log-

weighted Shrinkage (LwS) density path linking

an initial distribution to the target distribution. We

propose to utilize a Neural network to learn a vec-

tor field motivated by the Fokker-Planck equation

of the designed density path. Particles, initiated

from the initial distribution, evolve according to

the ordinary differential equation defined by the

vector field. The distribution of these particles

is guided along a density path from the initial

distribution to the target distribution. The pro-

posed LwS density path allows for an efficient

search of modes of the target distribution while

canonical methods fail. We theoretically analyze

the Wasserstein distance of the distribution of the

PGPS-generated samples and the target distribu-

tion due to approximation and discretization er-

rors. Practically, the proposed PGPS-LwS method

demonstrates higher Bayesian inference accuracy

and better calibration ability in experiments con-

ducted on both synthetic and real-world Bayesian

learning tasks, compared to baselines, such as

SVGD and Langevin dynamics, etc.
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1. Introduction

Bayesian learning is a powerful approach for distribution-

based model predictions, naturally equipped with uncer-

tainty quantification and calibration powers (Murphy, 2022).

The key of Bayesian learning ± computing the posterior by

Bayes’ rule, however, is well-known to be challenging due

to the intractable partition function (a.k.a. the normalizing

constant) (Andrieu et al., 2003).

To circumvent this difficulty, approaches based on sampling

according to the (target) posterior distribution without com-

puting the partition function have been considered; e.g.,

Markov Chain Monte-Carlo (MCMC) sampling (Andrieu

et al., 2003) and its gradient-based variants (e.g., Langevin

dynamics) generate samples (or particles) that follow the

target distribution asymptotically using a partition-free func-

tion. Such particle-based Bayesian inference methods,

which essentially transform a set of initial samples/particles

along certain dynamics (e.g., an ordinary differential equa-

tion (ODE) or a stochastic differential equation (SDE)) gov-

erned by a vector field, have witnessed great successes (Liu,

2017). Most of these methods, e.g. Stein variational gradient

descent (SVGD) (Liu & Wang, 2016) and preconditioned

functional gradient flow (PFG) (Dong et al., 2022), fall

into the category of gradient-flow particle-based sampling,

where the vector field is a gradient function of the Kullback-

Leibler (KL) divergence of the current distribution to the

target distribution, such that the dynamics would drive the

particles to the minimum of KL-divergence solution, i.e.,

the target distribution.

Although gradient-flow particle-based sampling methods

are shown to be flexible and efficient in some applica-

tions (Dong et al., 2022), they may not achieve the ideal

Bayesian inference performance due to not effectively cap-

turing the posterior distribution. Specifically, as a realization

of the KL-Wasserstein gradient-flow method, Langevin Dy-

namic (LD) is known to suffer from slow mixing, and in

turn tends to result in mode missing or misplaced mode

weights (Song & Ermon, 2019). It is believed that the pos-

terior for complicated models, especially Bayesian Neural

Networks (BNNs) (Goan & Fookes, 2020), contain multi-

ple modes of different weights, and mode missing would

impact its generalization, uncertainty quantification, and

calibration abilities. More detailed discussions can be found
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in Sections 3.1 and 5.1.

In this work, we propose a new family of Bayesian infer-

ence methods termed Path-Guided Particle-based Sam-

pling (PGPS). The particles follow an ODE defined by a

learned vector field, so that the distribution of the particles

is directed by a carefully designed partition-free path con-

necting the initial and the target distributions, instead of

evolving along the direction that minimizes some functional.

The performance of the PGPS approach is clearly deter-

mined by the path being followed, and we propose to rely

on a Log-weighted Shrinkage path that is more efficient and

accurate. The intuition for this choice is that logarithmic

weights admit linear mixture of the score function and the

shrinkage allows effective coverage of the target distribution

along the path.

The contributions of this work are threefold:

1. We propose PGPS as a novel framework of flow-based

sampling methods and derive a tractable criterion for

any differentiable partition-free path in Proposition 3.1;

2. We theoretically show that the Wasserstein distance

between the target distribution and the PGPS generated

distribution following the NN-learned vector field with

approximation error δ and discretization error by step-

size h is bounded by O(δ) +O(
√
h) in Theorem 4.2;

3. We experimentally verify the superior performance of

the proposed approach over the state-of-the-art bench-

marks, in terms of the sampling quality of faster mode

seeking and more accurate weight estimating, and the

inference quality with higher testing accuracy and

stronger calibration ability in Bayesian inference, in

Section 5.

2. Background

Given an inference model parameterized by parameters x,

e.g., a neural network with parameters x, Bayesian infer-

ence updates the distribution of the parameters by Bayes’

theorem, and performs statistical inference according to

the posterior distribution. Specifically, suppose parame-

ters x ∈ R
d has prior density1 p0(x), and given a data

set D, the posterior p∗(x) is updated by p∗(x) = p̂(x)
Z

with p̂(x) = p0(x)L(D|x), where L(D|x) is the likeli-

hood function of the data D and Z =
∫

p0(x)L(D|x) dx is

the partition function. The partition function Z is usually

computationally intractable. Many inference methods, in-

cluding broadly applied Monte Carlo methods (Liu & Liu,

2001), have been proposed to (approximately) draw samples

from the posterior/target distribution p∗(x) using the more

1We assume density of the parameters (random variables) exists
and do not differentiate their distribution and density.

tractable partition-free function p̂(x).

Particle-based (particularly flow-based) Bayesian infer-

ence methods direct a set of random samples/particles

{x(i)
0 }ni=1 ⊂ R

d drawn i.i.d. from an initial distribution

p0 (e.g., the prior or other distributions from which samples

can be drawn directly) along certain ODE dynamics

dxt

dt
= φt(xt), x0 ∼ p0,

defined by a vector field φt : R
d → R

d. The corresponding

evolution of the density functions is characterized by the

continuity equation (Jordan et al., 1998):

∂

∂t
pt(x) = −∇ · (pt(x)φt(x)), (1)

where pt(x) denotes the density of xt,∇ is the vector differ-

ential operator w.r.t. x (we omit x for simplicity throughout

the paper), and ∇ · f denotes the divergence of the vector

function f .

The critical point of the particle-flow-based methods is the

design of the vector field φt. A typical choice is the gra-

dient of some objective function under a certain metric,

and the dynamic is thus a gradient flow. An example of

the gradient-flow particle-based method is the Wasserstein

gradient flow (Ambrosio et al., 2005), which has drawn con-

siderable interest. It is motivated by minimizing a functional

L(pt) ∈ R in the Wasserstein space, which is a space of

distributions equipped with the Wasserstein metric

Wq(p1, p2) =

(

inf
γ∈Γ(p1,p2)

E(x1,x2)∼γ∥x1 − x2∥qq
)1/q

,

where Γ(p1, p2) is the set of all the coupling of p1
and p2. When the functional is the KL divergence

KL(pt∥p∗) = Ext∼pt
[− ln p∗(xt) + ln pt(xt)] and under

the 2-Wasserstein metric, i.e. q = 2, the resulting gradient

has a closed form

φt(x) = ∇ ln p∗(x)−∇ ln pt(x). (2)

Under mild assumptions, the gradient flow converges to the

optimal solution, i.e., limt→∞ pt = p∗, which implies that

with sufficiently large t, xt approximately follows the target

distribution p∗. Computing ∇ ln pt(x) in Equation (2) is

however not feasible in most practical cases. Methods such

as learning the current density pt(x) (Wang et al., 2022),

or transforming the problem of finding φt(x) to a tractable

learning/optimization problem (Dong et al., 2022; di Lan-

gosco et al., 2021) by a swarm of particles at step t, have

been developed to implement the gradient flow. The vector

field learning in our work is also based on a swarm of parti-

cles in the same manner, though the training loss function

and the desired vector field are significantly different.
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Evidently, the dynamics of the particles are not unique given

the evolution of the distributions. Langevin dynamics (LD)

dxt = ∇ ln p̂(xt) dt +
√
2 dBt, where Bt is a standard

Brownian motion, is a realization of the KL Wasserstein

gradient flow (Jordan et al., 1998). In other words, its dis-

tribution satisfies the same Fokker-Planck equation as that

of the ODE with vector field φt(x) in (2). LD and its vari-

ants, such as Metropolis-adjusted Langevin Algorithm (

MALA or LMC) and Stochastic Gradient Langevin Dynam-

ics (SGLD), have been shown to be effective since they do

not require learning ∇ ln pt(x) as in (2). However, these

methods lack a stopping criterion due to their stochastic

nature (Dong et al., 2022), and can suffer from slow conver-

gence for some target distributions.

