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Abstract

The Kitaev spin liquid model on honeycomb lattice offers an intrigu-
ing feature that encapsulates both Abelian and non-Abelian phases[1].
Recent studies suggest that the comprehensive phase diagram of possible
generalized Kitaev model largely depends on the specific details of the dis-
crete lattice, which somewhat deviates from the traditional understanding
of “topological” phases. In this paper, we propose an adapted version of
the Kitaev spin liquid model on arbitrary planar lattices. Our revised
model recovers the surface code model under certain parameter selections
within the Hamiltonian terms. Changes in parameters can initiate the
emergence of holes, domain walls, or twist defects. Notably, the twist
defect, which presents as a lattice dislocation defect, exhibits non-Abelian
braiding statistics upon tuning the coefficients of the Hamiltonian. Ad-
ditionally, we illustrate that the creation, movement, and fusion of these
defects can be accomplished through natural time evolution by linearly
interpolating the static Hamiltonian. These defects demonstrate the Ising
anyon fusion rule as anticipated. Our findings hint at possible implemen-
tation in actual physical materials owing to a more realistically achievable
two-body interaction.

1 Introduction

Since Kitaev proposed the Kitaev Quantum Double model[2], it has garnered
considerable attention due to its typical anyon behavior and the paradigm it
provides for topological quantum computation. The model demonstrates how
one can circumvent local errors by encoding information into anyon types and
executing gates through anyon braiding, whose information is completely de-
scribed by Unitary Modular Tensor Categories (UMTC). It has been proven
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that certain non-Abelian cases, such as Fibonacci Anyon, can support universal
quantum computation.

Following this development, numerous lattice models have been proposed
with the objective of identifying different types of anyons. Two significant
classes of these include the Kitaev Quantum Double model[2] and the Levin-
Wen model[3]. These models actualize anyon models from varying perspectives,
which are described by the Drinfeld center of a fusion category.

The realization of the actual topological phase is a complex and pivotal task.
Renowned models, such as the Kitaev Quantum Double model and Levin-Wen
model, necessitate multi-body interactions, making them challenging to imple-
ment in a real-world laboratory setting. While some comparatively achievable
cases, such as the toric code, are not suitable for universal computation because
it only supports Abelian anyons. This reality has led to an increased interest
in the twist defect, as introduced by [4] . This defect exemplifies a non-Abelian
Ising anyon, which stems from the lattice dislocation of, the Abelian anyon
case, the toric code model. Recent experimental observations of the Ising anyon
statistics, as reported by [5], attest to this. It should be noted that the defect
is dependent on the disruption of the lattice’s local two-colorability.

Another intriguing model is the Kitaev spin liquid Model[1], which supports
Abelian anyons in the gapped phase region, as well as non-Abelian anyons upon
the introduction of a magnetic field to the gapless phase. This model is simple
yet fruitful. But the definition of the model relies heavily on the geometry of
honeycomb lattice, which deviates the idea of topological phase and is the main
question to be solved in this paper. Moreover, it also has been pointed out that
a spin liquid model on honeycomb lattice with lattice dislocation will generate
the twist defect as in [6]. The generalization to Zetor model has been shown in
[7]. This model is potentially easily realizable in a real laboratory due to the
two-body nearest interaction.

Considerable theoretical progress has been made in the generalization of
this model. Examples include those on a translationally invariant two dimen-
sional lattice with higher-coordination vertices [8][9][10], on a two-dimensional
amorphous lattice [11], a three-dimensional diamond lattice [12], and works on
trivalent 3D lattices [13]. It is clear that the overall phase diagram is strongly
influenced by the geometric specifics of the lattice, thus also deviating our tra-
ditional understanding of ‘topological’ phases.

In this paper, we demonstrate that the entire theory can be formulated on
a generic planar lattice. The main motivation relies on the toric code limit of
the original honeycomb spin liquid model as mentioned before, which is briefly
reviewed in section(2). We sketch the main idea here and details are in the
following sections.

The Hamiltonian of the honeycomb spin liquid system is a summation of
weighted check operators, which are two-body nearest Pauli operators. The
Hamiltonian is frustrated due to non-commutation of the check operators. We
say a check operator in the Hamiltonian is dominant if the coefficient of the
operator is much larger than others. Kitaev selected what he refers to as “z-
link” check operators to take dominance in the Hamiltonian. As a result, the



vicinity of the ground state in the spectrum can be accurately described by a
toric code model. The exact choice of “z-link” check operators is not important.
The key is that “z-link” check operators composite a maximum set of commuting
operators, which is denoted as stabilizer center S, in this paper. S, satisfies
that any check operator outside this set should anticommutes with exactly two
elements in S.. We find that if one can find a proper S, on an arbitrary planar
lattice, a toric code model always appears in the vicinity of the ground state,
provided all elements in the S, are dominant.

Moreover, we get toric code with defects if we slight break the requirement
of S.. Further, we propose that a linear interpolating Hamiltonians, which
statically has different dominant S.s, could be a natural way to create, move,
and fuse defects in a physical system. This approach circumvents the need
for geometric deformation or the application of a coding method. This proposal
might inspire real material realization since we only need to establish and adjust
the strength of two-body interactions, as illustrated in section 4. Moreover, a
circuit description is plausible since these operations are facilitated by time
evolution operators, which are naturally unitary.

This paper is organized as follows:

In Section 2, we provide a concise review of the original honeycomb model
and reintroduce necessary notations, such as the shrunken lattice.

Section 3 introduces our method of generalization. Initially, we rewrite the
toric code on a lattice where qubits are positioned on vertices instead of edges,
as discussed in Section 3.1. This rewriting is inspiring since the recovery of
toric code typically ends in a lattice where qubits are placed on vertices. Subse-
quently, in Sections 3.2 and 3.3, we demonstrate how to define check operators
on arbitrary lattices and, given an appropriate choice of a Stabilizer Center
(S¢), the toric code can be recovered when the shrunken lattice is 2-colorable.
We should note that a local disruption of the two-colorability of the shrunken
lattice leads to the emergence of a twist defect.

