
Citation: Liu, Y.; Andhare, A.; Kang,

K.-D. Corun: Concurrent Inference

and Continuous Training at the Edge

for Cost-Efficient AI-Based Mobile

Image Sensing. Sensors 2024, 24, 5262.

https://doi.org/10.3390/s24165262

Academic Editor: Sylvain Girard

Received: 9 June 2024

Revised: 10 August 2024

Accepted: 12 August 2024

Published: 14 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Corun: Concurrent Inference and Continuous Training at the

Edge for Cost-Efficient AI-Based Mobile Image Sensing

Yu Liu, Anurag Andhare and Kyoung-Don Kang *

Department of Computer Science, State University of New York at Binghamton, 4400 Vestal Parkway East,
Binghamton, NY 13902, USA; yliu456@binghamton.edu (Y.L.); aandhar2@binghamton.edu (A.A.)
* Correspondence: kang@binghamton.edu

Abstract: Intelligent mobile image sensing powered by deep learning analyzes images captured by
cameras from mobile devices, such as smartphones or smartwatches. It supports numerous mobile
applications, such as image classification, face recognition, and camera scene detection. Unfortunately,
mobile devices often lack the resources necessary for deep learning, leading to increased inference
latency and rapid battery consumption. Moreover, the inference accuracy may decline over time
due to potential data drift. To address these issues, we introduce a new cost-efficient framework,
called Corun, designed to simultaneously handle multiple inference queries and continual model
retraining/fine-tuning of a pre-trained model on a single commodity GPU in an edge server to
significantly improve the inference throughput, upholding the inference accuracy. The scheduling
method of Corun undertakes offline profiling to find the maximum number of concurrent inferences
that can be executed along with a retraining job on a single GPU without incurring an out-of-memory
error or significantly increasing the latency. Our evaluation verifies the cost-effectiveness of Corun.
The inference throughput provided by Corun scales with the number of concurrent inference queries.
However, the latency of inference queries and the length of a retraining epoch increase at substantially
lower rates. By concurrently processing multiple inference and retraining tasks on one GPU instead
of using a separate GPU for each task, Corun could reduce the number of GPUs and cost required to
deploy mobile image sensing applications based on deep learning at the edge.

Keywords: AI-based image sensing; deep learning; concurrent inferences; retraining; edge computing

1. Introduction

Intelligent mobile image sensing powered by DL (deep learning) analyzes images
captured by cameras on mobile devices such as smartphones or smartwatches. In particular,
CNNs (convolutional neural networks) support a broad spectrum of mobile image sensing
applications, such as image classification, image search, object detection/recognition,
face recognition, image denoising, depth estimation, and camera scene detection [1–3].
Moreover, state-of-the-art Vision Transformers [4–7] have demonstrated superior inference
quality to CNNs (at the cost of higher complexity).

Unfortunately, mobile devices often lack the resources necessary for deep learning,
leading to long inference latency and rapid battery consumption that can significantly
degrade the quality of service perceived by users. Another challenge for mobile image
sensing using DL is that inference accuracy can decline over time due to potential data drift,
as small, specialized DL models for mobile image sensing are relatively less robust [8–11].
For example, lightweight DL models often suffer from low accuracy in poor lighting or
severe weather, such as heavy rain or snow. Furthermore, a classification task may fail if it
is given a category not trained for.

A viable approach to addressing these challenges is deploying edge servers in cellular
networks (e.g., 5G or LTE) and Wi-Fi networks, to which mobile users can offload DL-based
image-sensing workloads. Compared to image analysis in the cloud, edge computing has

Sensors 2024, 24, 5262. https://doi.org/10.3390/s24165262 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24165262
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3686-9301
https://doi.org/10.3390/s24165262
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24165262?type=check_update&version=1


Sensors 2024, 24, 5262 2 of 19

several advantages. First, communication latency and Internet bandwidth consumption can
be significantly reduced. Second, a pre-trained DL model can be continuously (re)trained
and updated on the edge server, using new sample images collected by devices to improve
accuracy in the presence of data drift [8–11]. In addition, privacy concerns can be mitigated
by processing data on an edge server located on-premises, instead of sending them to a
public cloud.

Mobile edge computing, however, incurs the cost of deploying and managing edge
servers. Most existing approaches have limitations in supporting mobile image sensing
and handling potential data drift cost-efficiently:
• A common approach for low latency model serving involves exclusively using an

entire GPU to process a single inference request at a time. However, solo inference
suffers from low inference throughput. Moreover, it may increase the number of GPUs
needed to support intelligent mobile image sensing via edge computing.

• Solitary training using the entire GPU is not cost-effective for AI-based mobile image
sensing, either. No inference requests can be served if the GPU is dedicated to the
training job, reducing inference throughput as a result.

• Recent work, such as [12–14], aims to support simultaneous inferences on the same
GPU to improve inference throughput while managing latency. However, model
retraining or updates to cope with data drift are not considered in these approaches.

• Time-sharing and fast job switching have been investigated to efficiently schedule
training or inference jobs [15–17]. In [18], two training jobs are run on a single GPU
via efficient memory management. However, most existing work, including [12–18],
does not consider co-running continuous retraining for upholding accuracy alongside
inference jobs on the same GPU in an edge server.
To address these challenges, we introduce a new scheduling framework called Corun.

In contrast to most existing work, we designed Corun to simultaneously handle multiple DL
inference queries (user requests) and continuous model retraining on a single commodity
GPU. This approach, which uses a cost-effective edge server instead of expensive cloud
GPUs, significantly improves inference throughput without substantially increasing latency,
while maintaining accuracy. Unlike a solitary inference or training method, where one
inference or retraining job uses the entire GPU until it completes, blocking other inference
or retraining tasks, Corun enables multiple inference queries and a training task to share a
single GPU. Thus, it could considerably reduce the number of GPUs and the cost required
to deploy intelligent visual sensing applications and maintain accuracy by retraining a
pre-trained model at the edge. (Hereafter, we use training and retraining interchangeably.)

To minimize the resource-demand for high-accuracy mobile image sensing based
on DL, it is desirable if a relatively inexpensive commodity GPU, compared to its cloud
counterparts, can host continuous training and inference jobs together. However, the
feasibility of this approach is mostly unclear. Furthermore, GPUs use black-box, proprietary
scheduling policies, the details of which are not disclosed to the public. To bridge the
knowledge gap, in this paper, Corun effectively co-executes ephemeral inference jobs to
serve image-sensing queries from users with an ongoing training job. A summary of our
goals is as follows:
• G1: Significantly enhance the inference throughput.
• G2: Avoid a large, superlinear increase in the inference latency or epoch time in

training, when more inferences are concurrently performed alongside a continuous
training job on a shared GPU.

• G3: Ensure that inference/training jobs do not crash due to the excessive co-location
of models in one GPU and resulting OOM (out-of-memory) errors.

• G4: Achieve G1–G3 with minimal complexity and overhead at runtime to efficiently
serve multiple inference requests and a continuous training job simultaneously on the
same GPU.
Our key contributions are summarized as follows:



Sensors 2024, 24, 5262 3 of 19

• A pilot measurement study is performed to assess the feasibility of concurrent infer-
ences and training on a commodity GPU.

• A reliable scheduling method for concurrent inferences and continuous training is
designed to significantly enhance throughput, avoiding OOM errors and a large
latency increase with negligible runtime overhead.

• For several well-established CNN models and two cutting-edge Transformer models
for image dehazing [6,7], Corun enhances the inference throughput by up to 4.69!
with moderate latency increases and little overhead at runtime, while avoiding OOM
errors. Therefore, Corun meets G1, G2, G3, and G4.

The remainder of this paper is organized as follows. In Section 2, related work is
discussed. In Section 3, we conduct a brief measurement study to analyze the feasibility
of concurrent inferences and training on a commodity GPU. In Section 4, our proposed
method for co-running inferences and continuous training, Corun, is described. The CNN
and Transformer models, datasets, and implementations are described in Section 5. In
Section 6, our evaluation results are described. In Section 2, related work is discussed.
Section 7 discusses our limitations and future research issues. Finally, Section 8 concludes
the paper.

2. Related Work

In this section, related work in different categories is discussed in comparison to
Corun.

2.1. Solo Inference

Several model serving systems, including [19–22], have been developed to support
low latency inference services using pre-trained models. Clipper [22] introduced caching,
batching, and adaptive model selection techniques to reduce inference latency while im-
proving throughput, accuracy, and robustness. INFaaS [23] enabled the selection and
deployment of model variants, hardware, and scaling configurations to meet service-level
objectives in terms of latency while improving throughput. However, different from Corun,
these approaches process a single inference query using the entire GPU for short latency,
leading to low inference throughput, as observed in Section 6. A comprehensive survey
of techniques for efficient deep learning inference in edge devices, ranging from model
compression to offloading, is given in [24]. However, the survey does not cover model
retraining and concurrent inferences at the edge. Corun can serve more inference jobs
concurrently if, for example, models can be compressed without a noticeable drop in accu-
racy. In addition, Corun supports model retraining essential for compressed models with
less robustness [8–11] alongside concurrent inferences. Thus, it is complementary to other
methods for efficient edge inference.