2.1. Motivation of the Proposed PGPS Method

We first pinpoint the cause of the slow convergence of KL

Wasserstein gradient flow (e.g., LD), and provide the intu-

ition for the proposed method as a remedy. Consider the

experiment setup with a target distribution being a mixture

of two Gaussian distributions, as shown in Figure 1 (a). Tak-

ing a zero mean isometric Gaussian as initial distribution,

the convergence of LD to the target distribution is extremely

slow as shown in Figure 1 (b-c), where the particles ªstuckº

at the left-hand-side mode of the Gaussian mixture and it

takes many iterations to reach the right-hand-side mode.

The reason for this behavior is that LD and similar gradient-

flow-based methods rely heavily on the target distribution,

which is an asymptotic target. Such an asymptotic target

does not reflect the short-term need to escape from the cur-

rent mode; i.e., the convergence to the target distribution can

be extremely slow. To solve this issue, we propose PGPS

which specifies a density evolution path directly connecting

the initial and target distribution, and let the distribution of

the particles evolve along such a path. At each time step,

a short-term intermediate target on the path is set for the

particles; more details are given in Section 3. As shown in

Figure 1 (d), PGPS indeed finds both modes and converges

to the target distribution with considerably fewer iterations.

In the following, we denote the unnormalized density func-

tion with a hat as (̂·), i.e. p̂t(x) ∝ pt(x) with
∫

pt(x) dx =
1 but

∫

p̂t(x) dx being an unknown positive number.

2.2. Related Works

Gradient-flow particle-based sampling usually aims at find-

ing tractable estimations for the KL-gradient flows in the

Wasserstein space. One track of works relies on the uni-

versal approximation theorem of neural networks (Hornik

et al., 1989) to approximate the gradient-flow and maximize

certain discrepancies (di Langosco et al., 2021; Grathwohl

et al., 2020; Hu et al., 2018; Dong et al., 2022), among

which preconditioned functional gradient flow (PFG) (Dong

(a) Target distributed samples (b) LD for 100 iterations

(c) LD for 4,000 iterations (d) PGPS for 650 iterations

Figure 1: An illustration of the effectiveness of PGPS over

LD in handling mode-missing.

et al., 2022) was proposed to learn the Wasserstein gradient

by a neural network with preconditioning for better approx-

imation. Probability flow ODE (Maoutsa et al., 2020) can

also be applied to learn the Wasserstein gradient flow aim-

ing at learning the vector field for a given probability flow.

Aside from focusing on the flow approximation, works fo-

cusing on the discretization adopt the Jordan, Kinderlehrer,

and Otto (JKO) scheme (Jordan et al., 1998), aiming at find-

ing a JKO operator that minimizes the target functional as

well as the movement of the particles in each step, has also

achieved good performance in arbitrary gradient flow other

than KL-gradient flow estimation tasks (Alvarez-Melis et al.,

2021; Mokrov et al., 2021).

The Stein Variational Gradient Descent (SVGD) (Liu &

Wang, 2016) can be viewed as a specific type of gradient

flow w.r.t. the KL-divergence under a metric induced by

Stein operator, i.e., approximating the gradient by a kernel

function (Liu, 2017). It inspires later works on kernel meth-

ods following different flows, e.g., Fisher±Rao Flow (Mau-

rais & Marzouk, 2024) and the flow introduced by mini-

mizing first and second moments (Wang & NÈusken, 2024).

However, the curse of dimensionality for the kernel-based

methods leads to the particle collapse in SVGD (Ba et al.,

2021), i.e., variance collapse. Projecting the inference space

to a lower dimension can naturally avoid high-dimensional

variational inference (Chen & Ghattas, 2020; Gong et al.,

2020; Liu et al., 2022).

Another area of related work is the annealing-based meth-

ods, e.g., parallel tempering (Earl & Deem, 2005), annealed

importance sampling (Neal, 2001), and sequential Monte

Carlo (Doucet et al., 2001). Annealing-based methods

utilize intermediate distributions, usually following a log-

weighted schedule where the weights are usually interpreted

as temperature, to help achieve better performance. Utiliz-

ing intermediate distributions (path) has witnessed benefits

in both Monte-Carlo estimators (Grosse et al., 2013; Chehab
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et al., 2024) and sampling tasks (Heng et al., 2020).

Learning vector fields to update the particles has been

broadly adopted in generative models that consider a dif-

ferent task aiming at generating new samples based on

existing ones. The backward process of diffusion mod-

els (Song et al., 2020; Albergo et al., 2023) is indeed learn-

ing the vector fields that can drive the particles inverting

the path introduced by the forward process. Flow match-

ing (Lipman et al., 2022), built on Continuous Normaliz-

ing Flows (CNF) (Kobyzev et al., 2021) to learn a vector

field following some specifically designed path, has demon-

strated its empirical effectiveness followed by justification

from Benton et al. (2023) theoretically.

In this work, we use SVGD, PFG and LD as benchmarks

and defer more detailed discussions on related works to Ap-

pendix A.

3. Path-Guided Particle-based Sampling

We propose Path-Guided Particle-based Sampling (PGPS)

methods based on a continuous density path linking initial

distribution p0 to target distribution p1 = p∗, while only

accessing the partition-free version of the target distribution

p̂1 = p̂. Compared to the annealing methods that also uti-

lize intermediate distributions (path), PGPS learns a vector

field that would drive the particles to the next intermediate

distribution based on a predefined path in each step, which

has not been studied previously to the best of our knowledge.

In this section, we first derive a condition for viable guiding

paths and present a novel class of log-weighted shrinkage

paths. We then propose a learning algorithm to effectively

approximate the path-guided flow.

Given a partition-free density process {p̂t}t∈[0,1] and its

normalized densities {pt}t∈[0,1], with p̂0 = p0 being the

initial distribution and p1 being the target, assume that ∂
∂t p̂t

and ∇xp̂t(x) exist for any t ∈ [0, 1] and x on the support.

We wish to construct a vector field φt : R
d → R

d such that

the process

dxt

dt
= φt(xt), x0 ∼ p0 (3)

satisfies xt ∼ pt for any t ∈ [0, 1]. The following proposi-

tion establishes that determining φt(x) does not require the

partition function.

Proposition 3.1. For a given partition-free density path

{p̂t}, the gradient flow guided by the vector field φt(x)
following the continuity equation (1) satisfies:

r(x,φt)− Ex∼pt

[

∂ ln p̂t(x)

∂t

]

= 0, (4)

where r(x,φt) =
∂ ln p̂t(x)

∂t + (∇ ln p̂t(x) +∇) · φt(x).

The proof of Proposition 3.1 can be found in Appendix D.

Proposition 3.1 indicates that once a vector field φt satis-

fying Equation (4) is obtained, we can generate samples

following the distribution on the density path {pt} when

particles evolve according to the vector field in Equation (3).

Furthermore, note that Equation (4) is free of the intractable

partition function, and we can thus learn the vector field

φt(x) by approximating it via a neural network that solves

for Equation (4).

3.1. Selection of Path

One of the most important components of the proposed

approach is the selection of partition-free guiding path

{p̂t}t∈[0,1]. Although any reasonable path linking the initial

and target distributions is valid to direct particles according

to Equation (3) as long as the corresponding vector field

follows the condition in Proposition 3.1, certain paths that

are more robust against democratization and more tractable

for training are preferred and may have better performance

in practice.

We propose a class of Log-weighted Shrinkage paths {p̂LwS
t }

as follows

ln p̂LwS
t (x) := (1− t) ln p0 ((1− αt)x)

+ t ln p̂1

(

x

β + (1− β)t

)

,
(5)

where α ∈ [0, 1] and β ∈ (0, 1] are controlling parameters.

It is straightforward to check that LwS paths are valid with

ln p̂LwS
0 (x) = ln p0(x) and ln p̂LwS

1 (x) = ln p̂1(x). Moreo-

ever, ∂
∂t ln p̂

LwS
t and∇ ln p̂LwS

t both exist, when∇ ln p̂1 and

∇ ln p0 exist; see Appendix B.

