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Abstract
We consider the Vlasov equation in any spatial dimension, which has long been known [ZI76, Mor80, Gib81,
MW82] to be an infinite-dimensional Hamiltonian system whose bracket structure is of Lie–Poisson type. In
parallel, it is classical that the Vlasov equation is a mean-field limit for a pairwise interacting Newtonian system.
Motivated by this knowledge, we provide a rigorous derivation of the Hamiltonian structure of the Vlasov equation,
both the Hamiltonian functional and Poisson bracket, directly from the many-body problem. One may view this
work as a classical counterpart to [MNP+20], which provided a rigorous derivation of the Hamiltonian structure of
the cubic nonlinear Schrödinger equation from the many-body problem for interacting bosons in a certain infinite
particle number limit, the first result of its kind. In particular, our work settles a question of Marsden, Morrison and
Weinstein [MMW84] on providing a ‘statistical basis’ for the bracket structure of the Vlasov equation.
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1. Introduction

1.1. Motivation

Several decades ago, Marsden, Morrison, Weinstein and others initiated a program on understanding
the geometric structure of common partial differential equations (PDEs) in mathematical physics. A
key question of this program is the passage or ‘contraction’, to use the language of [MW82], of one
Hamiltonian system to another through scaling limits. In the present article, we consider this question
in the context of the Vlasov equation, which is the nonlinear PDE⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕𝑡𝛾 + 𝑣 · ∇𝑥𝛾 − 2(∇𝑊 ∗ 𝜌) · ∇𝑣𝛾 = 0
𝜌 =

∫
R𝑑

𝑑𝛾(·, 𝑣)

𝛾 |𝑡=0 = 𝛾0,

(𝑡, 𝑥, 𝑣) ∈ R × R2𝑑 . (1.1)

The unknown 𝛾 models the distribution of the particles in the position-velocity phase space (𝑥, 𝑣) ∈

R
2𝑑 , with 𝑑 ≥ 1. Assuming 𝛾 is normalized to have unit integral, one can interpret 𝛾𝑡 (𝑥, 𝑣)𝑑𝑥𝑑𝑣 as

approximately the probability at time t of finding a particle in a phase space box of area 𝑑𝑥𝑑𝑣 around the
position x and velocity v. The function 𝜌 is the spatial density of the particles, obtained by integrating out
velocity. We use the same notation for a density and its associated measure. The function𝑊 : R𝑑 → R is
a potential governing the interactions between the particles, which for simplicity we will always assume
is even, though this assumption is not essential. In physics, one typically chooses W to be a multiple
of the Coulomb/Newton potential in R𝑑 . The sign of W determines whether the potential is repulsive
(+), which is relevant for electrostatic interactions, or attractive (-), which is relevant for gravitational
interactions. For such a W, equation (1.1) is commonly referred to in the literature as Vlasov–Poisson.
This specific form of the equation was first proposed by Jeans [Jea15] as a model for galaxies; its use in
plasma physics originates in work of its eponym Vlasov [Vla38].

While not the primary subject of this article, we mention that the Vlasov equation as a PDE has been
actively studied over the years, with basic questions of well-posedness now well understood. When W
is regular (e.g., ∇𝑊 is Lipschitz), well-posedness of measure-valued weak solutions is classical [BH77,
Dob79]. In the case when W is not regular, for instance as in Vlasov–Poisson, well-posedness is not
known in the class of measures, but global well-posedness is known for solution classes at higher
regularities [Ior61, Ars75, HH84, Bat77, UO78, Wol80, BD85, Pfa92, Sch91, Hor93, LP91, Pal12].
Subsequent work has investigated sufficient conditions for the uniqueness of solutions [Rob97, Loe06,
Mio16, Iac22] and well-posedness when W is even more singular at the origin than the Coulomb
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potential (e.g., general Riesz potentials) [CJ22]. An active topic of current research concerns the long-
time dynamics of Vlasov equations; for example, see [MV11, BMM16, FR16, CK16, GNR20, HKNR21,
PW21, FOPW21, IPWW22, GNR22] and references therein.

Iwinski and Turski [ZI76] and Morrison [Mor80] independently made the formal observation that
there is a Poisson bracket structure with respect to which the Vlasov equation is Hamiltonian.1 We
remind the reader that the Hamiltonian formulation of an equation consists of a Hamiltonian functional
and an underlying manifold equipped with a Poisson bracket, which serves as the phase space. Marsden
and Weinstein [MW82] and Gibbons [Gib81] later observed that this bracket is of Lie–Poisson type,
which we briefly outline ignoring any functional-analytic difficulties. There is a Lie algebra (𝔤, [·, ·]𝔤),
elements of which are functions 𝑓 (𝑥, 𝑣) corresponding to observables. On the dual 𝔤∗, elements of
which correspond to states (think measures, more generally distributions 𝛾 on R2𝑑), there is a Poisson
bracket {·, ·}𝔤∗ canonically obtained from the Lie algebra (𝔤, [·, ·]𝔤) through〈

[dF [𝛾], dG [𝛾]]𝔤, 𝛾
〉
𝔤−𝔤∗

, F ,G ∈ C∞(𝔤∗), 𝛾 ∈ 𝔤∗. (1.2)

Here, F ,G are smooth (using the Gâteaux differential calculus) real-valued functions on 𝔤∗, and using
the isomorphism (𝔤∗)∗ � 𝔤 (assuming the space 𝔤 is chosen appropriately), the Gâteaux derivatives
dF [𝛾], dG [𝛾], which are linear functionals, may be identified as elements of the Lie algebra 𝔤. The
notation 〈·, ·〉𝔤−𝔤∗ denotes the duality pairing between 𝔤 and 𝔤∗. The Vlasov Hamiltonian functional is

H𝑉 𝑙 (𝛾) =
1
2

∫
(R𝑑)2

𝑑𝛾(𝑥, 𝑣) |𝑣 |2 +

∫
(R𝑑)2

𝑑𝜌⊗2 (𝑥, 𝑦)𝑊 (𝑥 − 𝑦). (1.3)

For any sufficiently nice functional F ∈ C∞(𝔤∗), there exists a unique Hamiltonian vector field 𝑋F
on 𝔤∗ characterized by the property that

∀G ∈ C∞(𝔤∗), 𝑋F (G) = {G,F }𝔤∗ , (1.4)

where the vector field 𝑋F is understood as a derivation in the left-hand side. By direct computation of
𝑋H𝑉𝑙 , one sees that the Vlasov equation is equivalent to the infinite-dimensional ordinary differential
equation (ODE)

�𝛾 = 𝑋H𝑉𝑙 (𝛾). (1.5)

The physical significance of the Vlasov equation is as a macroscopic limit of a system of indistin-
guishable Newtonian particles with pairwise interactions. The starting point for the description of this
limit is the system of N ordinary differential equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

�𝑥𝑡𝑖 = 𝑣𝑡𝑖

�𝑣𝑡𝑖 = −
2
𝑁

∑
1≤ 𝑗≤𝑁 : 𝑗≠𝑖

∇𝑊 (𝑥𝑖 − 𝑥 𝑗 ),
∀𝑖 ∈ {1, . . . , 𝑁}, (1.6)

where i is the particle index. We adopt the convention that ∇𝑊 (0) := 0, which allows for singular W and
is consistent with the even assumption if W is regular. This allows us to add back into the summation
𝑗 = 𝑖.

As is well known, the system (1.6) can be rewritten in the form of Hamilton’s equations. Introducing
the total energy of the system

𝐻𝑁 (𝑧
𝑁
) �

1
2

𝑁∑
𝑖=1

|𝑣𝑖 |
2 +

1
𝑁

∑
1≤𝑖≠ 𝑗≤𝑁

𝑊 (𝑥𝑖 − 𝑥 𝑗 ), (1.7)

1See also [FKS09, Nei19] for alternative takes on the Hamiltonian structure of the Vlasov equation.
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and writing 𝑧
𝑁
= (𝑧1, . . . , 𝑧𝑁 ) with 𝑧𝑖 = (𝑥𝑖 , 𝑣𝑖), equation (1.6) is equivalent to

�𝑧𝑡𝑁 = J𝑁∇𝑧
𝑁
𝐻𝑁 (𝑧

𝑁
), (1.8)

where ∇𝑧
𝑁
= (∇𝑧1 , . . . ,∇𝑧𝑁 ) with ∇𝑧𝑖 = (∇𝑥𝑖 ,∇𝑣𝑖 ) and J𝑁 is the block-diagonal matrix whose diagonal

entries are the rotation matrix J(𝑥, 𝑣) = (−𝑣, 𝑥).
Given a solution 𝑧𝑡

𝑁
of equation (1.6), one can associate to it a probability measure 𝜇𝑡

𝑁 �
1
𝑁

∑𝑁
𝑖=1 𝛿𝑧𝑡𝑖 (𝑧) on R2𝑑 called the empirical measure. By integrating 𝜇𝑡

𝑁 against a test function, it is
a straightforward calculation to show that 𝜇𝑡

𝑁 is a weak solution to the Vlasov equation if and only if
𝑧𝑡
𝑁

is a solution of equation (1.6). Accordingly, if the initial empirical measures 𝜇0
𝑁 converge weakly as

𝑁 → ∞ to an expected or mean-field measure 𝜇0 with regular density, then one expects—or hopes—
that 𝜇𝑡

𝑁 converges weakly to a solution 𝜇𝑡 of the Vlasov equation with initial datum 𝜇0 for all time, a
law of large numbers type result. The Vlasov equation (1.1) is then referred to as the mean-field limit of
the system (1.6).