2.2. Advanced Deep Learning Models for Mobile Applications

Vision Transformers, such as [4,5], have recently advanced the quality of inference
in vision tasks. This has introduced new opportunities for intelligent mobile applications
and image sensing. For example, RIDCP [6] and DehazeDCT [7] are novel image dehazing
models that play a central role in image enhancement and restoration. They leverage the
Transformer and other advanced techniques, such as fast Fourier convolution (FCC), high-
quality priors, and deformable convolution. Moreover, NightHazeFormer [25,26] support
nighttime haze removal. In mobile applications, Corun can run such image-dehazing
models on an edge server to enhance and restore images, reducing the battery consumption
of mobile devices. In Section 6, we thoroughly evaluate Corun using RIDCP [6] and
DehazeDCT [7] as well as various CNN models.

2.3. Concurrent Inferences

Several approaches have been proposed to process multiple inference tasks on one
GPU. Perseus [12], for instance, executed ResNet50 and Inception-V3 together, achieving



Sensors 2024, 24, 5262 4 of 19

up to 12% cost reduction for model serving. Choi et al. [13] designed a new scheduler that
explores 3D search space of different batch sizes, temporal sharing, and spatial sharing
between two inference tasks in one GPU. At the DL operator level, Yu et al. [27] designed
a search algorithm based on machine learning to run multiple inference tasks using the
same input. Unlike [27], we do not assume that inference models analyze the same input
because it is unrealistic to assume that users provide the same input for mobile image
sensing. KRISP [28] spatially partitions a GPU at the kernel level to enhance GPU utilization.
GSLICE [29] collocates multiple inference jobs that share a DL model. COLTI [30] attempts
to extend GSLICE to support training in addition to serving inference requests using
a common DL model; however, it is not clear how it avoids an OOM error or a large
latency increase due to excessive co-location, unlike Corun. Moreover, Corun does not
require concurrent inferences to use the same DL model, in contrast to GSLICE and COLTI.
In [31,32], the concurrent running of inference tasks has been explored, enhancing the
throughput of edge servers by 1.4→ and 3.8→, respectively. However, continuous training
for maintaining accuracy alongside concurrent inferences is not considered in these works.

2.4. Efficient Training

Gandiva [15] proposed a GPU time-slicing mechanism that allows job switching at
the iteration boundaries in training, supporting second-scale suspend/resume. However,
this method is too slow to support online inference queries with low latency requirements.
Salus [16] supports fast job switching between iterations by retaining persistent memory
of the preempted job, which is considerably smaller than the temporary memory used
in a DL training job. SwitchFlow [17] treats a DL model as a computation graph to
facilitate preemptive multitasking, scheduling subgraphs to prevent them from running
simultaneously on a single GPU. When a low-priority subgraph is preempted, it can
continue to run on a different device, such as the CPU or another GPU. Unfortunately,
preemptive approaches, such as [15–17], have substantial overhead (up to 1 s and 110 ms
in Gandiva and SwitchFlow, respectively). Zico [18] takes a non-preemptive approach that
allows two concurrent training jobs to share a single GPU by reclaiming memory released
by one model during the backward pass. Wavelet [33] supports efficient model and data
parallel training based on a similar idea. Unlike these approaches, Corun devises a new
non-preemptive approach that enables a continuous training job and several inference
requests to run in parallel on an edge server with O(1) time complexity at runtime.

2.5. Continuous Learning at the Edge

Compressed DL models for efficient mobile/edge image sensing are relatively less
robust and susceptible to accuracy drops due to data drift that can occur in a series of
images or video frames. Continuous learning has emerged as a promising approach to
maintain the accuracy of vision tasks at the edge, even in the presence of data drift [8–11].
To maintain accuracy, RECL [34] dynamically selects among the current CNN model, a
retrained model, or one of the historic models that the edge server maintains in its model
zoo. However, most existing strategies have not addressed the challenge of concurrently
serving inference queries in a timely manner alongside an ongoing retraining job, as
achieving it is hard without substantially increasing the resource demand. To shed light on
this issue, Corun provides a new framework that accomplishes goals G1–G4 via concurrent
CNN inferences and retraining based on effective offline profiling and runtime scheduling.
Therefore, Corun is complementary to these works.

2.6. GPU Workload and Performance Predictions

Corun avoids OOM errors and long latency through offline profiling. In contrast,
Gao et al. [35] estimated GPU memory consumption, Hu et al. [36] predicted the per-
formance of memory-intensive GPU kernels, and Hu et al. [37] predicted deep learning
workloads in GPU data centers. Despite their effectiveness, these prediction/estimation
methods are subject to estimation or prediction errors, possibly leading to OOM errors



Sensors 2024, 24, 5262 5 of 19

or high latency. They could be used to reduce the search space and decrease the time for
offline profiling in Corun. Thus, they are complementary to our work.

3. Motivation

For the work presented in this article, we first carried out a pilot study that involved
deploying several CNN models in Tables 1 and 2, which were used for various applications
in mobile/edge environments [1,38,39]. Popular machine learning benchmarks, such as
EdgeBench [2] and MLPerf [3], include CNNs. Furthermore, they have a wide range of
model sizes and computational complexities (GFLOPs).

In this experiment, we conducted solo training and inference jobs, where each training
or inference job used the entire GPU until it finished. We performed 1000 inferences and
10 training epochs for each model using the ImageNet dataset [40] to measure the average
GPU utilization, power consumption, temperature, and frequency for an inference and
training job, respectively.

Table 1. CNN training models (input image size: 224 → 224).

Models Batch Size Parameters GFLOPs

MobileNetV3-Small [41] 128 2.5 M 0.1

ResNet50 [42] 16 25.6 M 4.1

EfficientNetV2-Large [43] 2 118.5 M 12.3

Table 2. CNN inference models (input image size: 224 → 224).

Models Parameters GFLOPs

MobileNetV3-Small [41] 2.5 M 0.1

ResNet50 [42] 25.6 M 4.1

EfficientNetV2-Large [43] 118.5 M 12.3

GoogleNet [44] 6.6 M 1.5

InceptionV3 [45] 23.8 M 2.9

DenseNet121 [46] 8.0 M 2.9

Tables 3 and 4 present the GPU utilization, frequency, power consumption, and tem-
perature for the training and inference of the CNN models in Tables 1 and 2, respectively.
As shown in the tables, the average utilization values are, at most, 35.2% and 38.2% for
training and inference, respectively. Hence, a solo training or inference job underutilizes the
tested commodity GPU (NVIDIA RTX 3080 Ti). The GPU power consumption is consider-
ably lower than the 350W TDP (thermal design power) of the GPU. Furthermore, the GPU
temperature is below 58 °C for a training and inference job, which is much lower than the
93 °C that triggers thermal throttling [47]. Thus, the GPU is thermally safe and is not subject
to thermal throttling. Additionally, the GPU frequency ranges from 1755 to 1965 MHz
while the average is below 1800 MHz, whereas our GPU supports an adjustable frequency
that ranges between 210 and 2025 MHz with a step size of 15 MHz [48]. The results of
this pilot study motivated our approach to achieving goals G1–G4 through concurrent
inferences and training on a commodity GPU.

Furthermore, we find that GPU memory is the most coveted bottleneck resource because
OOM errors occur when GPU memory becomes insufficient to accommodate several tasks
simultaneously, even when other resources are available. To avoid devastating OOM errors,
the underlying DL frameworks, such as PyTorch and TensorFlow, implement memory
swapping. This involves temporarily transferring some memory blocks from the GPU to
the host memory (RAM) using the NVIDIA UVM (unified virtual memory) mechanism. By
freeing up GPU memory, this technique allows other jobs to continue executing, utilizing



Sensors 2024, 24, 5262 6 of 19

available resources. Swapped memory blocks can be brought back to the GPU when they
are needed again. In this paper, however, we disable this feature because of the high,
unpredictable latency and overhead of swapping. Instead, we spatially multiplex a GPU
for robust sharing between concurrent inferences and continuous training, avoiding OOM
errors or superlinear increases in inference/training latency without the need for high-end
cloud GPUs.

Table 3. GPU utilization, frequency (kHz), power consumption (W), and temperature (°C) for
solo training.

Model Util. Freq. Power Temp.

MobileNetV3-Small 4.6% 1755.0 119.4 50.4

ResNet50 29.2% 1861.9 190.6 57.5

EfficientNetV2-Large 35.2% 1756.0 146.6 55.1

Table 4. GPU utilization, frequency (kHz), power consumption (W), and temperature (°C) for
solo inference.