Section 4 illustrates the process of creation, movement, and fusion of defects
through time evolution operators.

Next, in Section 5, we demonstrate that the entire model can be treated as
a zero-logic-qubit subsystem code in the context of error correcting code.

Finally, Section 6 concludes the paper and discusses potential future exten-
sions.

2 Kitaev Honeycomb Model

Let us briefly revisit the Kitaev Honeycomb Model and establish some notations.
The lattice, depicted in Figure la and denoted by T' = (V, E, P), consists of
vertices (), edges (F), and plaquettes (P).

The notation dre, Ose is used to refer to the two vertices at the end of edge
e € E, and de = {01¢, O2e} indicates the set. N(A) is the count of the set A.
A frequently used symbol d, denotes the count of set ele € E,v € e, i.e., the



degree of the vertex v. Bo(p) C E, for p € P represents the edges that border
the plaquette p.
FEach vertex houses a qubit. The total Hilbert Space is:

Hi= Q) He (1)

eclE

Each edge on the lattice is associated with a symbol z,y, z. For the honeycomb
lattice, we label all the edges as illustrated in Figure la, consistent with the
original paper[1]. These edges are referred to as “x-edges”, “y-edges”, and “z-
edges”. The edge associated with z(y, z) involves a two-body Pauli operator
X@X(Y®Y,Z®Z) acting on the qubits at the ends of the edge. The operators
linked to edges are defined as check operators, denoted by P.. We say that two
check operators are unconnected if the edges associated with these operators

are not connected. In this paper, we use X,Y, Z to represent Pauli Operators

Oy Oy, 0z
(01 (0 —i (1 0
9@=\1 0) %%~ \i o) 727 \o -1

The Hamiltonian is the summation of weighted check operators:

H=—-J, > X@X-J, Y YQY-J Y ZoZ (2)

r—edges y—edges Z —edges

Figure 1: (a) Figure 1: The original Honeycomb Lattice.(b) Figure 2: Phase
diagram depicting the gapped phases. When one of J;, Jy, or J, is dominant,
it is mathematically equivalent to a toric code model. (c¢) Figure 3: Depiction
of the shrunken lattice when J, is dominant, illustrated by the reduction of two
physical qubits to one effective qubit in the ground state of the “z-edge” check
operators.

As depicted in Figure 1b, the phase diagram of the Honeycomb model is
well-defined. In the A(B) region, it represents a gapped(gapless) phase. Kitaev
explicitly demonstrated, using perturbation theory, that the gapped phase is the
toric code phase, where one of the J,, Jy, J, variables is much larger than others.
Then those two qubits connected by z — edges will stay at the ground state of



the check operator Z ® Z. We say these two qubits are effectively “shrunk” to
a single qubit. Subsequently, the lattice is also shrunk by replacing the edge to
a single vertex, as shown in Figure lc. This is referred to as the “shrunken”
lattice.

Let us rephrase this in our notations. We denote these check operators
associated with z — edges as a Stabilizer center S.. We obtain a shrunken
lattice when this S, is dominant. The ground state under this limit is twofold:
it is simultaneously the ground state of S. and the ground state of all plaquette
terms W,,, where W), is the product of check operators associated to edges in
Bo(p).

Generally, on a trivalent lattice, a Hamiltonian of the following form can be

considered:
H=-Y JP. (3)
ecE
The difinition of check operators could be varied as long as the following com-
mutative relation remains:

(P, Pu] =0 if dende =0 (4)
{P.,, Py} =0 if Oende #£0 (5)
(6)

For any e # ¢’. This means that check operators should anticommute if they
intersect at exactly one vertex and commute in other scenarios. We require all
check operators in S. to be unconnected. When we allow S. to be dominant,
we obtain a shrunken lattice by replacing the edges of S. by a single vertex. We
will demonstrate that this will be a specific surface code. Indeed, the shrunken
lattice at different S, may vary. In this honeycomb lattice, the shrunken lattice
at dominant x — edges and z — edges are all square lattices. However, in [14],
their shrunken lattice is a kagome lattice (when the qubits are considered to be
placed on vertices). We will frequently utilize the concept of a shrunken lattice
at a given S,.

3 Generalized Method

3.1 Toric Code on a lattice where qubits are placed on
vertices

The toric code model is defined on an arbitrary planar lattice I' = (V, E, P),
with one qubit placed on each edge. The Hamiltonian is:

H=-Y A,-) B, (7)

Here, A, = ®e|v€ae X, and similarly, B, = ®€|e€Bo(p) Z.. The symbols X,
and Z,. indicate that the Pauli operator X and Z acts on the qubit placed on the
edge e. For our purposes, we need to reshape the lattice into a more convenient



form as shown in figure 2. The process is as follows. First, we attach a new
vertex on each edge e, denoted by red dots. We add one edge to connect red
dots on e; and ey if they satisfy:

€1 7£ €9 (8)
N(861 n 882) =1 (9)
dp € P ei, ez C Bo(p) (10)

We will add two edges to connect ey and es if N(Oe; N des) = 2 in the above
requirement. This results in a new lattice IV = (V' E’, P’), where V' is the set
of red dots and V' = F as sets. E’ is the set of newly added edges connecting
red dots and P’ =V U P as sets.

Notably, the degree of the new vertex is automatically 4. The new plaquettes
are two-colored by vertices and plaquettes of I'. Consequently, the toric code
becomes a lattice model on I, with one qubit placed on each vertex. In the
new lattice as in figure 2c, the plaquette p,(p.) with a green(red) circle has
a plaquette term that is @) X(Z) on each qubit on the boundary of p4(p),
corresponding to previous A,(B,) operators.