Alternatively, one may adopt a statistical point of view and suppose that the initial position-velocities
𝑧1, . . . , 𝑧𝑁 are themselves random variables with some exchangeable (i.e., invariant under permutations
of particle labels) law 𝛾0

𝑁 . The starting point is now the Liouville equation

𝜕𝑡𝛾𝑁 +

𝑁∑
𝑖=1

𝑣𝑖 · ∇𝑥𝑖𝛾𝑁 −
2
𝑁

𝑁∑
𝑖=1

∑
1≤ 𝑗≤𝑁

∇𝑊 (𝑥𝑖 − 𝑥 𝑗 ) · ∇𝑣𝑖𝛾𝑁 = 0. (1.9)

Given a solution 𝛾𝑁 of the Liouville equation (1.9), we form the sequence of marginals

𝛾 (𝑘)
𝑁 �

∫
(R2𝑑)𝑁−𝑘

𝑑𝛾𝑁 (·, 𝑧𝑘+1, . . . , 𝑧𝑁 ), 1 ≤ 𝑘 ≤ 𝑁, (1.10)

where by convention 𝛾 (𝑁 )

𝑁 � 𝛾𝑁 . The marginals (𝛾 (𝑘)
𝑁 )𝑁𝑘=1 satisfy the (classical) Bogoliubov–Born–

Green–Kirkwood–Yvon (BBGKY) hierarchy of equations

𝜕𝑡𝛾
(𝑘)
𝑁 +

𝑘∑
𝑖=1

𝑣𝑖 · ∇𝑥𝑖𝛾
(𝑘)
𝑁 =

2
𝑁

∑
1≤𝑖, 𝑗≤𝑘

∇𝑊 (𝑥𝑖 − 𝑥 𝑗 ) · ∇𝑣𝑖𝛾
(𝑘)
𝑁

+
2(𝑁 − 𝑘)

𝑁

𝑘∑
𝑖=1

∫
R2𝑑

𝑑𝑧𝑘+1∇𝑊 (𝑥𝑖 − 𝑥𝑘+1) · ∇𝑣𝑖𝛾
(𝑘+1)
𝑁 . (1.11)

Letting 𝑁 → ∞, the first term on the right-hand side of equation (1.11) is formally𝑂 (1/𝑁) and therefore
vanishes, while the prefactor of the second term becomes 2, leading to the Vlasov hierarchy

𝜕𝑡𝛾
(𝑘) +

𝑘∑
𝑖=1

𝑣𝑖 · ∇𝑥𝑖𝛾
(𝑘) = 2

𝑘∑
𝑖=1

∫
R2𝑑

𝑑𝑧𝑘+1∇𝑊 (𝑥𝑖 − 𝑥𝑘+1) · ∇𝑣𝑖𝛾
(𝑘+1) , 𝑘 ≥ 1. (1.12)

The equations (1.12) form an infinite coupled system of linear equations, where the coupling of the
k-th marginal to the (𝑘 + 1)-th marginal reflects that there are only binary interactions in equation (1.6).
Making the ansatz that there exists a 𝛾𝑡 such that 𝛾 (𝑘) ,𝑡 = (𝛾𝑡 )⊗𝑘 for every 𝑘 ∈ N and 𝑡 ≥ 0, one
computes that (𝛾 (𝑘) )∞𝑘=1 is a solution of the Vlasov hierarchy if and only if 𝛾 is a solution of the Vlasov
equation. Thus, if for each 𝑘 ∈ N, the marginals 𝛾 (𝑘) ,0

𝑁 of the initial N-particle laws converge to (𝛾0)⊗𝑘

as 𝑁 → ∞, then one expects—or hopes—that the time evolutions 𝛾 (𝑘) ,𝑡
𝑁 converge to (𝛾𝑡 )⊗𝑘 as 𝑁 → ∞.

This asymptotic factorization is referred to as propagation of molecular chaos.

https://doi.org/10.1017/fms.2023.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.72


Forum of Mathematics, Sigma 5

One can make the formal derivation sketched in the preceding paragraphs rigorous in the sense
that the empirical measure is shown to converge weakly to a solution of the Vlasov equation as
𝑁 → ∞ under suitable assumptions on W. This in turn implies propagation of chaos in a certain
topology (see [GMR13, HM14] and references therein). The convergence when W is regular (e.g.,
∇𝑊 Lipschitz) is classical [NW74, BH77, Dob79, NP20, Due21]. However, the situation when the
force ∇𝑊 fails to be Lipschitz is much less understood. In particular, it is an outstanding problem to
prove the mean-field limit for Vlasov–Poisson, except in dimension one [Tro86, Hau14]. Some results
have been obtained for forces ∇𝑊 which are bounded [JW16] or even mildly singular (e.g., |𝑥 |−𝛼

for 𝛼 < 1) [HJ07, HJ15]. In other directions, mean-field convergence has been shown for Coulomb-
type potentials which are regularized at some small scale 𝜖𝑁 vanishing as 𝑁 → ∞ [BP16, Laz16,
LP17, Gra21] or when the initial data are of so-called monokinetic type [Ser20]. For reviews of
Vlasov mean-field limits, the reader may consult [Jab14, Gol16] and, in particular, the recent lecture
notes [Gol22].

The formal derivation from above, let alone any of the just cited mathematical results, does not
give any information on how the Hamiltonian structure of the Vlasov equation itself arises from that of
Newton’s second law. To the best of our knowledge, a detailed description of the Hamiltonian structure for
the Vlasov equation as itself a ‘mean-field limit’ (in other words, a derivation of the Vlasov Hamiltonian
structure) remains an unanswered question. Some partial progress has been made: Marsden, Morrison
and Weinstein [MMW84] formally showed that the BBGKY hierarchy equations (1.11) are Lie–Poisson
(i.e., they are Hamiltonian with respect to the canonical Poisson bracket on the dual of a Lie algebra)
and that this hierarchy bracket is such that its pullback under the map corresponding to taking marginals
equals the Poisson bracket for the Liouville equation. However, Marsden et al.’s expressed goal of
showing ‘how this structure is inherited by truncated systems, providing a statistical basis for recently
discovered bracket structures for plasma systems’, such as those identified in [ZI76, Mor80, Gib81,
MW82] for the Vlasov equation and [MG80, Mor82, MRW84] for other related equations, has not been
realized prior to this paper.

1.2. Informal description of main results

In this article, we settle the question of [MMW84] on providing a statistical foundation for the Pois-
son structure underlying the Vlasov equation, by giving a rigorous derivation of the Hamiltonian
structure, both the underlying Poisson vector space and Hamiltonian functional, directly from New-
tonian mechanics in the limit as 𝑁 → ∞. Our results parallel the previous subsection’s discus-
sion of the formal derivation of the Vlasov equation, but from a perspective focused on geometric
structure, in particular morphisms between different Lie algebras and Lie–Poisson spaces, as well
as limits of such structures as the number of particles 𝑁 → ∞. In addition to placing the for-
mal calculations of [MMW84] on firm functional-analytic footing by identifying appropriate spaces
of functions and distributions, corresponding to observables and states, respectively, on which all
brackets are well defined, we show that operations in the formal derivation, such as taking the
marginals of an N-particle distribution or forming the empirical measure from a position-velocity
configuration, are Poisson morphisms (i.e., they preserve Poisson brackets). Moreover—and most
importantly—we show that the Hamiltonian structure of the Vlasov equation, both the Lie–Poisson
bracket and the Hamiltonian functional, may be interpreted as a ‘geometric mean-field limit’, which
is directly obtainable as the pullback of the Hamiltonian structure of the Vlasov hierarchy, both novel
observations.