As its name suggested, LwS paths (5) have two components

± Log-weights and Shrinkage. The log-weights enable repre-

senting the log-distribution on the path by a linear mixture of

the log-initial-distribution and log-target-distribution terms

in Equation (5) weighted by (1− t) and t. The linear mix-

ture allows efficient computation of r(x,φt) in Proposition

3.1 when training φt by a neural network. The Shrinkage

operates on the initial-distribution term by α and the target-

distribution term by β in Equation (5). The first term spreads

the initial distribution by a factor 1/(1− αt) to cover larger

ranges as the factor increases along t; and the second term

shrinks the target distribution p̂1 towards zero (i.e., the dis-

tribution p̂1(
x

β+(1−β)t ) is thinner than p̂1(x)) by a factor

β + (1 − β)t. Since a typical choice of p0 is zero-mean

Gaussian, the shrinkage allows better coverage of the target

distribution, and the coverage enables better mode seeking.

It is illustrated in Figure 2 for different choices of the hy-

perparameters α, β. We can observe that with appropriate

choices of hyperparameters (e.g., (B) and (C)), the right

mode of the target distribution is detected at an early stage
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(e.g., t = 0.2) compared to the log-weighted path without

shrinkage (e.g., (A)). We further discuss the influence of the

choice of the hyperparameters in Appendix C.

3.2. Learning Vector Field φt(x)

Given a viable path {pt}, we aim to find a corresponding

vector fieldφt(x) as in Proposition 3.1 to direct the particles

as in Equation (3). However, solving Equation (4) for φt(x)
in closed form is intractable. We use a parameterized vector

field model φθ
t (x) ∈ R

d ± a neural network parameterized

by θ ± to approximately solve for Equation (4).

Specifically, at each time step t starting with t = 0, we have

N particles {xt,(i)}i=1,...,N and minimize the training loss

Lt(θ) =
∑

i=1...N

∣

∣

∣

∣

∣

r(xt,(i),φ
θ
t )−

1

N

∑

j=1...N

∂ ln p̂t(xt,(j))

∂t

∣

∣

∣

∣

∣

2

(6)

resembling the squared value of the LHS of Equa-

tion (4). When particles {xt,(i)} following distribution

pt,
1
N

∑

j=1...N
∂ ln p̂t(xt,(j))

∂t is an unbiased estimate of

Ex∼pt

[

∂ ln p̂t(x)
∂t

]

.

The training algorithm is presented in Algorithm 3, where

the loss (6) is minimized by gradient descent. It is an itera-

tive algorithm starting from time step t = 0 and is increased

by ∆t after the training for time t. The time step increment

∆t is adaptively determined by Algorithm 1, which leads

to a smaller increment for larger vector field φθ
t to control

the movement of the particles. Since we have an intermedi-

ate target distribution p̂t on the path to follow, an optional

Langevin adjustment (Langevin dynamics w.r.t. the interme-

diate target p̂t) in Algorithm 2 can be applied to adjust the

particles’ distribution closer to pt to reduce the biasedness

in the loss function (6). We further discuss the Langevin

Adjustment in the experiment section.

Algorithm 1 Adaptive Time Step

Input: Time t, Current particles {xt,(i)}i=1...N , Flow

φθ
t (x), Particle step-size ψ, Maximum time step ∆t′;

∆t← (Nψ)/
∑

i=1...N

∥

∥φθ
t (xt,(i))

∥

∥;

∆t← min{∆t, 1− t,∆t′};
Output: Time step ∆t;

Training-free deployment of PGPS Many efficient algo-

rithms such as LD or SVGD, are training-free, i.e., learning

is not required during the evolution of the particles. We can

also implement PGPS in a training-free manner, where at

each time step t without training a neural network we update

the particles by Langevin adjustment solely. In other words,

we iteratively apply Langevin dynamics for sampling from

an intermediate target distribution p̂t. A similar approach

Algorithm 2 Langevin Adjustment

// Langevin dynamics //

Input: Particles {x(i)}i=1...N , density p̂;

Coefficients: Adjustment step-size δ, LD steps M ′;

for k = 1 . . .M ′ do

Sample {ξk(i)} ∼ N (0, I);

Adjust {x(i)} ← {x(i) + δ∇ ln p̂(x(i)) +
√
2δξk(i)};

end for

Output: Adjusted {x(i)};

has been proposed under the name Annealed Langevin Dy-

namics (ALD) (Song & Ermon, 2019), where a path is

given by changing the temperature of the target distribution.

In Section 5.2.3, we experimentally compare the standard

PGPS and the training-free PGPS and demonstrate the ben-

efits of learning the vector field.

4. Theoretical Analysis

In this section, we study the distribution of the PGPS-

generated particles compared to the target distribution. Note

that the target distribution p∗ ∝ p̂ equals to px1
, where

x1 = x0 +
∫ 1

0
φt(xt) dt with x0 ∼ p0 by Proposition 3.1.

The PGPS method without Langevin adjustment simulates

the integration by

x̂
θ
th+h = x̂

θ
th + φθ

nh(x̂
θ
th), t = 0, . . . , n− 1, (7)

where h = 1/n is the step size for some n ∈ N capturing

the discretization error, and x̂
θ
0 ∼ p0.

We analyze the performance of PGPS using the 2-

Wasserstein distance between the generated distribution px̂1

and the target distribution px1
under the approximation error

δ2 :=
∫ 1

0
Ex∼pt

[∥φθ
t (x) − φt(x)∥2]dt and discretization

error due to step size h in Theorem 4.2. The following

assumptions are taken in the analysis.

Assumption 4.1.

(1) Lipschitzness of φt and φθ
t on x space: There exists

K1 <∞, such that ∥φt(x1)− φt(x2)∥ ≤ K1∥x1 −
x2∥ and ∥φθ

t (x1)−φθ
t (x2)∥ ≤ K1∥x1−x2∥ for any

x1,x2 ∈ R
d, t ∈ [0, 1];

(2) Lipschitzness ofφθ
t on t space: There existsK2 <∞,

such that ∥φθ
t1(x) − φθ

t2(x)∥ ≤ K2|t2 − t1| for any

x ∈ R
d, t1, t2 ∈ [0, 1];

(3) Finite vector field: There exists K3 < ∞, such that

∥φθ
t (x)∥ ≤ K3 for any x ∈ R

d, t ∈ [0, 1]

Theorem 4.2. For two flows φθ
t (x) and φt(x) under As-

sumption 4.1, the Wasserstein distance between the distribu-

tion p
x̂
θ
1

of PGPS generated samples according to dynamics
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Figure 2: Different Log-weighted Shrinkage paths from the initial (left) to target (right) distribution with different hyper-

parameters. (A):α = 0, β = 1 (blue); (B):α = 1, β = 0.5 (orange); (C):α = 0.2, β = 0.5 (green).

Algorithm 3 PGPS

Input: Parameterized vector field φθ
t (x), Valid unnor-

malized path {p̂t}t∈[0,1], Particles from initial distribution

{x0,(i)}i=1...N , Maximum training steps M , Training

threshold ϵ, Learning rate η, Maximum time step ∆t′,
Particle step-size ψ;

Initialize t← 0;

repeat

for k = 1 . . .M do

Gradient descent θ ← θ − η∇θLt(θ);
if Lt(θ) < ϵ then

Break;

end if

end for

∆t← Adaptive Time Step[t,φθ
t (x), ψ,∆t

′];
// Algorithm 1 //

Update {xt+∆t,(i)} ← {xt,(i) +∆tφθ
t (xt,(i))};

Update t← t+∆t;
(Optional) {xt,(i)} ←
Langevin Adjustment[{xt,(i)}, p̂t];

// Algorithm 2 //

until t = 1;

Output: Evolved particles {x1,(i)}i=1...N ;

(7) and the target distribution px1 is bounded as

W2(px̂θ
1
, px1) ≤ δ

√

exp(1 + 2K1)

+
√
h

√

C(exp(1 +K2
1 )− 1)

1 +K2
1

, (8)

where C = 1
2K

2
2 + 17

2 K
2
1K

2
3 + 5K1K2K3.

There are two terms in the upper bound Equation (8) by the

approximation error and the discretization error, respectively.