(a) (b) ()

Figure 2: (a) Figure 1: Original lattice model with qubits placed on edges. Black
dots represent vertices E.(b) Figure 2: Transformation process of the lattice.
Red dots label the center of edges. Two red dots are connected if they belong to
the same plaquette and are connected. New plaquettes are colored in red and
grey circles.(c) Figure 3: The transfromed lattice with qubits on vertices. And
the original lattice is removed. A, and B, operators act on the two types of
plaquettes, labeled by red and grey circles respectively.

3.2 Generalized model on a lattice with all vertices having
even degree

Begin with a lattice ' = (V, E, P), where each vertex v € V has an even
degree d,,. Our purpose is to define check operators and ensure the Hamiltonian
remains the weighted summation of these check operators. The check operator
P. should take a form that is a tensor product of Pauli operators acting on the
ends of edge e, namely P. = Py, ® Pa,.. To maintain the property that check
operators anticommute if they are connected, we require additional operators



that anticommute with each other when the vertex has a higher degree. We
find that placing d, /2 — 1 qubits on each vertex facilitates this. For k qubits,
we have 2k 4+ 1 mutually anti-commuting Pauli operators as follows:

P1 = 1® 1 1® -+ X
D2 = 1® 1 1® -+ Y
prpr = 101l X® Z® --- Z
——
k—t—1 (11)
= 1.+ ®1® Y® Z& --- Z
D2t+2
k—t—1
Poypy1 = Z® 79 Z® --- Z

Importantly, because we ultimately aim to reach the toric code, the signs of
each term do not significantly matter, as different sign configurations are related
by unitary transformations. This allows us to consider each operator within the
Pauli group P = {G/{+1,—1,+i,—i}}, where G is designated to represent the
set of all possible tensor products of Pauli operators.

Within the Pauli group, the phase gate Py, interchanges X and Y, while
leaving Z unaffected. This can swap Pory1 with Poiyo for any 0 < ¢ < k.
Subsequently, the Hadamard gate Hgaie flips X and Z, which in turn flips
Poj 1 with Pyp_q. The gate Sgate = Prate © Hgate © Peate flips Y and Z. CNOT
gate is a unitary operator. Elementary actions by conjugating CNOT gate on
two-qubits Pauli operators are given by:

CNOT(IX) =IX, CNOT(XI)= XX,

12
CNOT(IZ) = ZZ, CNOT(ZI)= ZI. (12)

A sequence of conjugations of operators above is then sufficient to flip P;
with Py, noting that it is sufficient to consider only the last two qubits. Here is
how to flip X ® Z with 1 ® Y, without changing the other operators:

gate®@Sgate

pate®Id s
X @z Joae®ld 7o 7 NOT 1oz loy L@l 1oy
18Y Hgate®Id 12Y CNOT 70V Sgate®@Sgate Y®Z Pyate®1 XoZ

This approach is sufficient to exchange any F; with P; by stacking the afore-
mentioned operations, asserting that any distribution of these operators is equiv-
alent. Consider a lattice where all vertices have a degree of four. The check
operator on an edge, P,, can be defined as the tensor product of Pauli operators
supported on the vertices at the end of the edge e. It is important to note that
the actual assignment of a Pauli operator for one P. is not crucial, as long as
P. operators anticommute with each other when they are connected. Figure 3
provides an example of the assignment of Pauli operators, and any other assign-
ment is equivalent up to a unitary transformation. An operator P, represents



(a) (b)

Figure 3: (a) Figure 1: A local part of the entire lattice diagram. (b) Figure 2:
A simplified illustration of the assignment of Pauli operator P; through P, from
each vertex v to the surrounding P., while Ps is assigned to the P,. Each P,
is the tensor product of operators from the two end vertices of e. For example,
the operator on the orange edge is (1® X) ® (Y ® Z), or simply P; ® Ps.

a new type of check operator that is associated with only one vertex v, which,
for our convenience, is chosen as P, = P5. The Hamiltonian is as follows:

H==Y J,P,=> J.P. (13)

Now let J,, dominate. Note that these operators commute with each other, hence
they share common eigenspaces. Let J, < J,, with J, = 1, and examine the
corresponding perturbation theory where Hy = Y, P, and H = \)__ J. P, the
perturbation Hamiltonian. Here, A is a small factor to denote the perturbation
order. Denote |GS) as the ground state of Hy. As in Kitaev’s paper [1], the
effective Hamiltonian around the ground state is given by:

Hyg=T(H +H'G)H + HG,H'G\H' +..)T (14)

where T' = |GS)(GS| is the projector onto the ground state of Hy, and G =
!

(ﬁ) is the Green’s function, where the prime notation implies that G{,

vanishes on the ground state and acts normally on the excited states.
Appendix A provides an explicit treatment of the perturbation method; here,
we derive the effective Hamiltonian:

Hepp=(—1)" Z ap A" W, + constant (15)

P
W, is the plaquette operator, which is the product of check operators border-
ing the plaquette. [, indicates the perturbation order and (—1)7 is used to
fullfill the gap between the perturbed effective Hamiltonian with W,. They are



explained in the appendix. «, is an interesting path-dependent factor arises
from the perturbation and we leave an interesting discussion of the zero point
property in the appendix A.

When P, is dominant, the two qubits placed on the vertex effectively become
one qubit. The corresponding shrunken lattice, illustrated in Figure 4a, has
d, = 4, and the action of plaquette terms W, around each vertex exerts the
same local action on the vertex as in the toric code case, as shown in Figure 3.1.