Theorem 1.1 stated below is an informal description of the main results of this paper. Of course,
Theorem 1.1 is a gross caricature. The reader will forgive us for not being more precise at this stage
so as to maintain the accessibility of the introduction. A detailed description of the results, with all
background material and notation explained, is given in Section 2, which is the technical introduction
to the paper. It is important for the reader to understand that there is not a single main result but a chain
of connected results that should be considered in their totality.
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Theorem 1.1 (Informal statement of the main result)

N-particle Liouville Let 𝑁 ∈ N denote the number of particles.
◦ There exists a Lie algebra 𝔤𝑁 of symmetric C∞ functions on (R2𝑑)𝑁 , constituting N-particle

observables. Scaling the standard Poisson bracket by N, yields a Lie bracket [·, ·]𝔤𝑁 .
◦ Consequently, the strong dual 𝔤∗𝑁 , consisting of symmetric distributions with compact

support on (R2𝑑)𝑁 , has a Lie–Poisson bracket {·, ·}𝔤∗𝑁 , with respect to which the Liouville
equation (1.9) admits a Hamiltonian formulation.

◦ Additionally, there is a Poisson morphism 𝜄𝐿𝑖𝑜 : (R2𝑑)𝑁 → 𝔤∗𝑁 sending a position-velocity
configuration 𝑧

𝑁
to a symmetric probably measure (the law) on (R2𝑑)𝑁 , in particular

mapping solutions of Newton’s equations (1.6) to solutions of the Liouville equation.
N-particle BBGKY

◦ The Lie algebras (𝔤𝑘 , [·, ·]𝔤𝑘 )
𝑁
𝑘=1 collectivize into a Lie algebra (𝔊𝑁 , [·, ·]𝔊𝑁 ) of N-

hierarchies of observables 𝐹 = ( 𝑓 (𝑘) )𝑁𝑘=1 ∈𝔊𝑁 =
⊕𝑁

𝑘=1 𝔤𝑘 .
◦ On the strong dual space𝔊∗

𝑁 =
∏𝑁

𝑘=1 𝔤
∗
𝑘 consisting of N-hierarchies of states Γ = (𝛾 (𝑘) )𝑁𝑘=1,

there is an associated Lie–Poisson bracket {·, ·}𝔊∗
𝑁

, with respect to which the BBGKY
hierarchy (1.11) admits a Hamiltonian formulation.

◦ Additionally, the map 𝜄𝑚𝑎𝑟 : 𝔤∗𝑁 → 𝔊∗
𝑁 formed from taking k-particle marginals is a

Poisson morphism, mapping solutions of the Liouville equation to solutions of the BBGKY
hierarchy.

Vlasov hierarchy
◦ The spaces𝔊𝑁 ordered by inclusion form an increasing sequence with limit𝔊∞ =

⊕∞
𝑘=1 𝔤𝑘 .

Any 𝐹, 𝐺 ∈𝔊∞ also must belong to𝔊𝑁 for N sufficiently large; therefore, one can compute
the limit of [𝐹, 𝐺]𝔊𝑁 as 𝑁 → ∞, which acquires a simpler form due to vanishing of𝑂 (1/𝑁)
terms in the expansion. This limit, denoted [𝐹, 𝐺]𝔊∞

, defines a Lie bracket for𝔊∗
∞.

◦ On the strong dual 𝔊∗
∞ =

∏∞
𝑘=1 𝔤

∗
𝑘 , there is an associated Lie-Poisson bracket {·, ·}𝔊∗

∞

well defined for any F ,G ∈ C∞(𝔊∗
∞). Restricting to a unital subalgebra A∞ generated by

expectation and constant functionals, 𝔊∗
∞ acquires a weak Poisson structure, with respect

to which the Vlasov hierarchy (1.12) is Hamiltonian.
From Vlasov hierarchy to Vlasov

◦ The factorization map 𝜄 : 𝔤∗1 →𝔊∗
∞ defined by 𝛾 ↦→ (𝛾⊗𝑘 )∞𝑘=1 is a Poisson morphism.

◦ The pullback of the Vlasov hierarchy Hamiltonian under 𝜄 equals the Vlasov Hamiltonian.
◦ In this sense, the Hamiltonian structure of the Vlasov equation (1.1) is the pullback of the

Hamiltonian structure of the Vlasov hierarchy, and the map 𝜄 sends solutions of the Vlasov
equation to the Vlasov hierarchy.

From Newton to Vlasov
◦ Finally, one can connect the N-particle Poisson space to the Vlasov–Poisson space through

the empirical measure assignment 𝜄𝐸𝑀 : (R2𝑑)𝑁 → 𝔤∗1, which is a Poisson morphism.
◦ The pullback under 𝜄𝐸𝑀 of the Vlasov Hamiltonian equals the energy per particle of equation

(1.6), and therefore 𝜄𝐸𝑀 sends solutions of the Newtonian system to weak solutions of the
Vlasov equation.

Remark 1.2. The reader might wonder about the relevance of Theorem 1.1 for the Vlasov–Poisson
equation since the Coulomb potential is not in 𝔤1, failing to be smooth at the origin. While this
observation is correct, it is not of great importance since, at the N-particle level, one can always regularize
the potential W at some small scale, such as the typical interparticle distance 𝑁−1/𝑑 .2 Similarly, it is
classical that the Cauchy problem for Vlasov–Poisson is stable with respect to regularizations of W (e.g.,
see [Hau14]). Furthermore, the primary significance of Theorem 1.1 is not at the level of Hamiltonian

2In fact, Vlasov–Poisson dynamics have been derived as the mean-field limit of Newtonian N-particle dynamics with such a
regularization [LP17].

https://doi.org/10.1017/fms.2023.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.72


Forum of Mathematics, Sigma 7

functionals, which depend on the potential W, but rather at the level of the underlying Lie algebras and
Lie–Poisson brackets, which are completely independent of W. If one wishes to have a formalism that
directly allows for singular W, then one should work with scales of function spaces on (R2𝑑)𝑘 (e.g.,
Sobolev) and their duals. In which case, the notion of a Hamiltonian vector field must be modified to
allow for mappings from a higher regularity index of the scale to a lower regularity index. Additionally,
the states in Theorem 1.1 are assumed to have compact support in phase space. This a qualitative,
technical assumption stemming from the isomorphism between C∞(R𝑛)∗ and the space E ′(R𝑛) of
distributions with compact support. It is harmless from the perspective of the Vlasov equation due to
finite speed of propagation and stability with respect to compact approximation of the initial data.

Let us state clearly that Theorem 1.1 does not address the derivation of dynamics of the Vlasov
equation from Newton’s second law or the Liouville equation in the vein of the works on Vlasov mean-
field limits mentioned in Section 1.1. Instead, our work is complementary, answering the question
of [MMW84] on a derivation of the Vlasov bracket from N-particle brackets, which we argue is both
independent of and unaddressed by these prior works on Vlasov mean-field limits. A worthwhile goal for
the future is to unify this perspective of derivation of geometric structure with the traditional perspective
of derivation of dynamics, using the former to say new things about the latter. In other contexts, the
geometric structure of an equation has played an important role in understanding its well-posedness or
long-time dynamics. As an example of this interplay to which we aspire, we mention the seminal work
of Arnold [Arn66, Arn69] and Ebin and Marsden [EM70] for the incompressible Euler equation.

1.3. Method of proof

Our method for proving Theorem 1.1 is heavily inspired by the work [MNP+20] of the last four coauthors
together with D. Mendelson. This cited work gave a complete, mathematically rigorous description of
how the Hamiltonian structure of the nonlinear Schrödinger equation emerges in the limit as 𝑁 → ∞

from the Hamiltonian structure of the linear Schrödinger equation describing the many-body problem
for N interacting bosons. The approach of [MNP+20] in turn was motivated by the use of the BBGKY
hierarchy to derive the dynamics of nonlinear Schrödinger-type equations from the N-body Schrödinger
problem [Spo80, ABGT04, AGT07, ESY06, ESY07, ESY09, ESY10, KM08, CP14, CH19].3 While the
results obtained in the present paper demonstrate the robustness of the hierarchy formalism developed
in [MNP+20], in the sense that there are algebraic parts to our work for which the computations of
[MNP+20] transfer with little modification, there are important analytic differences between the quantum
setting and the classical setting of this work, as well as new challenges encountered here.

The first obvious difference with [MNP+20] we highlight is the nature of observables, states and
brackets in classical mechanics versus quantum. Here, the observables (for k particles) are C∞ functions
𝑓 : (R2𝑑)𝑘 → R invariant under permutation of particle labels, while in the quantum setting, they
are continuous linear operators 𝐴 ∈ L(S𝑠 ((R

𝑑)𝑘 ),S ′
𝑠 ((R

𝑑)𝑘 )) from the symmetric Schwartz space
to the space of symmetric tempered distributions. Similarly, the states here (again for k particles) are
distributions 𝛾 on (R2𝑑)𝑘 with compact support and with a dually defined permutation symmetry, while
in the quantum setting, they are continuous linear operators 𝐴 ∈ L(S ′

𝑠 ((R
𝑑)𝑘 ),S𝑠 ((R

𝑑)𝑘 )) from the
space of symmetric tempered distributions to the symmetric Schwartz space. The fact that we do not
need to consider very irregular distribution-valued operators is a technical advantage of the classical
setting over the quantum. It is an interesting observation that the observables are irregular while the
states are regular, in terms of Schwartz kernels, in the quantum setting, while in the classical setting the
opposite is true. Lastly, the Poisson structures here are all built from the standard Poisson structure on
Euclidean space, whereas in the quantum case, they are built from the commutator of two operators on
an 𝐿2 space.

