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Abstract

We consider the Vlasov equation in any spatial dimension, which has long been known [Z176, Mor80, Gib81,
MWS82] to be an infinite-dimensional Hamiltonian system whose bracket structure is of Lie—Poisson type. In
parallel, it is classical that the Vlasov equation is a mean-field limit for a pairwise interacting Newtonian system.
Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation,
both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this
work as a classical counterpart to [MNP*20], which provided a rigorous derivation of the Hamiltonian structure of
the cubic nonlinear Schrodinger equation from the many-body problem for interacting bosons in a certain infinite
particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and
Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation.
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1. Introduction
1.1. Motivation

Several decades ago, Marsden, Morrison, Weinstein and others initiated a program on understanding
the geometric structure of common partial differential equations (PDEs) in mathematical physics. A
key question of this program is the passage or ‘contraction’, to use the language of [MWS82], of one
Hamiltonian system to another through scaling limits. In the present article, we consider this question
in the context of the Viasov equation, which is the nonlinear PDE

Oy+v-Vyy=2(VW=xp)-V,y =0
p=foady(.v) (t,x,v) € Rx R, (1.1)
ylt:O = '}’O,

The unknown y models the distribution of the particles in the position-velocity phase space (x,v) €
R??, with d > 1. Assuming vy is normalized to have unit integral, one can interpret ¥’ (x, v)dxdv as
approximately the probability at time ¢ of finding a particle in a phase space box of area dxdv around the
position x and velocity v. The function p is the spatial density of the particles, obtained by integrating out
velocity. We use the same notation for a density and its associated measure. The function W : RY — R is
a potential governing the interactions between the particles, which for simplicity we will always assume
is even, though this assumption is not essential. In physics, one typically chooses W to be a multiple
of the Coulomb/Newton potential in R?. The sign of W determines whether the potential is repulsive
(+), which is relevant for electrostatic interactions, or attractive (-), which is relevant for gravitational
interactions. For such a W, equation (1.1) is commonly referred to in the literature as Viasov—Poisson.
This specific form of the equation was first proposed by Jeans [Jeal5] as a model for galaxies; its use in
plasma physics originates in work of its eponym Vlasov [VI1a38].

While not the primary subject of this article, we mention that the Vlasov equation as a PDE has been
actively studied over the years, with basic questions of well-posedness now well understood. When W
is regular (e.g., VW is Lipschitz), well-posedness of measure-valued weak solutions is classical [BH77,
Dob79]. In the case when W is not regular, for instance as in Vlasov—Poisson, well-posedness is not
known in the class of measures, but global well-posedness is known for solution classes at higher
regularities [lor61, Ars75, HH84, Bat77, UO78, Wol80, BD85, Pfa92, Sch91, Hor93, LPI1, Pall2].
Subsequent work has investigated sufficient conditions for the uniqueness of solutions [Rob97, Loe06,
Miol6, Tac22] and well-posedness when W is even more singular at the origin than the Coulomb

https://doi.org/10.1017/fms.2023.72 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.72

Forum of Mathematics, Sigma 3

potential (e.g., general Riesz potentials) [CJ22]. An active topic of current research concerns the long-
time dynamics of Vlasov equations; for example, see [MV 11, BMM 16, FR16, CK16, GNR20, HKNR21,
PW21, FOPW21, IPWW22, GNR22] and references therein.

Iwinski and Turski [Z176] and Morrison [Mor80] independently made the formal observation that
there is a Poisson bracket structure with respect to which the Vlasov equation is Hamiltonian.! We
remind the reader that the Hamiltonian formulation of an equation consists of a Hamiltonian functional
and an underlying manifold equipped with a Poisson bracket, which serves as the phase space. Marsden
and Weinstein [MW82] and Gibbons [Gib81] later observed that this bracket is of Lie—Poisson type,
which we briefly outline ignoring any functional-analytic difficulties. There is a Lie algebra (g, [, ],),
elements of which are functions f(x,v) corresponding to observables. On the dual g*, elements of
which correspond to states (think measures, more generally distributions y on R?4), there is a Poisson
bracket {-, -}4- canonically obtained from the Lie algebra (g, [, -],) through

([dF[¥].dG[¥]14 ¥) F,GeC™(g"), yeg. (1.2)

g-g*’

Here, F, G are smooth (using the Gateaux differential calculus) real-valued functions on g*, and using
the isomorphism (g*)* = g (assuming the space g is chosen appropriately), the Gateaux derivatives
dF[y],dG[y], which are linear functionals, may be identified as elements of the Lie algebra g. The
notation -, -)4_,- denotes the duality pairing between g and g*. The Viasov Hamiltonian functional is

1
Hyiy) = & / dy (e )v + / dp® (x, Y)W (x — ). (1.3)
2 J(ray (Rd)?

For any sufficiently nice functional F € C*®(g*), there exists a unique Hamiltonian vector field X+
on g* characterized by the property that

VG eC¥(g"),  Xr(9) ={G. T}, (1.4)

where the vector field X r is understood as a derivation in the left-hand side. By direct computation of
X34y, one sees that the Vlasov equation is equivalent to the infinite-dimensional ordinary differential
equation (ODE)

The physical significance of the Vlasov equation is as a macroscopic limit of a system of indistin-
guishable Newtonian particles with pairwise interactions. The starting point for the description of this
limit is the system of N ordinary differential equations

X

t
2 .
L —— Z VW(Xi—Xj), Vle{l,...,N}, (]6)
! N, _ &
I1<j<N:j#i

where i is the particle index. We adopt the convention that VW (0) := 0, which allows for singular W and
is consistent with the even assumption if W is regular. This allows us to add back into the summation
Jj=i

As is well known, the system (1.6) can be rewritten in the form of Hamilton’s equations. Introducing
the total energy of the system

N
1 , 1
H = il D W-x)), 1.7
N(zy) 22 Vil N2 (x; —x;) (1.7)

1See also [FKS09, Neil9] for alternative takes on the Hamiltonian structure of the Vlasov equation.
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and writing z,, = (z1,...,zn5) with z; = (x;,v;), equation (1.6) is equivalent to
where V, = (Vgps.o., Vo) with V,, = (Vy,, V,,) and Iy is the block-diagonal matrix whose diagonal

entries are the rotation matrix J(x,v) = (-v, x).

Given a solution 35\/ of equation (1.6), one can associate to it a probability measure uf, =
ﬁ Zf.i 1 6z;(z) on R?? called the empirical measure. By integrating ', against a test function, it is
a straightforward calculation to show that y; is a weak solution to the Vlasov equation if and only if
55\/ is a solution of equation (1.6). Accordingly, if the initial empirical measures :“(1)\1 converge weakly as
N — oo to an expected or mean-field measure u° with regular density, then one expects—or hopes—
that i, converges weakly to a solution u of the Vlasov equation with initial datum x° for all time, a
law of large numbers type result. The Vlasov equation (1.1) is then referred to as the mean-field limit of
the system (1.6).

Alternatively, one may adopt a statistical point of view and suppose that the initial position-velocities
Z1, - - -, ZN are themselves random variables with some exchangeable (i.e., invariant under permutations
of particle labels) law y?\]. The starting point is now the Liouville equation

amv+2v, WY N——Z D YWk —x)) - Vyyn =0 (1.9)

i=1 1<j<N

Given a solution y of the Liouville equation (1.9), we form the sequence of marginals

N = / dyN (2t nan), 1<k <N, (1.10)
(R2d)N -k
(N)

where by convention y,’ := yn. The marginals (y(k))k:l satisfy the (classical) Bogoliubov—Born—
Green—Kirkwood—Yvon ( BBGKY ) hierarchy of equations

2
ﬁy +ZV‘ Y (k) =5 Z VW (x; —xj) - VYN (k)
1<i,j <k

ZN k
( )Z L o™ =) W

Letting N — oo, the first term on the right-hand side of equation (1.11) is formally O (1/N) and therefore
vanishes, while the prefactor of the second term becomes 2, leading to the Viasov hierarchy

k k
Fy ™+ > i VyP =23 /de Az VW (i = xka1) - Vo y &0 k> 1L (1.12)
i=1 i=1

The equations (1.12) form an infinite coupled system of linear equations, where the coupling of the
k-th marginal to the (k + 1)-th marginal reflects that there are only binary interactions in equation (1.6).
Making the ansatz that there exists a y* such that y(¥)-* = (3/)®% for every k € N and t > 0, one
computes that (y¥) )r. is a solution of the Vlasov hierarchy if and only if 7 is a solution of the Vlasov
equation. Thus, if for each k£ € N, the marginals y(k)’o of the initial N-particle laws converge to (y°)®k

as N — oo, then one expects—or hopes—that the time evolutions y( )t converge to (y?)®* as N — co.

This asymptotic factorization is referred to as propagation of molecular chaos.
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One can make the formal derivation sketched in the preceding paragraphs rigorous in the sense
that the empirical measure is shown to converge weakly to a solution of the Vlasov equation as
N — oo under suitable assumptions on W. This in turn implies propagation of chaos in a certain
topology (see [GMR13, HM14] and references therein). The convergence when W is regular (e.g.,
VW Lipschitz) is classical [NW74, BH77, Dob79, NP20, Due21]. However, the situation when the
force VW fails to be Lipschitz is much less understood. In particular, it is an outstanding problem to
prove the mean-field limit for Vlasov—Poisson, except in dimension one [Tro86, Haul4]. Some results
have been obtained for forces VW which are bounded [JW16] or even mildly singular (e.g., |x|~*
for @ < 1) [HIO7, HJ15]. In other directions, mean-field convergence has been shown for Coulomb-
type potentials which are regularized at some small scale €y vanishing as N — oo [BP16, Lazl6,
LP17, Gra2l] or when the initial data are of so-called monokinetic type [Ser20]. For reviews of
Vlasov mean-field limits, the reader may consult [Jab14, Gol16] and, in particular, the recent lecture
notes [Gol22].

The formal derivation from above, let alone any of the just cited mathematical results, does not
give any information on how the Hamiltonian structure of the Vlasov equation itself arises from that of
Newton’s second law. To the best of our knowledge, a detailed description of the Hamiltonian structure for
the Vlasov equation as itself a ‘mean-field limit’ (in other words, a derivation of the Vlasov Hamiltonian
structure) remains an unanswered question. Some partial progress has been made: Marsden, Morrison
and Weinstein [MMW84] formally showed that the BBGKY hierarchy equations (1.11) are Lie—Poisson
(i.e., they are Hamiltonian with respect to the canonical Poisson bracket on the dual of a Lie algebra)
and that this hierarchy bracket is such that its pullback under the map corresponding to taking marginals
equals the Poisson bracket for the Liouville equation. However, Marsden et al.’s expressed goal of
showing ‘how this structure is inherited by truncated systems, providing a statistical basis for recently
discovered bracket structures for plasma systems’, such as those identified in [Z176, Mor80, Gib81,
MW 82] for the Vlasov equation and [MG80, Mor82, MRW84] for other related equations, has not been
realized prior to this paper.

1.2. Informal description of main results

In this article, we settle the question of [MMW84] on providing a statistical foundation for the Pois-
son structure underlying the Vlasov equation, by giving a rigorous derivation of the Hamiltonian
structure, both the underlying Poisson vector space and Hamiltonian functional, directly from New-
tonian mechanics in the limit as N — oo. Our results parallel the previous subsection’s discus-
sion of the formal derivation of the Vlasov equation, but from a perspective focused on geometric
structure, in particular morphisms between different Lie algebras and Lie—Poisson spaces, as well
as limits of such structures as the number of particles N — oo. In addition to placing the for-
mal calculations of [MMW84] on firm functional-analytic footing by identifying appropriate spaces
of functions and distributions, corresponding to observables and states, respectively, on which all
brackets are well defined, we show that operations in the formal derivation, such as taking the
marginals of an N-particle distribution or forming the empirical measure from a position-velocity
configuration, are Poisson morphisms (i.e., they preserve Poisson brackets). Moreover—and most
importantly—we show that the Hamiltonian structure of the Vlasov equation, both the Lie—Poisson
bracket and the Hamiltonian functional, may be interpreted as a ‘geometric mean-field limit’, which
is directly obtainable as the pullback of the Hamiltonian structure of the Vlasov hierarchy, both novel
observations.

Theorem 1.1 stated below is an informal description of the main results of this paper. Of course,
Theorem 1.1 is a gross caricature. The reader will forgive us for not being more precise at this stage
so as to maintain the accessibility of the introduction. A detailed description of the results, with all
background material and notation explained, is given in Section 2, which is the technical introduction
to the paper. It is important for the reader to understand that there is not a single main result but a chain
of connected results that should be considered in their totality.
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Theorem 1.1 (Informal statement of the main result)

N-particle Liouville Let N € N denote the number of particles.

o There exists a Lie algebra gn of symmetric C* functions on (R*?)N, constituting N-particle
observables. Scaling the standard Poisson bracket by N, yields a Lie bracket [-, ], .

o Consequently, the strong dual gy, consisting of symmetric distributions with compact
support on (R*)N | has a Lie—Poisson bracket {-, -}g;], with respect to which the Liouville
equation (1.9) admits a Hamiltonian formulation.

o Additionally, there is a Poisson morphism tr;, : (R*)N — gy sending a position-velocity
configuration z,, to a symmetric probably measure (the law) on (R2HN " in particular

mapping solutions of Newton’s equations (1.6) to solutions of the Liouville equation.
N-particle BBGKY

o The Lie algebras (8k, [, ]q, ),12’:1 collectivize into a Lie algebra (®y, [, ]g,) of N-
hierarchies of observables F = (f(k))llc\]:1 eby = @szl ak.

o Onthe strong dual space &y, = Hszl g, consisting of N-hierarchies of states I = (y(k))}(v:l,
there is an associated Lie—Poisson bracket {-, -}(57\,, with respect to which the BBGKY
hierarchy (1.11) admits a Hamiltonian formulation.

o Additionally, the map tmar : 8y — © formed from taking k-particle marginals is a
Poisson morphism, mapping solutions of the Liouville equation to solutions of the BBGKY
hierarchy.

Vlasov hierarchy

o The spaces ®y ordered by inclusion form an increasing sequence with limit ®¢, = EB?:] Ok-
Any F,G € ® also must belong to ® for N sufficiently large; therefore, one can compute
the limit of [F, Gl,, as N — oo, which acquires a simpler form due to vanishing of O(1/N)
terms in the expansion. This limit, denoted [F, G g, , defines a Lie bracket for ®,.

o On the strong dual &, = [1;’, 8}, there is an associated Lie-Poisson bracket {-, }:,
well defined for any F,G € C®(®L). Restricting to a unital subalgebra A, generated by
expectation and constant functionals, ®, acquires a weak Poisson structure, with respect
to which the Vlasov hierarchy (1.12) is Hamiltonian.

From Vlasov hierarchy to Vlasov

o The factorization map ¢ : g; — O, defined by y — (y®k),‘:’: | is a Poisson morphism.

o The pullback of the Vlasov hierarchy Hamiltonian under t equals the Vlasov Hamiltonian.

o In this sense, the Hamiltonian structure of the Vlasov equation (1.1) is the pullback of the
Hamiltonian structure of the Vlasov hierarchy, and the map 1 sends solutions of the Viasov
equation to the Vlasov hierarchy.

From Newton to Vlasov

o Finally, one can connect the N-particle Poisson space to the Vlasov—Poisson space through
the empirical measure assignment tgpy @ (R*HN — 8}, which is a Poisson morphism.

o The pullback under (g )y of the Vlasov Hamiltonian equals the energy per particle of equation
(1.6), and therefore L) sends solutions of the Newtonian system to weak solutions of the
Vlasov equation.

Remark 1.2. The reader might wonder about the relevance of Theorem 1.1 for the Vlasov—Poisson
equation since the Coulomb potential is not in g;, failing to be smooth at the origin. While this
observation is correct, it is not of great importance since, at the N-particle level, one can always regularize
the potential W at some small scale, such as the typical interparticle distance N~'/¢.2 Similarly, it is
classical that the Cauchy problem for Vlasov—Poisson is stable with respect to regularizations of W (e.g.,
see [Hau14]). Furthermore, the primary significance of Theorem 1.1 is not at the level of Hamiltonian

2In fact, Vlasov—Poisson dynamics have been derived as the mean-field limit of Newtonian N-particle dynamics with such a
regularization [LP17].
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functionals, which depend on the potential W, but rather at the level of the underlying Lie algebras and
Lie—Poisson brackets, which are completely independent of W. If one wishes to have a formalism that
directly allows for singular W, then one should work with scales of function spaces on (R??)* (e.g.,
Sobolev) and their duals. In which case, the notion of a Hamiltonian vector field must be modified to
allow for mappings from a higher regularity index of the scale to a lower regularity index. Additionally,
the states in Theorem 1.1 are assumed to have compact support in phase space. This a qualitative,
technical assumption stemming from the isomorphism between C*(R")* and the space £'(R") of
distributions with compact support. It is harmless from the perspective of the Vlasov equation due to
finite speed of propagation and stability with respect to compact approximation of the initial data.

Let us state clearly that Theorem 1.1 does not address the derivation of dynamics of the Vlasov
equation from Newton’s second law or the Liouville equation in the vein of the works on Vlasov mean-
field limits mentioned in Section 1.1. Instead, our work is complementary, answering the question
of [MMW&4] on a derivation of the Vlasov bracket from N-particle brackets, which we argue is both
independent of and unaddressed by these prior works on Vlasov mean-field limits. A worthwhile goal for
the future is to unify this perspective of derivation of geometric structure with the traditional perspective
of derivation of dynamics, using the former to say new things about the latter. In other contexts, the
geometric structure of an equation has played an important role in understanding its well-posedness or
long-time dynamics. As an example of this interplay to which we aspire, we mention the seminal work
of Arnold [Arn66, Arn69] and Ebin and Marsden [EM70] for the incompressible Euler equation.

1.3. Method of proof

Our method for proving Theorem 1.1 is heavily inspired by the work [MNP*20] of the last four coauthors
together with D. Mendelson. This cited work gave a complete, mathematically rigorous description of
how the Hamiltonian structure of the nonlinear Schrodinger equation emerges in the limit as N — oo
from the Hamiltonian structure of the linear Schrodinger equation describing the many-body problem
for N interacting bosons. The approach of [MNP*20] in turn was motivated by the use of the BBGKY
hierarchy to derive the dynamics of nonlinear Schrédinger-type equations from the N-body Schrodinger
problem [Spo80, ABGT04, AGT07, ESY06, ESY07, ESY09, ESY 10, KM08, CP14, CH19].?> While the
results obtained in the present paper demonstrate the robustness of the hierarchy formalism developed
in [MNP*20], in the sense that there are algebraic parts to our work for which the computations of
[MNP*20] transfer with little modification, there are important analytic differences between the quantum
setting and the classical setting of this work, as well as new challenges encountered here.

The first obvious difference with [MINP*20] we highlight is the nature of observables, states and
brackets in classical mechanics versus quantum. Here, the observables (for & particles) are C* functions
f : (R*)k — R invariant under permutation of particle labels, while in the quantum setting, they
are continuous linear operators A € L£(Sy((R%)%), SS’((R‘I)" )) from the symmetric Schwartz space
to the space of symmetric tempered distributions. Similarly, the states here (again for k particles) are
distributions y on (R>?)* with compact support and with a dually defined permutation symmetry, while
in the quantum setting, they are continuous linear operators A € L£(S/((R9)¥), S;((R9)¥)) from the
space of symmetric tempered distributions to the symmetric Schwartz space. The fact that we do not
need to consider very irregular distribution-valued operators is a technical advantage of the classical
setting over the quantum. It is an interesting observation that the observables are irregular while the
states are regular, in terms of Schwartz kernels, in the quantum setting, while in the classical setting the
opposite is true. Lastly, the Poisson structures here are all built from the standard Poisson structure on
Euclidean space, whereas in the quantum case, they are built from the commutator of two operators on
an L? space.

3We also mention that the BBGKY hierarchy has been a tool [NS81, Spo80, Spo81, GMR13], though not as powerful, in the
derivation of Vlasov dynamics.
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N -Schrédin Quantum Hartree/Quantum
N -0, -0
h—0 h—0
N — o
N -Liouville/Classical Vlasov/Classical

Figure 1. Mean field and classical limits.