Model Util. Freq. Power Temp.

EfficientNetV2-Large 18.4% 1755.0 128.6 49.0

MobileNetV3-Small 8.6% 1755.0 116.0 48.0

DenseNet121 20.9% 1755.0 126.6 48.8

ResNet50 20.4% 1755.0 132.5 49.2

InceptionV3 21.3% 1755.0 123.2 48.7

GoogleNet 14.3% 1759.3 121.4 49.0

4. Concurrent Training and Inferences

In this section, Corun is designed to achieve goals G1–G4. To achieve G1, Corun needs
to find the maximal level of concurrency K, i.e., the number of concurrent inference jobs
that can run alongside a continuous training job while maintaining accuracy. There are
numerous options for concurrency levels and batch sizes that avoid OOM errors or a sharp
increase in inference latency, meeting the requirements of G2 and G3; however, they may
lead to different throughput levels related to attaining G1. It can be shown that finding
an optimal solution using the finite resources available in a GPU is a knapsack problem,
which is NP-Hard. Thus, it is very hard to attain G4 while achieving G1–G3.

To address this issue, we propose a cost-effective heuristic, Algorithm 1, based on
offline profiling. To accomplish goals G1–G4, Algorithm 1 keeps increasing K offline until
an OOM error occurs, or the latency grows superlinearly, i.e., faster than K. Thereby,
Corun identifies the training and inference jobs that are compatible in that they can run
concurrently to significantly improve inference throughput compared to solo inference,
without incurring an OOM error or a rapid (superlinear) increase in latency for either
inference or training.

To efficiently schedule concurrent inference requests and continuous training at run-
time, Corun extends FCFS (First Come, First Served) scheduling by spatial GPU multiplex-
ing based on the stored results of offline profiling driven by Algorithm 1. As user inference
requests arrive, Corun dispatches and executes the first K inference requests at the head of
the FIFO queue with the ongoing training task, if there are K or more compatible inference
queries in the queue. Otherwise, it executes all (less than K) inference queries in the FIFO
queue and the training job, as illustrated in Figure 1. The components of Corun—except for
this efficient runtime scheduling scheme—are processed offline. In this way, Corun intends
to achieve G4 as well as G1–G3.



Sensors 2024, 24, 5262 7 of 19

Algorithm 1: Finding an effective concurrency level via offline profiling
input : M = total number of inference models.
output : K = concurrency level

1 K = 0 // solo training with no inference
2 for K = 1; K ↑ M; K++ do

3 for i = 1; i ↑ (M

K
); i++ do

4 Randomly choose K from M models.
5 Allocate memory to the K + 1 jobs. // K inferences + 1 training
6 Run the training job and inferences.
7 if OOM error or latency increase > K→ solo latency then

8 return K ↓ 1

9 return M

…Inference
requests

Max K 
Inference 
tasks Training job

…

GPU

Figure 1. FCFS Scheduling and multiplexed dispatch for concurrent CNN training and inferences.

A more detailed discussion of our approach to finding an effective concurrency level
(K) and batch size follows.

4.1. Finding a Maximal Feasible Concurrency Level

If the concurrency level is too low, precious GPU resources can be wasted, resulting
in low throughput. On the other hand, if the concurrency level is too high, the inference
latency or the time for an epoch or iteration of training may increase abruptly due to
insufficient resources, such as the GPU memory and streaming multiprocessors (SMs).
Even worse, training and inferences may crash due to an OOM error when the GPU
memory becomes short. Unfortunately, predicting the GPU resource consumption of a DL
model training/inference job before executing it is very hard for several reasons, including
the following:
• The amount of GPU memory consumed by a CNN is not determined by the num-

ber of the model parameters only. For example, PyTorch, which is a popular DL
framework, allocates GPU memory to in/out tensors, weight tensors, ephemeral
tensors, and resident buffers to support CUDA contexts, memory alignment, and
reservations [35], while supporting caching and dynamic memory management, such
as memory defragmentation.

• DL frameworks, such as TensorFlow, PyTorch, and MXNet, hide the internal exe-
cution of a model from the high-level code written by developers, making it hard
to monitor the GPU memory usage precisely. Moreover, analyzing low-level oper-
ators (e.g., convolution in CNNs) upon which a DL framework (e.g., TensorFlow,
PyTorch, and MXNet) is built is difficult, because they are usually implemented using
proprietary libraries (e.g., NVIDIA cuDNN and cuBLAS).

• Unlike feedforward inference, training requires holding temporary data (e.g., acti-
vations and gradients) until used during the backpropagation, further complicating
GPU memory management.

• In general, GPU memory management and scheduling policies are proprietary and
details are undisclosed.



Sensors 2024, 24, 5262 8 of 19

To address these issues, Algorithm 1 determines a maximal number of concurrent
inferences in addition to continuous training/updates of a specific CNN model. On line 1
of Algorithm 1, K = 0, indicating solo training with no inference. On line 2, we increase K

by 1. On line 4, we randomly choose K out of M models, where M is the total number of
pre-trained models for model serving (i.e., inference services for DL-based mobile image
sensing). On lines 5 and 6, we allocate GPU memory to K inference jobs in addition to the
ongoing training jobs in proportion to their model sizes and concurrently execute them.
On line 7, if an OOM error occurs or the inference latency or the epoch length of training
grows faster than K times, Algorithm 1 returns K ↓ 1 on line 8. Otherwise, we repeat this
up to (M

K
) times as specified on line 3. If lines 3–8 run successfully without being returned,

we increment K by 1 and repeat the process as specified on line 2.
If there are N CNN models (one of which is trained at a time), Algorithm 1 is called

for each CNN model i, where 1 ↑ i ↑ N, and the result is stored in C[i], which represents
the highest number of concurrent inferences that meet goals G1–G4 for the CNN model i to
be retrained. If the CNN model i is being retrained at the runtime, Corun sets K = C[i] via
a single table look-up with O(1) time complexity; therefore, Corun concurrently processes,
at most, K inference queries alongside the retraining of the CNN i using the scheduling
scheme depicted in Figure 1. Although Algorithm 1 finds K via an exhaustive search, it is
efficient in practice: (1) M and K values (K ↑ M) are usually small due to the demanding
resource requirements of DL models; (2) the search is immediately terminated and K ↓ 1 is
returned if any of the three conditions on line 7 are violated; and (3) profiling is performed
offline without delaying any inference or training job at runtime.

It is worth noting that Corun does not require control of the black-box GPU hard-
ware scheduler nor modifications to the underlying hardware, drivers, or DL framework.
Therefore, it is flexible and universally applicable, effectively supporting concurrent CNN
training and inferences.

4.2. Batch Sizes for Inference and Training

The batch size is another important factor that affects throughput and GPU mem-
ory consumption. Generally, a large batch size for inference often improves throughput;
however, it usually increases GPU memory consumption and latency. Moreover, it may
affect the generalizability and GPU memory consumption of training. Thus, a proper
configuration of batch sizes is desirable.

An inference task using a pre-trained CNN model only requires a single forward
propagation pass through the model, which is a directed acyclic graph. Each node in
the graph is an invocation of a mathematical operator (e.g., matrix multiplication), and
each edge specifies the execution dependency. In this paper, we use the batch size of 1
for inference queries to support timely model serving; that is, an inference request for
intelligent image sensing is not delayed for batching.

In training, each epoch consists of a specific number of iterations. Moreover, a single it-
eration consists of forward and backward propagation. The model parameters (i.e., weights)
are updated during backpropagation based on the gradients, using an optimization algo-
rithm, such as stochastic gradient descent or Adam. Thus, a single iteration makes one
update of the model weights. If a training set has N samples (e.g., images) and a mini-batch
consists of B samples, completing one epoch to learn the weights, using all N samples,
takes N

B
iterations. Therefore, a small batch size, B, results in more iterations and more

frequent weight updates in an epoch, but reduces the GPU resource usage in each iteration.
Nonetheless, a single epoch is completed when all N samples are used to learn

parameters, regardless of the batch size, B. Moreover, the total number of epochs, E,
is specified and fixed when a training job begins. Therefore, using a small batch size
reduces resource consumption in each iteration, but does not affect the total training time
in principle. More formally, when there are B samples in a batch, the O(B) computation
is required using O(B) memory [49]. However, the uncertainty in the gradient is reduced
by O(

↔
B); that is, there are diminishing returns to increasing the batch size. Furthermore,



Sensors 2024, 24, 5262 9 of 19

in DL training, a small batch size can lead to faster convergence, better generalizability,
and more stability [50–52]. Optimizing the batch size for DL training is still an open
problem [49–52]. In this paper, we use relatively small batch sizes for continuous training
in Table 1 to strike a balance between the conflicting requirements for more concurrent
inferences and more samples in a batch for reliable training, considering diminishing
returns to larger batch sizes with higher resource demands per iteration.