The first term is related to the Lipschitzness assumption on

φt(x),φ
θ
t (x) over x space (Assumption 4.1(1)). It charac-

terizes the error introduced due to the approximation of the

vector field φt (Lemma D.2). The second term represents

the error introduced by discretization, which is related to

the Lipschitzness property with respect to t and the finite-

ness of the vector field (Assumption 4.1(2)-(3)). The proof

of Theorem 4.2 can be found in Appendix D.

Theorem 4.2 indicates that with trained vector field of max-

imum error δ and discretized with uniform step h and the

generated distribution is close to the target distribution with

W2-distance bounded by O(δ) + O(
√
h). Therefore, we

can improve the performance of the evolved particles by

reducing the approximation error and/or refining the dis-

cretization. In the following, we illustrate that the training

objective of minimizing loss function Lt(θ) in Equation (6)

is aligned with reducing the approximation error.

Note that minimizingLt(θ) is to solve the partial differential

equation (PDE) in (4), which requires specifying the func-

tion space. Let L4(pt) be the function space with norm

∥f∥L4(pt) = (
∫

(f(x))4pt(x)dx)
1/4 and W 1,4(pt) =

{f ∈ L4(pt) :
∂

∂xi
f(x) ∈ L4(pt)} be a weighted Sobelov

space. Denote by Ψt = [W 1,4(pt)]
d a product space that

contains the vector-valued functions of interest. Specifically,

we made mild assumptions below

Assumption 4.3. (a) φθ
t ,∇ ln pt ∈ Ψt for any t ∈ [0, 1];

and (b) supt∈[0,1] Ex∼pt
[∥∇ ln pt(x)∥4] <∞.

Proposition 4.4. Under Assumption 4.3, for any φθ
t , there

exists a vector-field φt solution to PDE (4) that

Ex∼pt
[∥φθ

t (x)− φt(x)∥2] ≤ KLt(θ), (9)

where K > 0 is a universal constant factor and Lt(θ) is in

Equation (6) with infinite many particles following pt.

Proposition justifies the consistency of the proposed method,

i.e., φt can be well-approximated by minimizing the loss

function under the infinite particles regime. The impact of

finite particles relies on the generalization analysis and is

beyond the scope of the paper.

5. Experiments

We demonstrate the effectiveness of the proposed PGPS

methods compared to LD, SVGD (Liu & Wang, 2016), PFG

(Dong et al., 2022) baselines. The number of iterations for

each method is the same, where the Langevin Adjustment

steps in PGPS are counted. The code to reproduce the

6
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(a) score1 (b) Mode seeking distribution

(c) score2 (d) Sensitivity distribution

Figure 3: The performances of different methods: (a, c)

score1 and score2 indicating the mode capture ability with

the true score illustrated by the red dashed line; (b, d) KDE

estimated probability distributions for different methods.

The letter following PGPS indicates different hyperparam-

eters. (A): α = 0, β = 1, steps = 0 (B): α = 1, β = 0.8,

steps = 0 (C): α = 0, β = 1, steps = 10 (D): α = 1,

β = 0.8, steps = 10, where ‘steps’ indicates the number

of performed Langevin Adjustment steps. We report the

performance of PGPS with ψ ∈ {0.5, 0.1, 0.05, 0.01}.

experimetnal results can be found in our Github repository:

https://github.com/MingzhouFan97/PGPS.

5.1. Gaussian Mixture Target Distribution

We study the mode-seeking and weight-estimation capa-

bilities of the proposed PGPS for Gaussian mixture target

distributions, compared to LD, SVGD, and PFG gradient-

flow particle-based benchmarks.

5.1.1. MODE DISCOVERY MISSING

Given initial distribution N (0, 32) and target distribution of

a mixture of two Gaussian distributionsN (0, 1) andN (8, 1)
with equal weights, we investigate whether the methods can

effectively discover both modes.

Note that the left mode N (0, 1) of the target mixture is

automatically discovered by the initial distributionN (0, 32).

Define score1 =
∑N

i=1 I(xt,(i)>5)

N to capture the rates of the

samples discovering the right mode N (8, 1) by moving

across threshold 5. The score1 is shown in Figure 3a, where

the dashed true score is Ptarget(x > 0.5) ≈ 0.499. Note that

the performances of PGPS methods are scattered because

the method may require different adaptive iterations for

different hyperparameter choices. With the fact that the

intermediate state of the PGPS particle is not meaningful,

scatter plots are selected rather than lines for LD, SVGD,

and PFG. As shown in Figure 3a, PGPS recovers the right

mode faster and better with score1 close to the true score

0.49, yet the benchmarks fail. Figure 3b corroborates the

finding by visualizing the output distribution of the sample

methods, where PGPS-generated distribution is closer to the

target.

5.1.2. FALSE MODE DISCOVERY ± SENSITIVITY

The benchmarks not only fail to effectively discover modes

but are also sensitive to the target distribution and may lead

to false discovery, i.e., they may focus on some negligible

mode.

Given initial distribution N (0, 22) and target distribution

of a mixture of two Gaussian distributions N (−5, 1) and

N (5, 1), where the left mode has an extremely small weight

0.001 and the right mode has weight 0.999. As shown in Fig-

ure 3d, the left mode is negligible and the target distribution

is visually indistinguishable from a Gaussian distribution.

Define score2 =
∑N

i=1 I(xt,(i)<0)

N to capture the rates of the

samples focusing on the negligible left modeN (−5, 1). The

score2 is shown in Figure 3c, where the dashed true score

is Ptarget(x < 0) ≈ 0.001. We observe that the benchmarks

have a relatively large score2, which indicates they are very

sensitive w.r.t. the target distribution. A negligible pertur-

bation from the Gaussian target may lead to these methods

focusing on a negligible mode. In contrast, the proposed

PGPS is less sensitive with score2 close to the desired value

0.001. Figure 3d corroborates the finding by visualizing the

output distribution of the methods.

Compared to the gradient-flow-based benchmarks solely re-

lying on the target distribution and its gradient, the proposed

PGPS method follows a smooth LwS path instead, and is

indeed less sensitive with better sampling quality.

5.1.3. WEIGHT RECOVERY

We investigate the capability of the proposed PGPS

method in estimating the corresponding weights besides

detecting modes. The target distribution is a mixture

of four 8-dimensional isometric Gaussian distributions

{N (µj , 0.15
2
I8)} and randomly generated weights; and

the initial distribution is N (0, I8).

For generated samples {xi}Ni=1, define the estimated

weight ω̂j :=
∑N

i=1 I(∥xi−µj∥<1)

N . We evaluate the weight

mismatch by e :=
√

∑4
j=1(ω̂j − ωj)2, where ωj :=

Ptarget(∥x− µj∥) < 1) is the ground truth. Smaller error e
indicates more accurate weight estimation.

7
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Table 1: Average Expected Calibration Error (ECE) and Accuracy (ACC) on UCI datasets over five independent runs
Expected Calibration Error (ECE) ↓ Accuracy (ACC) ↑

PGPS SVGD SGLD PFG PGPS SVGD SGLD PFG

SONAR 0.2517± 0.057 0.1712± 0.020 0.3394± 0.049 0.1678± 0.050 0.7981± 0.023 0.7962± 0.016 0.7942± 0.024 0.7673± 0.033
WINEWHITE 0.0750± 0.011 0.0988± 0.012 0.0935± 0.024 0.0876± 0.018 0.4520± 0.010 0.4520± 0.010 0.4831± 0.049 0.4520± 0.010

WINERED 0.0366± 0.005 0.0402± 0.004 0.0868± 0.029 0.0449± 0.005 0.5938± 0.018 0.5770± 0.018 0.5107± 0.096 0.5723± 0.019
AUSTRALIAN 0.1703± 0.066 0.1713± 0.064 0.3517± 0.078 0.1457± 0.047 0.8620± 0.009 0.8626± 0.006 0.7362± 0.157 0.8643± 0.006

HEART 0.4579± 0.071 0.5117± 0.064 0.5110± 0.114 0.4887± 0.089 0.2556± 0.142 0.1801± 0.042 0.2384± 0.135 0.1762± 0.033
GLASS 0.1142± 0.008 0.1155± 0.006 0.2157± 0.025 0.1289± 0.021 0.5850± 0.080 0.5383± 0.076 0.4561± 0.152 0.4505± 0.071

COVERTYPE 0.0743± 0.016 0.0950± 0.012 0.1301± 0.038 0.0926± 0.078 0.5899± 0.095 0.4867± 0.006 0.5221± 0.084 0.5088± 0.053

We take LD (a realization of the Wasserstein gradient flow)

as a baseline, and denote its weight mismatch error by eLD.