The next difference with [MNP*20] is that the results of the present paper are stronger and the overall
proof is significantly less ad hoc. Namely, in [MNP*20], we relied on the notion of a weak Poisson vector
space (see Definition 3.23), originally introduced in [NST14], at all stages of the derivation. The adjective
‘weak’ here refers to the fact that the Poisson bracket is no longer assumed to admit a Hamiltonian
vector field for every C* functional, but only for functionals in a unital subalgebra A, which itself is part
of the data specifying a weak Poisson vector space. Much of the difficulty throughout [MINP*20] boils
down to identifying an .4 which is large enough to contain all functionals of interest (e.g., BBGKY,
Gross-Pitaevskii Hamiltonians) but still small enough so that the brackets can actually be defined. In
contrast, the present article works with a notion of strong Poisson vector spaces (see Definition 3.17)
at the N-particle level, in which the Poisson bracket is assumed to admit a Hamiltonian vector field for
every C*™ functional, omitting the need to restrict to a subalgebra. We then show that our dual spaces
g,- ), satisty certain topological conditions (in particular, they are k* spaces; see Definition 3.18) and
that our Lie brackets are jointly continuous, allowing us to use an abstract theorem of Glockner [Glo09]
(see Theorem 3.20 for a review) to obtain a well-defined Lie—Poisson structure. To the best of our
knowledge, our work is the first application of Glockner’s theorem for problems involving Hamiltonian
PDE. Unfortunately, we run into a technical issue at the infinite-particle level when attempting to verify
the conditions to apply Glockner’s theorem for ®;,—namely, showing that this is a k™ space, given the
k* property is not necessarily preserved under countable products. To overcome this issue, we resort
to directly verifying that for the subalgebra 4., generated by constants and expectation functionals (see
equation (2.39)), which are the classical analogue of the trace functionals from [MNP*20], there is a
weak Poisson structure for ®7,. Importantly, this algebra A, contains the Vlasov hierarchy Hamiltonian.

1.4. Future directions

This article and the prior work [MNP*20] raise the interesting question of how to connect the classical
and quantum worlds through the limit 7 — 0. We believe that by combining geometric structures from
each of these papers and relating them through the Wigner transform, which is a Poisson morphism, the
combined mean-field limit N — oo and 7 — 0 can be handled to obtain a rigorous derivation of the
Hamiltonian structure of the Vlasov equation directly from the N-body Schrodinger equation. In other
words, the diagram in Figure 1 commutes in terms of geometric structure. We plan to investigate this
direction in future work.

It is appropriate to conclude this subsection by mentioning some works that are related to the spirit
of our paper in terms of understanding the role of the Hamiltonian formulation of PDE in mathematical
physics. We first mention some recent work of Chong [Cho22] which exhibits a Poisson map from the
Poisson manifold underlying the Vlasov equation to the Poisson manifold underlying the compressible
Euler equation. We also mention impressive work of Khesin et al. [KMeM19, KMeM19, KMeM21]
which shows that the Madelung transformation from wave functions to hydrodynamic variables is
a Kéhler morphism and which develops a geometric framework for Newton’s equations on groups
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of diffeomorphisms and spaces of probability densities, covering a number of equations, including
(in)compressible fluid and (non)linear Schrodinger equations. Finally, we mention the interesting work of
Frohlich et al. [FTYO00, FKPO7, FKS09] on the relationship between quantization, mean-field theory and
the dynamics of the Hartree and Vlasov equations, which are informed by the Hamiltonian perspective.

2. Blueprint of the paper

We now present an outline of our main results and discuss their proofs. This section is intended as a
complete blueprint or schematic of the entire paper. We recommend that one reads through this section
in its entirety before proceeding to Sections 3 to 6 and then regularly refer back to it during the reading of
these subsequent sections. At the end of this section (see Section 2.5), we elaborate on the organization
of the remaining portion of the paper. Finally, there are some abstract notions, which may already be
familiar to the reader, that are referenced in Sections 2.1 to 2.4 but whose definitions are deferred to
Section 3. This choice of ordering is so as not to get bogged down in material that is not the central
focus of the paper.

For the reader’s benefit, we include Table 1, located at the end of the paper, as a guide to the various
notation appearing in this work. In the table, we either provide an explanation of the notation or a
reference for where the notation is first introduced and defined. Some of the notation in the table has
already appeared in the introduction. In such cases, we give references to where the notation first appears
in subsequent sections.

2.1. Newton/Liouville equations

Consider the function Hy from equation (1.7) with W € C®(R9) satisfying W(-x) = W(x). We
recall from the introduction the rotation matrix J(x, v) = (—v, x) and the block-diagonal matrix Jy with
diagonal entries J. The standard symplectic structure on (R*)N is given by the form

N (Zy.Wy) = =Inzy Wy, Vzy.wy € RV, (2.1)

where - denotes the Euclidean inner product on (R?>?)N . We recall that the Hamiltonian vector field

Xn,, associated to Hy is uniquely defined by the formula

dHn [2y1(82y) = on (Xny (2y), 82y ), Yy, 0zy € RPN, 2.2

Set sz = (ij, ij), where ij = ((9Xj1_, el 6x;_1) and ij = (av}, el 6‘,;1). Writing VEN =

(Vg ..., V), we compute from the property J> = —I together with the definition of the gradient that
dHn [z, 1(6z,) = VENHN (zy) -0z = _J?\IVENHN (zy) -0z =-In (JNVL\;HN (ZN)) 02y

2.3)

which implies that Xz, (z N) =Jn VEN Hy(z N). Thus, the functional Hy and the symplectic form wy
together define the Hamiltonian equation of motion

2y = Xuy (2)s (2.4)

which is equivalent to equation (1.6). As is well known, the symplectic form wp induces a canonical
Poisson bracket on (R>4)N by

{F,G}ay (zy) = 0N (XF(2y), XG(2y)),  VF,G € CO((R*DN), 2, e RDN,  (2.5)
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referred to as the standard Poisson structure on (R?¢)N . Thus, the symplectic formulation (2.4) of
Newton’s second law of motion can be equivalently written in Poisson form as

d
EF@;V) = {F,Hy }gayn (2)), VF € C®((R*)N). (2.6)

To evaluate N — oo limits, it is convenient to rescale the Poisson bracket and modify the Hamiltonian
Hpy as follows:

1
HNeW = N(HN +W(0)) and {', }N = N{, '}(RZd)N, (27)

with the subscript ‘New’ abbreviating Newton. Evidently, H ., depends on N, but we omit this
dependence from our notation, as it will be clear from context. The addition of the term W(0) in the
Hamiltonian is harmless: It is a constant, and so it does not change the Hamiltonian vector field. Its
inclusion reflects the fact that we do not need to exclude self-interaction since W is continuous at the
origin. With these rescalings and translation, the Poisson formulation (2.6) becomes

d
EF(gﬁv) = {F, Hnewln(Zy),  YF eC™(RN). (2.8)

For each k € N, we define the set

gk = CO(R*)Y) = {f € C(R*DY) & f(2r1)s-- -2 2x) = [(2,), Y7 € S} (2.9)

In the sequel, we will use the shorthand (f o 7)(z,) = f(zz(1),- -+, Zx(k))- In other words, the space
g consists of smooth real-valued functions which are invariant under permutations of particle labels.
We endow the set g with the locally convex topology induced by the seminorms

Pk 0 = [0.00),  pxa(f) = sup 109 fll=x). K< ®D neN,  (2.10)
|a|<n
where K above is compact and the supremum is taken over all multi-indices @ € (Ny)>?* with order

at most n. We then regard g, as a real topological vector space, elements of which are our k-particle
observables. We introduce a bracket on g, which will give the space the structure of a Lie algebra. For
each k € N, we define

[ Tgp * 8k X Gk = Bk [f.8lg, = k{f 8} @oayk, (2.11)

where {-, -} (g2a)x is the standard Poisson bracket on (R*?)*.

Proposition 2.1. For each k € N, the pair (g, [, ]4,) is a Lie algebra in the sense of Definition 3.15

below. Furthermore, the bracket |-, -], is a continuous bilinear map.

Next, for each k € N, we define the real topological vector space g, to be the strong dual of gy. It
can be characterized as follows:

g; ={y € C((R*)") . n#ty =y, Vm € Si}, (2.12)

where 7#y(f) = y(f o n) for f € C®((R*?)¥). Using the isomorphism C®((R>4)%)* = £’((R24)¥),
elements of gy, which we call k-particle states, are distributions on (R24)* with compact support and
which are invariant under the action of S (i.e., the permutation of particle labels). The space g, has the
desirable property of being a reflexive, (DF) Montel space (see Lemma 4.1).

The canonical Lie-Poisson bracket induced by the Lie bracket [-, ], gives g; the structure of a
Poisson vector space in the precise sense of Definition 3.17. In fact, the space g; has stronger topological
properties, namely it is a k™ space (see Definition 3.18) that make it an example of a reflexive, locally
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convex Poisson vector space as defined in Definition 3.19. We will use these stronger topological
properties to prove this Lie—Poisson assertion by appealing to the aforementioned ‘black box’ theorem
of Glockner recalled in Theorem 3.20 below.

Before stating the result, we record the following important observation. For any G € C%(g;), we
have by definition of the Gateaux derivative that dG € C*(g;;@;"). So, for any u € g; we have that
dg[u] € g;", that is dG[u] is a continuous linear functional on g; . Since we have the isomorphism
g, = gk, we are justified in making the identification

dG[u] = g, and dH[u] = hy, where g, h, € gk. (2.13)

We then regard [gu, h“]gk as an element in g, and we denote the pairing of u and [g,,, h/‘]gk as the
‘integral’

. 2.14
Loy il e

This identification will be made throughout this paper.

Proposition 2.2. For observables G,H € C*(g;) and k-particle state y € gy, we define the bracket

{G. H}g, () = ([dG[y], dH Y]]y, ¥) (2.15)

8k—9; "
Then (gy, {-, '}QZ) is a reflexive, locally convex Lie—Poisson space in the sense of Definition 3.19.

The reader may check that for any N > 2, the function Hy € gy, hence Hyew € gn. Therefore, it
makes sense to introduce the Liouville Hamiltonian functional

HLio(y) = <HNeWsy>gN—g;‘V’ V)’ € g;(\j (216)

Evidently, Hr;, depends on N, though we omit this dependence from our notation. Being linear and
continuous (by consequence of the separate continuity of the distributional pairing), Hrio € C*(g} ).
With Hp;, and Proposition 2.2, the Liouville equation may be written in Hamiltonian form. Proposition
2.3 stated below is the classical counterpart to the fact that the von Neumann equation from quantum
mechanics is Hamiltonian (see [MNP*20, pp. 17-18]).

Proposition 2.3. Let I C R be a compact interval and N € N. Theny € C*(1,gy) is a solution to the
Liouville equation (1.9) if and only if

Y= Xn (), 2.17)

where Xy, ., is the unique Hamiltonian vector field generated by the Hamiltonian Hp;, with respect to
the Lie-Poisson vector space (8y, {-, -}gl*v).

Given a position-velocity configuration z, = (z1,...,2n) € (R24)N | we can associate a symmetric
probability measure on (R??)N by defining

1
TN =S D Fee © 7 @S- (2.18)

Evidently, the right-hand side is an element of g},. We call this assignment ¢z, : (de)N — gy the
Liouville map. The reader may check from the invariance of H .,  under the action of Sy that

1
HLio(LLio(ZN)) = m Z HN@W(ZH(I)’ ce ’ZR(N)) = HN@W(EN)- (2.19)

ﬂ'ESN
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Moreover, the map ¢7;, is a morphism of Poisson vector spaces, implying that ¢7;, maps solutions of
the Newtonian system (1.6) to solutions of the Liouville equation (1.9) (see Remark 4.5).

Proposition 2.4. The map t1;, € C*®((R*)N, gy ) defines a morphism of the Poisson vector space
((R?4)N {.,.}y) into the Lie—Poisson space (ay- 1 '}9?\/):

VE.GeC@h):  {thiF 1o}y = lhiolF. Gy, (2.20)

where 1}, denotes the pullback under iy ;,.

2.2. The Lie algebra ®y and Lie—Poisson space &),

Building on the previous subsection, we transition to discussing finite hierarchies of observables and
states.
For N € N, we define the algebraic direct sum

N
Gy = @gk 2.21)
k=1

and endow this vector space with the product topology (note that the direct sum is a direct product since
the number of summands is finite). This turns ®, into a locally convex real topological vector space.
We refer to elements of &y as N-hierarchies of observables, alternatively observable N-hierarchies.
The Lie brackets |-, ']gl’ R S ']gN induce a Lie algebra structure on ® as follows.

For N e Nand 1 < k < N, consider the map

1 k
€k,N Gk = OGN e (f)(zy) = PV Z f((jl),---,jk)(gN)’ (2.22)
kD Gy eP
where
Y () = R ),z = (2002 (2.23)
(Jiseesfi) “=N7 7 Z(J1seeengi)’’ Z(1aeeerfi) JIERRRR RS 'Y .

and we are defining the set of length-k tuples drawn from {1,..., N} by
PY ={(j1,....jk) : 1 < j; < N and j; distinct}. (2.24)

In the sequel, we will use the tuple shorthand j; and write fj(kk) and f %) (gjk ). One can show that the maps
€N are continuous, linear and therefore C*, and that they are injective (see Lemmas 4.6 and 4.7, respec-
tively). In words, the map €y embeds a k-particle observable in the space of N-particle observables.
The maps €,y have a filtration property (see Lemma 4.9) asserting that [e¢, v (f(?). €;, N(g(f))]gN
lies in the image of € n, and using this filtration property together with the injectivity of € n, we can
define a Lie bracket on ® by

[F.Glg. = €y > [ef,zv(f‘”),ej,zv (g”))] ., 1<k<N. (2.25)
1<t,j<N N
st,]=
min({+j—-1,N )=k
In fact, there is an explicit formula for [F, G]((ﬁkl\)/ (see equation (4.67)), which we do not state here.

For N fixed, the maps {e, N},’;’: | also have the interesting property that they induce a Lie algebra
homomorphism (see Proposition 4.17)
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N

Oy oy, LB =) an(f®),  vE= (O, (2.26)
k=1

the dependence of t on N being implicit. The map ¢, sends an N-hierarchy of observables to a single
N-particle observable. After a series of lemmas establishing properties of these embedding maps € v,
we arrive at our main result for the N-particle hierarchy Lie algebra.

Theorem 2.5. For any N € N, the pair (O, [, -], ) is a Lie algebra in the sense of Definition 3.15.
Furthermore, the bracket |-, -]@N is continuous.

If we define the real topological vector space &3 as the strong dual of Gy = @szl ax, then using
the duality of direct sums and products [K679, Proposition 2, §14, Chapter 3], we see that

N

* N
G = (@ Qk) = [ ]ot- 2.27)
k=1

k=1

where the right-hand side is endowed with the product topology. The canonical Lie—Poisson bracket
induced by the Lie bracket [, ], gives ®} the structure of a Poisson vector space in the precise sense
of Definition 3.17. Similar to g, , the space G}, is a reflexive, locally convex Poisson vector space as
defined in Definition 3.19. We will use Glockner’s black box Theorem 3.20 to prove this assertion.

Theorem 2.6. For functionals G, H € C*(®},) and state N-hierarchy I" = (y(k))é\il € Oy, we define
the bracket

N
{G. H}e;, (D) = ([o|g[r],crH[r]](ﬁN,r>®N_®;v :Z<[dg[r]’dH[r]J&kN),7<")>g L@
k=1 K0k

Then (G3,,{-, -}@;V) is a reflexive, locally convex Lie—Poisson space in the sense of Definition 3.19.

To show that the BBGKY hierarchy (1.11) is a Hamiltonian equation on the Poisson vector space
(%, {*, }@:, ), we introduce the N-particle BBGKY Hamiltonian functional

Hpacky (1) = (Wascky.Dey-6; - VI € B, (2.29)

where

1 N -1
§|V1|2,u

W(0)
N N

Wescky = W(x1 - x2) + ,0,...,0] € Gy, (2.30)

the dependence on N being implicit. Here, |v{|*> and W(x; — x;), W(0) are viewed as functions on
(R?4) and (R?4)2, respectively. Note that Wz gy is indeed an element of G by the assumption that
W € C®(R?). Tautologically, HppGky is linear, and it is continuous by the separate continuity of the
duality pairing; hence, Hppcky € C7 (0} ). Interpreting the integrals as distributional pairings, we
have

1 1
Hpsory (D) =5 / dyVemiP+ 5 [ dy? (@, 2) (V= 1)W( —x) + W(0)). 231)
R2d N Jgeay2

The following theorem, our main result for the BBGKY hierarchy, is the classical counterpart to
[MNP*20, Theorem 2.3] for the quantum BBGKY hierarchy.

Theorem 2.7. Let I C R be a compact interval and N € N. Then I' € C*(I,®},) is a solution to the
BBGKY hierarchy (1.11) if and only if

I = Xsppory (D), (2.32)
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where Xy, p61y 1S the unique Hamiltonian vector field generated by the Hamiltonian Hppgxy with
respect to the Poisson vector space (6}, {-, ~}@7\] ).

Returning to the homomorphism ¢, from equation (2.26), we can take its dual (¢ : g3, — Gy -
Analogous to the quantum setting (cf. [MNP*20, Proposition 5.29]), this dual map is nothing but the
marginal map y — (y%)) IIC\; , and is Poisson morphism, facts shown in Proposition 4.18.

2.3. The Lie algebra ., and Lie—Poisson space ®,

Having built up the necessary structure at the N-particle level, we transition to addressing the infinite-
particle limit of our constructions. The natural inclusion map ®y C ®,, for any integers M > N implies
that one has the limiting topological vector space (a colimit of topological spaces ordered by inclusion)

G = P ar. (2.33)
k=1

Elements of ®, are called observableco-hierarchies, alternatively co-hierarchies of observables. They
take the form F = (f(k))l‘z":l, where £ e gy is the zero element for all k > N + 1, for some N € N.
Thus, given any F, G € G, by taking N sufficiently large, it makes sense to consider the Lie bracket
[F,Glg, - Our next result computes the limit [F, G]g_ of this expression as N — oo and shows that
(®o, [+, -], ) is indeed a Lie algebra. Notably, the Lie bracket [, -]g_ acquires a much simpler form
than [-, -], » as certain terms vanish as N — co. In contrast to the quantum setting of [MNP*20], there
are no technical difficulties involving compositions of distribution-valued operators to give meaning to
[F ’ G](ﬁoc .

Theorem 2.8. Let F = (f(V)2,,G = (g<f))1f‘il € Gw. For each k € N, define

[F.G1y) = lim [F.Glg) = ZZI symy (1 n1 g), (2.34)
J=
€+j£l:k

where the limit is in the topology of ®, the wedge product A is defined by
f((’) Ap g(j) (ék) = [j(VXIf(f) (ég) . Vvlg(j) (Zl’éml;k) _ Vxlg(j) (Ej) . Vvlf(f’) (Zl’§j+l;k))’ (2.35)

and the k-particle symmetrization operator Sym,, is defined by*

1
VAWK € c®((R2)F),  Sym, (hP) = o Z h® o g, (2.36)

tmeSk

Moreover, (O, [+, ]g,) is a Lie algebra in the sense of Definition 3.15, and the bracket [-, ]g_ is
boundedly hypocontinuous.

As with the N-particle setting, the next step is the dual problem of constructing a Lie—Poisson space
from (O, [+, "], ). We define the real topological vector space

&, = ﬂ o (2.37)

equipped with the usual product topology, which is the strong dual of . Elements of G, are called
stateco-hierarchies, alternatively co-hierarchies of states.

“By duality, Sym;_ is also well defined for distributions on (R2d)yk,
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We want to construct a Lie—Poisson bracket over & similarly to as done in Theorem 2.6. Given
any F,G € C*(®%) and T = ()/(k))]‘z"=1 € &7, the continuous linear functionals dF[T"],dG[T"] may
be identified as elements of . since 2 = G. Hence, [dF[I'],dG[I']]g,, is an element of G, in
particular only finitely many of its components are nonzero, and we are justified in defining

[

{F. G, (1) := ([0F[T],dG[]6.. T)g__g. =Z([df[r],dg[r]]gjj,y<k>>g IRRNCEL)
k=1 Kk

Here, we come to one of the main technical difficulties of the paper: We are unable to prove that
{F.G}e:, € C7(0,). Anessentially equivalentissue is that while we are able to show that a Hamiltonian
vector field Xg exists, we are unable to show it is C* as a map ®F, — ®. As remarked in Section
1.3, we cannot rely on Theorem 3.20, as done in the proof of Theorem 2.6, because we are unable
to verify that ®7 satisfies certain topological conditions, namely that it is a k£ space (see Definition
3.18). Accordingly, we instead directly show that ®7, admits a weak Lie—Poisson structure in the sense
of Definition 3.23.