5. CNN Models, Transformer Models, Datasets, Performance Metrics, and Implementation

In this section, CNN models, Transformer models, datasets, evaluation metrics, and
our implementation are described.

5.1. Deep Learning Models for Retraining and Inference

• Retraining Models: As shown in Table 1, to generate retraining/fine-tuning workloads,
we selected MobileNetV3-Small, ResNet50, and EfficientNetV2-Large with relatively
small, medium, and large sizes, and GFLOPs to analyze the impact of concurrent
training on inference performance and vice versa. MobileNet has been extensively
studied for its applications in mobile and edge computing environments [53,54]. Its
effectiveness in managing AI tasks has made it a key component in state-of-the-art
networks, with significant use in the SSD (single-shot detector) and YOLO (you
only look once) series for object detection [55–57]. Residual connections featured in
ResNet50 are still utilized in Vision Transformers [4,5]. In addition, EfficientNetV2 has
a faster training speed and better parameter efficiency than previous models. In this
paper, an edge server trains zero or one model in Table 1 and simultaneously serves
incoming inference requests.

• Inference models: To analyze the performance of concurrent inferences in the absence
and presence of a training job, we use six popular CNN models and two state-of-the-art
Transformer models for image dehazing, i.e., RIDCP [6] and DehazeDCT [7].

5.2. Datasets

To analyze inference performance in terms of throughput (QPS) and latency, we use
CNN models pre-trained using the ImageNet dataset [58]. Furthermore, to evaluate the
inference performance of the pre-trained RIDCP [6] and DehazeDCT [7] models, we use
the NH-HAZE [59] dataset for image dehazing. For continuous (re)training of the models
in Table 1, we utilize the Mini-ImageNet dataset [60], comprising 50,000 training images
and 10,000 testing images evenly distributed among 100 classes. Typically, a lightweight
CNN model is specialized for a subset of categories to enable efficient inference at the
edge [8–11]. To maintain the accuracy of edge inference, the specialized model is then
periodically retrained on an edge server to handle potential data drift. In each update phase,
a relatively small number of iterations are performed using recent sample images [8–11]. In
particular, we train one of the models in Table 1 for 10 epochs to emulate periodic updates
in each set of experiments, where concurrent CNN inference queries are served alongside
an ongoing job for retraining a CNN model. In this regard, we use Mini-ImageNet, which
is significantly smaller than ImageNet, to emulate CNN model updates on an edge server
using fresh sample images to maintain inference accuracy. However, in each epoch, we
stress-test Corun by training a CNN model using the entire 50,000 images in the training
set of Mini-ImageNet, which is significantly larger than the number of samples used for a
continual update of a CNN model in an edge server [8–11].

5.3. Performance Metrics

• Inference throughput: We measure the queries per second (QPS), which measure the
number of inference requests processed per second.

• Inference latency: The latency for model serving is one of the key metrics to measure
the user-perceived quality of service. Specifically, we measure the average and 95-P tail



Sensors 2024, 24, 5262 10 of 19

latency of inferences to analyze their ascending patterns when more CNN inference
queries are run simultaneously.

• Epoch length: We measure the average time for each model in Table 1 to finish one
training epoch with respect to different numbers of co-running inference tasks.

In this paper, accuracy is not a performance metric, as we use pre-trained CNN models
for inferences. Moreover, we assume that continuous training maintains accuracy even in
the presence of data drift [8–11]. Given that, we analyze the impact of continuous training
on inference throughput and latency, while evaluating the impact of concurrent inferences
on the training epoch time.

5.4. Implementation

To support concurrent executions, we exploit MPS (multi-process service) [61]. In
particular, we use MPS to create multiple CUDA streams and allocate GPU memory to
them in proportion to their model sizes.

For performance evaluation using CNNs, we use a PC to mimic a cost-effective edge
server. It comprises commodity hardware components: an Intel Core i7-7820X CPU, 64 GB
of RAM, and an NVIDIA GeForce RTX 3080Ti GPU with 12 GB of GDDR6X memory.

As Transformers require more GPU memory, we utilize a different PC that has an
NVIDIA GeForce RTX 4090 GPU with 24 GB of memory. It is used for all experiments that
include one or more inference jobs using RIDCP [6] or DehazeDCT [7]. The remaining
hardware configuration is similar. On the machine with an NVIDIA GeForce RTX 3080Ti
GPU with 12 GB of memory, only up to two concurrent inferences for image dehazing can
be performed in addition to a retraining job. In this way, we also demonstrate the general
applicability of Corun to different model architectures and GPUs. The implementation
and evaluation of deep learning models are carried out using Python 3.9 and PyTorch 1.13.
The machine with the NVIDIA GeForce RTX 3080Ti GPU runs Ubuntu 18.04.6 LTS, while
Ubuntu 22.04.4 LTS is installed on the other workstation. The GPUs use NVIDIA’s GPU
Boost technology, which automatically adjusts the clock speed based on various factors,
such as power consumption, temperature, and workload.

To evaluate the throughput and latency of the concurrent model training and inferences
using realistic request arrival patterns for online services, we adopt Microsoft Azure FaaS
(function as a service) traces [62]. These traces consist of invocations per minute for various
Azure functions collected over a 24-h period for 14 days. For performance evaluation, we
adapt the traces from day 01. As we aim to generate realistic traffic of requests for mobile
image sensing on a single edge server instead of a cloud with enormous resources, we
adjust the request arrival rate to a range between 8 and 52 queries/second. Subsequently,
we produce a new trace by sampling the request rate at every 5th minute out of 1440 min
of a day. Figure 2 visually depicts the Azure request arrival pattern [62] and our request
arrival pattern. As shown in the figure, the request arrival patterns remain consistent
despite the adjustments.

Our offline profiling results using Algorithm 1 show that the specific GPU used in this
paper can support up to four inference tasks and one training job, which continuously trains
one of the models in Table 1, at the same time. Otherwise, an OOM error or superlinear
latency increase occurs. However, Corun is not tied to a specific GPU. Instead, it is
compatible with most modern NVIDIA GPUs with post-Volta architecture that supports
MPS. It can concurrently serve additional inference queries for mobile image sensing in
a more powerful GPU (or fewer concurrent queries in a less potent GPU) by applying
Algorithm 1.

For concurrent CNN inferences, we use 162 unique combinations: 162 = (8
1) + (8

2) +
(8

3) + (8
4) to run 1, 2, 3, and 4 concurrent inference models, respectively. In total, we use

648 = 162 + 3 → 162 combinations to concurrently run inferences alongside no training job
and 1 out of 3 training jobs in Table 1, respectively. Upon a request’s arrival, 1–4 inference
jobs are triggered simultaneously according to the level of concurrency employed in the



Sensors 2024, 24, 5262 11 of 19

corresponding combination. In addition, we use 32 combinations for concurrent dehazing
inferences. Thus, a total of 680 combinations are used in our evaluation.

Figure 2. Original and scaled-down request patterns of Microsoft Azure FaaS function invoca-
tion traces.

6. Evaluation

The performance of Corun is compared to solo inference and training using the entire
GPU, which is a common practice for model serving and training.

6.1. Inference Throughput and Latency

Table 5 shows the results of the inference performance evaluation. In the table, the
first column shows the model being trained. The second column shows the number of
co-running inference tasks. In the other columns, the average latency, 95-P latency, and QPS
values for a specific inference model are normalized to those of the model’s solo inference
using the entire GPU exclusively, without any other concurrent inference or training.

The results in Table 5 are summarized as follows:
• CNN inference throughput and latency: The inference throughput, i.e., QPS, scales

linearly, by up to 4.69→ for EfficientNet, as the concurrency level, K, increases from 1 to
4. However, the normalized average inference latency increases at significantly slower
rates, by up to 1.13→ (DenseNet121). The 95-P latency also increases sublinearly, by
at most 1.53→ (Inception) due to the effective scheduling of Corun. The average and
95-P latency for EfficientNetV2, which is the slowest among the tested CNN models,
are 37 ms and 50 ms, respectively.

• Transformer inference throughput and latency: As K increases from 1 to 4, QPS
rates increase by up to 3.7→ and 3.15→ for RIDCP and DehazeDCT, respectively.
However, as K increases from 1 to 4, the normalized average inference latency increases
marginally at significantly slower rates. Specifically, it increases by up to 1.05→ and
1.28→ for RIDCP and DehazeDCT, respectively. Moreover, the 95-P latency of RIDCP
and DehazeDCT increases by up to 1.04→ and 1.42→, respectively. For RIDCP, the
average latency increases from 157.54 to 165.41 ms, and the 95-P latency increases from
181.39 to 188.9 ms. For DehazeDCT, the average latency increases from 3.92 to 5.01 s
and the 95-P latency increases from 4.5 to 6.4 s. In general, the Transformer models are
significantly slower than the CNN models. Also, the increase rates in QPS for higher
K values are lower than those of the CNN models due to their complexities.
In all experiments, Corun avoided OOM errors by design (Algorithm 1). In some cases,

the latency in Table 5 decreases slightly as K increases. We observed that the hardware
scheduler increases the clock frequency to cope with higher workloads in these cases.