In Figure 4, we demonstrate the distribution of the differ-

ence between the weight mismatch error e of a method and

the baseline eLD averaged over 10 independent experiments.

While the baseline eLD has an average value of 0.3314, the

proposed PGPS methods consistently outperform LD with

the distributions of e − eLD being significantly less than

0. The performance of PFG is similar to LD because of

the same Wasserstein gradient flow nature, while SVGD

performs worse than LD for this task. The inferior perfor-

mance of SVGD is mainly due to the curse of dimensionality,

which makes it difficult for the particles to escape from the

trapping modes (Liu et al., 2022).

5.2. Bayesian Neural Network Inference

We further test PGPS methods for the Bayesian Neural

Network (BNN) inference tasks. BNNs, which model the

parameters of NNs as random variables to derive predic-

tive posteriors for prediction, are usually considered to be

difficult inference targets because of their non-concave like-

lihoods (Li et al., 2018). The proposed PGPS methods, with

a stronger ability to discover the modes and recover their

weights, achieve better inference performance.

Figure 4: The weight mismatch error. The letter after PGPS

indicates different hyperparameters. (A): α = 0, β = 1,

steps = 0 (B): α = 0, β = 0.5, steps = 0 (C): α = 0,

β = 1, steps = 100 (D): α = 0, β = 0.5, steps = 100,

where ‘steps’ is the number the Langevin Adjustment steps.

Table 2: Average negative log-likelihood (NLL), ACC, and

ECE on Noisy MNIST data over five independent runs
PGPS SVGD SGLD PFG

NLL ↓ 1.8202± 0.019 1.8285± 0.040 1.8184± 0.127 2.0171± 0.014
ACC ↑ 0.8788± 0.017 0.8282± 0.047 0.6419± 0.130 0.7119± 0.027
ECE ↓ 0.1716± 0.012 0.1941± 0.020 0.2183± 0.030 0.1752± 0.003

5.2.1. UCI DATASET

We conduct BNN inference for UCI datasets (Dua & Graff,

2017), where the neural network (NN) has one hidden layer

with 32 hidden neurons and Sigmoid activation. More details

of the experimental setup can be found in the Appendix E.4.

We report the averaged testing Expected Calibration Er-

ror (ECE) and testing accuracy (ACC) in Table 1, where

ECE represents the calibration ability of the uncertain pre-

diction by comparing the difference in prediction accuracy

and prediction uncertainty for the test samples. The pro-

posed PGPS methods achieve the best performance across

most of the benchmark datasets with lower ECE and higher

ACC, compared with SVGD, SGLD, and PFG baselines.

5.2.2. NOISY MNIST DATASET

Robustness is another desired property of learning Bayesian

models. It is expected that Bayesian models would give

more reasonable predictions with uncertainty quantifica-

tion (UQ) when facing out-of-distribution data. We bench-

mark the prediction and UQ performance of the pro-

posed PGPS methods for learning BNNs on the MNIST

dataset (Deng, 2012).

To test the robustness of inferred models, we create per-

turbation by injecting additive Gaussian noise into the test

MNIST images. Ensembles of 10 learned BNNs (i.e., 10

particles) are considered for evaluating competing infer-

ence methods. The performances are evaluated by negative

log-likelihood (NLL), ACC, and ECE in Table 2. We can

observe that the proposed PGPS method is again the best-

performing inference method on all the metrics with the

perturbed test data. SGLD is slightly better in NLL by 0.02
but with a large standard deviation of 0.127.

5.2.3. TRAINING-FREE PSPG

We compare the standard PGPS and the training-free PGPS

as discussed in Section 3.2 using the same Log-weighted
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Table 3: Averaged NLL, ACC, and ECE on Noisy MNIST

data over five independent runs

# particles PGPS tf-PGPS

10

NLL ↓ 1.8171± 0.0168 1.8238± 0.0251
ACC ↑ 0.8683± 0.0193 0.8380± 0.0504
ECE ↓ 0.1680± 0.0132 0.1659± 0.0083

50

NLL 1.8473± 0.0101 1.8467± 0.0108
ACC 0.9006± 0.0071 0.8672± 0.0298
ECE 0.1807± 0.0034 0.1890± 0.0071

100

NLL 1.8763± 0.0087 1.9010± 0.0135
ACC 0.9182± 0.0036 0.8956± 0.0259
ECE 0.1959± 0.0024 0.1986± 0.0068

Shrinkage Path on the noisy MNIST data as in Section 5.2.2.

The performance of standard PGPS and training-free PGPS

(tf-PGPS) is reported in Table 3). We can observe that

standard PGPS achieves better performance among almost

all metrics and the number of particles than tf-PGPS. For

the cases where tf-PGPS is better, their performances are

almost indistinguishable. Interestingly, NLL increases as the

number of particles goes up. We reason this by the fact that

when using more particles for estimation, the predictions

tend to fit the target posterior distribution better and lead to

higher ACC but higher NLL as well.

6. Conclusion

In this paper, we proposed a novel path-guided particle-

based sampling (PGPS) method and a Log-weighted Shrink-

age path as a partition-function-free path that guides the

particles moving from an initial distribution to the target

distribution. We theoretically analyzed the performance of

PGPS under the Wasserstein distance and characterized the

impact of approximation error and discretization error on

the quality of the generated samples. We conduct exten-

sive experiments to test the PGPS methods in seeking the

modes of the target distribution in sampling tasks, and the

inference performance in terms of testing accuracy and cali-

bration/uncertainty quantification in Bayesian learning tasks.

The proposed PGPS methods perform consistently and con-

siderably better than LD, SVGD, and PFG benchmarks in

the experiments.

A limitation of the standard PGPS method is the requirement

of training neural networks, similar to the PFG and other

learning-required benchmarks. We propose training-free

PGPS as an immediate solution, which is slightly worse

than the training-based PGPS but more efficient.

A better density path design in PGPS that leverages the struc-

ture of the target distribution and analysis of training-free

PGPS of its convergence to the target distribution are inter-

esting future directions with both theoretical and practical

importance.
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A. Related Works

Wasserstein gradient flow aims at building gradient flow where the density follows the steepest descent path of some

objective functional of density function under the Wasserstein metric. Sampling is fulfilled once the descent path converges

to the target distribution, which is the minimizer of the objective function. A popular objective function of density is the

KL-divergence between the density and the target distribution, and the flow is thus called KL Wasserstein gradient flow.

While it is intractable in general to derive the KL Wasserstein gradient flow, i.e., the flow does not have a closed-form, Wang

et al. (2022) resorted to Kernel Density Estimation (KDE) to estimate the gradient flow and uses Euler discretization to

update the samples. However, it suffers from the curse of dimensionality, i.e. the kernel matrix would tend to be diagonal as

dimensionality increases, due to the nature of kernels, which leads to inaccurate density estimation.

Aside from Euler discretization, the Jordan, Kinderlehrer, and Otto (JKO) scheme, aiming at finding a JKO operator that

minimizes the target functional as well as the movement of the particles in each step, has been broadly applied to discretize

the Wasserstein gradient flow. Alvarez-Melis et al. (2021) and Mokrov et al. (2021) applied a series of Input Convex Neural

Networks (ICNN, Amos et al. (2017)) to model the gradient flow to ensure the convexity of the potential function in JKO

scheme.

While the popularity of Stein Variational Gradient Descent (SVGD) (Liu & Wang, 2016) arises as a particle-based VI

method, it can also be viewed as a specific type of gradient flow w.r.t. KL-divergence by determining the gradient φt(x) that

is the steepest descent direction under the kernelized Stein’s Discrepancy (Chwialkowski et al., 2016) by the reproducing

kernel Hilbert space (RKHS) (Liu, 2017). However, the curse of dimensionality for the kernel-based methods leads to

the particle collapse in SVGD (Ba et al., 2021), i.e., variance collapse. Currently, there are two major methods to tackle

the curse of dimensionality. Projecting the inference space to a lower dimension can naturally avoid high-dimensional

VI. While Chen & Ghattas (2020) projected the dynamics into a lower dimensional subspace and theoretically proved the

asymptotically converging performance of the projected SVGD, Gong et al. (2020) proposed sliced kernel Stein discrepancy

that projects the particle dynamics into a single dimensional subspace. More recently, Liu et al. (2022) proposed Grassmann

SVGD that also considers a low-dimensional projection and is claimed to be more efficient than projected SVGD (Chen

& Ghattas, 2020) without the need for costly eigenvector decomposition. Another type of popular method leverages the

Universal Approximation Theorem of Neural Networks (NNs) (Hornik et al., 1989) and defines more general discrepancy.

di Langosco et al. (2021) proposed to minimize Stein’s discrepancy based on the NNs, instead of functions drawn from

RKHS like SVGD. Grathwohl et al. (2020) proposed to learn a single energy function based on Stein’s Discrepancy for

energy-based models, while Hu et al. (2018) tried to learn a transport plan based on Stein’s Discrepancy or more general

f-divergence. Dong et al. (2022) modified the regularization term of the loss function to a preconditioned version but it

needs to calculate the Jacobian of the target density and in turn time-consuming.