The key difference between a weak Lie—Poisson structure and Lie—Poisson structure is that, in the
former, one specifies a unital subalgebra (with respect to pointwise product) A, € C*(®X), which
must satisfy certain nondegeneracy conditions, as the ‘admissible’ functionals, in contrast to working
with all the functionals in C*(®7,). To this end, we choose A, C C*(®L) to be the algebra generated
with respect to pointwise product by the set

(FeC™(6L): F() = (F, Y55 F €6} U{F eC(6L): F()=CeR}. (2.39)

Heuristically viewing the components of I = (y(¥))* as measures on (R??)*, we call functionals of
the form F () = (F, -)__@:, expectations. They are analogous to the ‘trace functionals’ of [MNP*20].
In other words, the subalgebra A, is generated by expectations and the constant functionals. The work
[MNP*20] employs the notion of a weak Poisson vector space at both the N-particle level for ®, and
the infinite-particle level for ®7,; while here, we only need this notion at the infinite-particle level. This
is an advantage of the present work compared to [MINP*20]. The motivation for this choice of algebra
A is that expectation functionals have constant Giteaux derivatives (see Remark 2.10 below). Since
for fixed expectations F, G, the Gateaux derivatives dF[I'],dG[I"] have only finitely many nonzero
components as elements in ®, uniformly in T', this allows us then to directly check that the bracket
{F.G }@*m is C*, in fact it belongs to the subalgebra A, and also show that the the vector field Xg is
C*. This direct verification relies heavily on explicit formulae for the Poisson bracket {-, -}: and for
the Hamiltonian vector field with respect to the bracket {-, -} to show that these expressions reduce
to finite sums of compositions of C** maps.

Remark 2.9. Our definition of Ay is not canonical in the sense that one could, in principle, include
functionals beyond those generated by expectations and constants. However, doing so comes at the cost
of added complexity in verifying that (6, A, {*, -} ) is a weak Poisson vector space, and therefore
we will not do so in this work.

Remark 2.10. By the bilinearity of the duality pairing and the definition of the Gateaux derivative,
an expectation functional F has constant Giteaux derivative, that is dF[I'] = dF[0] forall " € GZ,.
Similarly, a constant functional has zero Gateaux derivative.

Theorem 2.11. Let ®7, be the strong dual of ® as given in equation (2.37). Define the bracket
{F.GYe, (D) = ([dF[T1,dG [, T)g 5.0 VF.G€CV(BL), I €6y, (2.40)

and let A be as in equation (2.39). Then the triple (6, Aw, {*, ‘}e:,) is a weak Poisson vector space
in the sense of Definition 3.23.
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Having constructed a weak Poisson vector space for the infinite-particle setting, it makes sense
to discuss Hamiltonian flows for co-hierarchies. Our final result of this subsection is that the Vlasov
hierarchy (1.12) is itself Hamiltonian, which is a new observation. The Viasov hierarchy Hamiltonian
functional is the expectation (cf. equations (2.29), (2.30) for the BBGKY Hamiltonian)

Hyin (D) =Wy, D s, (2.41)

generated by the observable co-hierarchy
Lo
WVlH = §|V| ,W()C1 —x2),0,... . (242)

One immediately recognizes that Wy ;g is the N — oo limit of Wgpgky in the topology of G.
Interpreting the integrals as distributional pairings, we can write, for I" = (y(k>),‘(’°=1 ,

1
Hyum (D) =+ / dy D () + / dy (21, )W (x1 - x2). (2.43)
2 RZd (RZd)Z

In particular, the functional Hy;z belongs to the admissible algebra A, introduced in equation (2.39).
The next theorem asserts that the Vlasov hierarchy (1.12) is a Hamiltonian flow on (6, Aw. {*, -} g:.)-
and it is the classical analogue of [MNP*20, Theorem 2.10] for the Gross—Pitaevskii hierarchy.

Theorem 2.12. Let I C R be a compact interval. Then T" = ()/(k)),‘:"=1 € C*(1,6L) is a solution to the
Viasov hierarchy (1.12) if and only if

' = Xoy, (D), (2.44)

where X1y, s the unique Hamiltonian vector field generated by the Hamiltonian Hy g with respect
to the weak Lie—Poisson space (®g,, A, {*, }z.)-

2.4. From Vlasov hierarchy to Vlasov equation

Finally, we tie together the constituent results of the previous subsections to connect the Hamiltonian
structure of the Vlasov hierarchy (1.12) to the Vlasov equation (1.1). This necessitates elaborating on the
rigorous formulation of the Hamiltonian structure of the Vlasov equation (cf. [MR 13, p. 329, 10.1(e)]).
The Viasov Hamiltonian functional is

1
Hyi(y) = <§|V|2,7> + (W (xi —xz),7®2>q2_q*- (2.45)
* < 92
916,
In terms of ‘integrals’ (as before, understood rigorously as distributional pairings),
1
o) =5 [ P [ Wi ). 2.46)
(Rd)z (Rd)z

where p = /Rd dy(-,v) is the density associated to y. Note that p is well defined as a distribution, since
for any test function f € C*(R9), we can set

<f, p)coo(Rd)_gr(Rd) = <f ®1, ’y)coa (R2d)— g7 (R2) > (247)
where (f®1)(x,v) = f(x) forevery (x,v) € (R¥)?. In contrast to the other Hamiltonian functionals we

have seen so far, Hy is nonlinear, in fact quadratic, in the potential energy. Since Hy; is multilinear in
its argument y and continuous as a map from g — R, it is straightforward to check that Hy; € C*(g]).

https://doi.org/10.1017/fms.2023.72 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.72

Forum of Mathematics, Sigma 17

Proposition 2.13. Let I C R be a compact interval. Then y € C*(1,g7) is a solution to the Vlasov
equation (1.1) if and only if

¥ = Xny, (7)), (2.48)

where X4y, is the unique Hamiltonian vector field generated by the Hamiltonian Hy; with respect to
the Lie—Poisson space (8], {-, '}QT)'

We connect the Vlasov hierarchy to the Vlasov equation, each as infinite-dimensional Hamiltonian
systems, through the embedding

Lig) - 6L, Wy) = (O, Vy € g;. (2.49)

Here, y®* denotes the usual k-fold tensor product of the distribution y. The geometric content of the map
t, which we call the trivial embedding or factorization map, is that it preserves the Poisson structures
on g7 and 6, that is, it is a Poisson morphism in the sense of Definition 3.27.

Theorem 2.14. The map « € C* (8], ®,) is a morphism of the Lie—Poisson space (g7, {-, '}97) into the
weak Lie—Poisson space (6, A, {*, }¢:):

VF,G € A, {"F, L*g}g,f ={F.G}e: - (2.50)

Let us now explain why the results of this section constitute a rigorous derivation of the Hamiltonian
structure for the Vlasov equation, as claimed in the title of the paper. The reader may check that (see
also Remark 6.3)

CHvig = Hyi, (2.51)

that is, the pullback of the Vlasov hierarchy Hamiltonian equals the Vlasov Hamiltonian. The identity
(2.51) together with Theorems 2.12 and 2.14 then show that the Hamiltonian functional and Poisson
bracket for the Vlasov equation are obtained via the pullback under the trivial embedding ¢ of the
Hamiltonian functional and Poisson bracket for the Vlasov hierarchy; moreover, ¢ sends solutions of the
Vlasov equation to special factorized solutions of the Vlasov hierarchy. Combined with the results of
Section 2.2, which provide a geometric correspondence between Newton’s equations/Liouville equation
and the BBGKY hierarchy, and Theorem 2.8, which allows us to take the infinite-particle limit of our
N-particle geometric constructions, we arrive at a rigorous derivation of the Hamiltonian structure of
the Vlasov equation directly from the Hamiltonian formulation of Newtonian mechanics.

Finally, as mentioned in Section 1.1, there is another way to derive the Vlasov equation from
the Newtonian N-body problem (1.6) via the empirical measure. It is an interesting fact, which to
our knowledge has not been previously observed, that the map tgps assigning a position-velocity
configuration z,, € (R**)N to its empirical measure on R is, in fact, a Poisson morphism (see
Proposition 2.15 below). Since one also has ¢}, Hv; = Hyew (see Remark 6.1), this implies the
previously mentioned fact that if 55\1 is a solution to equation (1.6), then the associated empirical
measure ', is a weak solution to the Vlasov equation.

Proposition 2.15. The map
| N
ww s (BN Sl mmly) = D0 Yoy € @Y (2.52)
i=1

belongs to C* ((R24)N 81) and defines a morphism of Poisson vector spaces.
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2.5. Organization of paper

Let us close Section 2 with some comments on the organization of the remaining body of the article.

Section 3 contains background material on topological vector spaces, Lie algebras and (weak) Lie—
Poisson vector spaces. The reader may wish to skip this section upon first reading and instead consult
it as necessary during the reading of Sections 4 to 6.

Section 4 contains the N-particle setting results. The section is divided into several subsections, each
building upon the previous one. Section 4.1 concerns the setting of the Newtonian system (1.6) and
Liouville equation (1.9), proving Propositions 2.1 and 2.2 for gx and g, , respectively, Proposition 2.4 for
Lio, and Proposition 2.15 for ¢gps. Sections 4.2 and 4.3 concern the setting of the BBGKY hierarchy
(1.11), proving Theorems 2.5 and 2.6 for Oy, ®},, respectively. Finally, Section 4.4 concerns the
operation of taking marginals, proving Proposition 4.18 for ¢4

Section 5 contains the infinite-particle setting results. As with Section 4, the section is divided into
several subsections, each intended to build upon the previous one. Sections 5.1 and 5.2 are devoted to the
proofs of Theorems 2.8 and 2.11 for G, ®%, respectively. Section 5.3 contains the proof of Theorem
2.14 for the map ¢.

Lastly, Section 6 contains the proofs of the Hamiltonian flows results Proposition 2.13 and Theorems
2.7 and 2.12, which assert that that the Vlasov equation, BBGKY hierarchy and Vlasov hierarchy,
respectively, are Hamiltonian flows on their respective Lie—Poisson spaces given by Proposition 2.13
and Theorems 2.6 and 2.1 1. The section is broken into three subsections with Section 6.1 corresponding
to the Vlasov equation, Section 6.2 to the BBGKY hierarchy and Section 6.3 to the Vlasov hierarchy.

3. Background material

The purpose of this section is to collect in one place all the necessary preliminary facts—some rather
elementary—from functional analysis concerning topological vector spaces, function spaces and distri-
butions and Lie algebras and Lie—Poisson vector spaces. There is some overlap with [MNP*20, Section
4, Appendices A-B], but this section also contains notions new to the present work, such as Glockner’s
aforementioned formalism of Poisson vector spaces. Moreover, our spaces of functions and distributions
are not comparable to [MNP*20], as here we deal with test functions and distributions over (de)k, as
opposed to operators between spaces of test functions and spaces of distributions. This difference is, of
course, a reflection of the classical physics setting of the present work in contrast to the quantum setting
of the cited work, as explained in Section 1.3.

3.1. Some function analysis facts

In this subsection, we review functional analytic notions which will be used throughout the rest of the
paper. We begin by reviewing duality in topological vector spaces.

Definition 3.1. Let X be a topological vector space. We define X* to be the set of continuous linear
functionals on X and endow it with the strong dual topology, which is given as follows. Let A be the set
of bounded subsets of X. For each A € A, we define the seminorm

pa: X" —[0,00), pa(T) = ;ung(f)l. (3.1

Note that this is indeed a seminorm, since continuous linear operators are bounded. We define the
topology of X™ to be the one generated by the above seminorms. If the cannonical embedding

X < (X7)* = X** (3.2)

is an isomorphism between topological vector spaces, then we say that X is reflexive.
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Definition 3.2. Let X, Y be topological vector spaces, and let F' : X — Y be a continuous linear map.
We define the adjoint of F tobe F* : Y* — X* with

F*(T)(x) = (To F)(x), VT eY* xeX. (3.3)

Proposition 3.3. Ler X, Y be topological vector spaces, and let F : X — Y be a continuous linear map.
Then F* : Y* — X is a continuous linear map.

We continue with the necessary background in functional analysis by reviewing the concepts of
barrelled, Montel and (DF) spaces following the presentation of [K679, K779].

Definition 3.4 (Barrelled space). Let X be a locally convex topological vector space. We say that X is
barrelled if every closed absorbent, absolutely convex subset of X is a neighborhood of 0 € X.

In the above definition, a subset M of X is said to be absorbent if for every x € X, there existsa p > 0
such that x € pM; itis said to be absolutely convex if for every x,y € M and a, B € R with |a|+|8| < 1,
the point ax + By € M. For the following, we recall that a locally convex topological vector space is
Fréchet if it is metrizable and complete.

Lemma 3.5. Fréchet spaces are barrelled.

Proof. See [K69, §21.6 (3)]. O

Definition 3.6 (Montel space). We say X is a Montel space if it is barrelled and every bounded subset
of X is relatively compact.

Lemma 3.7. Montel spaces are reflexive, and the strong dual of a Montel space is Montel.

Proof. See [K679, §27.2 (1)-(2)]. O

Definition 3.8 ((DF) Spaces). Let X be a locally convex topological vector space. We say that X is a
dual Frechét (DF) space if the following conditions hold:

1. The space X has a fundamental sequence of bounded sets, that is, there exists a countable sequence
of bounded sets {B; };cn such that any bounded set in X is contained in some B;.

2. Every bounded subset of X* (in the strong topology) which is the countable union of equicontinuous
sets is equicontinuous.

Lemma 3.9. The strong dual of a Fréchet space is a (DF) space.
Proof. See [K679, §29.3]. O

Next, we recall the notions of sequential spaces and k-spaces as presented in [Eng89, pp. 53, 152].

Definition 3.10 (Sequential spaces). Let (X, 7) be a topological space. We say aset S C X is sequentially
closed if for any sequence (x;);2, in S that converges to x implies that x € S. We say the space X is a
sequential space if every sequentially closed set is closed in X.

Definition 3.11 (k-space). Let (X, 7) be a topological space. We say X is a k-space if the following
condition holds: For every set A € X, K N A is closed in A, endowed with the subspace topology, for
every compact K if and only if A is closed in X.

That a sequential space is a fortiori a k-space is, perhaps well known. For the sake of completeness,
we present a proof of this fact in the next proposition, which will be crucially used in Section 4.3.

Proposition 3.12 Sequential = k-space. Let (X, 7) be a sequential space. Then (X, 1) is a k-space.
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Proof. Assume that there exists a nonclosed set A € X which satisfies K N A is closed in A for every
compact K. Since A is not closed, and X is a sequential space, we must have that A is not sequentially
closed. So, there exists some sequence (x;);°, in A that converges to a point x € X \ A. Note that the set
{x; : i € N} U {x} is compact, and so

AN({x; ;i eN}U{x})={x; :i e N} (3.4)

is closed in A. However, since closed sets are sequentially closed and the sequence x; converges to x, it
must be the case that x € A. This is a contradiction, so X is a k-space. O

We are now ready to state a result of Webb [Web68] which gives sufficient conditions for a topological
vector space to be a sequential space.

Theorem 3.13 [Web68, Proposition 5.7]. Let X be an infinite-dimensional Montel (DF) space. Then X
is a sequential space.

We close this subsection by stating the notions of derivative and smooth function for infinite-
dimensional spaces used in this work, which is that of the Gateaux derivative. For more on calculus in
the setting of topological vector spaces, we refer to the lecture notes of Milnor [Mil84].

Definition 3.14 (Gateaux derivative). Let X, Y be topological vector spaces, and let f : X — Y.

1. The function f is called C°(X,Y) if it is continuous.
2. The function f is called C! (X, Y) if for every x,x” € X, the limit

A1) = fim 21+ ') = f(0)] (35)

exists in Y, and the mapping df : X X X — Y is continuous with respect to the product topology.
The function df is called the Gateaux derivative of f.

3. For n € N, the function f is called C"(X,Y) if d" f : X x X" — Y exists and is continuous.

4. The function f is called C*(X,Y) if it is C"(X,Y) for every n € N.

In the remainder of the paper, we write C(X) (similarly, C"*(X),C* (X)) when the codomain is R,
that is, the maps are real-valued functionals.

3.2. Lie algebras and Poisson vector spaces

We start this subsection by giving a precise definition of Lie algebra and Poisson vector space that we
use in this paper. With these definitions in hand, we then present a result due to Glockner [Glo09] which
allows one to canonically construct a Lie—Poisson vector space from a Lie algebra, assuming certain
topological conditions are met, as mentioned in Section 1.3. The use of Glockner’s machinery is new to
the present work compared to [MNP20].

Definition 3.15 (Lie algebra). Let g be a locally convex topological vector space over R, and [, -]
g X g — g. We say the pair (g, [+, -],) is a Lie algebra if the following conditions hold:

g -

1. The bracket [, -], is bilinear.
2. Forallx,y €g, [x,y]y = —[y,x],-
3. Forall x, y, z € g, the Jacobi identity is satisfied:

[)C, [y’ Z]g]g + [y’ [st]g]g + [Z, [)C, y]g]g =0. (36)
Remark 3.16. Note that in this work, a continuity requirement is not assumed in Definition 3.15. This

definition is consistent with the standard algebraic definition of a Lie algebra. In practice, all of our Lie
brackets will be at a minimum separately continuous.
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The next definition introduces the notion of a possibly infinite-dimensional Poisson vector space,
which is a natural extension of the finite-dimensional notion of a Poisson vector space, more generally
Poisson manifold (e.g., see [Wei98]). Our usage is consistent with that of Gléckner [Glo09, Definition
4.2]. For other possible notions of a infinite-dimensional Poisson vector spaces, which are not appropriate
for our purposes due to being restricted to the Banach category, we refer to [OR03, OR04].

Definition 3.17 (Poisson vector space). Let X be a locally convex topological vector space, and
{,}:C7(X) xCZ(X) —» C™(X) 3.7

be a bilinear map. We say the pair (X, {-,-}) is a Poisson vector space if it satisfies the following
properties:

1. (C*(X),{:,-}) is a Lie algebra in the sense of Definition 3.15 obeying the Leibniz rule:
VF,G, H e C™(X), {F,GH} = H{F,G} + G{F, H}. (3.8)
2. For every F € C*(X), there exists a smooth Hamiltonian vector field X : X — X such that
vG € C7(X), XrG =1{G,F}. (3.9)

We now state the theorem of Glockner [Glo09, Theorem 4.10] which will allow us to construct
a Poisson vector space from a given Lie algebra in the N-particle setting (see Section 4.2). For the
purposes of this paper, the reader may view this theorem as a ‘black box’. But to use this black box,
certain topological conditions need to be satisfied. Namely, [Glo09] works in the context of ¥ spaces,
a class of topological vector spaces introduced in that paper. Accordingly, we shall start this portion of
the exposition by recalling the definition of this class of spaces, as well as the notion of reflexive locally
convex Poisson vector spaces which we also need.

Definition 3.18 (k*-spaces). Let (X, 7) be a topological space. We say that X is a k* space if, for every
n € N, the space X" endowed with the product topology is a k-space (recall Definition 3.11).

Definition 3.19 (Reflexive locally convex Poisson space). A reflexive locally convex Poisson space is a
reflexive locally convex k® space E, together with a hypocontinuous® map [-,-] : E* X E* — E* which
makes (E*, [+,]) into a Lie algebra in the sense of Definition 3.15.

Equipped with Definitions 3.18 and 3.19, we are now prepared to state the following result from
[Glo09], the statement of which has been tailored to our setting.

Theorem 3.20 [Glo09, Theorem 4.10]. Let E be a reflexive locally convex Poisson space in the sense of
Definition 3.19 such that its dual E* is equipped with a hypocontinuous bracket [-,-] : E* X E* — E*.
For F,G € C*(E), the Lie—Poisson bracket {F,G} : E — R is defined by the expression

{F,G}(T) = ([dF[T],dG[T]],.I) g-_E, VI € E, (3.10)

where (-, -) g«_g denotes the duality pairing. The pair (E, {-, -}), called a Lie—Poisson space, is a Poisson
vector space in the sense of Definition 3.17.

Remark 3.21. The work [Glo09] does not specifically use the term Lie—Poisson space; however, we
feel this bit of terminology is appropriate to emphasize that the bracket as defined in equation (3.10) is
a Lie—Poisson construction, while in general a Poisson bracket—and therefore, Poisson vector space—
need not be of Lie—Poisson type.