Sensors 2024, 24, 5262 12 of 19

Table 5. Normalized average latency, 95-P latency, and QPS. Data are normalized to the values of the inference of a single model without training. (K = the number
of co-running inference models).

Training

Model
K

MobileNet ResNet50 GoogleNet Inception DenseNet121 EfficientNet RIDCP DehazeDCT

Avg 95-P QPS Avg 95-P QPS Avg 95-P QPS Avg 95-P QPS Avg 95-P QPS Avg 95-P QPS Avg 95-P QPS Avg 95-P QPS

No
Training

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0.97 0.97 1.97 0.99 1.07 2 1 1.09 2.01 1.01 1.12 2.05 1.01 1.11 2.09 1.03 1.06 2.25 0.99 1.01 1.92 1.03 1.18 1.95

3 0.99 1.04 2.92 1.01 1.18 2.98 1.01 1.2 2.99 1.03 1.25 3.08 1.04 1.3 3.15 1.05 1.18 3.49 1.01 0.99 2.80 1.11 1.3 2.73

4 0.98 1.17 3.83 1.02 1.4 3.93 1.02 1.36 3.94 1.06 1.47 4.07 1.09 1.45 4.18 1.08 1.27 4.69 1.05 0.99 3.7 1.27 1.4 3.12

MobileNet
V3-Small

1 0.97 0.91 1.02 1.02 1.03 1.02 1 1.03 1.03 1.01 1.05 1.02 1.04 1.19 1.03 1.02 1.11 1.01 0.99 1.01 1.01 1.02 1.03 1.02

2 1 1.01 2 1.02 1.12 2.03 1.01 1.16 2.04 1.03 1.18 2.08 1.03 1.23 2.12 1.03 1.16 2.28 1.01 1.02 1.92 1.03 1.19 1.96

3 0.99 1.09 2.94 1.04 1.28 3 1.02 1.25 3.01 1.05 1.31 3.11 1.06 1.33 3.18 1.06 1.25 3.52 1.02 1.03 2.82 1.12 1.31 2.74

4 1 1.21 3.83 1.04 1.44 3.92 1.05 1.41 3.94 1.09 1.52 4.06 1.1 1.49 4.17 1.1 1.33 4.68 1.03 1.04 3.69 1.27 1.41 3.15

ResNet50

1 1 0.97 1.01 1.01 1.09 1.01 1.02 1.06 1.02 1.05 1.19 1.02 1.06 1.2 1.03 1.03 1.12 1.01 1 1.01 1.01 1.01 1.02 1.02

2 1.01 1.05 1.99 1.03 1.14 2.02 1.01 1.12 2.03 1.05 1.21 2.07 1.05 1.26 2.11 1.06 1.19 2.27 1.03 1.02 1.91 1.04 1.21 1.96

3 1 1.11 2.94 1.04 1.27 2.99 1.04 1.26 3.01 1.08 1.32 3.1 1.07 1.33 3.16 1.08 1.26 3.51 1.02 1.03 2.83 1.12 1.32 2.73

4 1.01 1.26 3.84 1.05 1.46 3.93 1.06 1.46 3.95 1.11 1.53 4.08 1.13 1.5 4.18 1.12 1.35 4.69 1.05 1.04 3.7 1.28 1.42 3.12

EfficientNet
V2-Large

1 0.99 0.94 1 1 1.03 1.03 1.06 1.26 1.01 1.03 1.21 1.01 1.05 1.33 1.01 1.03 1.16 1 1 1.01 1.01 1.01 1.03 1.01

2 0.97 0.98 1.98 1.02 1.14 2.01 1 1.1 2.02 1.03 1.21 2.06 1.04 1.31 2.1 1.04 1.19 2.26 1.01 1.03 1.91 1.04 1.20 1.95

3 0.97 1.07 2.93 1.02 1.23 2.99 1.02 1.23 3.01 1.05 1.26 3.09 1.06 1.34 3.16 1.07 1.31 3.5 1.01 1.03 2.82 1.12 1.31 2.73

4 1 1.21 3.84 1.03 1.4 3.93 1.03 1.41 3.95 1.09 1.46 4.08 1.11 1.46 4.19 1.11 1.39 4.69 1.03 1.04 3.69 1.27 1.41 3.13



Sensors 2024, 24, 5262 13 of 19

6.2. Training Epoch Time

We have analyzed the impact of concurrent inferences on the length of an epoch for
training the models in Table 1. In Figures 3 and 4, the epoch length of each trained model
(MobileNetV3, ResNet50, and EfficientNetV2) is normalized to the epoch time of its solo
training without any concurrent inference.

Similar to the inference latency, the epoch times in Figures 3 and 4 also increase
sublinearly with respect to K. The epoch lengths of MobileNetV3, ResNet50, and Efficient-
NetV2 increase by up to 1.58→, 1.82→, and 1.55→, respectively, when each one is run with
4 concurrent CNN inference tasks, as illustrated in Figure 3. When K increases from
1 to 4, the actual epoch times of MobileNetV3, ResNet50, and EfficientNetV2 increase from
236.6 to 367.5 s, 226.1 to 412.1 s, and 3319.4 to 5253.7 s, respectively. (In Figures 3 and 4,
the epoch length for EfficientNetV2 decreases as K increases from 0 to 1. This is because, in
this case, the average GPU clock frequency increases from 1755 to 1944 MHz by the GPU
hardware scheduler.).

Figure 3. Normalized epoch times of training in the presence of concurrent CNN inferences (# of
infer: number of concurrent inferences).

Figure 4. Normalized epoch times of training in the presence of concurrent Transformer inferences
(# of infer: number of concurrent inferences).

Figure 4 illustrates that the epoch lengths of MobileNetV3, ResNet50, and Efficient-
NetV2 increase by up to 1.035→, 1.033→, and 1.056→, respectively, when each training job
is run with 4 concurrent Transformer inferences for dehazing. When K increases from 1
to 4, the actual epoch times of MobileNetV3, ResNet50, and EfficientNetV2 increase from
218.85 to 226.69 s, 242.02 to 250.1 s, and 1967.71 to 2078.23 s, respectively. Thus, the impact
of concurrent Transformer inferences on the training epoch time is insignificant. This is
potentially because the Transformer experiments are undertaken in the NVIDIA Geforce
RTX 4090 GPU, which has additional memory and other resources compared to the NVIDIA
Geforce RTX 3080 GPU used for the CNN experiments.

These results are acceptable, considering that we stress-test Corun by analyzing the
50,000 images in the training set of Mini-ImageNet per epoch during continuous training, a
volume significantly larger than the number of sample images typically used for retraining



Sensors 2024, 24, 5262 14 of 19

CNNs on an edge server [8–11]. Moreover, ResNet50 and EfficientNetV2 are larger than
MobileNetV3 by one and two orders of magnitude, respectively (Table 1).

In general, our findings verify that Corun achieves goals G1–G4 cost-effectively. Corun
is able to scale the QPS linearly with the number of co-running inference queries while
avoiding OOM errors and preventing a superlinear increase in latency. Moreover, its
runtime complexity is O(1).

7. Discussion

The work presented in this article has its limitations and future research issues, includ-
ing the following:
• Flexible resource management: In this paper, we disabled UVM for low latency

inferences. However, if the impact of swapping between the GPU and host memory
on latency can be significantly reduced using, for example, prefetching [63], more
training/inference tasks could run together to further enhance throughput. As another
example, resources released by a training job during the backpropagation can be
dynamically reclaimed to serve more inference requests. A thorough investigation is
reserved for future work.

• Adaptive retraining based on estimated data drift: In this paper, we considered an
extreme scenario where there is a persistent demand for retraining a CNN model to
evaluate Corun in harsh conditions. Instead, retraining can be triggered only when
considerable data drift is detected or predicted, processing more concurrent inference
queries during periods where retraining is not needed. For example, in [34,64], a
camera sends sample images to the edge server for model retraining upon a noticeable
change of labels in semantic segmentation and object detection, respectively. In [11],
retraining is triggered if adversarial autoencoders detect significant divergence in
feature maps. Related research issues include developing more effective methods
for predicting potential data drift and efficiently scheduling retraining and inference
workloads accordingly.