3We also mention that the BBGKY hierarchy has been a tool [NS81, Spo80, Spo81, GMR13], though not as powerful, in the
derivation of Vlasov dynamics.
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𝑁 -Schrödinger/Quantum Hartree/Quantum

𝑁 -Liouville/Classical Vlasov/Classical

𝑁 → ∞

ℏ → 0
𝑁 → ∞, ℏ → 0

ℏ → 0

𝑁 → ∞

Figure 1. Mean field and classical limits.

The next difference with [MNP+20] is that the results of the present paper are stronger and the overall
proof is significantly less ad hoc. Namely, in [MNP+20], we relied on the notion of a weak Poisson vector
space (see Definition 3.23), originally introduced in [NST14], at all stages of the derivation. The adjective
‘weak’ here refers to the fact that the Poisson bracket is no longer assumed to admit a Hamiltonian
vector field for every C∞ functional, but only for functionals in a unital subalgebra A, which itself is part
of the data specifying a weak Poisson vector space. Much of the difficulty throughout [MNP+20] boils
down to identifying an A which is large enough to contain all functionals of interest (e.g., BBGKY,
Gross-Pitaevskii Hamiltonians) but still small enough so that the brackets can actually be defined. In
contrast, the present article works with a notion of strong Poisson vector spaces (see Definition 3.17)
at the N-particle level, in which the Poisson bracket is assumed to admit a Hamiltonian vector field for
every C∞ functional, omitting the need to restrict to a subalgebra. We then show that our dual spaces
𝔤∗𝑘 ,𝔊

∗
𝑁 satisfy certain topological conditions (in particular, they are 𝑘∞ spaces; see Definition 3.18) and

that our Lie brackets are jointly continuous, allowing us to use an abstract theorem of Glöckner [Glo09]
(see Theorem 3.20 for a review) to obtain a well-defined Lie–Poisson structure. To the best of our
knowledge, our work is the first application of Glöckner’s theorem for problems involving Hamiltonian
PDE. Unfortunately, we run into a technical issue at the infinite-particle level when attempting to verify
the conditions to apply Glöckner’s theorem for𝔊∗

∞—namely, showing that this is a 𝑘∞ space, given the
𝑘∞ property is not necessarily preserved under countable products. To overcome this issue, we resort
to directly verifying that for the subalgebra A∞ generated by constants and expectation functionals (see
equation (2.39)), which are the classical analogue of the trace functionals from [MNP+20], there is a
weak Poisson structure for𝔊∗

∞. Importantly, this algebraA∞ contains the Vlasov hierarchy Hamiltonian.

1.4. Future directions

This article and the prior work [MNP+20] raise the interesting question of how to connect the classical
and quantum worlds through the limit ℏ → 0. We believe that by combining geometric structures from
each of these papers and relating them through the Wigner transform, which is a Poisson morphism, the
combined mean-field limit 𝑁 → ∞ and ℏ → 0 can be handled to obtain a rigorous derivation of the
Hamiltonian structure of the Vlasov equation directly from the N-body Schrödinger equation. In other
words, the diagram in Figure 1 commutes in terms of geometric structure. We plan to investigate this
direction in future work.

It is appropriate to conclude this subsection by mentioning some works that are related to the spirit
of our paper in terms of understanding the role of the Hamiltonian formulation of PDE in mathematical
physics. We first mention some recent work of Chong [Cho22] which exhibits a Poisson map from the
Poisson manifold underlying the Vlasov equation to the Poisson manifold underlying the compressible
Euler equation. We also mention impressive work of Khesin et al. [KMeM19, KMeM19, KMeM21]
which shows that the Madelung transformation from wave functions to hydrodynamic variables is
a Kähler morphism and which develops a geometric framework for Newton’s equations on groups
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of diffeomorphisms and spaces of probability densities, covering a number of equations, including
(in)compressible fluid and (non)linear Schrödinger equations. Finally, we mention the interesting work of
Fröhlich et al. [FTY00, FKP07, FKS09] on the relationship between quantization, mean-field theory and
the dynamics of the Hartree and Vlasov equations, which are informed by the Hamiltonian perspective.

2. Blueprint of the paper

We now present an outline of our main results and discuss their proofs. This section is intended as a
complete blueprint or schematic of the entire paper. We recommend that one reads through this section
in its entirety before proceeding to Sections 3 to 6 and then regularly refer back to it during the reading of
these subsequent sections. At the end of this section (see Section 2.5), we elaborate on the organization
of the remaining portion of the paper. Finally, there are some abstract notions, which may already be
familiar to the reader, that are referenced in Sections 2.1 to 2.4 but whose definitions are deferred to
Section 3. This choice of ordering is so as not to get bogged down in material that is not the central
focus of the paper.

For the reader’s benefit, we include Table 1, located at the end of the paper, as a guide to the various
notation appearing in this work. In the table, we either provide an explanation of the notation or a
reference for where the notation is first introduced and defined. Some of the notation in the table has
already appeared in the introduction. In such cases, we give references to where the notation first appears
in subsequent sections.

2.1. Newton/Liouville equations

Consider the function 𝐻𝑁 from equation (1.7) with 𝑊 ∈ 𝐶∞(R𝑑) satisfying 𝑊 (−𝑥) = 𝑊 (𝑥). We
recall from the introduction the rotation matrix J(𝑥, 𝑣) = (−𝑣, 𝑥) and the block-diagonal matrix J𝑁 with
diagonal entries J. The standard symplectic structure on (R2𝑑)𝑁 is given by the form

𝜔𝑁 (𝑧
𝑁
, 𝑤𝑁 ) � −J𝑁 𝑧

𝑁
· 𝑤𝑁 , ∀𝑧

𝑁
, 𝑤𝑁 ∈ (R2𝑑)𝑁 , (2.1)

where · denotes the Euclidean inner product on (R2𝑑)𝑁 . We recall that the Hamiltonian vector field
𝑋𝐻𝑁 associated to 𝐻𝑁 is uniquely defined by the formula

d𝐻𝑁 [𝑧
𝑁
] (𝛿𝑧

𝑁
) = 𝜔𝑁 (𝑋𝐻𝑁 (𝑧𝑁 ), 𝛿𝑧

𝑁
), ∀𝑧

𝑁
, 𝛿𝑧

𝑁
∈ (R2𝑑)𝑁 . (2.2)

Set ∇𝑧 𝑗 = (∇𝑥 𝑗 ,∇𝑣𝑗 ), where ∇𝑥 𝑗 = (𝜕𝑥1
𝑗
, . . . , 𝜕𝑥𝑑𝑗

) and ∇𝑣𝑗 = (𝜕𝑣1
𝑗
, . . . , 𝜕𝑣𝑑𝑗

). Writing ∇𝑧
𝑁

=

(∇𝑧1 , . . . ,∇𝑧𝑁 ), we compute from the property J2 = −I together with the definition of the gradient that

d𝐻𝑁 [𝑧
𝑁
] (𝛿𝑧

𝑁
) = ∇𝑧

𝑁
𝐻𝑁 (𝑧

𝑁
) · 𝛿𝑧

𝑁
= −J2𝑁∇𝑧

𝑁
𝐻𝑁 (𝑧

𝑁
) · 𝛿𝑧

𝑁
= −J𝑁

(
J𝑁∇𝑧

𝑁
𝐻𝑁 (𝑧

𝑁
)
)
· 𝛿𝑧

𝑁
,

(2.3)

which implies that 𝑋𝐻𝑁 (𝑧𝑁 ) = J𝑁∇𝑧
𝑁
𝐻𝑁 (𝑧

𝑁
). Thus, the functional 𝐻𝑁 and the symplectic form 𝜔𝑁

together define the Hamiltonian equation of motion

�𝑧𝑡
𝑁
= 𝑋𝐻𝑁 (𝑧

𝑡
𝑁
), (2.4)

which is equivalent to equation (1.6). As is well known, the symplectic form 𝜔𝑁 induces a canonical
Poisson bracket on (R2𝑑)𝑁 by

{𝐹, 𝐺}(R2𝑑)𝑁 (𝑧𝑁 ) � 𝜔𝑁 (𝑋𝐹 (𝑧𝑁 ), 𝑋𝐺 (𝑧
𝑁
)), ∀𝐹, 𝐺 ∈ C∞((R2𝑑)𝑁 ), 𝑧

𝑁
∈ (R2𝑑)𝑁 , (2.5)
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referred to as the standard Poisson structure on (R2𝑑)𝑁 . Thus, the symplectic formulation (2.4) of
Newton’s second law of motion can be equivalently written in Poisson form as