5The condition of hypocontinuity is a weaker condition than continuity, but stronger condition than separate continuity. Here,
hypocontinuity is always defined with respect to the set &/ of bounded subsets of E. See [K779, p. 155] for a precise definition of
hypocontinuity.
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Remark 3.22. For our purposes, we will apply Theorem 3.20 with E = g7, ®}, (defined in equations
(2.12) and (2.27), respectively), which requires our proving that g;,®} satisfy the assumptions of
the theorem. This will be shown in Sections 4.1 and 4.3. Note that since 92’ (Y)}"V are reflexive, E™* is
identifiable with the Lie algebras gx, ® , respectively.

The space 7, is a nontrivial countably infinite product of (DF) spaces and as such is not a (DF) space
itself (see [SW99, p. 196]). Therefore, Theorem 3.13 is not applicable, which renders verification of the
assumptions of Theorem 3.20 out of reach. To overcome this obstacle, we need a weaker notion of a
Poisson vector space than assumed in Theorem 3.20. Namely, we need to restrict to a proper subalgebra
A of functionals in C*(E) for which smoothness of the Poisson bracket and Hamiltonian vector field

can be verified. To this end, we use, as in the previous work [MINP*20], the framework of weak Poisson
vector spaces due to Neeb ef al. [NST14].

Definition 3.23 (Weak Poisson vector space). Let X be a locally convex topological vector space, and
let A c C*(X) be an unital subalgebra. We say the triple (X, A, {-,-}) is a weak Poisson vector space
if the following properties hold:

1. The pair (A, {-,-}) is a Lie algebra in the sense of Definition 3.15 obeying the Leibniz rule:
VF,G,H e A, {F.OH} = H{F. G} +G{F, H}. (3.11)

2. Foreach x,v € X, if dF[x](v) =0 for every F € A, then v = 0.
3. Forevery F € A, there exists a C* Hamiltonian vector field Xz : X — X such that

VGe A  XrG=1{G, F}. (3.12)

Remark 3.24. When the Poisson bracket {-, -} in Definition 3.23 is of Lie—Poisson type, as in equation
(3.10), we shall use the terminology weak Lie—Poisson space.

Remark 3.25. As alluded to in the paragraph preceding Definition 3.23, a Poisson vector space in the
sense of Definition 3.17 is a fortiori a weak Poisson vector space.

Remark 3.26. The property (3.12) uniquely characterizes the Hamiltonian vector field. Indeed, if
X7, X5 are two C* vector fields obeying equation (3.12), then given x € X,

VG € A, (XF = X7)(9)(x) = dG[x] (X7 (x) = X5 (x)). (3.13)

Applying 2 with v = X7 (x) — X7 (x), we conclude that X7 (x) = X5 (x).
Finally, we need the notion of a morphism between (weak) Poisson vector spaces.

Definition 3.27. Let (E1, {-,-} g, ), (E2,{*, -} ,) be Poisson vector spaces in the sense of Definition 3.17.
We say thata C*® map T : E; — E; is a morphism of Poisson vector spaces if

VF,G € C*(Ey), {T"F.T"G}g, =T{F.G}E,» (3.14)
where T denotes the pullback under T. Suppose now that (E1, Ay, {-, -} g, ), (E2, A2, {-, '} g,) are weak
Poisson vector spaces in the sense of Definition 3.23. We say thataC® map T : E; — E» is amorphism

of weak Poisson vector spaces if for any F,G € Ay, T*F,T*G € A; and equation (3.14) holds with
C*(E;) replaced by A,.
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4. N-particle geometric structure

In this section, we present the proofs of the results stated in Sections 2.1 and 2.2.

4.1. N-particle Newton/Liouville equations

The goal of this subsection is to establish the Hamiltonian structure of the Newtonian system (1.6) and
the Liouville equation (1.9), as well as to connect the two structures through a Poisson morphism. Since
the Newtonian system is classical, we leave the proofs of the statements concerning it in Section 2.1 as
simple exercises for the reader.

We recall from equations (2.9) and (2.11) the definitions of the space g, and the bracket [, -], . Our
first task is to prove Proposition 2.1 asserting that (g, [+, ], ) is a Lie algebra.

Proof of Proposition 2.1. Since our bracket is defined as a scalar multiple of the standard Poisson
bracket, the algebraic properties 1-3 are satisfied, so it only remains to check continuity. It suffices to
show that the multiplication and differentiation maps

M :gr X8k — Gk, (f.8) v~ fg 4.1
and
0% gk — o, f=0%f 4.2)

are continuous for each multi-index @ € N??% But this follows because [ -, -] o, 18justalinear combination
of compositions of M, 0¢. ‘

We first show that M is continuous. Since the spaces g are Fréchet, it suffices to show that M is
sequentially continuous. To this end, let (f;,g;) — (f,g) be a convergent sequence in gx X gx. Note
that for any compact set K ¢ (R??)¥ and n € N, we have

max(sup px . (f}), Suppx n(g;)) < Ck n, 4.3)
j€

where the constant Ck , depends only on the set K and the index n. Using the Leibniz rule and triangle
inequality, we now estimate

Pr.n(figj— f8&) < px.n(fi(gj—8)+prna((fi—f)g)
= sup [[0°(fj(gj — &N llL=x) + sup [107((f; = &)= (k)

|a|<n |la|<n
< sup Z ( ) 167 fill i) 1077 (g5 = )l (x)
‘a|<nﬁ<(y

+ sup Z (Z)”aﬁ(fj = A= 10 P gl x)

I“‘S"ﬁs(l
< Canlpk n(f))Pr.n(8i —8) + Pk .n(fi— HPk.n(g))
< Cank (Pk.n(8j = 8) + pr n(ff = 1)) (4.4)
where in the last line we have used the bound (4.3). Since the last line converges to 0 as j — oo and

K, n were arbitrary, we have shown that f;g; — fg in gr. Thus, M is continuous.
Fix a multi-index . To show that ¢ is continuous, let f; — f in g; and calculate

k(0% (fj = £)) = sup [1870%(f; — Hllie=x) < sup  10°(fj — D= = Pk nrial(f7 — )

lyl<n 1Bl<n+|a|

(4.5)

The right-hand side converges to 0 as j — oo, which shows that the operator ¢ is continuous. O
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Now, recall the definitions of the space g,’i and the bracket {-, ~}g;«( from equations (2.12) and (2.15),

respectively. Our next task is to prove Proposition 2.2, asserting that (g;, {-, '}92) is a Lie—Poisson space.
To this end, we need the following technical lemma alluded to in Section 2.1.

Lemma 4.1. For each k € N, the space gy is reflexive, and g;_ is a (DF) Montel space.

Proof. We first prove that g; is Montel. The proof is an adaptation to symmetric functions of the
argument that the space C*(R"), for any n € N, is a Montel space (see [Sch66, Theorem VII, §2,
Chapter 3]). We reproduce it here for the reader’s convenience.

First, we fix an equivalent sequence of seminorms on g; which give the same topology. Let K, be a
compact exhaustion of (R>?), that is, let {K,, }o.; be an increasing sequence of compact sets such that
U, K, = (R?*4)X. Then define the seminorms

Pn(f) = sup (107 fllL=(x,)- (4.6)

|a|<n

These seminorms are equivalent to those given in equation (2.10), as the reader may check. This implies
that g, is indeed a Fréchet space and hence a barrelled space by Lemma 3.5. We will now show that
g satisfies the Heine—Borel property, that is, that bounded closed subsets are compact. Note that since
gx is a metric space, it suffices to show that bounded closed sets are sequentially compact. To this end,
let B C g be a bounded, closed set, and let {fi};”, C B. Then by definition of bounded, there exist
constants C,, > 0 such that

sup 10 fillL=(k,) < Cn, Vla| < n. (4.7)
keN

We will be using the convention that subsequences of { f;} are still denoted by { fx }. We take subse-
quences and diagonalize in the following way:

1. Apply Arzela-Ascoli and diagonalize with respect to K,, to get a subsequence fr — f locally
uniformly in L.

2. Apply Arzela—Ascoli again and diagonalize with respect to each || < n to get a further subsequence
0? fr, — 3 f locally uniformly in L.

3. Now, we can conclude that fy — f in gx. Hence, since B is closed in g, we have proved that f € B.

Hence, the space gy satisfies the Heine—Borel property. Since we noted above that g is also barrelled,
we conclude that it is a Montel space (recall Definition 3.6).

Finally, we are ready to conclude the proof of our lemma. By invoking Lemma 3.7, we now have
that g7 is Montel and that gy is reflexive. The fact that g is (DF) follows from Lemma 3.9 since g is
a Fréchet space. O

We now have the necessary ingredients to prove Proposition 2.2.

Proof of Proposition 2.2. The proof is an application of Theorem 3.20 with E' = g; . Indeed, Proposition
2.1 tells us that [+, -], is continuous and using the canonical isomorphism (g;)" = gx given by Lemma
4.1, there is a continuous, a fortiori hypocontinuous, bracket [, ']gk : E¥ X E* — E*. It remains to
check that g;_is a k*-space.

To show this property, we need to check that for any n € N, the product (g;)" is a k-space. (g;)"
is (DF) Montel, since gi is (DF) Montel by Lemma 4.1 and a finite product of (DF) Montel spaces is
still (DF) Montel (see [K679, pp. 370, 403]. By Theorem 3.13, (g;)" is sequential, hence a k-space by
Proposition 3.12. This completes the proof of the proposition. O

We next turn to proving Proposition 2.4, asserting that the Liouville map ¢z, : (R*)N — g3 isa
morphism of Poisson vector spaces. To do this, we need the following technical lemma computing the
Gateaux derivatives of ¢ ;..
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Lemma 4.2. It holds that 1 ;, € C®°((R*)V, gy) and foreveryn €N, z,, WN, Sawh € (R2)N |
n n 1 n;
A" iziolzy ) (why. W) = (1) 1 > Z(X) Ve, (X)wm) (4.8)
neSy 0<ny,..., ny <n
ni+--+nn=n
where the summation ), is over all tuples
I=G"..,iY), V=Gl i) € {0, 1Y withi] +---+i) =n, 4.9)

i

0 ; ; ®nj . n 'k ;
and w ) denotes the factor in the tensor product is vacuous. Here, V=6, . Ry W) i the
distribution in £'(R*?) defined