• On-device inference and offloading: In this paper, we assume all inference queries are
offloaded to an edge server. However, inference using a lightweight CNN, such as
MobileNetV3, can be processed on a mobile device, where the model is continually
updated by the edge server utilizing new samples provided by devices. In such
scenarios, an edge server can support more users; a less powerful edge server can be
employed to reduce costs. Optimizing data drift detection, sample data collection,
model updates and downloads, as well as the consumption of computational resources
and communication bandwidth for timely, high-accuracy inference, emerges as a
critical area for future research. Furthermore, a hybrid approach, which dynamically
balances inference workloads between devices and the edge server, considering the
available communication bandwidth and the current status of devices and the edge
server, can be explored.

• Autoscaling: Nexus [65], FA2 [66], and Cocktail [67] support autoscaling for model
serving. Sia [68] introduces an adaptive DL-cluster scheduling scheme that is aware
of GPU heterogeneity. DeepBoot [69] uses idle GPUs in the inference cluster for
training tasks. Corun could be combined with these approaches. For example, it can
be extended to support elastic scaling, enabling the utilization of additional GPUs, if
necessary, to deal with flash inference requests.

• Vision Transformers: Novel Vision Transformers (ViTs), such as [4,5], have improved
the quality of computer vision tasks. However, ViTs also increase computational and
memory demands due to their self-attention mechanisms with quadratic complexity.
This is one of the main reasons why CNNs are still popular for edge computing with
relatively scarce resources [1,38,39]. For instance, in Section 6, the average and 95-P
latency of DehazeDCT [7] are 3.92 and 4.5 s, respectively, even when the model is
executed using the entire GPU with no other concurrent inference/retraining task.
This is another limitation of our work presented in this manuscript, as short latency



Sensors 2024, 24, 5262 15 of 19

times (e.g., less than 1 s) are desirable for mobile applications. Further enhancements
to Corun, such as improved scheduling and resource management, along with opti-
mizations like compression and pruning of state-of-the-art models such as RIDCP [6],
DehazeDCT [7], and NightHazeFormer [25], used to improve intelligent mobile appli-
cations, could be an exciting area for future research.

• Fault isolation: High-end NVIDIA GPUs, such as A100 and H100, support MIG
(multi-instance GPU) [70], which enables hardware-level partitioning of one GPU
into multiple instances with strong isolation. In this paper, however, Corun utilizes
MPS available in most modern GPUs instead of MIG to reduce the cost of deploying
image sensing models at the edge. Consequently, Corun has a limitation in terms
of fault isolation. If an inference or a fine-tuning task fails, it may affect the other
tasks concurrently running on the same GPU, potentially leading to a cascading
failure. Extending Corun to support fault isolation without requiring expensive cloud
GPUs capable of hardware-level isolation is a challenge. A possible direction is to
leverage virtualization techniques in an edge server or a mini cluster of edge servers
with several commodity GPUs while exploring effective scheduling algorithms for
fault-tolerant inference and retraining. For example, inference or retraining tasks can
be built as virtualized containers (e.g., [71]). Moreover, the fault tolerance features
provided by the orchestrating framework (e.g., [72]) can be extended to support fault
tolerance for concurrent inference and retraining tasks. A thorough investigation is
reserved for future work.
Our study explores largely untapped opportunities for improving throughput without

significant increases in latency through concurrent model retraining and inference. Encour-
aged by promising results, we plan to thoroughly investigate related research issues in the
future, including those outlined in this section.

8. Conclusions

Intelligent mobile image sensing facilitated by deep learning analyzes images captured
by cameras of mobile devices. It supports many mobile applications, such as image
classification, face recognition, depth estimation, and camera scene detection. Mobile
devices, however, often lack the resources necessary for deep learning, leading to long
inference latency and quick battery consumption. Furthermore, the inference accuracy
may drop over time due to possible data drift. To shed light on these issues, we introduce
a new framework, called Corun, designed to simultaneously process multiple inference
queries and continuous training on a single consumer GPU in an edge server to significantly
improve the inference throughput and maintain accuracy, respectively. Our evaluation
results demonstrate that Corun is cost-efficient; that is, the inference throughput scales
linearly with the number of inference tasks that run concurrently with a continuous training
job. However, the inference latency and epoch time of model training grow at substantially
slower rates. Furthermore, Corun avoids expensive swapping or catastrophic out-of-
memory errors. Thus, our efforts reveal fresh possibilities for enhancing the efficiency of
model serving and retraining for mobile image sensing based on deep learning at the edge,
potentially using fewer GPUs compared to solitary inference or retraining methods that
require exclusive usage of a GPU for only one inference or retraining task at a time. In the
future, we will investigate related leading-edge research issues, including those discussed
in Section 7.

Author Contributions: Conceptualization, K.-D.K., Y.L. and, A.A.; methodology, Y.L. A.A. and
K.-D.K.; software, Y.L. and A.A.; validation, Y.L., A.A. and K.-D.K.; formal analysis, Y.L., A.A.
and K.-D.K.; investigation, Y.L., A.A. and K.-D.K.; resources, K.-D.K.; data curation, Y.L. and A.A.;
writing—original draft preparation, Y.L. and A.A.; writing—review and editing, K.-D.K.; visualiza-
tion, Y.L. and A.A.; supervision, K.-D.K.; project administration, K.-D.K.; funding acquisition, K.-D.K.
All authors have read and agreed to the published version of the manuscript.



Sensors 2024, 24, 5262 16 of 19

Funding: This research was funded, in part, by the National Science Foundation, grant nos. CNS-
2007854 and CNS-2326796.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Our source code is available at https://github.com/Real-Time-Lab/
Measuring-the-Throughput-and-Tail-Latency-of-Concurrent-Model-Training-and-Inferences (ac-
cessed on 3 June 2024).

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References

1. Available online: https://ai-benchmark.com/tests.html (accessed on 26 May 2024).
2. Das, A.; Patterson, S.; Wittie, M. Edgebench: Benchmarking edge computing platforms. In Proceedings of the 2018 IEEE/ACM

International Conference on Utility and Cloud Computing Companion (UCC Companion), Zurich, Switzerland, 17–20 December
2018; IEEE: Piscataway, NJ, USA, 2018; pp. 175–180.

3. Reddi, V.J.; Cheng, C.; Kanter, D.; Mattson, P.; Schmuelling, G.; Wu, C.J.; Anderson, B.; Breughe, M.; Charlebois, M.; Chou, W.;
et al. Mlperf inference benchmark. In Proceedings of the 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), Virtual, 30 May–3 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 446–459.

4. Yin, H.; Vahdat, A.; Alvarez, J.M.; Mallya, A.; Kautz, J.; Molchanov, P. AdaViT: Adaptive tokens for efficient vision transformer. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA; 21–24 June 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 10809–10818.

5. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S.; et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv 2020, arXiv:2010.11929.

6. Wu, R.; Duan, Z.; Guo, C.; Chai, Z.; Li, C. RIDCP: Revitalizing Real Image Dehazing via High-Quality Codebook Priors. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023;
IEEE: Piscataway, NJ, USA, 2023; pp. 22282–22291.

7. Dong, W.; Zhou, H.; Wang, R.; Liu, X.; Zhai, G.; Chen, J. DehazeDCT: Towards Effective Non-Homogeneous Dehazing via
Deformable Convolutional Transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, Seattle WA, USA, 17–21 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 6405–6414.

8. Bhardwaj, R.; Xia, Z.; Ananthanarayanan, G.; Jiang, J.; Shu, Y.; Karianakis, N.; Hsieh, K.; Bahl, P.; Stoica, I. Ekya: Continuous
learning of video analytics models on edge compute servers. In Proceedings of the 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), Renton, WA, USA, 4–6 April 2022; USENIX: Berkeley, CA, USA, 2022; pp. 119–135.

9. Mullapudi, R.T.; Chen, S.; Zhang, K.; Ramanan, D.; Fatahalian, K. Online model distillation for efficient video inference. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November
2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3573–3582.

10. Yin, X.; Yu, X.; Sohn, K.; Liu, X.; Chandraker, M. Feature transfer learning for face recognition with under-represented data. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019;
IEEE:Piscataway, NJ, USA, 2019; pp. 5704–5713.

11. Suprem, A.; Arulraj, J.; Pu, C.; Ferreira, J. Odin: Automated drift detection and recovery in video analytics. arXiv 2020,
arXiv:2009.05440.

12. LeMay, M.; Li, S.; Guo, T. Perseus: Characterizing performance and cost of multi-tenant serving for CNN models. In Proceedings
of the IEEE International Conference on Cloud Engineering (IC2E), Sydney, Australia, 21–24 April 2020; IEEE: Piscataway, NJ,
USA, 2020; pp. 66–72.