Vertices with d, = 2k can be treated similarly, where £ > 2 and k is an
integer. Generally, for a vertex with an even d,, we place k = d,/2 — 1 qubits
on the vertex, and designate &), Z, or Par11, to be P, and distribute the re-
maining d, Pauli operators to the surrounding edges. The check operator is
defined similarly to the case where d,, = 4. Then, the phase we are investigating
is when all P,s are dominant. We illustrate the example of a vertex with d, = 6
in Diagram 4b. The computation is grounded on the mapping table to find the
effective Hamiltonian, as in Table 1. Essentially, we provide a specific distri-
bution of operators around the vertex and calculate the effective action of the
plaquette terms on this vertex. We observe that the effective two qubits split
into two connected vertices with d, = 4. It is clear that both vertices main-
tain consistent and identical local properties as of the toric code. The generic
mapping table for a vertex with degree d, > 4 is shown in Appendix B. When
we examine the ground state of dominant P,s, each vertex with degree d, = 2k
will split into k — 1 vertices with degree 4.

Operator Effective operator

XXl X®l1
1o XX 10X
1172 1®Z
121 ZQ 7
Z®1®1 Z®1

Table 1: Mapping Table for a vertex with d, = 6

After splitting all vertices with d,, = 2k, we obtain the shrunken lattice. We
conclude that a Zs phase is recovered in the generalized Kitaev model with even
degree vertices when the shrunken lattice is two-colorable.

3.3 Generalized model on arbitrary planar lattice

The remaining question concerns how to address vertices with an odd degree
d, > 5. It is logical to place (d, — 1)/2 qubits on each vertex and distribute
d, Clifford operators to the surrounding edges so that all check operators are
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Figure 4: (a) Figure 1: This illustration demonstrates how the effective plaque-
tte terms are obtained on the ground state of the P.s. Each operator in the
figure represents the action of either a check operator or a plaquette operator
on the qubits located at the vertices. The green operator represents one of the
anticommuting Clifford operators associated with edges. The black operator
illustrates the plaquette term on a given vertex, and the red operator presents
the effective plaquette term on the same vertex. (b) Figure 2: This depiction
also shows how a vertex with degree d,, = 6 is transformed into two connected
vertices, each with a degree of d, = 4. It is essential to note that the effective
action is consistent with the toric code case.

defined. The general Hamiltonian on a lattice I' = (V, E, P) is given by:

H=— Y LP-Y 1P, (16)

(v|dy=2k,kEZ) c€E
P, = Pf‘)le ® PBge- (17)

We designate the stabilizer center S, as Hy, which includes all {P,|v € V'}
and a subset S, of {P.|e € E} such that any two P, € S, commute with each
other and with {P,|v € V'}. In other words, S. consists of check operators on
the edges that connect vertices with an odd d,. If we further require that the
shrunken lattice at S, is a two-colorable degree-4 lattice, or equivalently, that
any two vertices with an odd degree are shrunk, then the effective Hamiltonian
resembles the toric code model when the coefficients of S. are dominant.

The proof involves transforming the lattice into one where all vertices have
even degrees. Notably, if we make the operators on the edge connecting two
vertices with odd degrees d; and dy dominant, it is algebraically equivalent to
a single vertex with degree di; + ds — 2 and a dominant P,. An example is
illustrated in Figure 5, and the general case follows similarly. However, a vertex
of odd degree cannot be made equivalent to the combination of two vertices
with lower degree, thus making the generalization nontrivial.

We now conclude that on a general lattice I, if there exists a set S, such
that all vertices are shrunk and the resulting shrunk lattice is 2-colorable, the
generalized Kitaev Spin liquid model resides in the Zs phase.
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Figure 5: This illustration demonstrates that a vertex of degree 3 combined
with a vertex of degree 5 is equivalent to a single vertex of degree 6. In the left
above, a P, = Z ® Z ® Z over the red edge is put into the S., and in the right
above, a P, = Z ® Z ® Z is put into the S.. They have the same action of
surrounding plaquette, hence these two cases are equivalent for our purpose.

4 Emergent Twist Defect in the gapped phase

In all previous instances, we selected S, such that vertices with odd degrees were
paired with each other, ensuring that any check operator would violate two terms
in S.. However, what happens if there is an odd-degree vertex, such as a trivalent
vertex, that has not been paired with another odd-degree vertex? Revisiting the
Honeycomb lattice, as depicted in Figure 7b, the effective Hamiltonian resembles
a toric code model with two defects, similar to the findings in [4]. Notably, in
our case, there is one additional plaquette as well as one more qubit within the
defect line. This demonstrates that we can create a dislocation defect at the
toric code level with a regular lattice at the spin liquid level! As studied in [15],
this type of lattice dislocation defect could capture unpaired Majorana modes
in the original Honeycomb model.

It’s important to note that the lattice itself is regular and the lattice dis-
location at the toric code level is due to a specific choice of S.! Remarkably,
altering S, is simpler than deforming the lattice itself. We will demonstrate in
the following that a linearly interpolating Hamiltonian with different S, choices
can manipulate the defects.

The defect remains at the trivalent vertex, as a degree of three disrupts the
local 2-colorability, as indicated in Figure 7a. Therefore, moving the defect
involves relocating the trivalent vertex.

Consider Figure 8, which depicts a section of a larger lattice, similar to those
shown in Figures 6 and 7. All check operators on yellow edges are designated
as dominant. The configuration outside this localized area remains unchanged.
This setup presents five potential configurations, where the effective Hamilto-
nian can represent the toric code, with or without defects. To transition between
these static states, we introduce time evolution, facilitating the creation, move-
ment, and fusion of defects.