B. Implementation of LwS Path

Though it is possible to fully depend on the AutoGrad functionality of the machine learning packages, a relatively closed form

of the gradient and derivatives of our Log-Shrinkage Path, ln p̂LwS
t (x) = (1− t) ln p0 ((1− αt)x) + t ln p̂1

(

x
β+(1−β)t

)

,

would lead to better calculation quality and faster computational speed.

Denote xa = (1− αt)x, xb =
x

β+(1−β)t . The gradient of our path p̂LwS
t (x) at time t would be

∇ ln p̂LwS
t (x) = (1− t)(1− αt)∇ ln p0(xa) +

t

β + (1− β)t∇ ln p̂1(xb), (10)

and the derivative would be

d

dt
ln p̂LwS

t (x) = − ln p0(xa) + ln p̂1(xb)− α(1− t)x · ∇ ln p0(xa)−
(1− β)tx · ∇ ln p̂1(xb)

(β + (1− β)t)2 , (11)

where (·) denotes inner product.

In our training target of Equation (6), one critical part is the divergence ∇ · φθ of the approximated vector field φθ. While

(Dong et al., 2022) proposed to use an efficient computational estimation derived by the integration-by-parts technique, a

close form of divergence can be derived for relatively simple NN implementation. Specifically, for the one hidden layer, H
hidden neuron, D dimensional input, sigmoid activation MLP we used in this work, φθ =W2σ(W1x+ b1) + b2, the close

12
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(a) α = 0, β = 0.1 (b) α = 0, β = 0.5 (c) α = 0, β = 1

(d) α = 0.5, β = 0.1 (e) α = 0.5, β = 0.5 (f) α = 0.5, β = 1

(g) α = 1, β = 0.1 (h) α = 1, β = 0.5 (i) α = 1, β = 1

Figure 5: Particles for tf-PGPS following the LwS-path with different hyperparameters discretized with a constant time

step of 0.01, 30 LD steps for each intermediate distribution. With the same computational demand, the hyperparameter

choices can influence the sample quality. The no-shrinkage setup (α = 0, β = 1) leads to the worst performance and the

hyperparameter choices that incorporate shrinkage capture much better the mode on the right.

form of divergence would be

∇x · φθ(x) =

D
∑

i=1

(∇xφ
θ
(i)(x))i = trace(W2diag(xg)W1) =

∑

W2 ⊗WT
1 ⊗ (1Dx

T
g ), (12)

where σ is the sigmoid function, xh = σ(W1x + b1) is the output of the first layer, ⊗ denotes entry-wise product,

xg = xh ⊗ (1H −xh), 1D and 1H denotes all one matrix with size of D× 1 and H × 1, respectively, and the ª
∑

º sign in

the last equation denotes summation along both dimensions.

C. Influence of Hyperparameter in LwS Path

To show the impact of hyperparameter choices, we here give an example with the same target as the motivating example

in Figure 1(a), a mixture of two Gaussian distributions with equal weights. We apply the training-free version of PGPS

discretized with a constant time step of 0.01, i.e. 99 intermediate distributions, and 30 LD steps performed for each

intermediate distribution to ensure that different setups consume the same computational resource.

With the results illustrated in Figure 5, it can be observed that the hyperparameter choices can influence the sample quality

with the same computational demand. The no-shrinkage setup leads to the worst performance and the hyperparameter

choices that incorporate shrinkage capture the mode to the right much better.

13
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D. Proofs

D.1. Proof of Proposition 3.1

Proposition D.1. For a given partition-free density path {p̂t}, the gradient flow guided by the vector field φt(x) following

the Fokker-Planck equation (1) satisfies:

r(x,φt)− Ex∼pt

[

∂ ln p̂t(x)

∂t

]

= 0, (13)

where r(x,φt) =
∂ ln p̂t(x)

∂t + (∇ ln p̂t(x) +∇) · φt(x).

Proof. We start with the Fokker-Planck equation:

∂

∂t
pt(x) = −∇ · (pt(x)φt(x)), (14)

The right-hand side (RHS) of (14) can be derived to be:

−∇ · (pt(x)φt(x)) = −pt(x)[∇ ln pt(x) · φt(x) +∇ · φt(x)]. (15)

Though it is usually non-trivial to find the derivative of the path with respect to time, it is clear that ∇ ln pt = ∇ ln p̂t +
∇ ln

∫

p̂t dx = ∇ ln p̂t. Equation (15) can then be further transformed into:

−∇ · (pt(x)φt(x)) = −pt(x)[∇ ln p̂t(x) · φt(x) +∇ · φt(x)]. (16)

On the other hand, the left-hand side (LHS) of (14) can be derived as:

∂

∂t
pt(x) =

∂

∂t

p̂t(x)
∫

p̂t(x) dx

=

∫

p̂t(x) dx
∂
∂t p̂t(x)− p̂t(x) ∂

∂t

∫

p̂t(x) dx

(
∫

p̂t(x) dx)2

=
∂
∂t p̂t(x)

∫

p̂t(x) dx
− p̂t(x)

∫

p̂t(x) dx

∫ ∂
∂t p̂t(x)

∫

p̂t(x) dx
dx

=
p̂t(x)

∫

p̂t(x) dx

∂

∂t
ln p̂t(x)− pt(x)

∫

p̂t(x)
∫

p̂t(x) dx

∂

∂t
ln p̂t(x) dx

=pt(x)(
∂ ln p̂t(x)

∂t
−
∫

pt(x)
∂ ln p̂t(x)

∂t
dx)

=pt(x)

(

∂ ln p̂t(x)

∂t
− Ex∼pt

[

∂ ln p̂t(x)

∂t

])

.

(17)

Substituting equations (16) and (17) to Equation (14) and pt(x) on both sides and we have the desired result

∇ ln p̂t(x) · φt(x) +∇ · φt(x) =
∂ ln p̂t(x)

∂t
− Ex∼pt

[

∂ ln p̂t(x)

∂t

]

. (18)

D.2. Proof of Theorem 4.2

Before showing the quality analysis of the evolved particles with the discretized algorithm, we first evaluate the impact of

error between the numerical approximation φθ
t (x) and the true φt(x) satisfying Equation (4).

Lemma D.2 (Proposition 3 of Albergo & Vanden-Eijnden (2023)). For two flows φθ
t (x) and φt(x) under Assumption 4.1,

the Wasserstein distance between the distribution p
x
θ
1

of random variable xθ
1 = x0 +

∫ 1

0
φθ

t (xt) dt, and the distribution px1

of x1 = x0 +
∫ 1

0
φt(xt) dt is bounded:

W 2(p
x
θ
1
, px1) ≤ δ2 exp(1 + 2K1). (19)

14
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Due to the necessary discretization involved in particle evolution, another error factor arises. We here give the analysis of

the discretization error.

Lemma D.3. For a trained flow φθ
t (x) under Assumption 4.1, the Wasserstein distance between the distribution px1

of random variable x1 = x0 +
∫ 1

0
φθ

t (xt) dt and the distribution px̂1
of random variable x̂1 generated by constant

discretization x̂(n+1)h = x̂nh + φθ
nh(x̂nh) with step-size h is bounded:

W 2(px1 , px̂1
) ≤ hC(exp

(

1 +K2
1

)

− 1)

1 +K2
1

, (20)

where C = 1
2K

2
2 + 17

2 K
2
1K

2
3 + 5K1K2K3 is a constant.