N » _ oo
Vo e CORM), (@, V5, (QwE )= (CDYVe(zan) QW . (410)
k=1 k=1

with V& ¢ = (0xe1 0,6, - -+ 0 an; & B t,D)al B =l and : denoting the tensor inner product.
~~~~~ nj n;j=

Proof. The proof follows from the multlinearity of the tensor product and Taylor’s theorem. O

Remark 4.3. Specializing the identity (4.8) to n = 1, we obtain

dLLio [EN](EN) = Z Z 6Zn(1) : Z,r(, 1 ® (V(SZ”(” Wﬂ(l)) ® 5Zn(,+1) - ® 6ZR(N) .

7T€SN i=

A.11)

Proof of Proposition 2.4. Let F,G € C*(gy ), and set F := Fotr;0,G = Gotpio € C*((R?*4)N). By
the chain rule, we have the identity

N
ZVZiF(gN)~wi=dF[gN](mN)=df[LL,-o<gN)](dLL,-o[gN](mN)), Ywy € RV, (4.12)
i=1

Identifying dF [tri0(z N )] as an element of g and using equation (4.11), the preceding right-hand side
equals

<d]:[LLi,, (zp)], driolzy] (EN»nggi,

1
=7 20 2" Ver@8F lizio (@) Gy - Zmw)- (4.13)

’ KESN i=1

Since dF[trio(z,)] is symmetric with respect to exchange of particle labels, the right-hand side
simplifies to

N
D i Vo dF [inio(zp)] 25 2w). (4.14)
i=1

Returning to our starting identity (4.12), the arbitrariness of w ,, and the uniqueness of the gradient field
imply that

Vo F(zis....2n) = Vo dF [iio(z )z, .. o2n), VI<i<N. (4.15)
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With this identity, we compute
N
{F.GIn(zy) =N 3 (ViF - ¥,,G = Yy F -G ) (z)
i=1
N
= NZ (ind]:[LLio(gN)] : Vv,-dg[LLio(éN)] - Vvid]:[LLiu(ZN)] : Vx,-dg[LLiu (EN)])(EN)

i=1

= {dF [tLio (251, G [eLio (20 )1} (20)- (4.16)

Since {d]—' [tLio(2p)]dG [tLio (2 N)]} w IS symmetric with respect to exchange of particle labels, the
last line may be rewritten as

3 (0P Tutio (21,06 ki 2 1} By 8 @ 6

neSN N _Q;{\,
= <{df[tLio(§N)], dG [eLio(zp)]} s tuo(gN)>
ON 8}y
={F.G}g, (trio(zy)) (4.17)
which is exactly what we needed to show. O

Using a similar argument, we can also prove that the empirical measure map tg)s from equation
(2.52) is also a Poisson morphism. This then proves Proposition 2.15. First, a technical lemma, analogous
to Lemma 4.2, for the Gateaux derivatives of (g 3s. We leave the proof to the reader.

Lemma 4.4. It holds that tgp € CW((de)N, gT) and for everyn € N, gN,y}V, oL WRE (RZd)N,
1 N n
dnLEM[gN](m;\Ia’m;l\]) = NZ(_I)nVan(;Zj . ®W§( (418)
j=1 k=1

Proof of Proposition 2.15. Let F,G € C*(g]), and set F := F oty and G := G o1y, which belong
to C*((R?¢)N). By the chain rule, we have the identity

N
D VLF(zy) - wi = dF[em ()] (diem [z 1(wy)), VY € (R2DV. (4.19)
i=1

Identifying dF [tem (z,)] as an element of g; and using the identity (4.18) specialized to n = 1, the
preceding right-hand side equals

1 N

(dF L ()] Qeem (21 00p))y o= 0 Dy (VedFluem (2D ()). (420)
j=1

Returning to our starting identity (4.19), the arbitrariness of w ,, and the uniqueness of the gradient field
imply

V(2. 2n) = %(vzdf[LEM(gN)])(zi), VI<i<N. @21
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With this identity, we compute

N
{F.Gn(zy) =N D (Vi F - V,,G =V, F - V., G)(zy)
i=1

=NZ( (Ve Leem (2 ) e0) - 2 (TudGLaae (2,120

V0 F Ten (2D ) - (V200 e (gNn)(zi))

N
1 = 5 2\ (VaaF leens (200D (@0) - (VoG ()] ()

i=

—_

~(VydF[tem (23)D) (1) - (V<dG[tem (gN)])(zi)). 4.22)
But
N
{F. G} (em(zy)) = <{d.7:[LEM (219G [z (23 )1} aa = Z 5Zi>
=l g1-q;
1 &
N Z {d]:[LEM (ZN)]’ dG{eem (gN)]}(de) (z), (4.23)
i=1
which equals the final two lines of equation (4.22). Thus, the proof is complete. O

We close this subsection by proving the Hamiltonian formulation of the Liouville equation as given by
Proposition 2.3. The reader will recall from equation (2.16) the definition of the Liouville Hamiltonian
functional Hy ;0.

Proof of Proposition 2.5. We remark that since Hp ;, is a linear functional, it is trivial that we have the
identification dH ;o [¥] = Hnew € gn for every y € gy, To find a formula for the Hamiltonian vector
field X4, , with respect to the Poisson bracket {, .}97\/ , we compute for any F € C*(g},) and y € g},

{F. Heiotg:, (v) = ([dF[y]. dHLio[¥11gy-7)
= <[d]:[’y]’HNeW]gN77>

aN—Gpn

SN -GN
N

=<df[y],—NZ(divxi (Vv Hnewy) - divi, (vx,.HNewy))> 2
i=1 N

where the ultimate line follows from unpacking the definition of [, -], and integration by parts. Since
the second entry of the pairing (-, ), —aly in the last line satisfies the characterizing property of the
Hamiltonian vector field (recall that F was arbitrary), the uniqueness of the vector field implies that

N

XHLio (y) = _Nz<divxi(vv,-’HNew7) - din(Vx[HNewy))
i=1

1<]<N

:_Z v; - le_— Z VW (x; —x;) - Vv,y), (4.25)
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where the second line follows from the product rule and the fact that V., V,, Hnew = Vi, Vi, Hnew = 0.
Thus, we have shown that equation (1.9) is equivalent to

)./ = X’Hu.—, (7)’ (426)
exactly as desired. O

Remark 4.5. Together, Propositions 2.3 and 2.15 imply that the Liouville map ¢z, sends solutions of
the Newtonian N-particle system (1.6) to solutions of the N-particle Liouville equation (1.9). Indeed, if
zy €C( (R24)N') is a solution to equation (1.6) on some interval 7, define ¥ := 17, (éﬁv) for every
t € I. Using that ¢}, Hpio = Hyew, Which is easy to check from the symmetry of Hy ., Proposition
2.4 implies

V‘F € Cm(g}k\/')’ {%NCW’ L*Li()‘F}N (gi\/) = {HLiO’ ‘/—"}g;\l (7’[) (427)
Since ¢, F € C*((R*)N) by Lemma 4.2 and the chain rule, one has that

d d . X
E-F('yt) = E(LLiOF)(étN) = {HN6W7 LLio‘F}N(gg\]) = {HLi()v f}g}‘\] (Vt) (428)

Since F € C*(g},) was arbitrary, the claim follows.

4.2. Lie algebra Gy of N particle observables

In this subsection, we transition to discussing N-hierarchies, with the goal of proving Theorem 2.5,
which asserts that (O, [, ], ) is a Lie algebra in the sense of Definition 3.15. As sketched in Section
2.2, we accomplish this task through a series of lemmas.

The starting point is the introduction of the maps €x n : gx — gn for N > k > 1, which in turn will
be used to define a Lie bracket on the space of N-particle hierarchies of observables. For the reader’s
benefit, we recall from Section 2.2 the definition of e y:

1
2d\N (k) . (k)
Yoy e @Y an () = o 2 MGG @)
k2 Groeni) €PY
wherez = (zj,...,2) and
PY ={(j1,....jk) : 1 < j; < N and j; distinct}. (4.30)
For example, if k =1, N =2, and f M e C‘X’(de), then as a function we have
1
a2(fM) a2 = 3 (£ @) + 7V (@) (431)
In the sequel, it will be convenient to use the tuple shorthand ji = (ji,...,jx) € PV, similarly fj(kk)

and z, .
—Jk
The next two lemmas show that each map e n is continuous, linear and injective (cf. [MNP*20),

Lemmas 5.3 and 5.4]). In particular, the first two properties imply that ex x € C*(gk, 8N )-
Lemma 4.6 ¢, are continuous. The maps €x N : 8k — Gn are continuous and linear.
Proof. Linearity follows directly from the definition. For continuity, note that the spaces gx,gn are

Fréchet, so it suffices to show that for any sequence (f; ;‘;1 C gx with f; — f € gr, we have
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€x,N (fj) — €x,n(f) in gn. By linearity, we may assume that f; — 0. Now, for any compact set
K c (R*®)N and j € N, we estimate using triangle inequality

1
praleen () < —= . sup 19 (fp, lL=cx) < pr.n(f), (4.32)
|Pk | N la|sn
pkEPk
which converges to 0 as j — oo. Since K, n were arbitrary, we have that e; v (f;) — Oingn. )

Lemma 4.7. (ei n is injective) The maps € N : 9k — Gn are injective and hence have well defined
inverses on their images.

Proof. Fix 1 < k < N. To prove injectivity, we will show the contrapositive statement: If £} £ 0, then
ex.n (f) # 0. The argument presented below is a ‘classical version” of the argument used to prove
[MNP*20, Lemma 5.4].

We introduce a parameter n € Ny with n < k. We say that f ) has propertyP,, if the following holds:
If n = 0, then there exists a point zg € R?>¢ such that

F®(z0,...,20) #0 (4.33)
and if n > 1, then there exist points zg, ..., 2, € R24 guch that

FREE 21, za) 20, (4.34)

where zék‘" = (20,...,20) € (R*)k and the Cartesian product is understood as vacuous when

n = k. Observe that f¥) always has property Px_, since f¥) is nonzero by assumption, therefore there
exist points zg, ..., Zk-1 € R24 guch that f(k) (20, -+ +»2k-1) # 0. We define the integer npy;, by

Nmin == min{0 < n < k : £ has property P,}. (4.35)

To avoid confusion over notation, we first dispense with the trivial case ny;, = 0. The definition of
P, implies that there exists a point zo € R>? such that f%) (zo,...,z0) # 0. It then follows from the
. k k . .
definition of f((jl?---vjk) that f((j]?_._’jk)(ng) = f®) (zx*) for each tuple (i, ..., jx) € PY . Hence,
N (f N GN) = rP 5" = 0. (4.36)

We next consider the case 1 < npyin < k. The definition of P,

< nmin iplies that there exist points
205+ -+ Zny, € R?? such that

FEEET ™ 21, Zn) # 0. 4.37)

We claim that ek,N(f(k))(ZgN_"’“i",zl, ve s Zny,) # 0. To see this, we observe from unpacking the
definition of e,y (f*)) that

~Hmin k “Hmin
een (FO Nz gn) = Cen D S @ TR ). (438)

jkEP}:]
For each jx = (j1,...,Jk) € PkN, we can use the symmetry of f%) to write

k i
£ N T 2 2 = FP e, wi), (4.39)

where for some r < k, w; = --- = w, = z9 and for r < i < k, the w; are distinct elements of
{z1, -+ -» Zug ;- If ¥ > k — npin, then by definition of np;p, f(k)(wl, ...,wg) = 0. Since only npyy
coordinates of (z(>)< N i, Zny,) are not equal to zp, we must have r = k — nyin. But in this case,

the symmetry of fX) implies
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SO wi) = FO T 2y, ey, #0,

by choice of the points zg, z1, . . . , Zn,,,- Therefore, we have shown that

(k) XN min —_ k
Cr.N Z I, Jk)(z - ,Zl,u-,anm)—C;(,Nf( Y wiye.ow

.....

Xk =N
=C]’(,Nf(k)(zo nmln,zl,...

#0,

where C/
completmg the proof of injectivity.

(4.40)

’ Z"min)
4.41)

LN is some other combinatorial factor depending on &, N. This then implies ; n (f k)y £ 0,

O

We now present a technical lemma which will be applied to prove Lemma 4.9 for the filtration

property. It shows the commutativity of the following diagram.

€a,b N
Ga 7 Ob
AN
AN
AN
AN
N
AN
N
]
N
o
e €&, N
N8

Lemma 4.8. Let 1 < a < b < N. Then we have that €,y = €p,N © €q,b-

Proof. Let f € g,. Then by definition of €, and €5 n,

eb.n (€an () (zy) =

my €P}7V

1
- |PZV||Pb| Z Z fz (mn, My e sMing ))

4 myeP) ngepPl

|PN| 2y €arH Gy my)

(4.42)

Fix an a-tuple 1, = (I1,...,1s) € PY. Let o4, denote the set of b-tuples m, € P} such that

{li,....la} € {my,...,mp}. Anyelementinm;, € &, is a permutationof (/y, ...

’lahj]?'-"jb*a)for

some choice 1 < j; <-+- < jp_q < Nnotin{ly,...,l,}. There are (Zf;) such choices (i, ..., jp-a)
and b! permutations of b letters, hence
N-a b!(N —a)!
o | = b= ———— 7" | 443
|| (b— ) (N=b)!(b-a)! (4.43)

We also see that, given my, € &, there is a unique choice of indices n, . . .,

(mp,,....myu,) = (l1,...,1q). Let us denote this unique choice by n, .

PINDIEREDY 2 =),

my, eP) n,ePt l,ePY  (mp.ng)eP) xPL
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For any (mp,n,) € &, X {n,,,}, we have f(g(m )) = f(z, ). Returning to equation (4.42),

,,,,,,,,

this identity and equation (4.43) imply

o1 b!(N —a)!
v (o &) = (o N = i - 2, 1@,

(N a) Z f(Zl
: l,ePN
= ean (£)(zy): (4.45)

where the penultimate line follows from simplification of the combinatorial factor in the first line and
the ultimate line is tautological. Hence, the lemma is proved. O

Lemma 4.9. (ex y filters) Let N € N, and let 1 < €, j < N. Then for any O egrand gV e g;, there
exists a unique h'®) € gy such that

[ee,zv (), fj,N(g(j))]g —an(hW),  withk =min(l+j - 1,N), (4.46)
N
given by
min(¢. /) .
*) _ (N -ONN - ))! _ GINT))
M = ) i == e Sy (F O A g, @)

r=ry

where ro = max(1,£+ j — N) and for 1 <r < min(¢, j), O A, g € C®°((R*)*I=") is defined by

) ¢ ] r
¢ ( W ¢
f( ) Ar g J)(§€+j7r) = (r) (r)rlz (Vx,-f( )(Q) -Vvl (Z(] ..... il l’+rr))

i=1

V.82 Vi fOz (4.48)
Remark 4.10. In the right-hand side of equation (4.48), the ranges in the tuple (1,...,r,+1,...,{+
j=ryor(l,...,r,j+1,...,j+{—r) are understood as vacuous whenever the lower and upper bounds
do not make sense. For example, if j = 1,thenr =1 and (1,...,r,{+1,...,{+ j —r) is understood
as just (1). Singling out these exceptional cases would be tedious, and therefore we will not do so.

Proof of Lemma 4.9. Injectivity of the ey operators shows uniqueness. The case where {+j -1 > N
is trivial since the operator €y is the identity on g . So, assume that £ + j — 1 < N, in which case
k = £+j—1.From the definition (4.29) of €y, we obtain the following equality of functions on (R?¢)N :

Eg,N(f([)),éj’N (g(j))]g = N{Ef,N(f([))a €j,N (g(j))}(de)N
N

&) . (J) ) (£)
e S S (e sl v

i=1 mpePN n; EPN

N min(¢,j) N
4
- [PN[|PV| Z Z Z(Vxlf( ) v,gr(tj,)
4 J r=1 (mg,nj)eP;VxPJI.V i=1
{mi,....me}0{n1,...n; }|=r
t
- Vgi) Vi fa). (4.49)
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To avoid any confusion over notation, we remind the reader that, here, ,f,i) , g,(,jj'.) are regarded as functions
on (R??)N and therefore, for instance,
¢ ¢
e (2y +hei) = fu (2)
h b

Vi Smg (2y) = lim (4.50)

where e;  denotes the basis vector in (R>)N for the x; variable. Note that if i ¢ {my,...,m¢} N
{n1,...,nj}, then Vzl.f,f,i) =0or Vzl.g,(,{l.) = 0. Thus,

N
Z(...) = Z ¢ (4.51)

i=1 iE{ml,.A.,mg}ﬂ{m,.“nj}

In particular, if the cardinality of the intersection equals 7, then there are only r indices i for which the
expression inside the parentheses is possibly nonzero.
Let 1 <r < min(¢, j). Let us count the number of elements in the set

{(m¢,nj) € PY X PY : [imy,...omey 0 {ny,. .o} =1} (4.52)

For a positive integer ¢, let gjév denote the subsets of {1, ..., N} with cardinality g. As the reader may
check, there is a bijection between the set (4.52) and the set of tuples

T= (Ao,r» Aopos,m, Aopos,n» Ano,m’ Ano,n» T ,mos Trns T—r,m» Tj—r,n)
€ PN X PEXPIX PN X PN X ST X Ser XSy (4.53)

In words, A, is the set of r overlaps between the elements of m, and n;; A, pos,m> Aopos,n are the
sets of indices corresponding to the placements of the overlaps in m,, n;, respectively; Ao m, Anon
are the remaining sets of elements in m, n;, respectively, which do not overlap (and therefore which
are disjoint from A, ,-); 7, s, 7r , are permutations of the sets Ay pos,m» Aopos,ns and Te—p m, Tj—p n are
permutations of the sets {1,..., N} \ Aopos,m> {1, ..., N} \ Aopos,n, respectively. We note that

(Ao,r’ Aopos,m» Ano,rna Ty ,m» Tf—r,m) = my (4.54)
(Au,r, Aopos,n, Am),n’ Tr,ns Tj—r,n) = nj (455)

define bijections.
Fix an overlap set A, -, and fix nonoverlap sets A, m, Ano.n- If

my <> (Ao,r’ Aopos,m, Ano,m’ Ty ,m» Tf—r,m)’ (4.56)
mé < (AO,V’A:)’)()S’WU Ano,maﬂ';,m, Té_r’m)’ (4'57)

where < denotes the bijection, then the symmetry of f(©) implies f,,(,{;) = frfﬁ). Similarly, if
’

n; < (Ao,r’ Aopos,ns An(),n’ TTr.ns Tj—r,n)7 (458)
n;' o (AO,V7 A(,)pos,n’ Ano,na 71';’", le'_r,n)a (4.59)
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then the symmetry of g/ implies g(]) = g<],) Since | P!| = ( ) | P | = (/) and |S, | = r!, it follows that

l t
> > (o) - Vurgs)) = Vaid) - Vg

(m(%,nj)GPNxPJ’.V ie{my,....me}¥0{ny,...,n;}
[{mi,..., me¥n{ni,..nj}|=r
J\ (¢
:( )( )r! 2. (Vx.f Ve -V gl Vvlf“’)) (4.60)
r)\r

T i=1
Aopos,m:Aopos,n:{1 ~~~~~ r}
T .n=7r,m

Since there is a bijection between tuples p,,;_,. € PY . and tuples

l+j-r
N N- N-¢
(Ao,r, Ano,mv Ano,n, Ty, ms Tb—r,m> Tj—r,n(e ‘@r X g[_rr X gjj_r X Sr X Sf—r X Sj—r, (461)

we conclude upon relabeling that equation (4.49) equals

@) . o) () ()
( )( )r' Z Z (pr P[ vplg(pr P et1sej- r) pr' gp/ vpl f(pr P jil;jrl- r))

r=1 Pevj—r i=

N min(¢, )

N N
PYIPY
(4.62)

where we have used the shorthand (p,., pml;fﬂ-,r) =Pty s PrsPesls - > Pexj—r) (similarly when £
and j are swapped). Note that for 1 < r < max(1,¢+ j — N) =: r¢, the preceding sum is vacuous.

Using the A, wedge product notation and the fact that the sum over peyj—, € PN L4jr is invariant
under the S¢4;_, action, we can rewrite the expression (4.62) as

min(¢, )

N )
v E E €3] ()
|PN{|PY| U A8 e

4 J

r=r N
O Projr €PN,

N min(¢,j)
= —— P lerjrn (Symey; (F A )
|PY 1PV !
4 J r=ry
N min(¢,j) NI , )
= €r4j-1N ——€tujor,trj-1 (Symey o, (F O A )], (4.63)
+j |P£,V||P§V| = (N=C—-j+r)! T+ L+j-r r

where to obtain the final line, we have used Lemma 4.8 witha =€+ j —r,b = € + j — 1 and have used
the linearity of €41, n. Observing

N N! 3 (N -OUN - j)! 4.64)
|pg,v||p§,V|(N—f—j+r)!‘(N—l)!(N—f—j+r)!’ '
we arrive at the stated assertion of the lemma. This completes the proof in all cases of ¢, j. O

With Lemma 4.9 in hand, we can show that the expression (2.25) for [F, G]g v 18 well defined. Indeed,
fix1 <k < N,given F = (f(f))(l,\il,G = (g(f))jl\il € Oy, Lemma 4.9 yields, forany 1 < £,j < N
satisfying € + j — 1 = k,
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[een (s (e ]

MG (N = 01N = )
= €k,N

NIV =77 ek (Symeey (£ A g | (4.65)

r=ro

Summing over ¢, j such that £+ j — 1 = k and applying ek  to both sides, we arrive at equation (2.25).
In fact, we have also obtained an explicit formula for [F, G]@N.

min(Z,j) .
(k) _ (N=OWN=))! . () ()
[F’G](BN - Z Z (N— 1)!(N_g_j+r)!E[+J—r,k(Symf+j—r(f /\rg )) (466)
1<t,j<N r=nry
+j—1=k

If k = N, then we should modify the preceding reasoning to sum over £ + j — 1 > N. In all cases of k,

we obtain
min (¢, j) .
k (N=0O!UN-))! )
F.Glsy = DL D, o= gk ey £ e g
1<l,j<N r=ro : J !
min(f+j-1,N)=k
4.67)
Remark 4.11. Note that the constant
(N=-0O!UN -
ijNr = J (4.68)

(N-DUN—=-C—-j+r)!

satisfies limy 0 Cjeny = limy 5o N'=" =1,_,. This observation will be used in Sections 5.1 and 5.2
to evaluate N — oo limits of N-particle Lie and Lie—Poisson brackets.

We now have all the ingredients to prove Theorem 2.5.

Proof of Theorem 2.5. We first consider the algebraic part, which amounts to checking properties 1-3
from Definition 3.15. This part is similar to the algebraic portion of the proof of [MNP*20, Proposition
2.1], but we present again the computations in an effort to make the present article self-contained.

The first two properties are a ready consequence of the definition of [-, -], . For the third property,
let F,G,H € ®p. We need to show that

[F.[G.Hlsy g, +[H:[F.Gley g, + |G, [H. Flsy]g, =0 (4.69)

Since € n is injective, it suffices to show that e; n applied to the k-th component of the left-hand side