13. Choi, S.; Lee, S.; Kim, Y.; Park, J.; Kwon, Y.; Huh, J. Serving Heterogeneous Machine Learning Models on Multi-GPU Servers with
Spatio-Temporal Sharing. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC 22), Carlsbad, CA, USA,
11–13 July 2022; USENIX: Berkeley, CA, USA, 2022; pp. 199–216.

14. Li, B.; Patel, T.; Samsi, S.; Gadepally, V.; Tiwari, D. MISO: Exploiting multi-instance GPU capability on multi-tenant GPU clusters.
In Proceedings of the 13th Symposium on Cloud Computing, San Francisco, CA, USA, 7–11 November 2022; ACM: New York,
NY, USA, 2022; pp. 173–189.

15. Xiao, W.; Bhardwaj, R.; Ramjee, R.; Sivathanu, M.; Kwatra, N.; Han, Z.; Patel, P.; Peng, X.; Zhao, H.; Zhang, Q.; et al. Gandiva:
Introspective cluster scheduling for deep learning. In Proceedings of the 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’18), Carlsbad, CA, USA, 8–10 October 2018; USENIX: Berkeley, CA, USA, 2018; pp. 595–610.

16. Yu, P.; Chowdhury, M. Salus: Fine-grained GPU sharing primitives for deep learning applications. Proc. Mach. Learn. Syst. 2020,
2, 98–111.

https://github.com/Real-Time-Lab/Measuring-the-Throughput-and-Tail-Latency-of-Concurrent-Model-Training-and-Inferences
https://github.com/Real-Time-Lab/Measuring-the-Throughput-and-Tail-Latency-of-Concurrent-Model-Training-and-Inferences
https://ai-benchmark.com/tests.html


Sensors 2024, 24, 5262 17 of 19

17. Wu, X.; Rao, J.; Chen, W.; Huang, H.; Ding, C.; Huang, H. Switchflow: Preemptive multitasking for deep learning. In Proceedings
of the 22nd International Middleware Conference, Québec, QC, Canada, 6–10 December 2021; ACM: New York NY, USA, 2021;
pp. 146–158.

18. Lim, G.; Ahn, J.; Xiao, W.; Kwon, Y.; Jeon, M. Zico: Efficient GPU Memory Sharing for Concurrent DNN Training. In Proceedings
of the 2021 USENIX Annual Technical Conference (USENIX ATC 21), Virtual, 14–16 July 2021; USENIX: Berkeley, CA, USA, 2021.

19. TensorFlow. Serving Models. 2023. Available online: https://www.tensorflow.org/tfx/guide/serving (accessed on 26 May 2024).
20. AWS. Model Server for Apache MXNet (MMS). 2023. Available online: https://github.com/awslabs/multi-model-server

(accessed on 26 May 2024).
21. NVIDIA. NVIDIA TensorRT. 2023. Available online: https://developer.nvidia.com/tensorrt (accessed on 26 May 2024).
22. Crankshaw, D.; Wang, X.; Zhou, G.; Franklin, M.J.; Gonzalez, J.E.; Stoica, I. Clipper: A Low-Latency Online Prediction Serving

System. In Proceedings of the NSDI, Boston, MA, USA, 27–29 March 2017; USENIX: Berkeley, CA, USA, 2017; Volume 17,
pp. 613–627.

23. Romero, F.; Li, Q.; Yadwadkar, N.J.; Kozyrakis, C. INFaaS: Automated Model-less Inference Serving. In Proceedings of the
USENIX Annual Technical Conference, Virtual, 14–16 July 2021; pp. 397–411.

24. Shuvo, M.M.H.; Islam, S.K.; Cheng, J.; Morshed, B.I. Efficient acceleration of deep learning inference on resource-constrained
edge devices: A review. Proc. IEEE 2022, 111, 42–91. [CrossRef]

25. Liu, Y.; Yan, Z.; Chen, S.; Ye, T.; Ren, W.; Chen, E. NightHazeFormer: Single Nighttime Haze Removal Using Prior Query
Transformer. arXiv 2023, arXiv:2305.09533.

26. Liu, Y.; Yan, Z.; Tan, J.; Li, Y. Multi-Purpose Oriented Single Nighttime Image Haze Removal Based on Unified Variational Retinex
Model. IEEE Trans. Circuits Syst. Video Technol. 2023, 33, 1643–1657. [CrossRef]

27. Yu, F.; Bray, S.; Wang, D.; Shangguan, L.; Tang, X.; Liu, C.; Chen, X. Automated runtime-aware scheduling for multi-tenant DNN
inference on GPU. In Proceedings of the IEEE/ACM International Conference On Computer Aided Design (ICCAD), Munich,
Germany, 1 November 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–9.

28. Chow, M.; Jahanshahi, A.; Wong, D. KRISP: Enabling Kernel-wise RIght-sizing for Spatial Partitioned GPU Inference Servers. In
Proceedings of the IEEE International Symposium on High-Performance Computer Architecture (HPCA), Montreal, QC, Canada,
25 February–1 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 624–637. [CrossRef]

29. Dhakal, A.; Kulkarni, S.G.; Ramakrishnan, K.K. GSLICE: Controlled Spatial Sharing of GPUs for a Scalable Inference Platform.
In Proceedings of the ACM Symposium on Cloud Computing, Virtual, 19–21 October, 2020; ACM: New York, NY, USA, 2020;
pp. 492–506.

30. Mobin, J.; Maurya, A.; Rafique, M.M. COLTI: Towards Concurrent and Co-Located DNN Training and Inference. In Proceedings
of the ACM International Symposium on High-Performance Parallel and Distributed Computing, Orlando, FL, USA, 16–23 June
2023; ACM: New York, NY, USA, 2023; pp. 309–310.

31. Dhakal, A.; Kulkarni, S.G.; Ramakrishnan, K. Machine learning at the edge: Efficient utilization of limited cpu/gpu resources by
multiplexing. In Proceedings of the 2020 IEEE 28th International Conference on Network Protocols (ICNP), Madrid, Spain, 13–16
October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1–6.

32. Subedi, P.; Hao, J.; Kim, I.K.; Ramaswamy, L. AI multi-tenancy on edge: Concurrent deep learning model executions and
dynamic model placements on edge devices. In Proceedings of the 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD), Virtual, 5–11 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 31–42.

33. Wang, G.; Wang, K.; Jiang, K.; Li, X.; Stoica, I. Wavelet: Efficient DNN training with tick-tock scheduling. In Proceedings of the
Machine Learning and Systems, Virtual, 5–9 April 2021; Volume 3, pp. 696–710.

34. Khani, M.; Ananthanarayanan, G.; Hsieh, K.; Jiang, J.; Netravali, R.; Shu, Y.; Alizadeh, M.; Bahl, V. RECL: Responsive Resource-
Efficient Continuous Learning for Video Analytics. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation, Boston MA, USA, 17–19 April 2023, USENIX: Berkeley, CA, USA, 2023.

35. Gao, Y.; Liu, Y.; Zhang, H.; Li, Z.; Zhu, Y.; Lin, H.; Yang, M. Estimating GPU memory consumption of deep learning models. In
Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, Virtual, 8–13 November 2020; pp. 1342–1352. [CrossRef]

36. Hu, Z.; Liu, G. A performance prediction model for memory-intensive GPU kernels. In Proceedings of the IEEE Symposium on
Computer Applications and Communications, Weihai, China, 26–27 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 14–18.

37. Hu, Q.; Sun, P.; Yan, S.; Wen, Y.; Zhang, T. Characterization and prediction of deep learning workloads in large-scale gpu
datacenters. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis,
St. Louis, MO, USA, 14–19 November 2021; ACM: New Yock, NY, USA, 2021; pp. 1–15.

38. Murshed, M.S.; Murphy, C.; Hou, D.; Khan, N.; Ananthanarayanan, G.; Hussain, F. Machine learning at the network edge: A
survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–37. [CrossRef]

39. Ahmadi, A.; Abdelhafez, H.A.; Pattabiraman, K.; Ripeanu, M. EdgeEngine: A Thermal-Aware Optimization Framework for Edge
Inference. In Proceedings of the 2023 IEEE/ACM Symposium on Edge Computing (SEC), Wilmington, DE, USA, 6–9 December
2023; IEEE: Piscataway, NJ, USA, 2023; pp. 67–79.

40. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]

https://www.tensorflow.org/tfx/guide/serving
https://github.com/awslabs/multi-model-server
https://developer.nvidia.com/tensorrt
http://doi.org/10.1109/JPROC.2022.3226481
http://dx.doi.org/10.1109/TCSVT.2022.3214430
http://dx.doi.org/10.1109/HPCA56546.2023.10071121
http://dx.doi.org/10.1145/3368089.3417050
http://dx.doi.org/10.1145/3469029
http://dx.doi.org/10.1007/s11263-015-0816-y


Sensors 2024, 24, 5262 18 of 19

41. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.; et al. Searching
for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27
October–2 November 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1314–1324.

42. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 770–778.

43. Tan, M.; Le, Q. Efficientnetv2: Smaller models and faster training. In Proceedings of the International Conference on Machine
Learning, Virtual, 18–24 July 2021; pp. 10096–10106.

44. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with
convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June
2015; IEEE: Piscataway, NJ, USA, 2015; pp. 1–9.

45. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; IEEE: Piscataway,
NJ, USA, 2016; pp. 2818–2826.

46. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; IEEE: Piscataway, NJ, USA, 2017;
pp. 4700–4708.

47. Damnjanovic, G. GPU Overheating Signs: How to Stay in Safe Temperature Range. 2023. Available online: https://levvvel.com/
gpu-overheating-signs-safe-temperature-range/ (accessed on 26 May 2024).

48. Wang, F.; Zhang, W.; Lai, S.; Hao, M.; Wang, Z. Dynamic GPU energy optimization for machine learning training workloads.
IEEE Trans. Parallel Distrib. Syst. 2021, 33, 2943–2954. [CrossRef]

49. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
50. Bottou, L.; Curtis, F.E.; Nocedal, J. Optimization methods for large-scale machine learning. SIAM Rev. 2018, 60, 223–311.

[CrossRef]
51. Keskar, N.S.; Mudigere, D.; Nocedal, J.; Smelyanskiy, M.; Tang, P.T.P. On Large-Batch Training for Deep Learning: Generalization

Gap and Sharp Minima. arXiv 2016, arXiv:1609.04836.
52. Masters, D.; Luschi, C. Revisiting small batch training for deep neural networks. arXiv 2018, arXiv:1804.07612.
53. Vasu, P.K.A.; Gabriel, J.; Zhu, J.; Tuzel, O.; Ranjan, A. Mobileone: An improved one millisecond mobile backbone. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; IEEE:
Piscataway, NJ, USA, 2023; pp. 7907–7917.

54. Li, Y.; Hu, J.; Wen, Y.; Evangelidis, G.; Salahi, K.; Wang, Y.; Tulyakov, S.; Ren, J. Rethinking vision transformers for mobilenet size
and speed. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; IEEE:
Piscataway, NJ, USA, 2023; pp. 6889–16900.

55. Zeng, T.; Li, S.; Song, Q.; Zhong, F.; Wei, X. Lightweight tomato real-time detection method based on improved YOLO and mobile
deployment. Comput. Electron. Agric. 2023, 205, 107625. [CrossRef]

56. Meng, J.; Jiang, P.; Wang, J.; Wang, K. A mobilenet-SSD model with FPN for waste detection. J. Electr. Eng. Technol. 2022,
17, 1425–1431. [CrossRef]

57. Yu, K.; Tang, G.; Chen, W.; Hu, S.; Li, Y.; Gong, H. MobileNet-YOLO v5s: An improved lightweight method for real-time detection
of sugarcane stem nodes in complex natural environments. IEEE Access 2023, 11, 104070–104083. [CrossRef]

58. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

59. Ancuti, C.O.; Ancuti, C.; Timofte, R. NH-HAZE: An Image Dehazing Benchmark with Non-Homogeneous Hazy and Haze-Free
Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Virtual,
14–19 June 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 1798–1805. [CrossRef]

60. Vinyals, O.; Blundell, C.; Lillicrap, T.; Kavukcuoglu, K.; Wierstra, D. Matching Networks for One Shot Learning. In Proceedings
of the Advances in Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Curran Associates Inc.:
Red Hook, NY, USA, 2016.

61. NVIDIA. NVIDIA Multi-Process Service. 2023. Available online: https://docs.nvidia.com/deploy/mps/index.html (accessed on
26 May 2024).

62. Shahrad, M.; Fonseca, R.; Goiri, I.; Chaudhry, G.; Batum, P.; Cooke, J.; Laureano, E.; Tresness, C.; Russinovich, M.; Bianchini, R.
Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider. In Proceedings of
the 2020 USENIX Annual Technical Conference (USENIX ATC 20), Virtual, 15–17 July 2020; USENIX: Berkeley, CA, USA, 2020;
pp. 205–218.

63. Allen, T.; Ge, R. In-depth analyses of unified virtual memory system for GPU accelerated computing. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis, St. Louis, MO, USA, 14–19
November 2021; ACM: New Yock, NY, USA, 2021; pp. 1–15.

64. Khani, M.; Hamadanian, P.; Nasr-Esfahany, A.; Alizadeh, M. Real-time video inference on edge devices via adaptive model
streaming. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October
2021; IEEE: Piscataway, NJ, USA, 2021; pp. 4572–4582.

https://levvvel.com/gpu-overheating-signs-safe-temperature-range/
https://levvvel.com/gpu-overheating-signs-safe-temperature-range/
http://dx.doi.org/10.1109/TPDS.2021.3137867
http://dx.doi.org/10.1137/16M1080173
http://dx.doi.org/10.1016/j.compag.2023.107625
http://dx.doi.org/10.1007/s42835-021-00960-w
http://dx.doi.org/10.1109/ACCESS.2023.3317951
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/CVPRW50498.2020.00230
https://docs.nvidia.com/deploy/mps/index.html


Sensors 2024, 24, 5262 19 of 19

65. Shen, H.; Chen, L.; Jin, Y.; Zhao, L.; Kong, B.; Philipose, M.; Krishnamurthy, A.; Sundaram, R. Nexus: A GPU cluster engine
for accelerating DNN-based video analysis. In Proceedings of the 27th ACM Symposium on Operating Systems Principles,
Huntsville, ON, Canada, 27–30 October 2019; ACM: New York, NY, USA, 2019; pp. 322–337.

66. Razavi, K.; Luthra, M.; Koldehofe, B.; Mühlhäuser, M.; Wang, L. FA2: Fast, accurate autoscaling for serving deep learning
inference with SLA guarantees. In Proceedings of the 2022 IEEE 28th Real-Time and Embedded Technology and Applications
Symposium (RTAS), Milano, Italy, 4–6 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 146–159.

67. Gunasekaran, J.R.; Mishra, C.S.; Thinakaran, P.; Sharma, B.; Kandemir, M.T.; Das, C.R. Cocktail: A multidimensional optimization
for model serving in cloud. In Proceedings of the USENIX NSDI, Renton, WA, USA, 4–6 April 2022; USENIX: Berkeley, CA, USA,
2022; pp. 1041–1057.

68. Jayaram Subramanya, S.; Arfeen, D.; Lin, S.; Qiao, A.; Jia, Z.; Ganger, G.R. Sia: Heterogeneity-aware, goodput-optimized
ML-cluster scheduling. In Proceedings of the 29th Symposium on Operating Systems Principles, Koblenz, Germany, 23–26
October 2023; ACM: New York, NY, USA, 2023; pp. 642–657.

69. Chen, Z.; Zhao, X.; Zhi, C.; Yin, J. DeepBoot: Dynamic Scheduling System for Training and Inference Deep Learning Tasks in GPU
Cluster. IEEE Trans. Parallel Distrib. Syst. 2023, 34, 2553–2567. [CrossRef]

70. NVIDIA Multi-Instance GPU. Available online: https://www.nvidia.com/en-us/technologies/multi-instance-gpu/ (accessed
on 9 August 2024).

71. Available online: https://www.docker.com/resources/what-container/#:~:text=A%20Docker%20container%20image%20is,
tools%2C%20system%20libraries%20and%20settings (accessed on 6 August 2024).

72. Available online: https://kubernetes.io/docs/setup/best-practices/cluster-large/ (accessed on 6 August 2024).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TPDS.2023.3293835
https://www.nvidia.com/en-us/technologies/multi-instance-gpu/
https://www.docker.com/resources/what-container/#:~:text=A%20Docker%20container%20image%20is,tools%2C%20system%20libraries%20and%20settings
https://www.docker.com/resources/what-container/#:~:text=A%20Docker%20container%20image%20is,tools%2C%20system%20libraries%20and%20settings
https://kubernetes.io/docs/setup/best-practices/cluster-large/

	Introduction
	Related Work
	Solo Inference
	Advanced Deep Learning Models for Mobile Applications
	Concurrent Inferences
	Efficient Training
	Continuous Learning at the Edge
	GPU Workload and Performance Predictions

	Motivation
	Concurrent Training and Inferences
	Finding a Maximal Feasible Concurrency Level
	Batch Sizes for Inference and Training

	CNN Models, Transformer Models, Datasets, Performance Metrics, and Implementation
	Deep Learning Models for Retraining and Inference
	Datasets
	Performance Metrics
	Implementation

	Evaluation
	Inference Throughput and Latency
	Training Epoch Time

	Discussion
	Conclusions
	References