Proof. Here we consider the discretization error

W 2(pxt+h
, px̂t+h

) (21)

≤Eγ∥xt+h − x̂t+h∥2 (22)

=Eγ∥xt + (xt+h − xt)− [x̂t + hφt(x̂t)]∥2 (23)

≤Eγ∥[xt − x̂t] + [xt+h − xt − hφt(x̂t)]∥2 (24)

≤(1 + λ)Eγ∥xt − x̂t∥2 + (1 +
1

λ
)Eγ∥

∫ t+h

t

φ(t′,xt′)dt
′ − hφt(x̂t)∥2 (25)

Now we bound the second term:

Eγ∥
∫ t+h

t

φ(t′,xt′)dt
′ − hφt(x̂t)∥2 (26)

≤Eγ(

∫ t+h

t

∥φ(t′,xt′)− φt(x̂t)∥dt′)2 (Jensen’s) (27)

≤Eγ(

∫ t+h

t

∥φ(t′,xt′)− φt(xt′) + φt(xt′)− φt(x̂t)∥dt′)2 (28)

≤Eγ(

∫ t+h

t

∥φ(t′,xt′)− φt(xt′)∥+ ∥φt(xt′)− φt(x̂t)∥dt′)2(Triangular) (29)

≤Eγ(

∫ t+h

t

K2(t
′ − t) +K1∥xt′ − x̂t∥dt′)2 (30)

=Eγ(
K2h

2

2
+

∫ t+h

t

K1∥xt′ − x̂t∥dt′)2 (31)

≤Eγ(
K2h

2

2
+

∫ t+h

t

K1∥xt′ − xt∥+K1∥xt − x̂t∥dt′)2 (Triangular) (32)

=Eγ(
K2h

2

2
+ hK1∥xt − x̂t∥+

∫ t+h

t

K1∥xt′ − xt∥dt′)2 (33)

≤Eγ(
K2h

2

2
+ hK1∥xt − x̂t∥+

∫ t+h

t

K1K3(t
′ − t)dt′)2 (34)

=Eγ(
K2h

2

2
+ hK1∥xt − x̂t∥+

K1K3

2
h2)2. (35)

Substituting (35) to (25),

W 2(pxt+h
, px̂t+h

) (36)

≤(1 + λ)Eγ∥xt − x̂t∥2 + (1 +
1

λ
)Eγ(C1h

2 + hK1∥xt − x̂t∥)2 (37)

=(1 + λ)Eγ∥xt − x̂t∥2
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+ (1 +
1

λ
)Eγ(C

2
1h

4 + h2K2
1∥xt − x̂t∥2 + 2C1h

3K1∥xt − x̂t∥) (38)

=(1 + λ)Eγ∥xt − x̂t∥2

+ (1 +
1

λ
)(C2

1h
4 + h2K2

1Eγ∥xt − x̂t∥2 + 2C1h
3K1Eγ∥xt − x̂t∥) (39)

≤(1 + λ)Eγ∥xt − x̂t∥2

+ (1 +
1

λ
)(C2

1h
4 + h2K2

1Eγ∥xt − x̂t∥2 + 2C1h
3K1

√

Eγ∥xt − x̂t∥2), (40)

where C1 = K2

2 + K1K3

2 . Choosing γ that minimizes Eγ∥xt − x̂t∥2,

W 2(pxt+h
, px̂t+h

) (41)

≤(1 + λ)W 2(pxt
, px̂t

) + (1 +
1

λ
)(C2

1h
4 + h2K2

1W
2(pxt

, px̂t
) + 2C1h

3K1W (pxt
, px̂t

)). (42)

Choosing λ = h,

W 2(pxt+h
, px̂t+h

) (43)

≤(1 + h)W 2(pxt
, px̂t

) + (1 +
1

h
)(C2

1h
4 + h2K2

1W
2(pxt

, px̂t
) + 2C1h

3K1W (pxt
, px̂t

)) (44)

≤(1 + h)W 2(pxt
, px̂t

) + (1 +
1

h
)(C2

1h
4 + h2K2

1W
2(pxt

, px̂t
) + 4C1h

3K1K3) (45)

≤(1 + h)W 2(pxt
, px̂t

) + hK2
1W

2(pxt
, px̂t

) + Ch2 (46)

≤[1 + (1 +K2
1 )h]W

2(pxt
, px̂t

) + Ch2, (47)

where C = 2C2
1 + 4K2

1K
2
3 + 8C1K1K3 is a constant. The fact that h4 < h3 < h2 for 0 < h < 1 and W (pxt

, px̂t
)

can be bounded by 2K3 leads to (47). W (pxt
, px̂t

) is bounded because W 2(pxt
, px̂t

) ≤ E∥x1 − x0 − (x̂1 − x0)∥2 ≤
2E∥x1 − x0∥2 + 2E∥x̂1 − x0∥2 ≤ 4K2

3 .

We therefore have

W 2(pxt+h
, px̂t+h

) ≤ [1 + (1 +K2
1 )h]W

2(pxt
, px̂t

) + Ch2, (48)

and

W 2(pxt+h
, px̂t+h

) +
Ch

1 +K2
1

≤ [1 + (1 +K2
1 )h][W

2(pxt
, px̂t

) +
Ch

1 +K2
1

]. (49)

It can then be shown that

W 2(pxnh
, px̂nh

) +
Ch

1 +K2
1

≤ [1 + (1 +K2
1 )h]

n[W 2(px0 , px̂0
) +

Ch

1 +K2
1

] =
[1 + (1 +K2

1 )h]
nCh

1 +K2
1

. (50)

Hence,

W 2(px1 , px̂1
) ≤ h C

1 +K2
1

[(1 + (1 +K2
1 )h)

1/h)− 1] (51)

≤ h C

1 +K2
1

(exp
(

1 +K2
1

)

− 1). (52)

Combining Lemma D.2 and Lemma D.3, we have our main result:

Theorem D.4. For two flows φθ
t (x) and φt(x) under Assumption 4.1, the Wasserstein distance between the distribution

p
x̂
θ
1

of random variable x̂
θ
1 generated by discretization x̂(n+1)h = x̂nh + φθ

nh(x̂nh) with step-size h, and the distribution

px1
of x1 = x0 +

∫ 1

0
φθ

t (xt) dt is bounded:

W (p
x̂
θ
1
, px1) ≤ δ

√

exp(1 + 2K1) +
√
h

√

C(exp(1 +K2
1 )− 1)

1 +K2
1

, (53)

where C = 1
2K

2
2 + 17

2 K
2
1K

2
3 + 5K1K2K3.
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Proof. Because Wasserstein distance is a metric,

W (p
x̂
θ
1
, px1

) ≤W (p
x̂
θ
1
, p

x
θ
1
) +W (p

x
θ
1
, px1

), (54)

where p
x
θ
1

is the distribution of xθ
1, the random variable following the gradient flow φθ

t (x). With the first term bounded by

Theorem D.3 and the second term bounded by Theorem D.2, we complete the proof.

D.3. Proof of Proposition 4.4

For a given path p̂t(x), we are essentially solving the equation (4) restated below

∂ ln p̂t(x)

∂t
+ (∇ ln p̂t(x) +∇) · φt(x)− Ex∼pt

[

∂ ln p̂t(x)

∂t

]

= 0 (55)

via minimizing a quadratic loss function. Note that the solution φt for the equation above may not be unique. We will next

show minimizing the quadratic loss function is consistent with solving the equation. Having an infinite number of samples

implies that we are studying the behavior in expectation. Note that the precise impact of finite samples is related to the issue

of generalization error, which is beyond the scope of this work. Given infinite number of particles following distribution pt,
the loss function in Equation (6) can be written as

Lt(θ) =Ex∼pt

[

(

∂ ln p̂t(x)

∂t
+ (∇ ln p̂t(x) +∇) · φθ

t (x)− Ex∼pt

[

∂ ln p̂t(x)

∂t

])2
]

(56)

=Ex∼pt

[

(

(∇ ln p̂t(x) +∇) · (φθ
t (x)− φt(x))

)2
]

, (57)

where the first relation is by definition and the second relation is by (∇ ln p̂t(x)+∇)·φt(x) = Ex∼pt

[

∂ ln p̂t(x)
∂t

]

− ∂ ln p̂t(x)
∂t .

Discussion of the function space The discussion is the same for any t ∈ [0, 1] and we omit subscript t in the following.