Focusing on the movement of a defect as a detailed example (the other pro-
cesses are analogous), we examine a more specific local structure in Figure 9,

11



(a) (b)

Figure 6: (a) Shows a honeycomb lattice where all vertices have been paired and
shrunk by dominating the yellow edges. (b) The resulting effective or shrunk
lattice where a toric code Hamiltonian acts.

ol1|o|l1]o|1]0O

1 ?

ol1|o|l1|o|1]0O
(a)

(b)

Figure 7: (a) Displays a situation where two trivalent vertices (labelled by red
circles) are not shrunk with another vertex. (b) shows the underlined phase
where all check operators on yellow edges are dominant. This represents the
toric code with a pair of defects.

12



torlc code with no defect
) toric code with a pair of defects labelled by red circles

LHHHTHHHH

) Ilustrates The right defect being moved one step to the right.

R

) Toric code with two pairs of defects

AT

(e) Ilustrates the process of fusing the two middle defects, which merges the separate
pairs into a single pair.

Figure 8: The figures presented above depict the static Hamiltonian on a portion
of the lattice. It is required that all check operators on yellow edges be dominant.
Different choices of dominant check operators will lead to various cases of the
effective toric code Hamiltonian, with or without defects.

13



which illustrates the transformation from Figure 8b to Figure 8c. We use H(0)
and H(T) to denote their respective static Hamiltonians. The linear interpola-
tion between them is introduced as follows:

t t

H(t) = H(0) (1 T) + H(T)T (18)
H(0) and H(T) represents the Hamiltonian with dominant coefficients of S.(0)
and S.(T) and all perturbation terms were shut down to avoid subtlety. H (%)
commutes with all the plaquette terms so the action of all plaquette terms
remains unchanged. Therefore, the action of the time evolution operator on
the stabilizer centerS,. is crucial. We expect the state will transition into the
spectrum of new stabilizer centers.

Figure 9: The figure on the left depicts a detailed local part of a honeycomb
lattice to elucidate the movement of a defect, with the check operator explicitly
labeled. On the right, the numerical results are displayed, illustrating that
the real and imaginary differences between (3; and (2 vanish at T = 1000.
Furthermore, this pattern persists for all 7' > 1000.

Note that most terms remain unchanged, contributing to a constant phase,
as the state is always their eigenstate with an eigenvalue of +1. The only non-
trivial terms are:

t t
H=——70Z1+-(1-5)19X®X (19)
T T
The time evolution operator(TEO):
o) =T / eHat (20)
This is a formal notation; calculations need to be done by explicitly applying the

Time Order operator 7. But we realize that after expanding O(t), the general
form is:

Ot)=at) +b(N)Z® Z@ 1+ )@ X @ X +dB)ZRY X  (21)

Where a, b, ¢, and d are complex, time-dependent functions. Since the operator
O(t) acts on the ground state of 19 X ® X, a simplified representation is allowed

14



due to the trivial action of 1 ® X ® X:
Ot) =P +zZ0Za1 (22)

Utilizing the differential equation

dO(t)
——= =HO(t 23

. (v (23
we numerically solve for O(¢), finding that at time T, O(T) = f(1+ Z®@ Z ®1).
Here, 8 is a complex number whose significance is determined by the value of
T. Assuming the ground state initiates as

wW,+1
GS)i=0 = Hper—L5— Q) [0} (24)
v'ev’

Remember V' is the set of vertices on the shrunken lattice. Since the plaquette
operators commute with the time evolution operator, the ground state transi-
tions to:

GS)emr = Tyept 201 {om ® |o>} (25)

veV’

This is equivalent to the ground state of H(T)! Thus we claim we are able to
move the defect.

SETSHEEES

Figure 10: The image displays a local section of the lattice, where alternating
red and blue edges represent the X ® X and Z® Z checks respectively. Each edge
is labeled by a unique number, with the check operator of the corresponding
edge identified accordingly. The red circles indicate the positions intended for
defect placement.

It is instructive to concentrate on a single chain as depicted in Figure 10.
In this illustration, red edges correspond to the check operator X ® X, and
blue edges to Z ® Z. These operators are denoted by Op;, where ¢ signifies the
numerical assignment to the edges. Initially, all blue checks are designated as
part of the Stabilizer center.

Within this framework, we explore several critical processes. The initial
process entails the creation of defects via the application of the Hamiltonian:

t

H(O) =~ +0m) (1- 1) - (Om) (26)
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Terms that commute with H(t) are omitted. A numerical solution reveals that
the time evolution operator is expressed as:

Oereation(T) = B(T)(1+ Opz) (27)

This implies that the state will be projected onto the ground state of Ops, as
anticipated, leading to the creation of a pair of defects. This transformation is
represented in the transition from Figure 8a to Figure 8b.

In the second scenario, the movement of one of the defects is achieved
through the following process:

H(O) = ~(Op2+ 0m) (1- 1) = Om 4 Op) (28)
As explicitly demonstrated above, this time evolution is as expected to move
defects.
The final process to consider is the fusion of defects. The initial case of fusion
involves creating a pair of defects and subsequently fusing them back together,
essentially reversing the creation process:

H(t) = —Ops (1 - ;) —(Op1 + 0p3)% (29)

The numerical solution for the time evolution operator is given by:

O(T) = B5(T)(1 + Op1)(1 + Ops)
+ B4(T) [(1 = Op1)(1 4 Ops) + (1 + Op1)(1 — Op3)] (30)

In this scenario, only (1 + Op1)(1 + Ops) has non-zero action by examining
energy levels. This indicates that upon fusing the pair created from the vacuum,
we algebraically regain the vacuum state as expected. A more intriguing case
of fusion involves creating two pairs of defects from the vacuum, as depicted in
Figure 8d, and then fusing the two central defects. Denote the state before fusion
as |GSy), derived from creating four defects from |GS), as seen in Equation 24.
The process then transitions these two pairs into a single pair:

H(t) = ~Ops(1 — 1) — (Ops + Ope) 7 (31)

The TEO is similar as 30:

O(T) = B5(T)(1+0p4)(1+O0ps) +B6(T)[(1 = Opa)(1+Ops) + (1+Op4) (1 —Ops)]

(32)

To check the fusion rule of the defects. We should check the normalization

of the projectors. We will see (GS4|(1 £ Opy)(1 + Opg)|GS4) is consistently
identical. To understand this, notice that:

<GS4|Op4|GS4> = <GS4|Op6‘GS4> =0 (33)
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This is because Opy(Opg)|GSy) has different energy from |GSy), as % |GSy) =
|GS4) and Op;;%m’&l} = 1720175 Op4|GSy). The intricate part is:

W, +1
(GS4|Ops ® Ops|GSy) = (@ <o|v/) Mpep—*5—0pa ® Ops ( & |o>v~>
v'ev’ v"’ev’
(34)
Remember V' here represents the set of vertices of the shrunken lattice. Notice:

< ® <0|v’> HpGP’WpOp4 ® OpG ( ® |0>v”> =0 (35)

v'eVv’ " ev’

Because, for any P’ C P, the product of W,s always acts on a trivial loop of
the lattice, which can not match the action of the Ops ® Opg on an open cut.
And Ops ® Ops itself can not act trivially on @,y 0)-

Naturally, (14 Opy4)(1+ Opg) yields the vacuum, while (1—Opy4)(1+Opg) +
(14 Op4)(1 — Opg) gives rise to a free fermion. If fusion rule obeys the rule of
the Ising Anyon, their coefficients should satisfy:

B5(T) = V286 (T) (36)

Numerical solutions suggest that |35(T)| = v/2|36(T)|, with a surprisingly in-
troduced phase. However, we can account for this by moving the phase into
the definition of the state or choose the T' carefully to let the phase vanish. As
highlighted in [1], the free fermion excitation exhibits the same algebra as the
composite quasi-particle of electric and magnetic charge € of the toric code, even
though they differ in energy. Kitaev proposed that the free fermion would decay
to € when exposed to a certain thermal bath. Consequently, we can deduce that
the defects explicitly comply with the nontrivial fusion rule of the Ising Anyon
as demonstrated in [4]:

oxo=1+¢ (37)

o represents the twist defect. € represents the fermion. The last thing we have
to care is that although the action of plaquette terms are fixed during time
evolution, the effective Hamiltonian may flip its sign so it may have excitations
which violates plaquette terms.

To see this, rewrite the overall Hamiltonian in a simplified manner:

H=-5.—-c¢W, (38)

cp absorbs all coefficients of the plaquette operators and S, are dominant. From
explicit numerical evaluation in appendix(A.1), the sign of two plaquette oper-
ator flips after creating or fusing a pair of defects. So two extra excitations
appear or annihilate but moving defects won’t create any excitation as shown in
diagram11. The yellow plaquette is the one that is excited while white plaquette
stays at the ground state of the corresponding W,,. The overall picture is: cre-
ate two pairs of defects and four plaquettes carry plaquette excitations. Then
the central two defects fused with two plaquette excitation annihilates, leaving
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a superposition of vacuum and free fermion excitation, which agrees with the
picture that the defects capture the Majorana fermion and behaves like Ising
anyon.

\

Figure 11: Demonstration of the excited plaquettes. Yellow plaquettes are the
excited ones while white plaquettes stays at the ground state of the correspond-
ing plaquette operators. The first figure is a part of regular surface code case
and the state stays at the ground state. When two pairs of defects are created,
two pairs of plaquettes, which have the trivalent vertex, will be excited. Moving
defects will move the excited plaquettes accordingly with no more excitation
created. After fusing the central two defects, the corresponding excitation an-
nihilates, leaving two remaining defects at ends.

5 Subsystem Code aspects

In recent work of [16], the Kitaev spin liquid code on trivalent and 3-colorable
lattice has been proved to be a zero-logical-qubit subsystem code. Here we
generalize it to our case. We use some notations to describe the lattice by n,, the
number of vertices, n., the number of edges, n,, the number of plaquettes. We
only look at orientable lattice, which could be easily extended to non-orientable
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cases. We would first prove it is true when all the vertices of lattice have odd
degrees. The gauge group is generated by P.le € E. So the number of gauge
group generators is ne — 1 due to the IlocgP. = 1. Then the generators of
stabilizer group S is generated by {W,|p € P}U{W;}, where W, denotes the set
of operators that are formed by the product of check operators along non-trivial
loops of the lattice. So the number of the generators of S is given by n, —1+k,
where k is the number of non-trivial loop on the lattice. Assume vertex v has
degree d, and t, qubits are placed on it. Then:

Ny —Ne+np=2—Fk (39)
2ne =Y d, (40)

ng=Yy t (41)

Where n, is the number of total qubits. The number of logical qubit ny, of this
subsystem code is given by

ng =ng — (ng —ng)/2 — ng (42)
=1/2(2ng — ng —ns) (43)
=1/22ng —ne—np+2—k) (44)
=1/2(2n1 — ne +ny — ne) (45)
=1/2(> 2, +1—dy) (46)

veV

In our setup, the number of qubit on an odd degree vertex is given by t, =
(d, —1)/2. So it will automatically let n;, = 0. An even degree vertex could
be treated as two connected odd degree vertices as depicted in Fig. 5, but in a
converse manner. Clearly, this splitting does not change any of the aforemen-
tioned total quantities. So our generalized two dimensional Kitaev spin liquid
model is always a zero-logical-qubit subsystem. The implication of floquet code
is possible but out of the scope of this paper.