of the preceding identity equals the zero element of g) . We only consider the case 1 < k < N and leave
the k = N case as an exercise for the reader. Using the definition of the Lie bracket and bilinearity, we
have the identities

(k) j (j2)
e ([F. 16, Hlo ], ) = WZ_l:k |&5n (F). e (1G.HIZ |

Z Z [E N(FUD), [e N(G(J%))E N(H(J4))] ]

Jitja=l=k j3+ja—1=j>

= D, [ea,N(F“‘)), 6.0 (G, e (H) | ] . (470)
O+ 0=k +2 SN gy
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. , .
6k,N([H, [F,G]cﬁN]ég]i) = Z [fjl,N(H(”)),ejz,N([F, G]é—,j;))]gN
Ji+in—1=k

= Z [GJIN(H(JI)) [E N(F(“))e N(G(M))] ]

an
Jitja—1=k j3+ja— N

= > [efs,N(H“’»*)),[em(F““),efz,N(G“’”)] ] . @7
g

bi+0+0=k+2 Nlgn

(k) . Uy e, (j2)
an([G.[H. Floy |0)) = j]H;:k |5 (G ep (1. FIE))

Z Z [fjl,N(G(j]))s [6j3,N(H(j3))9Ej4,N(F(j4))]qN]

Ji+ja—1=k ja+ja—1

%,N(G“’”),[ef3,N(H<"3)),efl,N<F<"l>)] ] . @)
SV Ign

aN

I8 +fz+€3=k+2

Since [, 4 is a Lie bracket and therefore satisfies the Jacobi identity, it follows that for fixed integers
1 <&,6,63 <N,

0= |e,n (FD), |:6f2,N(G(€2))9€f3,N(H(€3)):| ]
N aN
+ E(JS»N(H(@))? [éfl,N(F([;l)), €6,,N (G([)z))] :| (473)
N aN
+|ean (G'?), [efz,N(H(&)),efl,N(F([‘))] ] )
N aN
Hence,
k X .
Ek,N([F, [G,H](Y)N]((ﬁl\),"'[H, [F’G]GN]((ﬁ) [G H, F](ﬁN]( >):0€gN. 4.74)

We now consider the analytic part, which amounts to checking the continuity of [, -], . We wish to
show that

GOy XOn — Oy, (F,G) = [F,G]g, (4.75)
is continuous, for which it suffices to show that for each k € {1,..., N}, the map
Gy X6y >, (F.G) - [F.G]y)

is continuous. By the G, Lie bracket formula given in equation (4.67) and the continuity of €, » from
Lemma 4.6, the continuity of (F,G) = [F, G]g, is then reduced to proving continuity of the map

CO (R x C¥(RM)) = c(®)HT),  (f19,8Y) o f O A g, (4.76)

where A, is defined in equation (4.48). Since A, is a linear combination of products of derivatives, it is
continuous by a similar argument to the analytic part of the proof of Proposition 2.1. O

We conclude this subsection with what we believe is an interesting fact relating the mappings ex v
with the notion of taking the marginal of a distribution, the latter notion being important to obtaining

https://doi.org/10.1017/fms.2023.72 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.72

36 J. K. Miller et al.

Hamiltonian vector field formulae in Sections 4.3 and 5.2. For each 1 < k < N, define the k-particle
marginal mapping

[RZd)Nk d§k+1;N : g*N - g]*" “.77)

where, for y € g3, f(RZd) vk 42, .Y is the unique element in g; satisfying

= 1ON-k .. 4.
v € g <¢, /(dew dgk““y>gkg; (Symy (¢ @ 1°775), v}, o0 (4.78)

We additionally define the mapping f dzn+1,N 0 8y — @) to be the identity map. Sometimes,
we use the alternative notation /(RM) ~vk dY(+. 2, ,,.)- Our duality result for the maps e n and

/(RM) ~-k dZ;,,. is the following proposition.

Proposition 4.12. For 1 < k < N, the map f dzis1,N 8y — G Is a continuous linear operator and
we have the operator equality

€ N =/d§k+w. (4.79)

Proof. Lety € g), and ¢ € gr. We calculate

" 1
(0 6n g g = (RN (@)7)g g = <W ZN ¢mk,y> (4.80)
kmePg oN =Tl
and
, d = (S 1®N—k , .
_ 1 ®(N k)
—<m D, (@@ 1PN ) (4.81)
oEeSN ON -Gy

where (¢)®1®N‘k)a(§N) = (¢®1°V %) (25 (1) - - -, Zor(n))- For each k-tuple my € PY, define the set
A(my) = {o € Sn : (o(1), ..., o(k)) = mg), (4.82)

which has cardinality (N —k)!. If o € A(my) N A(m;} ), thenm) = (o°(1),...,0(k)) = my, which im-
plies that the sets A (my,) are pairwise disjoint. Given a permutation o € Sy, setmg = (o (1),...,0(k)).
Then trivially, o € A(my) and we have shown the partition

|_| A(my) = Sy. (4.83)

mkEPI](V
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Hence, we have

Dot ), = 3 N (pe 19V h),

TgeSny myeP) oeA(my)

D bm,

my P o €A(my)

(N=K)! > m,- (4.84)

mkEP}(V

Recalling that |P]1<V| = N!/(N - k)!, we have shown that equation (4.80) equals equation (4.81). This

equality of operators proves the continuity of /(RM) Nk by Proposition 3.3 and Lemma 4.6. O

dz; N

Remark 4.13. One may also obtain Proposition 4.12 stated below as a corollary of Propositions 4.17
and 4.18, but we feel the argument presented above is more direct.

4.3. Lie—Poisson space &), of N-hierarchies of states

We turn to proving Theorem 2.6, which asserts that there is a well-defined Lie—Poisson structure on the
dual space (ﬁ’;\, of N-hierarchies of states. Later, in Section 6.2, we will use this Lie—Poisson structure
to demonstrate a Hamiltonian formulation of the BBGKY hierarchy.

We start with a technical lemma, which is a straightforward consequence of Lemma 4.1.

Lemma 4.14. For each N € N, the space Gy is reflexive.

Proof. Since each g is reflexive by Lemma 4.1, ® is also reflexive since, by using once again [K679,
Proposition 2 §14, Chapter 3], we have the chain of isomorphisms

N

N o N * N
G = (EB gk) = (1_[ g;;) = @g;j = (P =6Gy. (4.85)
k=1 k=1

k=1 k=1
O
Proof of Theorem 2.6. The proof is similar to that of Proposition 2.2 for g; , except now we will apply
Theorem 3.20 with E = (5}“\,. First, note that by Lemma 4.14, Theorem 2.5 and equation (2.14), the

bracket on E* = G is continuous, a fortiori hypocontinuous. It therefore suffices to show that E is a
k= -space in the sense of Definition 3.18. To show this, note that for n € N,

n N
6" =] 1] s (4.86)
J=1 k=1

which shows that (®},)" is a finite product of (DF) Montel spaces g; (recall Lemma 4.1), hence (D F)
Montel itself. Therefore, Theorem 3.13 implies that (673,)" is a sequential space, which in turn implies
that (®3,)" is a k-space by Proposition 3.12. Since n € N was arbitrary, it follows that ®, is a k*-
space. O

Abstractly, Theorem 2.6 tells us that for any functional G € C* ((Y)}“V), there exists a unique Hamilto-
nian vector field Xg € C*(®y,, ®},) characterized by the property that

VFECU(6y),  (Xo(F))(Tw) = dFITN I (Xg(Th)) = {G. Fley (Tw).  (487)
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For applications, in particular as it pertains to the BBGKY and Vlasov hierarchies (see Sections 6.2 and
6.3) and evaluating limits as N — oo (see Section 5.1), it is useful to have an explicit formula for the
Hamiltonian vector field Xg. We provide such a formula with the next proposition.

Proposition 4.15. If G € C*(®},), then we have the following formula for the Hamiltonian vector field
Xg with respect to the bracket {-, '}(51*\/ sforl1 <€ < Nandanyl = ()/(k)),i\’:1 € By,

N min(¢,j) R
0 _ | () (k)
Xg(I) _Z Z C‘/Nr(r) / Rkt A2pyp Z G o, e, enj-r) Y » (4.88)
j=1 r=ny (R*) a,eP! (R2d)k
(N=-O!(N-j)!

where Cejny = NN =D k :=min({+j - 1,N), and roy := max(1,{ + j — N).

Before proceeding to the proof of Proposition 4.15, some explanation regarding the well definedness
of the expression (4.88) is in order. First, thanks to the identification g; = g’;.*, each dG[I']V) €

g; is a symmetric element of the test function space C®((R*?)7). Thus, the symmetrized function

Ya,cpt AG[T] ((;) (41....00j_r) 15 anelement of g, thatis, a symmetric element of C™( (R24)k) . Although

y™®) € g, that is, a symmetric distribution on C*((R??)¥), is not a function, the usual rules for
multiplication of a distribution by a test function and differentiation of a distribution show that the
Poisson bracket above is again a well-defined element of g; . Hence, by Proposition 4.12, we can take
its {-particle marginal, which is symbolically denoted in equation (4.88) by the integration over the last
k — ¢ coordinates, to obtain an element of g,. Thus, the right-hand side in equation (4.88) is nothing but
a linear combination of elements in g:‘,, hence itself an element of g;. With these clarifications, we turn
to the proof of Proposition 4.15.

Remark 4.16. There are some exceptional cases concerning our notation in the right-hand side of
equation (4.88), which, out of convenience, we do not separate out. When k = ¢ the integration is
vacuous. When j = 1 (and therefore ry = 1), the tuple (a,,£+1, ..., ¢+ j—r) should be replaced by a;.
When j =2, the tuple (a,, £+ 1,...,¢+ j —r) should be replaced by (a;,£+1) ifr = 1 and ay if r = 2.

Proof of Proposition 4.15. To increase the transparency of our computations, it is convenient to use
integral notation, instead of distributional pairings, throughout the proof. By definition of the 67},
Poisson bracket (2.28),

N
FGe, M= [y eFITLAITI) ). (4.89)
= J w2k

By the formula (4.67) for the y Lie bracket,

min(¢, )
[0F[T]. GG, = ), > Cinreessork(Syme, @FITIO A, 4gI1D)),
1<t,j<N r=ry

min({+j-1,N)=k
(4.90)

where C¢n is as above. To compactify the notation, let us set £(© := dF[I'](Y) and g/ = dG[T']V),

the dependence on I" being implicit. By definition of €z, ;_, x and using the invariance of the summation

ZW ek under the Sy ;_, action, we have that
+j-r j-r -
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. 1 )
€l+j-r.k (Sym€+j—r (f([) Ar g(j>)) = Pk | Z (f(f) Ar g(j)) _
Cj=r ' praePl, . Pevjor
1 ATEATRS o ) ) (0)
- | J J
- Pk | Z (r) (r)r- (pr f Vp g(pr Pe+1;0+5- r) pr gpf Vpl f(pr Pj+1;j+0- )) ’
l+j—r p[+j7r€p§+j_r i=1
(4.91)
where the ultimate line follows from the definition (4.48) of A,.. Thus, setting C¢jn,k = w
l+j-r
we arrive at the identity "
N min(¢,j)
- ) (k)
{#. G}, (I) = Z Z Z Cejnrk Z Z (/de)k dy*(z,)
k=1 1<t,j<N r=ry Pe+j— rGP =
min(£+j-1,N)=k
(0) 6)) (f)
(pr (Zk) g(Pr Pe+1:0+j- ) (—k) xp gpl (Zk) Ypi (Pr Pj+1;j+e- r)(—k))). (492)
By introducing in the second term of the last line the relabeling ¢, ;_,. of p¢. -, according to
r = Pro Grire = Pj+lijrt-rs  Qesterj—r = Prelyjs (4.93)
we see that
; () ()
(k) ¢ . J
Z Z 4/(‘R2d)k dy (gk)(vxpi fp€ (gk) va g(pr P€+1:(‘+j7r) (gk)
Pevjr €PF =1
() (0
Xp gp, (Zk) val f( Pj+1 sJ+H— r) (—k))
- (k) () . )
- Z Z/ R2d)k dy (gk)(vxpifp’ (gk) VVP 8 (b pesisesj r)(—k)
Pe+j- rEPf+/ -r
() ()
Vx" g(pr p(’+l;/?+j—r) (gk) ’ V f (Zk))' (494)
Integrating by parts (in the distributional sense) the V., we have that
(k) (&) . )
/(Rm)k Y @DV Joe (@) Vo8, prariensn (G
- _ (k) (&) ()]
= ‘/(chi)k d'y (Zk)fp (Zk) lexp VVP g(Pr PF+1:£+j—r) (ék)
- (k) () o)
/( e O ) GOV G (4.95)
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Similarly, integrating by parts the V,,

_ (k) (£) . ()
[RZd)k d?’ (Ek)Vv,,,. pe (ék) Vxl’ig(pr,pml;mj,r)(ék)

Pe+1it+j-r) (gk)

€ . .
= /(de)k dy® (gk)flf[)(gk) div,,, pr'_ggi/)z’

’ '/(de)k dvaiy(k) (ék) ' fP(f[) (gk)vxpig(j) (gk) (4.96)

(Pr>Pe+1:6+j-r)

Since g(f) is locally C*, we have the equality divxp, va,gg) Periterr) = divvp, Vx,,.gg) Pesttsir)”
i t rsPl+10+j—r i i rsPC+10+j-r

Therefore,
(k) () ) () )
/(]de)"' @ (Zk) (pri pe (Zk) ' Vv”"g(PrsPHl;ﬁj—r) (ék) h Vvl’i pe (ék) ’ VxPig(Pr,Pm;mj—r) (ék))

f .
o /() 495,y (@) fod (@), 8, 2

SPeelierj-r) (

(k) . O ) o)
+ /( - AV, v (2 o (@) Va8 e (Ea)- (4.97)
Let us make the change of variable z, — w, according to
w, = Wi, oowi) = (2pys - - Tprajors Tmys -+ s ka—(f+j—r))’ (4.98)

where m| < -+ < my_¢4j—) is the increasing ordering of the set {1,...,k}\ {p1,..., pesj_r}. Write
wi = (yi,u;). Since y®) is symmetric with respect to exchange of particle labels,

_ (k) .0 ()
/( o AT @ @OV 8G) )
(k) . () ()
+ [RZd)k dVvPi Y (ék) fpf (ék)vx,,i3(phpmlﬁjir) (ék)
— (k) (&) W)
- _/(Rw)k dVyy ™ (w) - fre WOV (1 vrerjor Wi
+/ qu-Y(k)(Wk) : f(.g) (Wk)Vy.g(j,) o4 (Wk)~ (4.99)
(R2d )k i — 1;6 N\ — iS (L, 0+1;0+j—r) \—
Next, since we have the partition

N
|_|{({f,j) ef{l,...,N}¥* :min(l+j—1,N) =k} ={1,...,N}% (4.100)
k=1

we can interchange the order of summation over k and summation over ¢, j in the right-hand side of
equation (4.92) to obtain

{F.G}e;, (1)
N N min(Z,j) ¢ ] r © i
. .
) Cenr Z (7‘) (V)r! Z (_ ,/ 2dyk dVyl.y( )(mk) ' fl;f (mk)v“"g({;r,é@l;ﬁj—r) (W)
t=1 j=1 r=ry i=1 (R>4)
(k) (£) ()
+ /( L T AL CR R 8) S (mk)). (4.101)
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By the distributional Fubini—Tonelli theorem, the sum of the integrals in the right-hand side may be
re-expressed as

¢ ()
‘/(Rm)t’ dm[f( )(m[)( ./(de)k ¢ AW, k( (Wk) Vy,g({ s+ =) ()
k ()
_Vyl_'y( )(mk) . Vu,-gd;r’“l;m_j_r) (Kk)))s (4102)

where the inner integral should be understood as the £-particle marginal (recall Proposition 4.12) of the
distribution given by the integrand. Going forward, we return to the original z, x, v notation.

We claim that we can rewrite the preceding right-hand side more concisely in terms of the canonical
Poisson bracket {-, -} g2ayx on (R24) Indeed, consider the expression

() (k)
'/(RZJ)k[?dgf"'];k Z 8(a,,t41,....t4j-r) Y

a,eP! (R2)k
k

_ ) _ © g o0 , *)
= Z Z/(de)k_e d§f+1;k(vxﬁg(a,,€+1 ..... C+j—r) Vipy VVBg(a,,m ..... f+j—r) VigY )
a,eP{ B=1

(4.103)

If g€ {¢+1,...,k}, then integrating by parts to swap V,, and V,, we see that the resulting summand
is zero. Therefore, only coordinates 8 € {1,...,¢} produce a nonzero contribution. Similarly, for

pe{l,....t}\{ay,...,ar},

) _ () _
Vas8iar e, tsjor) = Y88 (an bt trjr) = O- (4.104)

Therefore, by relabeling the sum over 3, we have the equality

.....

) . (k) _ () . (k)
Z/RM)H Zertik Vxﬁg(a, trntrjory VY T Vvp8ian pattnjor) " Y aBY )

) (k) _ () . (k)
_Z/RZd)k ¢ —€+1 k Vxﬂzg(ar C+1,...0+]-1) Vv“iy V"aig(a,,fﬂ ..... {+j-r) aniy )

(4.105)
We claim that

(é’) ) . (k)
Z Z/ R2d)¢ S (Z )~/(R2d)kr dé[“?k (VX“ g(ar 41, O+ j—T) Vv“iy

a,epPt i=1

()
Va8 (an 41, lrjor)  Vay Y )(Z )
¢ Y )
= 2 i v 0
- (}”)r! Z/ 2d)€ _[f (Z ) 2d k¢ d§f+1;k (Vx'g(l ..... r0+1,. 0 j—r) Viy
=1 ¢ (R*) (R24)

()
V"tg(l ..... Fltllrjor) VY )(Z) (4.106)

.....
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Indeed, let m; < --- < my_, denote the increasing ordering of the set {1,...,¢} \ {ai,...,a,}, and
consider the change of variable

mk = (WI"",wk) = (Za13"'1Za,-szmw"',Zm(,rszf+19"'9zk)' (4'107)

Then since f(©) is symmetric with respect to permutation of particle labels,

FOGu 20 = FOwr. . owe). (4.108)
Similarly,
Vo, 79 (2) = Vi y™® (wp), (4.109)
Vi, ¥ (2) = Y5y (wp), (4.110)
Vw8 vttaion @) = V58 tar o tajry W), @.111)

) _ )
Vou 8an e, f+j—r)(§k)—vuig(1 ..... b+l €+j—r)(mk)'

.....

4.112)

Making the change of variable z, +— w, in the first two lines of equation (4.106) and recalling that
|P{| = (f)r!, we arrive at the desired conclusion. Therefore, we have shown that

N N min(¢,j) ]
= . ©
(R0, 0= % Dcom 2 (1) [ azr©)
=1 j=1 r=ry
() (k)
'/(de)kl? d§€+1;k Z 8(ap. 41, taj-r) Y (z0), “.113)

a,ePf (R2d)k

which, upon recalling that £ = dF[T']©) and g) = dG[I']/), implies that

N min(C,j) /.
0 — , J () (k)
Xg() _ZC‘)’M 2 (r)/mw)u 2pri) D0 S9N rar o ajor? .

j=1 r=ry a,ePf (R2d)k

4.114)

completing the proof of the lemma. O

4.4. Marginals

We close this section with the observation that the operation of forming an N-hierarchy of marginals from
an N-particle distribution defines a map which is a Poisson morphism. The material in this subsection
closely parallels that of [MNP*20, Section 5.3] for the quantum setting, as the underlying algebraic
structure is the same. Therefore, we shall be brief in our remarks.

Proposition 4.17 below states that there is a linear homomorphism of Lie algebras & — gx induced
by the embeddings {ex, N }]’{": - The proof carries over verbatim from [MNP*20, Proposition 5.28].

Proposition 4.17. For any N € N, the map 1. : ®n — gn defined by

N

VF=(fO)N eGy,  1(F) = Z exn (X)), (4.115)
k=1

is a continuous linear homomorphism of Lie algebras.
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The dual of a Lie algebra homomorphism is automatically a Poisson morphism between the induced
Lie—Poisson structures [MR 13, Proposition 10.7.2].¢ Therefore, by showing that the map ¢4, : 91*\1 —
®} defined by

; (*) .
Vyegy, ke{l,....N}L  tpar(0)™ = /(RM)M AN (4.116)

is the dual of the map ¢, it follows that ¢, is a Poisson morphism. The proof is completely analogous
to that of [MNP*20, Proposition 5.29], replacing the trace pairing i Tr; .y (-) by the duality pairing
¢ d6en 6,5 therefore, we omit the details.

,,,,,

Proposition 4.18. The map tmar : 85 — O}, defined above is a morphism of Poisson vector spaces in
the sense of Definition 3.27.

5. oco-particle geometric structure

We now turn to the geometric structure at the infinite-particle level and proving the results announced
in Section 2.3.

5.1. The Lie algebra G, of observable co-hierarchies

We recall from equation (2.33) that G, = EBZO:] gx equipped with the locally convex direct sum
topology, and we can identify G, as a subspace via inclusion. We also recall that any element F € G,
belongs to & for all N sufficiently large. The goal of this subsection is to prove Theorem 2.8, asserting
that for any F,G € G, limy e [F, G](ﬁ,\, = [F,G]g, exists and defines a Lie bracket for ©. In
contrast to the quantum setting (see [MNP*20, Section 6.2]), the limit ®,, of the spaces ®y is large
enough to contain all co-hierarchies of observables of interest. This is a technical advantage of the
classical setting versus the quantum setting.

Proof of Theorem 2.8. We first show the limit (2.34). Fix F = (f©)2,G = (g<f>);<; | € G and

k € N. Let My € N be such that f©) = g(/) = 0 for min(¢, j) > My. Note that for k = £+ j — 1 > 2Mj,
we must have max (¢, j) > My, implying

FO N gD =0, 1 <r < min(¢, j). (5.1)

For any N > My, F, G can be identified as elements of & by projection onto the first N components,
without any loss of information. For 1 < k < N, the formula (4.67) gives

min(¢, j)
k ’ .
[F.Gle) = > >0 Cojnrerejora(Sympy;_, (fO Ar 7)), (5.2)
C,j>1 r=ry
+j-1=k
(N=O!(N-j)!

where we recall that C¢jn, = and ro = max(1,£ + j — N). Suppose N > 2M,.

Then if £+ j — N > 1, we have max(¢, j) > My + 1, implying either ) = 0 or g/) = 0, hence
Symg, ;. (f () A, g(7)) = 0. So there is no harm in starting the summation at » = 1 in the right-hand
side of equation (5.2). More importantly, we note that for any N > 2M, and 2My < k < N, we have
[F, G]((Bk}\)] = 0. By Remark 4.11, we have limy _,co C¢jn» = 1,=1. Using that there are only finitely many
terms in the right-hand side of equation (5.2) independent of N, we compute, for fixed &,

SThe dual of a Lie algebra homomorphism is, in fact, a momentum map (also called moment map) and therefore is a Poisson
morphism (see [GS80, MRW84]).