We first need to specify the vector field class (the function space to solve the PDE) that the optimization is performed in.

Define the operator (T ψ)(x) := (∇ ln p(x) +∇) ·ψ(x), where ψ is a differentiable vector field. Let L2(µ) ⊂ {Rd → R}
be a weighted L2 space with measure dµ(x) = p(x)dx. It is required that T (φθ − φ) ∈ L2(µ) so that the loss function

exists. This condition is satisfied by choosing the vector field such that ∇ ln p(x), φθ and φ all lie in Ψ := [W 1,4(µ)]d,

which is the product space of the weighted Sobelov space W 1,4(µ) = {f ∈ L4(pt) :
∂

∂xi
f(x) ∈ L4(pt)} ⊂ L4(µ).

The following proposition established the desired consistency.

Proposition D.5 (Restatement of Proposition 4.4). Under Assumption 4.3, for any φθ
t there exists a vector-field φt solution

to PDE (4) that

Ex∼pt
[∥φθ

t (x)− φt(x)∥2] ≤ KEx∼pt

[

(

∂ ln p̂t(x)

∂t
+ (∇ ln p̂t(x) +∇) · φθ

t (x)− Ex∼pt

[

∂ ln p̂t(x)

∂t

])2
]

(58)

where K > 0 is a universal constant factor.

Proof. We omit the subscript t in pt,φt,φ
θ
t for simplicity, and we let µ be the measure associated with pt as dµ(x) = p(x)dt.

The function class L2(µ), L4(µ) and W 1,4(µ) is defined accordingly.

Note that (Ψ, ∥ · ∥Ψ) is a Banach space with

∥ψ∥2Ψ :=
∑

j

∫

ψj(x)
2dµ(x) +

∑

i,j

∫

[
∂

∂xi
ψj(x)]

2dµ(x). (59)

L2(µ) is a naturally a Banach space with ∥g∥2µ =
∫

g(x)2dµ(x) for any g ∈ L2(µ).

We next show that operator T : Ψ→ L2(µ) is

(T ψ)(x) := (∇ ln p(x) +∇) ·ψ(x), ∀ψ ∈ Ψ, (60)

17



Path-Guided Particle-based Sampling

is a bounded linear operator. The linearity is straightforward. The boundedness is because that for any ψ ∈ Ψ with

∥ψ∥Ψ <∞,

∥T ψ∥µ ≤ ∥∇ ln p ·ψ∥µ + ∥∇ ·ψ∥µ <∞, (61)

where the first inequality is by triangle inequality and the second is by the fact that

∥∇ ln p ·ψ∥2µ =

∫

(∇ ln p(x) ·ψ(x))2dµ(x) (62)

≤
∫

∥∇ ln p(x)∥2∥ψ(x)∥2dµ(x) (63)

≤
√

∫

∥∇ ln p(x)∥4dµ(x)
√

∫

∥ψ(x)∥4dµ(x) <∞, (64)

and the fact that ∇ ln p,ψ ∈ Ψ = [W 1,4(µ)]d.

Denote by G = {T ψ : ψ ∈ Ψ} the range of the linear operator T and let NT = {ψ ∈ Ψ : (T ψ)(x) = 0, ∀x} be the null

space of T . It follows that T : Ψ/NT → G is a bijection, where Ψ/NT is the quotient space. To see this bijection, observe

that T ψ ̸= T φ if and only if ψ − φ ̸∈ NT .

By the bounded inverse theorem (Treves, 2016), the invertible mapping T −1 : G→ Ψ/NT exists and is bounded. Thus

there exists a constant K > 0 that for any φθ, there is a φ which solves the PDE and

Ex∼p[∥φθ(x)− φ(x)∥2] = inf
ξ∈NT

Ex∼p[∥φθ(x)− φ(x)− ξ(x)∥2] (65)

≤ inf
ξ∈NT

∥φθ − φ− ξ∥2Ψ (66)

≤ K∥T φθ − T φ∥2µ, (67)

which concludes the proof.

E. Experimental Details

The experiments are performed on Nvidia Tesla T4 GPU and Intel Xeon 8352Y CPU. To reproduce the experimental

results, please refer to our code in our GitHub repo: https://github.com/MingzhouFan97/PGPS. Here we

briefly summarize the setup.

E.1. Illustrative Example

Illustrated as Figure 1a, the target is a mixture of two uncorrelated Gaussian with a standard deviation of 0.05 and mean of

(1, 0) and (1.5, 0), respectively. The initial particles are sampled from a two-dimensional uncorrelated Gaussian distribution

with zero mean and variance of 0.1. 200 particles are considered in this example.

E.2. Gaussian Mixture Examples

To estimate the vector field ϕt for PGPS in both experiments, we use a two-layer perceptron with 64 hidden neurons and

Sigmoid activation function. The particle step-sizes ψ is set to be {0.5, 0.1, 0.05, 0.01}, the step size for LD, PFG, SVGD,

and PGPS adjustment are all set to be 10−2.

E.3. Weight Recovery

The centers of the four modes are deterministically set to be µ1 = [1, 0, 0, 0, 0, 0, 0, 0], µ2 = [0,−1, 0, 0, 0, 0, 0, 0],
µ3 = [0, 0, 1, 0, 0, 0, 0, 0], and µ4 = [0, 0, 0,−1, 0, 0, 0, 0]. The weights are generated by performing Softmax over

samples from a 4-dimensional standard Gaussian distribution. The NN to estimate the vector field ϕt for PGPS is a two-layer

perceptron with 128 hidden neurons and Sigmoid activation function. The step size for LD, PFG, SVGD, and PGPS

adjustment are all set to be 10−4.
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E.4. Bayesian Neural Network Inference

The NN to estimate the vector field ϕt for PGPS is a two-layer perceptron with 128 hidden neurons and Sigmoid activation

function. The step size for LD, PFG, SVGD, and PGPS adjustment are all set to be 10−1. The path hyperparameter α is

selected from {0, 0.2, 0.4, 0.6, 0.8, 1} and β is selected from {0.2, 0.4, 0.6, 0.8, 1}.

F. Additional Experimental Results

F.1. BNN inference on UCI Dataset

We report the NLL along with the ACC results for Section 5.2.1 in Table 4. In many datasets, SVGD has the best NLL;

while in none of these benchmark experiments, SVGD can achieve the best ACC. We conjecture that this is due to variance

collapse that SVGD leads to particles gathering close together on the modes and in turn being ‘over-confident’ on the

prediction so that SVGD would tend to get better NLL on certain datasets but worse on ACC. Our PGPS achieves the best

ACC and second-best NLL in many of the datasets.

Table 4: Average negative log-likelihood (NLL) and accuracy (ACC) on UCI datasets over five independent runs
Negative Log-Likelihood (NLL) Accuracy (ACC)

PGPS SVGD SGLD PFG PGPS SVGD SGLD PFG

SONAR 0.5357± 0.014 0.5059± 0.010 0.5099± 0.017 0.5314± 0.011 0.7981± 0.023 0.7962± 0.016 0.7942± 0.024 0.7673± 0.033
WINEWHITE 1.9788± 0.009 1.9905± 0.011 1.9774± 0.050 1.9898± 0.010 0.4520± 0.010 0.4520± 0.010 0.4831± 0.049 0.4520± 0.010

WINERED 1.9642± 0.012 1.9566± 0.012 1.9502± 0.096 1.9359± 0.018 0.5938± 0.018 0.5770± 0.018 0.5107± 0.096 0.5723± 0.019
AUSTRALIAN 0.5042± 0.013 0.4507± 0.006 0.5732± 0.161 0.4511± 0.007 0.8620± 0.009 0.8626± 0.006 0.7362± 0.157 0.8643± 0.006

HEART 0.9428± 0.030 1.0800± 0.027 1.0686± 0.131 1.0914± 0.033 0.2556± 0.142 0.1801± 0.042 0.2384± 0.135 0.1762± 0.033
GLASS 1.6853± 0.030 1.6664± 0.027 1.7083± 0.145 1.7162± 0.029 0.5850± 0.080 0.5383± 0.076 0.4561± 0.152 0.4505± 0.071

COVERTYPE 1.6016± 0.014 1.5981± 0.018 1.6439± 0.082 1.6241± 0.011 0.5899± 0.095 0.4867± 0.006 0.5221± 0.084 0.5088± 0.053
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