6 Conclusion and outlook

In this paper, we have generalized the Kitaev spin liquid model on a general
planar lattice. We proposed that if we can identify a stabilizer center S. to
satisfy certain requirement, that S. contains maximum amount of commuting
check operators, the vicinity of the ground state of S, will be effectively toric
code model. If a single trivalent vertex remains in the shrunken lattice, a pair of
twist defects would emerge, exhibiting Non-Abelian statistics as Ising Anyons.
We have conclusively shown that we can manipulate and fuse the defect as long
as the Hamiltonian is altered slowly. Furthermore, the processes of creation,
movement, and fusion are all achieved by the time evolution operator, which
are inherently unitary operators. It is equivalent to say we can use unitary
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operators to create, move and fuse defects, which aligns with our usual taste
of manipulating anyons. Nonetheless, braiding continues to pose a challenge in
this context. In conclusion, the generalized spin liquid model appears to be a
versatile platform for realizing a general surface code.

Several promising directions for future research emerge from this study. For
instance, the nature of a defect resulting from a left vertex of degree 5 remains
to be explored. The algebra looks similar but it creates defect disrupting more
plaquettes. An extension to describe three dimensional topological phases or
Fractonic phases would also be an intriguing prospect, and is currently under
preparation. An analytical calculation of the geometric factor o, may be in-
teresting since the numerical calculation yields highly regular and interesting
results. Moreover, a more general and analogous generalization that could sup-
port the non-Abelian Kitaev Quantum Double model would be of significant
interest and importance.
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Perturbation treatment

Effective Hamiltonian

In this appendix, V represents the perturbation H to avoid confusion. For the
effective Hamiltonian as follows:

Hoff =T(V+VGV + VG VGV +..)T (47)
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Figure 12: Demostration of perturbation tree

Where, T = |GS)(GS| is the projector onto the ground state of J,s, and Gy =
(1/(Eo — Hy))', where the prime notation implies Gy, vanishes on the ground
state and acts normally on the excited states.

The perturbation tree, shown in figurel2, demonstrates the general idea of
calculation. Each node of the diagram is labeled with a state ®. The action of
each check operator on |®g) = |GS) will flip two terms in Hy, which increases
the energy by 4. Then, when we apply an another term in V' on the intermediate
state |®y), different outcomes appear due to the product of P., x P.,, where:

If Oeq N ey = (), then we obtain |®o3) with energy 8. If de; = dey, then we
obtain |®21), which goes back to the ground state. The remaining possibility is
that e; and es share one common vertex and will have energy 4. If we repeat
this process to achieve higher order perturbation, we obtain different sectors
with different energy levels as shown in Figure 12. The energy sector ®; ; that
reverts back to the ground state will contribute to the ith order of the effective
Hamiltonian. Note that in the diagram, GEJ always gives some constant factor.
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Thus, we conclude:

Hl; = a;(GS|V'|GS) (48)

Where «; is a path-dependent factor calculable from the diagram. We name
it the geometric factor. Consider the order of A first. Terms in V* that do not
vanish in the ground state are those that commute with all P,. Generators could
be P, P,;, where e; = e;, contributing to a constant factor, or I, P, , where e;
forms a closed loop, contributing to the plaquette term Wz; = Hecpo(p) p.cn’ Pe-
So we could conclude, the effective Hamiltonian is:

Hepp = Z(—l)’“’azp N W, + constant (49)
P

Where [, is the number of edges that appears in W];. The factor \'» arises from
the dominant contribution in the [,th order perturbation. We have to pay extra
attention to the plaquette operators W), = Il.cpo(p)Pe- But the perturbation
will end in W;, an incomplete form of the W,,. But we can recover W, by adding
the dominant check operators. To understand this, look at a special case as
figurel3. A plaquette consists of 6 edges and the check operators attached to
them are labeled by A, B, C, D, E, F. Consider B, D is dominant as shown in the
right above case, then A, C, E, F' are perturbation terms. Numerical calculation
shows that the perturbation gives Wz; = a,ACEF = —1—16ACEF . We can easily
recover W), by adding B and D by WZI,BD = —1—16AC’EFBD = —1—16ABCDEF,
since the state is the ground state of B and D with eigenvalue +1. This means
the effective Hamiltonian can be written as H.fy = —1—16Wp. By this, the
effective Hamiltonian could be fanalized to form15.

After the process of moving defects, it becomes the case that B and E are
dominant, and we will get the exact same effective Hamiltonian by the same way.
Since the action W), remains invariant during time evolution. Combined with
the fact that the state is the ground state of the dominant S.(T), we conclude
it will ends in the ground state of the H(T).

The cases of creation or fusion cases are different. In these cases, the pla-
quette will be transformed into cases(reversely for fusion process) that only
D is dominant. The perturbation method gives —1—16ABCEF. So Hepp =
—1—16ABCEFD = %ABC’DEF. Thus, though W, remains the same eigenvalue,
it ends in excitation state since the different sign of the plaquette operator in
the effective Hamiltonian.

A.2 Geometric Factor o,

The geometric factor o, needs to be evaluated via explicit calculation and we
did not find a general formula for it. However, we generally only care about the
cases that has factor oy, = 0 since it will serve as a hole in the surface code limit.
We find a family of plaquettes that would have oy, = 0 when the corresponding
plaquette operator consists of odd number of anti-commutative check operator
pairs. The proof is as follows:
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F C F C
E D E D
A B A B
F C F C
E D E D

Figure 13: The figures above display a plaquette with 6 edges, where the red
edges represent the dominant check operators and the black edges denote the
perturbation terms. The figure in the top-right position illustrates a common
scenario in the honeycomb lattice. The figure in the bottom-left position shows
the case after moving defects, and the figure in the bottom-right position depicts
the situation when there is a defect

Suppose we have a plaquette operator WI'), which is a product of several
perturbation check operators. So the factor e, is calculated in the [,th order of
perturbation through the diagram(12. It is easy to tell that for any permutation
o €5y, the II; A,(;) has a nontrivial perturbation contribution to the plaquette
operator Wz;’ where S, is nth order of permutation group.