𝑑

𝑑𝑡
𝐹 (𝑧𝑡

𝑁
) = {𝐹, 𝐻𝑁 }(R2𝑑)𝑁 (𝑧

𝑡
𝑁
), ∀𝐹 ∈ C∞((R2𝑑)𝑁 ). (2.6)

To evaluate 𝑁 → ∞ limits, it is convenient to rescale the Poisson bracket and modify the Hamiltonian
𝐻𝑁 as follows:

H𝑁𝑒𝑤 �
1
𝑁
(𝐻𝑁 +𝑊 (0)) and {·, ·}𝑁 � 𝑁{·, ·}(R2𝑑)𝑁 , (2.7)

with the subscript ‘New’ abbreviating Newton. Evidently, H𝑁𝑒𝑤 depends on N, but we omit this
dependence from our notation, as it will be clear from context. The addition of the term 𝑊 (0) in the
Hamiltonian is harmless: It is a constant, and so it does not change the Hamiltonian vector field. Its
inclusion reflects the fact that we do not need to exclude self-interaction since W is continuous at the
origin. With these rescalings and translation, the Poisson formulation (2.6) becomes

𝑑

𝑑𝑡
𝐹 (𝑧𝑡

𝑁
) = {𝐹,H𝑁𝑒𝑤 }𝑁 (𝑧𝑡

𝑁
), ∀𝐹 ∈ C∞((R2𝑑)𝑁 ). (2.8)

For each 𝑘 ∈ N, we define the set

𝔤𝑘 � C∞
𝑠 ((R2𝑑)𝑘 ) �

{
𝑓 ∈ C∞((R2𝑑)𝑘 ) : 𝑓 (𝑧𝜋 (1) , . . . , 𝑧𝜋 (𝑘) ) = 𝑓 (𝑧

𝑘
), ∀𝜋 ∈ S𝑘

}
. (2.9)

In the sequel, we will use the shorthand ( 𝑓 ◦ 𝜋) (𝑧
𝑘
) � 𝑓 (𝑧𝜋 (1) , . . . , 𝑧𝜋 (𝑘) ). In other words, the space

𝔤𝑘 consists of smooth real-valued functions which are invariant under permutations of particle labels.
We endow the set 𝔤𝑘 with the locally convex topology induced by the seminorms

𝜌𝐾,𝑛 : 𝔤𝑘 → [0,∞), 𝜌𝐾,𝑛 ( 𝑓 ) � sup
|𝛼 | ≤𝑛

‖𝜕𝛼 𝑓 ‖𝐿∞ (𝐾 ) , 𝐾 ⊂ (R2𝑑)𝑘 , 𝑛 ∈ N, (2.10)

where K above is compact and the supremum is taken over all multi-indices 𝛼 ∈ (N0)
2𝑑𝑘 with order

at most n. We then regard 𝔤𝑘 as a real topological vector space, elements of which are our k-particle
observables. We introduce a bracket on 𝔤𝑘 which will give the space the structure of a Lie algebra. For
each 𝑘 ∈ N, we define

[·, ·]𝔤𝑘 : 𝔤𝑘 × 𝔤𝑘 → 𝔤𝑘 , [ 𝑓 , 𝑔]𝔤𝑘 � 𝑘{ 𝑓 , 𝑔}(R2𝑑)𝑘 , (2.11)

where {·, ·}(R2𝑑)𝑘 is the standard Poisson bracket on (R2𝑑)𝑘 .

Proposition 2.1. For each 𝑘 ∈ N, the pair (𝔤𝑘 , [·, ·]𝔤𝑘 ) is a Lie algebra in the sense of Definition 3.15
below. Furthermore, the bracket [·, ·]𝔤𝑘 is a continuous bilinear map.

Next, for each 𝑘 ∈ N, we define the real topological vector space 𝔤∗𝑘 to be the strong dual of 𝔤𝑘 . It
can be characterized as follows:

𝔤∗𝑘 = {𝛾 ∈ C∞((R2𝑑)𝑘 )∗ : 𝜋#𝛾 = 𝛾, ∀𝜋 ∈ S𝑘 }, (2.12)

where 𝜋#𝛾( 𝑓 ) = 𝛾( 𝑓 ◦ 𝜋) for 𝑓 ∈ C∞((R2𝑑)𝑘 ). Using the isomorphism C∞((R2𝑑)𝑘 )∗ � E ′((R2𝑑)𝑘 ),
elements of 𝔤∗𝑘 , which we call k-particle states, are distributions on (R2𝑑)𝑘 with compact support and
which are invariant under the action of S𝑘 (i.e., the permutation of particle labels). The space 𝔤∗𝑘 has the
desirable property of being a reflexive, (DF) Montel space (see Lemma 4.1).

The canonical Lie–Poisson bracket induced by the Lie bracket [·, ·]𝔤𝑘 gives 𝔤∗𝑘 the structure of a
Poisson vector space in the precise sense of Definition 3.17. In fact, the space 𝔤∗𝑘 has stronger topological
properties, namely it is a 𝑘∞ space (see Definition 3.18) that make it an example of a reflexive, locally

https://doi.org/10.1017/fms.2023.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.72


Forum of Mathematics, Sigma 11

convex Poisson vector space as defined in Definition 3.19. We will use these stronger topological
properties to prove this Lie–Poisson assertion by appealing to the aforementioned ‘black box’ theorem
of Glöckner recalled in Theorem 3.20 below.

Before stating the result, we record the following important observation. For any G ∈ C∞(𝔤∗𝑘 ), we
have by definition of the Gâteaux derivative that dG ∈ C∞(𝔤∗𝑘 ;𝔤∗∗𝑘 ). So, for any 𝜇 ∈ 𝔤∗𝑘 we have that
dG [𝜇] ∈ 𝔤∗∗𝑘 , that is dG [𝜇] is a continuous linear functional on 𝔤∗𝑘 . Since we have the isomorphism
𝔤∗∗𝑘 � 𝔤𝑘 , we are justified in making the identification

dG [𝜇] � 𝑔𝜇 and dH[𝜇] � ℎ𝜇, where 𝑔𝜇, ℎ𝜇 ∈ 𝔤𝑘 . (2.13)

We then regard
[
𝑔𝜇, ℎ𝜇

]
𝔤𝑘

as an element in 𝔤𝑘 , and we denote the pairing of 𝜇 and
[
𝑔𝜇, ℎ𝜇

]
𝔤𝑘

as the
‘integral’ ∫

(R2𝑑)𝑘
𝑑𝜇

[
𝑔𝜇, ℎ𝜇

]
𝔤𝑘
. (2.14)

This identification will be made throughout this paper.

Proposition 2.2. For observables G,H ∈ C∞(𝔤∗𝑘 ) and k-particle state 𝛾 ∈ 𝔤∗𝑘 , we define the bracket

{G,H}𝔤∗
𝑘
(𝛾) �

〈
[dG [𝛾], dH[𝛾]]𝔤𝑘 , 𝛾

〉
𝔤𝑘−𝔤∗𝑘

. (2.15)

Then (𝔤∗𝑘 , {·, ·}𝔤∗𝑘 ) is a reflexive, locally convex Lie–Poisson space in the sense of Definition 3.19.

The reader may check that for any 𝑁 ≥ 2, the function 𝐻𝑁 ∈ 𝔤𝑁 , hence H𝑁𝑒𝑤 ∈ 𝔤𝑁 . Therefore, it
makes sense to introduce the Liouville Hamiltonian functional

H𝐿𝑖𝑜 (𝛾) � 〈H𝑁𝑒𝑤 , 𝛾〉𝔤𝑁−𝔤∗𝑁
, ∀𝛾 ∈ 𝔤∗𝑁 . (2.16)

Evidently, H𝐿𝑖𝑜 depends on N, though we omit this dependence from our notation. Being linear and
continuous (by consequence of the separate continuity of the distributional pairing), H𝐿𝑖𝑜 ∈ C∞(𝔤∗𝑁 ).
With H𝐿𝑖𝑜 and Proposition 2.2, the Liouville equation may be written in Hamiltonian form. Proposition
2.3 stated below is the classical counterpart to the fact that the von Neumann equation from quantum
mechanics is Hamiltonian (see [MNP+20, pp. 17-18]).

Proposition 2.3. Let 𝐼 ⊂ R be a compact interval and 𝑁 ∈ N. Then 𝛾 ∈ C∞(𝐼, 𝔤∗𝑁 ) is a solution to the
Liouville equation (1.9) if and only if

�𝛾 = 𝑋H𝐿𝑖𝑜 (𝛾), (2.17)

where 𝑋H𝐿𝑖𝑜 is the unique Hamiltonian vector field generated by the Hamiltonian H𝐿𝑖𝑜 with respect to
the Lie-Poisson vector space (𝔤∗𝑁 , {·, ·}𝔤∗𝑁 ).