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dim [F.Glg) = > erwjorn(Syme o (f i gd)). (53)
« £j>1
O+j—1=k

Observing that £ + j — 1 = k and therefore ey, ;_1 « is the identity map g — g, we arrive at equation
(2.34).

Next, we turn to showing that (0w, [+, ], ) is a Lie algebra in the sense of Definition 3.15. This
step, which is algebraic, consists of the verification that the bracket [-, -], satisfies properties 1-3. The
argument is essentially identical to that for the quantum case (cf. [MNP"20, proof of Proposition 2.7]),
therefore we omit the details.

Finally, we turn to the analytic matter of showing that [, -]_ is boundedly hypocontinuous, which

(k)

is unique to this work. First, note that the sum defining [F, G](ﬁ is finite: For k fixed, there are k

pairs (¢, j) € N? satisfying £ + j — 1 = k. Furthermore, our remarks at the beginning of the proof give
that [F, G]((ﬁlz =0 for k > 2Mj. Let B c G be bounded, and let P, be the projection onto the ¢-th
component of ®,. Then there exists an N € N such that P,(B) = {0} for £ > N and P,(B) is bounded
in g¢ forevery 1 < £ < N (see [K679, (4), p. 213]). Equicontinuity of {[-, G]g_ : G € B} now follows
from the the equicontinuity of A;. O

5.2. The weak Lie-Poisson space ®, of state co-hierarchies

The objective of this subsection is to prove Theorem 2.11, asserting that the Lie bracket [-,-]g_
constructed in Theorem 2.8 induces a well-defined weak Lie—Poisson structure on &% in the sense of
Definition 3.23, if we choose equation (2.39) as our unital subalgebra A, C C*(®L).

The reader will recall Remark 2.10 that any expectation in .4, has constant Gateaux derivative. We
record below the following observation on the structure of elements of A.,, which will be crucial to
verification of the weak Poisson properties 1-3 from Definition 3.23.

Remark 5.1. By definition, any element F € A, takes the form

Fe)c

Z mla"']:mmaa (54)

m=0 a=0
where, for each m € Ny, n,, € No, Fruia = Flas -)(ﬁw_@o, ooy Foma = {Fmma, ~)(¢,m_(ﬁ; for some
Fimas -+ > Fmma € O and (Cp),_, are real coeflicients such that there exists M € N for which C,, = 0

if m > M. In words, F is a linear combination of finite products of expectations. This observation will
be quite useful in the sequel, as invocation of some form of linearity will allow us to verify certain
identities under the assumption that J is just a finite product of expectations.

We break the proof of Theorem 2.1 1, which entails the verification of the properties 1-3, into a series
of lemmas. We begin with the following technical lemma for the Géteaux derivative of {-, -} .

Lemma 5.2. If G1 = G1,1---Gi,n, and G2 = Ga.1 - - - Go,p, are the product of ny and ny expectations in
Ao, respectively, then through the isomorphism 63 = G, the Gateaux derivative d{Gy, G2} [I'] at
the point T' € ®%, may be identified with

ZZ( [T 6a@)( [] %a(D)[dG14101.dG2.[01];. € Gun (5.5)
i1=li=1 1<g<n 1<g<n;

q#iy q#ix

In particular, if G1, G, are expectations, that is G4(I') = <dgq [0], F>(ﬁ _Gr then d{G, gz}@; [T] may
be identified with the element

[dG1[0],dG2[0]]g,, € O. (5.6)
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Proof. Observe from the Leibniz rule for the Giteaux derivative and the bilinearity of the wedge product
A1 (remember that for fixed I', Gy 4 (I'), G2, 4 (I') € R),

dg [T Ap dG, [V = ij( l—l gl,q(r))( H gQ,q(F))(dgl,il[O]“)/\ldQQ,iz[O](j))~
o

1<g<n 1<g<n;
q#i) q#i

5.7

Hence, using Theorem 2.8 and the linearity of the Sym, operator, we find that

[dG: [T'],dGa[T]]
= Z Sym,, (dgl [T]© Ay dG, (I (j))

1<(,j<N
min(é+j-1,N)=k

ZZ( [T 9a@)( [ Gam) X symy (461,101 A1 6o [01)

ii=li=1 1<g<m 1<g<m 1<t,j<N
q#i q#is min(¢+j—1,N)=k
n ny (k)
=22 (1 9®)( [] %ua™)[dG14101.0G 1011, . 58)
i1=li=1 1<g<n 1<g<ny
q#i q#i

where the ultimate equality follows from the definition of the ®. Lie bracket. This completes the
proof. O

Recall from the previous subsection that if My is the maximal nonzero component index for F, G €
G, then [F, G] (k) = 0 for k > 2My. Moreover, there are only k terms in the sum defining [F, G] (k)
Since for any F, Q € C®(BL),dF[I'],dG[I'] € B = G, it follows that the Poisson bracket { F, Q}(ﬁm
is well-defined pointwise. The next lemma shows that for F,G € A, the bracket {F, G}g: in fact
belongs to A and the pair (A, {*, -}@: ) is a Lie algebra obeying the Leibniz rule.

Lemma 5.3. The formula (2.40) defines a map Ao X Aco — Ao Which satisfies property 1 in Definition
3.23.

Proof. We first show that for 7, G € A, one has {F,G }(5:0 € A.. Recalling Remark 5.1, the Leibniz
rule, bilinearity of the bracket [-, -], and the bilinearity of the duality pairing (-, ") _@:, allow us to
consider only the case where F = F|---F,,G = G| --- G, are both finite products of expectations.
Unpacking the definition of the Poisson bracket {, -}: and appealing to Lemma 5.2, we find

e, {F.Glg, ()

‘ZZ( [T 7O)( [T 9)(6s0duiol.r), - 69

i1=li=1 1<j<n 1<j<m ©
J#i J#i

So, we only need to show that for each pair of indices 1 <i; < nand 1 < i < m, the functional

~ ([47 [0]. 4G, [0]],.T), (5.10)
defines an element of .4.,. But this follows from the fact that d 7;, [0] and dG;, [0] are both identifiable as
elements of Ge,, and therefore [dF; [0],dG;, [0]] € oo, implying equation (5.10) is the expectation
of [dF;,[0],dG;, [0]] -
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Bilinearity and antisymmetry of {-, }; are immediate from the bilinearity and antisymmetry of
[, ], and the bilinearity of the duality pairing (-, -)g__@: , SO it remains to verify the Jacobi identity.
Let F,G,H € Aw. As we argued above, it suffices to consider the case where

F=Fi-Fu. G=Gi-Gn, H=Hi--Hy (5.11)

are all finite products of expectations. By multiplying by the constant functional 1, we may assume
without loss of generality that n = m = g. Thus, we need to show that for every I' € G,

0= {F.{G, Hys: b (D) +{G. {H, F b, (D) + {HAF. G} } 5., (T)
- <[d]—"[F],d{g,H}@; [r]]%,r>® o <[dg[F],d{H, Fes, [r]](ﬁw,r>

Goo—G2,
+ <[dH[F],d{f, Gl [T1]g_ s F>® e (5.12)
which we do by direct computation.
First, since
n
arr =Y ( [] 7m)azilol (5.13)
i=1 1<j<n
J#

(here, we are implicitly using Remark 2.10 for J;), it follows from the bilinearity of the duality pairing
that

(l0Fr). a6, Hs. [Tl 1), .

N ( I1 J-‘,-(r))<[o|ﬁ-1 [0],d{g,H}®;[r]]®w,r>® o (5.14)
ii=l 1<j<n oo
J#i

Since the identity (5.13) also holds with F replaced by G or # in both sides, we also have by Lemma
5.2 that

n

@M= ( [] om)( [ #O){[egul0LdMsl0l]g_T). .15

i,iz=1 1<j<n 1<j<n
J#i2 J#i3

For each pair 1 < ip,i3 < n, define the expectation Sgl?j(l“) = <[dgi2 [0], dH,, [0]](5 ,F>® .

Evidently, dé’g;{ [T] = [dgi2 [0], dH,, [O]] .- Therefore, it follows from an application of the Leibniz
rule to the right-hand side of equation (5.15), and using that the G;, H ; are expectations, that

VMG, d{G. H}e, [T]= i (T am)( [ #im)egimdg, ol

iriz=l 1<p<n 1<j<n 1<j<n
p#i  j#i,p J#i3
30 Y (TT em)( [] #im)eiman,lol
i,i3=11<p <n ls'jISn l'San
P#I3 J#i J#i3,p
+ 3 (1 9O)( [T #0)lags 101 dHs [01] .
i,i3=1 liéén liéin

(5.16)
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Substituting this identity into the right-hand side of equation (5.14) and using the bilinearity of
bracket and the duality pairing, we obtain

< [d]:[l"], G, H}e: [F]]®m’ F>(ﬁm—(ﬁ*

47

the Lie

YD (T1 #O)( [T ao)( 1 #m)ea[aro.a, 00, 1),
1<j<n 1 ©o

i1,i,i3=11<p<n 1<j<n <j<n
p#iz J#i J#i2,p J#i3

F Yy (TT =) [T am)( [T mm)egim{or onomol,.1),

i1,i2,i3=11<p<n 1<j<n 1<j<n 1<j<n
P#i3 J#i1 J#i J#iz,p

oo

¥ Z ([T7@)( ] am)([] Hj(r>)<[dfn [01. 4 [01. a7, 0] | ’F>@m_w'

i1,i2,i3=1 1<j<n 1<j<n 1<j<n
J#i J#io J#i3

N

(5.17)

To further compactify the notation, let us set £ f pg () = < [d]—",-I [0],dG,[0] ] G F>® o and similarly

o0 o0

for £ (). By the same reasoning, we also obtain

([aG1r1, 0{#. e [T1] 5. T)

G-,
=Y S ([T o) [T wo)( [T 7o) e
e Y jehp Ga
F 3 ([T em)( [T wo)( [1 #m)ermeso
il,iz,i3zllls71;i§ln 1jgilg2n lfiin ﬁ{lg;
+ Z] ( 11_[ g;0)( 11_[ Hy (D) l]_[ fj<r>)<[dgi2 (01, [a#. 01,074 101, |, - r>
i i i
([aHIr].a(F. Gl D] 1) o
= > Y (T wo)( [T &0)( [T sm)gimerm
R i G
e S Y (T o) [T 50) [T so)eemee
R Y Ga i*hp
+ Zl ( 1]7[ Hy (D) lgnf’(r))( ﬂ g,(F))([dHl-3 [01. [d7, (01,49, [0]] |, r>
S j#s JRin J#iz

where £ llflzg, & ijf , E;ipg are defined analogously to above.
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Since the Lie bracket [, -], satisfies the Jacobi identity, we have

0= |07, 0], [dG [0). d [0) g, | .+ |09 100, [ 67, [0 07 (01|

+[dHl~3 [0], [d 7 [0], dG;, [0]]0500](ﬁ . (5.20)

oo

implying
o= 3% (( [T =) [T sm)( [T wem)
i1,i,i3=1 1<j<n 1<j<n 1<j<n
J#i J#i2 J#i3

) <[dﬁ (01, [dG.. [0, 6y [01] | F>

G -6,
(1T om)( T »o)( [] fj(r))<[dgi2[0]’[d,Hia[O]’d]:il (015, ’F>
i i e I

([T o) [T #O)[] gj(r))<[d7{,-3[01,[dfil [o],dgiz[OJ]GW]%’F>®M_%)'

1<j<n 1<j<n 1<j<n
J#i3 J#i J#i

(5.21)

Since £ llflf (') = —£97(I") by antisymmetry of the Lie bracket, it follows from swapping i; <> p that

211

0= > % ([T am)( [T wm)( [T A0 meo

i1,i2,i3=11<p<n 1<j<n 1<j<n 1<j<n
D#iy J#i J#i3 J#i1,p

* Zn: YA TTHO) [T mO) ][] am)egoesso. 62
1<j<n 1<j<n

i1,i2,i3=1 1<p<n 1<j<n
P#i| J#i3 J#i,p J#i2

Similarly, by swapping i <> p, we see that

o= 5 3 ([T 7o) [T o) [1 wm)egimezo

i1,i2,i3=11<p<n 1<j<n 1<j<n 1<j<n

p#ix J#i J#i,p J#i3
s YA TTHO) [T 5O) ] am)egimessm 623
i1,i2,i3=11<p<n 1<j<n 1<j<n 1<j<n
p#ia J#i3 J#i J#i,p

and by swapping iz < p,

0= > ¥ (1 @) [1%m)( [T mo)ermegm

i1,ip,i3=11<p<n 1<j<n 1<j<n 1<j<n
D#13 J#i2 J#i3,p J#i
n
H F
33 ([ HO) ] sm)( [] wofeossn. o
i1,i,i3=11<p<n 1<j<n 1<j<n 1<j<n
P#i3 J#i J#iz J#i3,p
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After a little bookkeeping, we realize the Jacobi identity (5.12) has been shown.
Finally, we claim that {-, -} satisfies the Leibniz rule (3.8). Since d(FG)[I'] = F(INdG[I'] +
G(I")dF[T'] by the Leibniz rule for the Giteaux derivative, we see that
{(FG. M}, (1) = ([d(FOIT],dH [ ]s. D)
= F(D)([dG[T ], dH [T ], D). + GD{[OFIT], dH T l6. D g

oo

= F(IOG, H}e:, (1) + G(DH{F, H}e, (I), (5.25)

where the penultimate equality follows by bilinearity of the Lie bracket and duality pairing and the
ultimate equality follows from the definition of the Poisson bracket. O

We next verify that A, satisfies the nondegeneracy property 2.
Lemma 5.4. A, satisfies property 2 in Definition 3.23.
Proof. LetT' € ®F and v € ®,. Suppose that dF[T'](v) = O for every F € As. We will show that

v=0.
Consider functionals of the form 7 ;,(-) = <Fk0, '>® _g» Where
(ko) =k
FX = FE o (5.26)
0 0, otherwise

for ko € N and f (ko) ¢ Ok,- Ff.k 1S an expectation, hence in A.. Since Fy g, is linear, we have
dF s ik [T1(:) = Fr ko (+), soif v = (v(k>)]‘c’°:] € ®, is as above, we have by definition of F , that

Froa(v) = <f(k0)’ V(ko)> =0. (5.27)

Ok =0},

Since fk0) € g;, was arbitrary, it follows that v(%0) = 0; and since ko € N was arbitrary, it follows that
v =0. ]

We now turn to verifying property 3 concerning the Hamiltonian vector field. Unlike the N-particle
situation, we do not a priori know that Xg exists for an element G € Ao, let alone have an explicit
formula for Xg. To show 3, we will find a candidate vector field Xg, for any G € C*(6®L,), with the
property that

VFeC®(6L). T €6L,  {F, G (D) =dF[(Xg(D)). (5.28)

Unfortunately, G € C*(®,) is not enough information for us to prove that Xg is C*; however, we are
able to show by direct computation that if G € A, then it is C*°. As previously commented, this issue
is a primary reason for the introduction of the algebra A.

Just as with the N-particle case, having an explicit formula for Xg is advantageous (cf. [MNP*20,
Lemma 6.15] for the quantum case). Indeed, we will use such a formula to show in Section 6.3 that the
Vlasov hierarchy can be interpreted as a Hamiltonian equation of motion on the weak Poisson vector
Space ((5:0? AOO’ {'7 }(ﬁ;‘c)

Proposition 5.5. If G € C*(0L,), then there exists a unique vector field Xg : ©%, — G satisfying
equation (5.28), which is given as follows: for € € N and any T" = ()/(k)),:":1 e 6,

o 4
) — ; () (6+j-1)
Xg(T) _Z][R2d)j] d§e+1;£+j—1{z dGIT] ..., e+j-1)° 7Y ! } : (5.29)
Jj=1 a=1

(RZd) l+j-1

If G € Aw, then Xg as defined in equation (5.29) belongs to C*(®%,, ®%).
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Proof. One can prove the proposition by repeating the argument for the analogous N-particle result
Proposition 4.15, focusing only on the case r = 1. Instead, we show how to obtain the result as an
N — oo limiting consequence of Proposition 4.15.

Recall that ro(N) = max{1l,£ + j — N}. It is evident that ro(N) Moy uniformly over fixed finite
subsets of (¢, j) € {1, ..., N}2. On the other hand, from Remark 4.11 we have that Crinr — 1,21 as
N — oo. So at least formally, we expect from letting N — oo in the N-particle Hamiltonian vector field
formula (4.88) that the Hamiltonian vector field associated to the functional G € C*(®7,) with respect
to the Poisson bracket {-, -} is given by the right-hand side of equation (5.29). We then need to check
that

VF € C¥ (L), T € &, dF[I](Xg(T)) = {F,G}e: (D). (5.30)

Fix Iy = (y(()k))l‘:’:l e G, and let Fr,, Gr, be the expectations generated by dF[Iy],dG[I],
respectively. Let M denote the maximal component index k such that dF [T] %), dG[Ty] %) are nonzero.
By definition of the ®Z, Poisson bracket, for any I € &7,

(F.G)e (1) = ([4FIT).6G o, T)g, g = ) ([0FIFLGITTGY.») . (53D
k=1 K5k
Since dF[IH] %) = dG[IH] %) = 0 for k > My, we see from equation (2.34) that [dF [T o], dg[ro]]é,k) =
0 for k > 2My. Indeed, k = £ + j — 1 > 2Mj implies min(¢, j) > M, therefore

Sym, (dF[To]© A; dG[TH]Y)) = 0. (5.32)

By projection onto the first N components, dF [Io],dG[Ty] € Gy forany N > My; and by examination
of equation (4.67), we also have [dF[I'0],dG[To]] (k) = 0 for any 2My < k < N.Furthermore, Fr,, Gr,

are linear functionals on ®Y, for any N > My. By separate continuity of the distributional pairing and
Theorem 2.8,

(187121, dg[Fo]](k)’Vék)>gk_g; Nuglm([on[Fo],dQ[Fo]]f_y,k),7(()k)>gk_gz

<[d]—"r(, [To].dGr, [Tol | é’”)g " (5.33)

—® k

Now, introducing the notation I'y »s to denote the projection of I'y onto the first M components, we have
for N > 2My+1,

2My+1 N
(k) _ (k) (k) (k)
E dFr,[To], dGr, [T , > = E < dFr,[To], dGr, [T , >
i < [ r() [ 0] 1"0 [ 0] ] (;)'N 70 gk—g,"\, p [ l"() [ 0] 1"0 [ O] ] Q.)N ’}/0 Qk—gz

= {]:Fos gl—'o}(ﬁﬂ;\] (FO,N)

= dFr, [Tol (Xgr, v (To,n))
My

‘Z<df 0] Xg, n To) ) L (5.34)

ar—ga;

where the penultimate line follows from Proposition 4.15 and using that d.Fp, [To]©) = 0 for £ > Mp.
Here, the subscript N in Xg, n signifies that the Hamiltonian vector field is computed with respect
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to the bracket {-, -}6}«\/. By definition, dFr, [I'9] = dF[Iy] and from Proposition 4.15 again, using that
dG[T]W) =0 for j > My, we see that for 1 < £ < My,

Xgr(],N(FO,N)([)
My min{¢,j} j )
— . J (C+j-1)
DN ) SR D YL ,
=1 =l (R a, P! -
" Y- (RZd)[-H 1

(5.35)

provided N is sufficiently large. By our previous remarks, the preceding right-hand side converges in g,

as N — oo to Xg(I'p)(?) as defined by equation (5.29) uniformly over finite subsets of indices £. After
a little bookkeeping, we realize we have shown that

M,

(.G (To) = ). tim (dF L] Xy, (Fon) )
=1 ‘
My

= Z<d]—'[ro] “, Xg(ro)(€)> ; (5.36)
=1

ar-9;

where to obtain the penultimate line we use the separate continuity of the distributional pairing.
Comparing this expression with equation (5.30), we are done.

We now verify that Xg € C* (6, L), assuming G € A.. By the observation (5.4) for the structure
of elements in A and using linearity, we can reduce to the case where G = G; - - - G, is a finite product
of expectations.

By the Leibniz rule for the operator d,

n

re6L,  agir = ( [] g(D)agilol. (5.37)
i=1 1<g<n
q#i

Since the G, (I') are just real numbers, we can use the bilinearity of the Poisson bracket {-, -} g2aye+j-1
to write

4
Z () (t+j-1)
{ 9G] G eat,..tajry Y ] }
a=1 ey

N 4
=2 (11 %(D){ngi[om{;{m ,,,,, M_,),y("*f”} . (5.38)
i =1

i=1 1<g<n @ (R2d)t+j-1
q#i

Being a linear combination of products of derivatives, the expression corresponding to the Poisson
bracket in the second line defines a map ig the variable y“*/=1) which belongs to C*(g; et g, +j—1)'
Since the map G2, — g;i+j_1, I y@i=D js also C* and Gy, ..., G, are C* real-valued maps, it
follows that the second line of equation (5.38) is in C* (6, g; ol ). Now,

¢
) (t+j-1)
/M . d§f+1;f+j—1{z dg[r](a,fﬂ ..... trj-r) Y ! }
(R2d)J a=1 (R2d)C+j-1

l
) L+j—1
( H gq(r))/hl)i-l d§€+1;€+j—l{zdgi[o](fr,hl ..... €+j—r)’y( v )} - (5:39)
‘ a=1

n
i=1 1<q<n (& (R2)C+j-1
q#i
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By Proposition 4.12, we see that each of the summands in the right-hand side is in C*(6,, g;), hence
their sum is as well. Finally, multiplying by j and summing over 1 < j < My, where M) is the maximum
of all k such that dG; [0]K), dG,[0] %) are nonzero, we also obtain a map in C* (G, g;). Since £ was
arbitrary, we conclude that Xg € C* (0G5, 6L). O

5.3. The Poisson morphism ¢ : g7 — &,

We close Section 5 by proving Theorem 2.14, which asserts that the trivial embedding ¢ : g} — G,

introduced in equation (2.49) is a morphism of Poisson vector spaces in the sense of Definition 3.27.
To prove Theorem 2.14, we first need a formula for the the Gateaux derivative of ¢. The proof of the

following lemma is a simple application of the product rule, which we leave for the reader to check.

Lemma 5.6. The map ¢ € C°°(g*l‘, ®%). Moreover, foranyn € N, u,vy,...,v, € g}, we have
0, >k
" ul® v, ) = " (5.40)
Z(n ..... in)€Pk I(il ----- in)> k <n,
where
~ _ w, i g i, ...}
Liiy oo iy = is with ; = 541
(i1, »in) (§){ g {Vk, iZik. ( )

Proof of Theorem 2.14. Since ¢ is a C* map and composition of C* maps is again C*, we have that
rC*(®,) c C(g)), implying a fortiori that t* As, € C*(g7). To verify that ¢ is a morphism of Poisson
vector spaces, we need to check that

o Yo = {‘*"‘*'}91" (5.42)

To this end, let Fo, Goo € C(0,), and set F := F 0, G = Go 0 1. For any u € gj, we compute

{Foos oo, (1(42)) = AP )] X, (e (1))