The perturbation contribution consists of two parts. One comes from the
action of green function, which essentially comes from path on the perturbation
tree, deI/lOted as F'g,. Then the outcome of the perturbation could be written
as apW, = Zaeslp Fgsll; Ay, So ap = deslp Fg,Sg,, where Sg, comes

from making II; A, ;) to a fixed form Wz; = Hi”: 1A;, which is controlled simply
by the commutation relation between A;s. Consider ¢ : (i) = o(l, —i+ 1), a
function that is the reverse permutation of o. Notice that reverse the order of
check operators in the perturbation tree still remains in the tree since it starts at
the ground state and also ends at the ground state! And they have Fg, = Fg5
due to the symmetry.

The relative sign 29; is determined by making I1; A, ;) to II; A5(;). To il-
lustrate this, look at a simple example. Consider 3 elements A, Ao, A3, and
o(1) =i, 6(i) = 3 —1i. To make the product Ay - Ay - A3 to As - Ay - Ay, we
can swap Ay with Ao, then A; with As, then swap As with Az. The relative
sign is decided by the commutation relation of A;s. The general relative sign
is done by the same way. We conclude the relative sign is given by the par-
ity of the anti-commutative pairs. The relative sign is —1 If W), contains odd
number of anti-commutative pairs of check operators, and +1 if even. That
results in oy, = 0 since the reverse permutation is an equivalence relation in the
permutation group Slp.
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Remark 1: In a general lattice with vertices that d, = 4, we should note
that the coefficient of each W), is no longer uniform. But continuously deform
the coefficients of W),s to be uniformly large, regardless of the sign (as we have
argued, the sign does not matter regarding the toric code phase). It is a con-
tinuous transformation which does not close the gap. Therefore, it will stay in
the same phase.

Remark 2: One may worry about some unfortunate occasions that o, = 0.
The factor is a path-dependent factor and depends heavily on the details of the
lattice and the choice of S.. But we argue that, for a zero alpha, which have
multiple channel in the diagram12, we can probably find a nonzero [, + 2th
order contribution by insert a pair of P, in the process to build up W), where
eo ¢ Bo(p) into the perturbation tree, which will change the action of Gé)
between the pair of P.,. Since the action is generally non-linear, it might be
nonzero. If it’s still zero, we could insert more. Finally W, may survive in
higher order of perturbation theory.

Remark 3: if there is huge plaquette in the lattice I', since [, is large, Al s
generally so small that this plaquette could be treated as a hole or a boundary,
of which the type depends on the color of it. Or, if some «;, = 0, and could not
survive even under the argument of remark 2, or it only survive in really high
order perturbation, it also serves as a hole in the toric code model.

B Mapping Table of vertex with d, > 4

Consider a vertex has degree d,, > 4. Let us assume d,, = 2k, so there are k
qubits placed on it. We call an operator a k-order Pauli operator if it is a tensor
product of k Pauli operators. We insist choosing P, = ), Z, since the k qubits
would stay on the ground state of P,, with eigenstate of 41, without loss of
generality, the eigenspace would be 2°~! dimensional. So we have to find the
effective k — 1 order Pauli operators of those k order Pauli operators commuting
with P,. The generators of these k order are of following form:

Xi=1®1-10X®X®l® 101 (50)
—_——
i—1

Here X represents a tensor product of k pauli operator. X; is explicitly two X
operator at position ¢ and ¢ + 1, identity 1 at the others. We have obviously
k — 1 such operator {X;|i =1,2...k — 1}. Another set of generators are:

Z=191---10Z®1---191 (51)
—_——

i—1

Which means Z; is one Z operator locates at position ¢, Identity 1 at the others.
We have k such operators, {Z;]i = 1,2,...,k}. Notice, |¢g) = @), |0) is one
of the basis in the eigenspace. X)|pg) effectively generate the whole eigenspace.
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Then we define the mapping of X; to kK — 1 order operator:

Xi—191--10X0X®1l®- 101 (52)
S —

i—1

We denote the notation X; to represent the effective action of X; in the eigenspace
of P,. Notice on the right, it is a tensor product of k —1 Pauli operators. Sim-
ilarly, Z; to represent the effective operator of Z;:

Z=191--10ZR0Z®18---1®1 (53)
——
i—2

Forl<i<k—1and 21 =2®1---1®1, Z, =1®1---1® Z. Notice
the product of Z; is 1, which agree with I1¥_, Z; = P,. Then arranging the
operators similarly as in 4b would give rise to the splitting of d, > 6.

C Possible Measurement-Based Initializing Me-
thod

We have emphasized that since each process is described by time evolution,
which is natural to depict each process (movement, creation and fusion) by
quantum circuit. Here we put down a convenient measurement-based method
to initialize a ground state of the effective toric code on a honeycomb lattice as
in figure 14, which is actually the same way as in the Floquet code in [14]. The
method is to follow a measurement schedule:

Step 1: Measure the check operators associated with yellow edges.

Step 2: Measure the check operators associated with blue edges.

Step 3: Measure the check operators associated with red edges.

Step 4: repeat step 1.

After step 4, the state is the ground state of all plaquette terms (with signs
that depend on measurement outcomes). We then proceed to measure the yellow
checks (or equivalently the elements in S, ) as depicted in fig 6. Following this
measurement, the state would transition into the ground state of the plaquette
operators and the stabilizer center S, (still the corresponding eigenvalues depend
on the measurement outcome), thereby generating the effective toric code we
want. Then we can apply the unitary operator which is given by the time
evolution operators in previous section, to manipulate the twist defects.
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Figure 14: This figure illustrates a honeycomb lattice used to initialize a ground
state of the effective toric code, a platform that facilitates defect manipulation.
Each edge is colored according to the plaquettes to which it is connected.
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