Given a position-velocity configuration 𝑧
𝑁
= (𝑧1, . . . , 𝑧𝑁 ) ∈ (R2𝑑)𝑁 , we can associate a symmetric

probability measure on (R2𝑑)𝑁 by defining

𝛾𝑁 �
1
𝑁!

∑
𝜋∈S𝑁

𝛿𝑧𝜋 (1) ⊗ · · · ⊗ 𝛿𝑧𝜋 (𝑁 )
. (2.18)

Evidently, the right-hand side is an element of 𝔤∗𝑁 . We call this assignment 𝜄𝐿𝑖𝑜 : (R2𝑑)𝑁 → 𝔤∗𝑁 the
Liouville map. The reader may check from the invariance of H𝑁𝑒𝑤 under the action of S𝑁 that

H𝐿𝑖𝑜 (𝜄𝐿𝑖𝑜 (𝑧𝑁 )) =
1
𝑁!

∑
𝜋∈S𝑁

H𝑁𝑒𝑤 (𝑧𝜋 (1) , . . . , 𝑧𝜋 (𝑁 ) ) = H𝑁𝑒𝑤 (𝑧
𝑁
). (2.19)
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Moreover, the map 𝜄𝐿𝑖𝑜 is a morphism of Poisson vector spaces, implying that 𝜄𝐿𝑖𝑜 maps solutions of
the Newtonian system (1.6) to solutions of the Liouville equation (1.9) (see Remark 4.5).

Proposition 2.4. The map 𝜄𝐿𝑖𝑜 ∈ C∞((R2𝑑)𝑁 , 𝔤∗𝑁 ) defines a morphism of the Poisson vector space
((R2𝑑)𝑁 , {·, ·}𝑁 ) into the Lie–Poisson space (𝔤∗𝑁 , {·, ·}𝔤∗𝑁 ):

∀F ,G ∈ C∞(𝔤∗𝑁 ),
{
𝜄∗𝐿𝑖𝑜F , 𝜄∗𝐿𝑖𝑜G

}
𝑁
= 𝜄∗𝐿𝑖𝑜{F ,G}𝔤∗𝑁 , (2.20)

where 𝜄∗𝐿𝑖𝑜 denotes the pullback under 𝜄𝐿𝑖𝑜.

2.2. The Lie algebra 𝔊𝑁 and Lie–Poisson space 𝔊∗
𝑁

Building on the previous subsection, we transition to discussing finite hierarchies of observables and
states.

For 𝑁 ∈ N, we define the algebraic direct sum

𝔊𝑁 �
𝑁⊕
𝑘=1

𝔤𝑘 (2.21)

and endow this vector space with the product topology (note that the direct sum is a direct product since
the number of summands is finite). This turns 𝔊𝑁 into a locally convex real topological vector space.
We refer to elements of 𝔊𝑁 as N-hierarchies of observables, alternatively observable N-hierarchies.
The Lie brackets [·, ·]𝔤1 , . . . , [·, ·]𝔤𝑁 induce a Lie algebra structure on𝔊𝑁 as follows.

For 𝑁 ∈ N and 1 ≤ 𝑘 ≤ 𝑁 , consider the map

𝜖𝑘,𝑁 : 𝔤𝑘 → 𝔤𝑁 , 𝜖𝑘,𝑁 ( 𝑓 (𝑘) ) (𝑧
𝑁
) �

1
|𝑃𝑁

𝑘 |

∑
( 𝑗1 ,..., 𝑗𝑘 ) ∈𝑃

𝑁
𝑘

𝑓 (𝑘)
( 𝑗1 ,..., 𝑗𝑘 )

(𝑧
𝑁
), (2.22)

where

𝑓 (𝑘)
( 𝑗1 ,..., 𝑗𝑘 )

(𝑧
𝑁
) � 𝑓 (𝑘) (𝑧

( 𝑗1 ,..., 𝑗𝑘 )
), 𝑧

( 𝑗1 ,..., 𝑗𝑘 )
� (𝑧 𝑗1 , . . . , 𝑧 𝑗𝑘 ), (2.23)

and we are defining the set of length-k tuples drawn from {1, . . . , 𝑁} by

𝑃𝑁
𝑘 � {( 𝑗1, . . . , 𝑗𝑘 ) : 1 ≤ 𝑗𝑖 ≤ 𝑁 and 𝑗𝑖 distinct}. (2.24)

In the sequel, we will use the tuple shorthand 𝒋𝑘 and write 𝑓 (𝑘)𝒋𝑘
and 𝑓 (𝑘) (𝑧

𝒋𝑘
). One can show that the maps

𝜖𝑘,𝑁 are continuous, linear and therefore C∞, and that they are injective (see Lemmas 4.6 and 4.7, respec-
tively). In words, the map 𝜖𝑘,𝑁 embeds a k-particle observable in the space of N-particle observables.
The maps 𝜖𝑘,𝑁 have a filtration property (see Lemma 4.9) asserting that

[
𝜖ℓ,𝑁 ( 𝑓 (ℓ) ), 𝜖 𝑗 ,𝑁 (𝑔 ( 𝑗) )

]
𝔤𝑁

lies in the image of 𝜖𝑘,𝑁 , and using this filtration property together with the injectivity of 𝜖𝑘,𝑁 , we can
define a Lie bracket on𝔊𝑁 by

[𝐹, 𝐺]
(𝑘)
𝔊𝑁
� 𝜖−1

𝑘,𝑁

�����
∑

1≤ℓ, 𝑗≤𝑁
min(ℓ+ 𝑗−1,𝑁 )=𝑘

[
𝜖ℓ,𝑁 ( 𝑓 (ℓ) ), 𝜖 𝑗 ,𝑁 (𝑔 ( 𝑗) )

]
𝔤𝑁

�����, 1 ≤ 𝑘 ≤ 𝑁. (2.25)

In fact, there is an explicit formula for [𝐹, 𝐺]
(𝑘)
𝔊𝑁

(see equation (4.67)), which we do not state here.
For N fixed, the maps {𝜖𝑘,𝑁 }𝑁𝑘=1 also have the interesting property that they induce a Lie algebra
homomorphism (see Proposition 4.17)
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𝜄𝜖 : 𝔊𝑁 → 𝔤𝑁 , 𝜄𝜖 (𝐹) �
𝑁∑
𝑘=1

𝜖𝑘,𝑁 ( 𝑓 (𝑘) ), ∀𝐹 = ( 𝑓 (𝑘) )𝑁𝑘=1, (2.26)

the dependence of 𝜄𝜖 on N being implicit. The map 𝜄𝜖 sends an N-hierarchy of observables to a single
N-particle observable. After a series of lemmas establishing properties of these embedding maps 𝜖𝑘,𝑁 ,
we arrive at our main result for the N-particle hierarchy Lie algebra.

Theorem 2.5. For any 𝑁 ∈ N, the pair (𝔊𝑁 , [·, ·]𝔊𝑁 ) is a Lie algebra in the sense of Definition 3.15.
Furthermore, the bracket [·, ·]𝔊𝑁 is continuous.

If we define the real topological vector space 𝔊∗
𝑁 as the strong dual of 𝔊𝑁 =

⊕𝑁
𝑘=1 𝔤𝑘 , then using

the duality of direct sums and products [K6¨9, Proposition 2, §14, Chapter 3], we see that

𝔊∗
𝑁 =

(
𝑁⊕
𝑘=1

𝔤𝑘

)∗
�

𝑁∏
𝑘=1

𝔤∗𝑘 , (2.27)

where the right-hand side is endowed with the product topology. The canonical Lie–Poisson bracket
induced by the Lie bracket [·, ·]𝔊𝑁 gives𝔊∗

𝑁 the structure of a Poisson vector space in the precise sense
of Definition 3.17. Similar to 𝔤∗𝑁 , the space 𝔊∗

𝑁 is a reflexive, locally convex Poisson vector space as
defined in Definition 3.19. We will use Glöckner’s black box Theorem 3.20 to prove this assertion.

Theorem 2.6. For functionals G,H ∈ C∞(𝔊∗
𝑁 ) and state N-hierarchy Γ = (𝛾 (𝑘) )𝑁𝑘=1 ∈ 𝔊∗

𝑁 , we define
the bracket

{G,H}𝔊∗
𝑁
(Γ) �

〈
[dG [Γ], dH[Γ]]𝔊𝑁 , Γ

〉
𝔊𝑁−𝔊∗

𝑁
=

𝑁∑
𝑘=1

〈
[dG [Γ], dH[Γ]] (𝑘)𝔊𝑁

, 𝛾 (𝑘)
〉
𝔤𝑘−𝔤∗𝑘

. (2.28)

Then (𝔊∗
𝑁 , {·, ·}𝔊∗

𝑁
) is a reflexive, locally convex Lie–Poisson space in the sense of Definition 3.19.