_ 10

Z/(de)z z,dFo[e()]" (2 )(Z /M)j] Zpititrjm1
¢ _ '

X {Z dgoo[t(ﬂ)](({y),[+l ,,,,, €+j—1)’ﬂ®[+]_]}
a=1

Above, we have implicitly used the Hamiltonian vector field formula (5.29) on Xg_,. Let us analyze the
inner integral, which after unpacking the Poisson bracket and using the linearity of the marginal, equals

(gm_l)). (5.43)

(R2d)+j-1

l+j-1 ¢
®C+j—1
Z(/RZ(I)II —f+lf+/ IVxﬁdgoo[ (,u)](a 41, f+j— 1)(ZK+J 1) Vvl;ll J= (Z€+J ])

B=1 a=1

() ®C+j-1
_/(Rw)j1 241041 Vs 99 [ (g parpajo1) Zpajor) - Voght + (§£+j—1))' (5.44)

.....

= o (wg,,- Vou) @ 4o, (5.45)
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if B = a and zero otherwise, where ¢ _; is the unique test function in g; with the property that

Vregl, (6.7 )g g = <dgoo (], v & u®f“> (5.46)

O ((R2)T)=€" ((R2)])

We note that since dG., [¢()]7) = 0 for all but finitely many j, we have ¢g,; = 0 for all but finitely
many j. Similarly, we have that

(0)] ®C+j-1
/(]R2d)f] A2 1i00jo1 Vs 990 D] (G pa, rjon) Genjot) * Vagt™ 77 (2001

= 1®" ® (Vi - Vst @ u®. (5.47)

Therefore, recalling Lemma 5.6 specialized to n = 1,

(RZd)Hj—l

=[] > j(Vadgj - Vor = Vg, - Vap) | (5.48)
j=1

Substituting this identity into the right-hand side of equation (5.43), we arrive at

{Feor Ges o, (1)) = Z<d}'oo[t(u)](f),dt[#] O3 j(Vedgs - Vo= Vudg ;- vxu>)>
=1 J=1 86,
(5.49)
By the chain rule and the definition of the functional F,
Ve, dF[ul() = dFule(w)] (delul (). (5.50)

Applying this identity to the right-hand side of equation (5.49) with v = Z;‘;l J(Vxdg ;- Vou=V,og ;-
V.u), we obtain that

{Feo GooYor, () = dF (1] (Y. j(Vabg ;- Vot = Vodg ;- Viett))
j=1

J

= <d]:[ﬂ]’ Zj(vx(ﬁg,j -Vou - Vv¢g,j : Vxﬂ)>
=

g1-4]

= <vxdf[u] SEWIREA R IIE Y f¢g,j,u>
i—1 i=1

Jj= J 819}

=<df[u],2j¢g,j ,u> ; (5.51)
/= g1 g1-9]

where the second line comes from identification of dF[u] as an element of g;, the third line comes
from integration by parts, and the fourth line is by definition of the Lie bracket [, ], .

In order to conclude the proof, we need to analyze the functions ¢¢_;. More precisely, returning to
the definition (5.46), we see from the S ;-symmetry of dGe. [¢(u)] () that

https://doi.org/10.1017/fms.2023.72 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2023.72

54 J. K. Miller et al.

J
Wegh {60V g = D (091D 1o ® v @ u®i )

a=1

CNAMIEIREM (j)(v)>g.7g . (5.52)

*

J

C=((R2)7) =& ((R2)])

Hence,

Mg

= > (0l V.tV ) =Gl (). (5:53)

Dlida.v
=1 8,~9;
where the ultimate equality follows from the chain rule and the definition of G. Thus, Z;’; 1 J$g,j is the
unique element of g; identifiable with the Gateaux derivative dG[u]. Returning to equation (5.51), we
have shown that

I
—

gi-g7 4

{Foor GooYor, (W) = ([dF (), dG (1)), 1)y g = {F. Gl (10, (5.54)

91-8]
where the ultimate equality is tautological. This is precisely what we needed to show, and therefore the
proof of Theorem 2.14 is complete. O

6. Hamiltonian Flows

This last section of the article is devoted to the proofs of our Hamiltonian flows results, Proposition
2.13 and Theorems 2.7 and 2.12, announced in Section 2.2. These results respectively show that the
Vlasov equation (1.1), BBGKY hierarchy (1.11) and Vlasov hierarchy (1.12) each admits a Hamiltonian
formulation. We mention again that while it has been known for some time that both the Vlasov equation
and BBGKY hierarchy are Hamiltonian, the fact that the Vlasov hierarchy is also Hamiltonian appears
to be a new observation.

6.1. Viasov

We start with Proposition 2.13 for the Vlasov equation, which one should view as putting the formal
calculations of [Z176, Mor80, Gib81, MW82] on firm functional-analytic footing.

Proof of Proposition 2.13. Recall the definition (2.45) of Hy ;. We compute the Hamiltonian vector
field of Hy; with respect to the Poisson bracket {-, -}gT, denoted by X4,,,,, as follows. First, we compute
the Gateaux derivative of Hy ;. Observe that for any v, 0y € g’l‘, it follows from the linearity of the
kinetic energy and bilinearity of the potential energy that

lin}) Hyily +€6y) = Hvi(y) _ lim
€— €

1
§<IV|2,5y>g]_g,f +2{W % p, 6p)gl,gs; + (W x6p,00)g,_g
<|v|2 87 )gy—g; + 2W 5 P, 6PYg g, (6.1)

where above we have introduced the notation §p = ./Rd doy(-,v) for the density of ¢y. Thus, we can

identify the Gateaux derivative dHy;[y] as the element of g; given by

1
dHy[y] = Elvl2 +2W * p, (6.2)
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where the convolution W x p is taken in the distributional sense.” For any functional 7 € C*(g}), we
have by definition of the Poisson bracket {-, '}QT that

{F. Hvidg (v) = ([dF[y]. dHvily]1g,. 7) (6.3)

g1-9)"

To compactify the notation, let us set f := dF[y] and & = dHy;[y], the dependence on y being
implicit. Note that & equals the right-hand side of equation (6.2). Unpacking the definition of the Lie
bracket [ f, k], , we have

{-7:? rHVl}gT (7) = <(fo “Vyh =V, f- Vxh)v 7>gl—g’l‘

= <f? _(Vvh . ny - Vxh . VVY))QI*QT
=dF[p](=(Vyh-Vyy =Vih-Vyy(), (6.4)

g1’

where the penultimate line follows from integration by parts (i.e., the definition of the distributional
derivative) together with the fact that V,.V,h = V,,V.h by the smoothness of /4 and the ultimate line
follows from the definition of f. Substituting in the right-hand side of equation (6.2) for &, we arrive at
the identity

{F. Hvity (v) =dF[y](=(v - Viy = 2(VW = p) - V7 (), (6.5)
which, by the characterizing property of the Hamiltonian vector field, implies the identity
X9y, () = =(v - Viy = 2(ViW s p) - Vyy. (6.6)
Thus, the Vlasov equation (1.1) is equivalently to the infinite-dimensional ODE
¥ =Xy, (¥)s 6.7

as originally claimed. O

Remark 6.1. We can use the Hamiltonian formulation to show that the empirical measure map tgps :
(R2H)N g; introduced in equation (2.52) sends solutions of the Newtonian system (1.6) to (weak)
solutions of the Vlasov equation. We compute

2
(enHv)(zy) = %/(Rw) d(LEM(gN))(Z)IVIZ + /(de)z d(LEM(gN))® (z.2)W(x —x')
N

N
1 1
= ﬁz vil* + T2 Z W(x; —x;)

i=1 i,j=1
= Hwvew (2y)- 6.8)

Since tg s is a Poisson morphism by Proposition 2.15, it follows that

VF € C®(g}), (em{F Hvitg)(zy) = {Gom Tt vt} y (2y)
= {L*EM‘F7HN€W}N(§N)~ (6.9)

Now, if 5?\1 is a solution to equation (1.6), then

d . .

E(LEM}-) () = {tem Fr Hnew} y (2y) = {F, Hyitg (tem (Zy))- (6.10)
Since F € C*(g]) was arbitrary, the claim follows.

7Here, we are using the well-known fact that the convolution of an element of C* (R??) with a distribution of compact support
is again in C® (R24).
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6.2. BBGKY hierarchy

We next turn to Theorem 2.7 for the BBGKY hierarchy. As mentioned in Section 2.2, this result is
the classical analogue of [MINP*20, Theorem 2.3] asserting that the quantum BBGKY hierarchy is
Hamiltonian, which was not known prior to that work. Interestingly, the proof of the cited result was
inspired by the formal computations of [MMW&4] for the classical BBGKY hierarchy. It will not
surprise the reader then to learn that the proof of Theorem 2.7 here is algebraically similar to that of
[MNP*20, Theorem 2.3] and the core is the calculation of the Hamiltonian vector field X/, ¢ xy -

Proof of Theorem 2.7. As N will be fixed throughout the proof, we drop N in our subscripts when there
is no ambiguity. We recall from Proposition 4.15 that given any G € C*(®},), the Hamiltonian vector
field Xg is given by formula

N min(¢,j) j
&) = .
VISC<N,  Xg(T) _ZCW, > (r)/(RM)H dz, 0

Jj=1 r=ro

)] (k)
X ng[r](ar,fﬂ trj-ry Y ) (6.11)

.....

a,ePf (R2d)k

where Cyjn, = %, k = min(¢ + j — 1,N), and ry = max(1,¢ + j — N). Note that the

bracket in formula (6.11) is well defined for g/ € g; and yX) € g, as explained in the paragraph
after the statement of Proposition 4.15. Recall the definition (2.29) of H ppGky. Now, note that by the
linearity of HppGky we may identify

(N-1
N

W(0)
N

1
dHepcky 'l = Wepeky = (§|V|2, W(x1 —x2) + ,0,...,). (6.12)

Consequently, dHgpGiy [I'] is constant in " and dHgpciy [[]Y) =0for3 < j < N.For j = 1, we
have

ro=max(l,f+1-N)=1 and k =min(¢,N) = ¢, (6.13)

implying
oy TN o vniory = Wihorydws 1 <as<t. (6.14)

.....

For j =2, we have

1, ¢<N-1 . f+1, ¢<N-1
ro=max(l,{+2—-N) = and k=min({+1,N) = (6.15)
2, ¢=N, N, {=N,
implying
dH [r] () (ngGKY)(aa[*‘l)’ r=1 (6 16)
BBGKY ] = 5 .
(ay,0+1,....0+j—1) (WEBI)RGKY)(?‘Z)’ F=2.
So our vector field reduces to
¢
1
XHppoky (F)([) - C“NI{Z (Wl(.?l??GKY)(a)’ ‘y“)}
a=1 (RZ(I)(?
min(¢,2) )
(2) (k)
o Z (r) /(de)k—f Dk Z WBBGKY(arIH)’y - (6.17)
r=ro a,ePf (R2d)k
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where (a,, ¢+ 1) should really be replaced by (a,) if r = 2 and the integration is understood as vacuous
if k — ¢ < 0. The relevant cases are when £ = 1, when 2 < £ < N — 1, and when ¢ = N.® We proceed to
consider each of these cases individually.

1. The case ¢ = 1. The formula (6.17) further simplifies to
XHppoxy (F)(l) =Cuni {WJ(B;GKY’ y(l)}R24l

2 @ ©
+C12N1(1) ./RM dZZ{(WBBGKY(]’z),'y }(RM)Z

1 N-1
:{—|v1|2,7(1)} +2¥/ dzg{W(xl—xz),y(z)} . (6.18)
2 R2d N R2d

(R2d)2

2. Thecase 2 < ¢ < N — 1. The formula (6.17) in this case becomes

14
1
€ 1 14
a=1 (R24)¢

2
2 ) £+1)
+ g C[ZNr(r) /RM dzes g (W GKY)(ar £+1)’7( :
r=1

a, EPr( (RZd)(?H

4
1
=Crini {Z (W( )GKy)(a)’ ([)}
a=1 (R2)¢

4
2) (€+1)
+2CeanN1 /]RZd dzm{; Wibcky) (aesy? }

(RZd)erl

(2 y (4D
+C£2N2/RZ dzes Z Wepeky) @Y : (6.19)

aZEP[ (R2d)¢+1

We can calculate the constants explicitly as

Cant = % =1, (6.20)
Cont = (Iéliz){z;\(/]\i;z)l')' = x:f, (6.21)
Ceong = Ex:?):ix:g: = Nl_ T (6.22)
Moreover, by definition of w B B Gky We have that
Z( BhcKyacn = (NA_, D i W(xa = xe41) + W;O), (6.23)
a=1

Z (Wgz);cky)(az) = (NA_, D Z Wxi —xj)+ (Z )W(O) (6.24)

ayePf 1<i#j<¢

8The case ¢ = 1 is singled out to take care of min(¢, 2) in the second sum.
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Putting all of these simplifications together and using that the Poisson bracket with a constant is
Zero, we arrive at

4
1
XHppoky (F)(Z) = {Z Elvulz, 7([)}
(de)f

a=1

¢
2(N -¢
+ g‘/ dzes {Z W(xa - Xf+1),7(€+1)}
N R2d i

1
_ sy (€+1)
e Rdez,gH{ Z W(xi —x)),y } . (6.25)
(R'ld)hl

R2d(£+1)

1<i#j<t

One can replace the sum %} ;2 ;<o W(x; — x;) with Zf,j:l W(x; — x;) in the third term since W
is continuous at the origin and {W(0), y(f”)}(Rw)m =0.
3. The case ¢ = N. In this case, equation (6.17) becomes

N
1
Xtpuory (D) = cmm{ <W(B;GKY><u>ﬂ(N)}
(RZ(I)N

a=1

2
+Cnan2 Z (WE;;GKy)(ag)»’y(N)

a ePzN (R2d)N

N oy X
= {Z §|va|2 + v Z W (x; —xj),y(N)} , (6.26)
1 (R2d)N

a=1 i,j=1

where to obtain the ultimate line we have used the bilinearity of the Poisson bracket to combine both
terms in the penultimate line.

Evaluating the Poisson brackets and comparing the resulting expressions with equation (1.11) (re-
member that y(™) by convention satisfies the Liouville equation (1.9)), we see that I'" = (y(0-1) {{\i | isa
solution to the BBGKY hierarchy if and only if I = X3, ..., (I'"). Hence, the proof is complete. O

Remark 6.2. Similar to Remark 6.1, we can use the Hamiltonian formulation to show that the N-
hierarchy of marginals of a solution to the Liouville equation (1.9) is a solution to the BBGKY hierarchy
(1.11). Indeed, since t;,,4, is a Poisson morphism by Proposition 4.18,

VF € Cw((ﬁi\j), Ljnar{]:v 7'lBBGKY}G;\I = {Ljnar]:’ L:(narHBBGKY}g’;\]' (627)
By definition of ¢4, and Hppcky,

WN-1

. . 1 4
Yyeans  (GuarMercry)(¥) = <§|v|2,y<‘>> +< W(xy =) + %,y“v
g1-6;

02—

= <SymN(%|v1|2 + (N]; 1)W(x1 —x2) + W(O)),y> .
SN -Gy

N
(6.28)

Given any distinct integers 1 < ji,...,jx < N,

Ho €Sy : (o(1),...,0(k) = (1., ji)H = (N =k (6.29)
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Hence,
1 (N-1) w(0) 1 2, W (0)
Symy (=il + ——W(x —x2) + —— | = [vil” + Wx; —xj) +
2 N N 2N Z 1<l;<N N
=HNew (630)
which, upon substitution into equation (6.28), implies
tmar HBBGKY (V) = (HNew: V)gy—a1, = HLio(¥)- (6.31)

Combining this identity with equation (6.27) and using the fact (shown in Section 4. 1) that the Liouville
equation is Hamiltonian, we see that if v’ is a solution to the Liouville equation, then

d d
VF € Coo(® )s E]:(Lmar(’yt)) = E(L:fnarf)('yt) = {L;wr‘/—'.’ ,HLiO}g;V (71)
={F. Hppcky }ey, (tmar (¥")).  (6.32)

Since F was arbitrary, we conclude that Lmar (Y") = Xugsory (bmar (Y1), that is ,q,(y") is a
solution of the BBGKY hierarchy as clalmed

6.3. Vlasov hierarchy

We close out Section 6 with the proof of Theorem 2.12 for the Vlasov hierarchy. As commented
in Section 2.3, Theorem 2.12 is the classical analogue of [MNP*20, Theorem 2.10] demonstrating a
Hamiltonian formulation for the Gross—Pitaevskii hierarchy,® which again was a new observation. As
for the N-particle level, the proof of Theorem 2.12 proceeds algebraically similarly to that of [MNP*20,
Theorem 2.10], and as with the proof of Theorem 2.7 carried out in the previous subsection, the main
step is the computation of the Hamiltonian vector field Xyy,,,,, -

Proof of Theorem 2.12. Applying the formula (5.29) of Proposition 5.5, we have the identity

(&) — (E+j-1)
XHVIH(F) Z /Zd) _€+1 Wltj— 1{ZdHVlH [F](a 0+1,..., +j— 1)»7 - } s (633)

a=1 (R2d)t+j-1

so we are reduced to computing the bracket in the integrand. We remind the reader of the following
notation conventions: if j = 1, the integration is vacuous and (a,{+1,...,{+j—1) = a;if j =2, then
(a,€+1,...,0+j—-1) =(a,f+1).

Since Hy g is linear, it is evident, upon recalling the definition (2.41), that dHy ;g [I'] is iden-
tifiable with Wy g through the pairing (-, -)g__@: . In particular, dHy ;g [I'] is constant in I and

dHy g [T]Y) =0 for j > 3. For j = 1, we have that

dHyi (U1 = (W 82},)@— val?, (6.34)

.....

and for j = 2, we have that

dHyi (1) 1 iy = (W@ esy = Wixa = xea). (6.35)

9This result is not just aesthetically pleasing: It was subsequently used in [MNP*19] to investigate the origins of the one-
dimensional cubic nonlinear Schrodinger equation as an integrable classical field theory from an integrable quantum field theory.
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Now, for each 1 < a < ¢, it follows that

4
(1) 14 _ (1) 14
{(Wle)(a)sy( )}(RZd)f - Z (Vx VIH)(a) VBy( (W lH)(a) xﬁ)’( ))
B=1
1
= an( lH)(a) f) - Vva (ngl)H)(“) : any([)
= —vg- Vi, v (6.36)
Similarly,
4
(2 £+l (2) 0+1
{(WVIH)(G’{’)H)’Y( ’ )} (R2d)¢+1 Z (Vxlf (WVIH)(HJH) ’ V"lf7< 0

B=1
2
Vg (Wifl)H)(a,fﬂ) : Vxﬁy(“l))

2 2
=V, (Wg/;H)(a’“l) . Vvay(€+l) -V, (Wi/l)H)(af"'l) . any(€+1)
= VW (xq = xp41) - Vv 0. (6.37)

Substituting the identities (6.36), (6.37) into equation(6.33), we arrive at

(RZd)Hi—l
14

=Z(—va V42 / e W= xen) V) 639)
a=1

Comparing this expression to equation (1.12), we see that I'¥ = (- )po, is a solution to the Vlasov
hierarchy if and only if I = X3,,,,, (T""), hence the proof of the theorem is complete. m|

Remark 6.3. We end this paper by using the Hamiltonian formulation to show that the factorization
map ¢ : g7 — 6, introduced in equation (2.49), maps solutions of the Vlasov equation to solutions of
the Vlasov hierarchy.

Observe that

* * 1
Yy € g, (CHvin)(y) = <§|V|2,7> + (W (x) —xz),7®2>g2_g;
g1-9]

1
= <§|V|2,7> +<W*p’p>g]—gf1
81-0;
=Hvi(y). (6.39)

In other words, the pullback of the Vlasov hierarchy Hamiltonian equals the Vlasov Hamiltonian, as
originally announced in Section 1.2. Since ¢ is a Poisson morphism by Theorem 2.14, it follows from
equation (6.39) and the Hamiltonian formulation of the Vlasov equation proven in Section 6.1 that if ’
is a solution to the Vlasov equation,

VFECUOL), SR = SO = 0 F Hyily ()
={F. Hvin}e:. (¥"). (6.40)

Since F was arbitrary, we conclude that L(y ) = Xy, (L(¥")), that is ¢(y") is a solution of the
Vlasov hierarchy.
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Table 1. Notation

Symbol Definition

Z,Zi (x,v), (xi, v)

ék (Zl,...,Zk)

- (Zomys - -+ Zmy.)

Ziiek (Zis -« - » Zitk)

dz, dzy - --dzi

Az, dz; -+ dzivk

N, Ny natural numbers exclusive, inclusive of O

Sk symmetric group on k elements

P;:' set of k-tuples (ij, . .., ix) drawn from {1, ..., N }, equation (2.24)

Ji k-tuple (ji, - .., jk)

x*k k-fold Cartesian product of x with itself

Pk k-fold tensor of ¢ with itself

C*®(R¥), & (R¥) smooth functions on R¥ and distributions on R¥ with compact support

() duality pairing

dF Gateaux derivative of F, equation (3.5)

Xr Hamiltonian vector field associated to F, equation (3.12)

f(J('lli)...,jk)’ )j.fk) N-particle extension of k-particle observable acting on ji, . . ., jix coordinates, equation (2.23)
Sym, (f <)) k-particle symmetrization operator, equation (2.36)

{5 Yweayw, {In standard Poisson bracket on (R?4)™ , equation (2.5)/rescaled standard Poisson bracket, equation (2.7)
Sk» Oy, spaces of k-particle observables/states, equations (2.9)/(2.12)

Gn, 6 space of N-hierarchies of observables/states, equations (2.21)/(2.27)

G, G, space of co-hierarchies of observables/states, equations (2.33)/(2.37)

[ ‘Jgk ,{ '}92 Lie bracket/Lie—Poisson bracket for k-particle observables/states, equations (2.11)/(2.15)

[ Jon- {5 Yey,

[" '](500’ {" '}(5;
Ac
Ar

€k,N

/(]RZ")N"' az; N
HNEW

HLL'{)

HpGky> WBBGKY

Hvia, Wvin
Hvi

LEM

LLio

le

Lmur

L

Lie bracket/Lie—Poisson bracket for N-hierarchies of obervables/states, equations (2.25),
equation (4.67)/(2.28)

Lie bracket/Lie—Poisson bracket for co-hierarchies of observables/states, equations (2.34)/(2.38)
Unital subalgebra of C* (®,) generated by constants and expectations, equation (2.39)
r-fold contraction, equation (4.48)

embedding of k-particle observable in space of N-particle observables, equation (2.22)
k-particle marginal, equation (4.78)

Newton Hamiltonian functional, equation (2.7)

Liouville Hamiltonian functional, equation (2.16)

BBGKY Hamiltonian functional/generator, equations (2.29)/(2.30)

Vlasov hierarchy Hamiltonian functional/generator, equations (2.41)/(2.42)

Vlasov Hamiltonian functional, equations (2.45)

empirical measure map, equation (2.52)

Liouville map, equation (2.18)

Lie algebra homomorphism induced by {ex, v }l’\,v: 1> (2.26)

marginals map, equation (4.116)

factorization map, equation (2.49)
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