To show that the BBGKY hierarchy (1.11) is a Hamiltonian equation on the Poisson vector space
(𝔊∗

∞, {·, ·}𝔊∗
∞
), we introduce the N-particle BBGKY Hamiltonian functional

H𝐵𝐵𝐺𝐾𝑌 (Γ) � 〈W𝐵𝐵𝐺𝐾𝑌 , Γ〉𝔊𝑁−𝔊∗
𝑁
, ∀Γ ∈𝔊∗

∞, (2.29)

where

W𝐵𝐵𝐺𝐾𝑌 �
(
1
2
|𝑣1 |

2,
(𝑁 − 1)

𝑁
𝑊 (𝑥1 − 𝑥2) +

𝑊 (0)
𝑁

, 0, . . . , 0
)
∈𝔊𝑁 , (2.30)

the dependence on N being implicit. Here, |𝑣1 |
2 and 𝑊 (𝑥1 − 𝑥2),𝑊 (0) are viewed as functions on

(R2𝑑) and (R2𝑑)2, respectively. Note that W𝐵𝐵𝐺𝐾𝑌 is indeed an element of𝔊𝑁 by the assumption that
𝑊 ∈ C∞(R𝑑). Tautologically, H𝐵𝐵𝐺𝐾𝑌 is linear, and it is continuous by the separate continuity of the
duality pairing; hence, H𝐵𝐵𝐺𝐾𝑌 ∈ C∞(𝔊∗

𝑁 ). Interpreting the integrals as distributional pairings, we
have

H𝐵𝐵𝐺𝐾𝑌 (Γ) =
1
2

∫
R2𝑑

𝑑𝛾 (1) (𝑧1) |𝑣1 |
2 +

1
𝑁

∫
(R2𝑑)2

𝑑𝛾 (2) (𝑧1, 𝑧2) ((𝑁 − 1)𝑊 (𝑥1 − 𝑥2) +𝑊 (0)). (2.31)

The following theorem, our main result for the BBGKY hierarchy, is the classical counterpart to
[MNP+20, Theorem 2.3] for the quantum BBGKY hierarchy.

Theorem 2.7. Let 𝐼 ⊂ R be a compact interval and 𝑁 ∈ N. Then Γ ∈ C∞(𝐼,𝔊∗
𝑁 ) is a solution to the

BBGKY hierarchy (1.11) if and only if

�Γ = 𝑋H𝐵𝐵𝐺𝐾𝑌 (Γ), (2.32)
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where 𝑋H𝐵𝐵𝐺𝐾𝑌 is the unique Hamiltonian vector field generated by the Hamiltonian H𝐵𝐵𝐺𝐾𝑌 with
respect to the Poisson vector space (𝔊∗

𝑁 , {·, ·}𝔊∗
𝑁
).

Returning to the homomorphism 𝜄𝜖 from equation (2.26), we can take its dual 𝜄∗𝜖 : 𝔤∗𝑁 → 𝔊∗
𝑁 .

Analogous to the quantum setting (cf. [MNP+20, Proposition 5.29]), this dual map is nothing but the
marginal map 𝛾 ↦→ (𝛾 (𝑘) )𝑁𝑘=1 and is Poisson morphism, facts shown in Proposition 4.18.

2.3. The Lie algebra 𝔊∞ and Lie–Poisson space 𝔊∗
∞

Having built up the necessary structure at the N-particle level, we transition to addressing the infinite-
particle limit of our constructions. The natural inclusion map𝔊𝑁 ⊂ 𝔊𝑀 for any integers 𝑀 ≥ 𝑁 implies
that one has the limiting topological vector space (a colimit of topological spaces ordered by inclusion)

𝔊∞ �
∞⊕
𝑘=1

𝔤𝑘 . (2.33)

Elements of 𝔊∞ are called observable∞-hierarchies, alternatively ∞-hierarchies of observables. They
take the form 𝐹 = ( 𝑓 (𝑘) )∞𝑘=1, where 𝑓 (𝑘) ∈ 𝔤𝑘 is the zero element for all 𝑘 ≥ 𝑁 + 1, for some 𝑁 ∈ N.
Thus, given any 𝐹, 𝐺 ∈ 𝔊∞, by taking N sufficiently large, it makes sense to consider the Lie bracket
[𝐹, 𝐺]𝔊𝑁 . Our next result computes the limit [𝐹, 𝐺]𝔊∞

of this expression as 𝑁 → ∞ and shows that
(𝔊∞, [·, ·]𝔊∞

) is indeed a Lie algebra. Notably, the Lie bracket [·, ·]𝔊∞
acquires a much simpler form

than [·, ·]𝔊𝑁 , as certain terms vanish as 𝑁 → ∞. In contrast to the quantum setting of [MNP+20], there
are no technical difficulties involving compositions of distribution-valued operators to give meaning to
[𝐹, 𝐺]𝔊∞

.

Theorem 2.8. Let 𝐹 = ( 𝑓 (ℓ) )∞ℓ=1, 𝐺 = (𝑔 ( 𝑗) )∞𝑗=1 ∈𝔊∞. For each 𝑘 ∈ N, define

[𝐹, 𝐺]
(𝑘)
𝔊∞
� lim

𝑁→∞
[𝐹, 𝐺]

(𝑘)
𝔊𝑁

=
∑
ℓ, 𝑗≥1

ℓ+ 𝑗−1=𝑘

Sym𝑘

(
𝑓 (ℓ) ∧1 𝑔

( 𝑗)
)
, (2.34)

where the limit is in the topology of 𝔊∞, the wedge product ∧1 is defined by

𝑓 (ℓ) ∧1 𝑔
( 𝑗) (𝑧

𝑘
) � ℓ 𝑗 (∇𝑥1 𝑓

(ℓ) (𝑧
ℓ
) · ∇𝑣1𝑔

( 𝑗) (𝑧1, 𝑧ℓ+1;𝑘 ) − ∇𝑥1𝑔
( 𝑗) (𝑧

𝑗
) · ∇𝑣1 𝑓

(ℓ) (𝑧1, 𝑧 𝑗+1;𝑘 )), (2.35)

and the k-particle symmetrization operator Sym𝑘 is defined by4

∀ℎ (𝑘) ∈ C∞((R2𝑑)𝑘 ), Sym𝑘 (ℎ
(𝑘) ) �

1
𝑘!

∑
𝜋∈S𝑘

ℎ (𝑘) ◦ 𝜋. (2.36)

Moreover, (𝔊∞, [·, ·]𝔊∞
) is a Lie algebra in the sense of Definition 3.15, and the bracket [·, ·]𝔊∞

is
boundedly hypocontinuous.

As with the N-particle setting, the next step is the dual problem of constructing a Lie–Poisson space
from (𝔊∞, [·, ·]𝔊∞

). We define the real topological vector space

𝔊∗
∞ �

∞∏
𝑘=1

𝔤∗𝑘 (2.37)

equipped with the usual product topology, which is the strong dual of 𝔊∞. Elements of 𝔊∗
∞ are called

state∞-hierarchies, alternatively ∞-hierarchies of states.

4By duality, Sym𝑘 is also well defined for distributions on (R2𝑑)𝑘 .

https://doi.org/10.1017/fms.2023.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.72


Forum of Mathematics, Sigma 15

We want to construct a Lie–Poisson bracket over 𝔊∗
∞ similarly to as done in Theorem 2.6. Given

any F ,G ∈ C∞(𝔊∗
∞) and Γ = (𝛾 (𝑘) )∞𝑘=1 ∈ 𝔊∗

∞, the continuous linear functionals dF [Γ], dG [Γ] may
be identified as elements of 𝔊∞ since 𝔊∗∗

∞ � 𝔊∞. Hence, [dF [Γ], dG [Γ]]𝔊∞
is an element of 𝔊∞, in

particular only finitely many of its components are nonzero, and we are justified in defining

{F ,G}𝔊∗
∞
(Γ) �

〈
[dF [Γ], dG [Γ]]𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞
=

∞∑
𝑘=1

〈
[dF [Γ], dG [Γ]] (𝑘)𝔊∞

, 𝛾 (𝑘)
〉
𝔤𝑘−𝔤∗𝑘

. (2.38)

Here, we come to one of the main technical difficulties of the paper: We are unable to prove that
{F ,G}𝔊∗

∞
∈ C∞(𝔊∗

∞). An essentially equivalent issue is that while we are able to show that a Hamiltonian
vector field 𝑋G exists, we are unable to show it is C∞ as a map 𝔊∗

∞ → 𝔊∗
∞. As remarked in Section

1.3, we cannot rely on Theorem 3.20, as done in the proof of Theorem 2.6, because we are unable
to verify that 𝔊∗

∞ satisfies certain topological conditions, namely that it is a 𝑘∞ space (see Definition
3.18). Accordingly, we instead directly show that 𝔊∗

∞ admits a weak Lie–Poisson structure in the sense
of Definition 3.23.

The key difference between a weak Lie–Poisson structure and Lie–Poisson structure is that, in the
former, one specifies a unital subalgebra (with respect to pointwise product) A∞ ⊂ C∞(𝔊∗

∞), which
must satisfy certain nondegeneracy conditions, as the ‘admissible’ functionals, in contrast to working
with all the functionals in C∞(𝔊∗

∞). To this end, we choose A∞ ⊂ C∞(𝔊∗
∞) to be the algebra generated

with respect to pointwise product by the set

{F ∈ C∞(𝔊∗
∞) : F (·) = 〈𝐹, ·〉𝔊∞−𝔊∗

∞
𝐹 ∈𝔊∞} ∪ {F ∈ C∞(𝔊∗

∞) : F (·) ≡ 𝐶 ∈ R}. (2.39)

Heuristically viewing the components of Γ = (𝛾 (𝑘) )∞𝑘=1 as measures on (R2𝑑)𝑘 , we call functionals of
the form F (·) = 〈𝐹, ·〉𝔊∞−𝔊∗

∞
expectations. They are analogous to the ‘trace functionals’ of [MNP+20].

In other words, the subalgebra A∞ is generated by expectations and the constant functionals. The work
[MNP+20] employs the notion of a weak Poisson vector space at both the N-particle level for 𝔊∗

𝑁 and
the infinite-particle level for𝔊∗

∞; while here, we only need this notion at the infinite-particle level. This
is an advantage of the present work compared to [MNP+20]. The motivation for this choice of algebra
A∞ is that expectation functionals have constant Gâteaux derivatives (see Remark 2.10 below). Since
for fixed expectations F ,G, the Gâteaux derivatives dF [Γ], dG [Γ] have only finitely many nonzero
components as elements in 𝔊∞, uniformly in Γ, this allows us then to directly check that the bracket
{F ,G}𝔊∗

∞
is C∞, in fact it belongs to the subalgebra A∞, and also show that the the vector field 𝑋G is

C∞. This direct verification relies heavily on explicit formulae for the Poisson bracket {·, ·}𝔊∗
∞

and for
the Hamiltonian vector field with respect to the bracket {·, ·}𝔊∗

∞
to show that these expressions reduce

to finite sums of compositions of C∞ maps.

Remark 2.9. Our definition of A∞ is not canonical in the sense that one could, in principle, include
functionals beyond those generated by expectations and constants. However, doing so comes at the cost
of added complexity in verifying that (𝔊∗

∞,A∞, {·, ·}𝔊∗
∞
) is a weak Poisson vector space, and therefore

we will not do so in this work.

Remark 2.10. By the bilinearity of the duality pairing and the definition of the Gâteaux derivative,
an expectation functional F has constant Gâteaux derivative, that is dF [Γ] = dF [0] for all Γ ∈ 𝔊∗

∞.
Similarly, a constant functional has zero Gâteaux derivative.

Theorem 2.11. Let 𝔊∗
∞ be the strong dual of 𝔊∞ as given in equation (2.37). Define the bracket

{F ,G}𝔊∗
∞
(Γ) �

〈
[dF [Γ], dG [Γ]]𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞
, ∀F ,G ∈ C∞(𝔊∗

∞), Γ ∈𝔊∗
∞, (2.40)

and let A∞ be as in equation (2.39). Then the triple (𝔊∗
∞,A∞, {·, ·}𝔊∗

∞
) is a weak Poisson vector space

in the sense of Definition 3.23.
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Having constructed a weak Poisson vector space for the infinite-particle setting, it makes sense
to discuss Hamiltonian flows for ∞-hierarchies. Our final result of this subsection is that the Vlasov
hierarchy (1.12) is itself Hamiltonian, which is a new observation. The Vlasov hierarchy Hamiltonian
functional is the expectation (cf. equations (2.29), (2.30) for the BBGKY Hamiltonian)

H𝑉 𝑙𝐻 (Γ) = 〈W𝑉 𝑙𝐻 , Γ〉𝔊∞−𝔊∗
∞

(2.41)

generated by the observable ∞-hierarchy

W𝑉 𝑙𝐻 �
(
1
2
|𝑣 |2,𝑊 (𝑥1 − 𝑥2), 0, . . .

)
. (2.42)

One immediately recognizes that W𝑉 𝑙𝐻 is the 𝑁 → ∞ limit of W𝐵𝐵𝐺𝐾𝑌 in the topology of 𝔊∞.
Interpreting the integrals as distributional pairings, we can write, for Γ = (𝛾 (𝑘) )∞𝑘=1,

H𝑉 𝑙𝐻 (Γ) =
1
2

∫
R2𝑑

𝑑𝛾 (1) (𝑧) |𝑣 |2 +

∫
(R2𝑑)2

𝑑𝛾 (2) (𝑧1, 𝑧2)𝑊 (𝑥1 − 𝑥2). (2.43)

In particular, the functional H𝑉 𝑙𝐻 belongs to the admissible algebra A∞ introduced in equation (2.39).
The next theorem asserts that the Vlasov hierarchy (1.12) is a Hamiltonian flow on (𝔊∗

∞,A∞, {·, ·}𝔊∗
∞
),

and it is the classical analogue of [MNP+20, Theorem 2.10] for the Gross–Pitaevskii hierarchy.

Theorem 2.12. Let 𝐼 ⊂ R be a compact interval. Then Γ = (𝛾 (𝑘) )∞𝑘=1 ∈ C∞(𝐼,𝔊∗
∞) is a solution to the

Vlasov hierarchy (1.12) if and only if

�Γ = 𝑋H𝑉𝑙𝐻 (Γ), (2.44)

where 𝑋H𝑉𝑙𝐻 is the unique Hamiltonian vector field generated by the Hamiltonian H𝑉 𝑙𝐻 with respect
to the weak Lie–Poisson space (𝔊∗

∞,A∞, {·, ·}𝔊∗
∞
).

2.4. From Vlasov hierarchy to Vlasov equation

Finally, we tie together the constituent results of the previous subsections to connect the Hamiltonian
structure of the Vlasov hierarchy (1.12) to the Vlasov equation (1.1). This necessitates elaborating on the
rigorous formulation of the Hamiltonian structure of the Vlasov equation (cf. [MR13, p. 329, 10.1(e)]).
The Vlasov Hamiltonian functional is

H𝑉 𝑙 (𝛾) �
〈

1
2
|𝑣 |2, 𝛾

〉
𝔤1−𝔤∗1

+
〈
𝑊 (𝑥1 − 𝑥2), 𝛾

⊗2〉
𝔤2−𝔤∗2

. (2.45)

In terms of ‘integrals’ (as before, understood rigorously as distributional pairings),

H𝑉 𝑙 (𝛾) =
1
2

∫
(R𝑑)2

𝑑𝛾(𝑥, 𝑣) |𝑣 |2 +

∫
(R𝑑)2

𝑑𝜌⊗2 (𝑥1, 𝑥2)𝑊 (𝑥1 − 𝑥2), (2.46)

where 𝜌 �
∫
R𝑑

𝑑𝛾(·, 𝑣) is the density associated to 𝛾. Note that 𝜌 is well defined as a distribution, since
for any test function 𝑓 ∈ C∞(R𝑑), we can set

〈 𝑓 , 𝜌〉C∞ (R𝑑)−E′ (R𝑑) � 〈 𝑓 ⊗ 1, 𝛾〉C∞ (R2𝑑)−E′ (R2𝑑) , (2.47)

where ( 𝑓 ⊗1) (𝑥, 𝑣) = 𝑓 (𝑥) for every (𝑥, 𝑣) ∈ (R𝑑)2. In contrast to the other Hamiltonian functionals we
have seen so far, H𝑉 𝑙 is nonlinear, in fact quadratic, in the potential energy. Since H𝑉 𝑙 is multilinear in
its argument 𝛾 and continuous as a map from 𝔤∗1 → R, it is straightforward to check that H𝑉 𝑙 ∈ C∞(𝔤∗1).
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Proposition 2.13. Let 𝐼 ⊂ R be a compact interval. Then 𝛾 ∈ C∞(𝐼, 𝔤∗1) is a solution to the Vlasov
equation (1.1) if and only if

�𝛾 = 𝑋H𝑉𝑙 (𝛾), (2.48)

where 𝑋H𝑉𝑙 is the unique Hamiltonian vector field generated by the Hamiltonian H𝑉 𝑙 with respect to
the Lie–Poisson space (𝔤∗1, {·, ·}𝔤∗1 ).

We connect the Vlasov hierarchy to the Vlasov equation, each as infinite-dimensional Hamiltonian
systems, through the embedding

𝜄 : 𝔤∗1 →𝔊∗
∞, 𝜄(𝛾) � (𝛾⊗𝑘 )∞𝑘=1, ∀𝛾 ∈ 𝔤∗1. (2.49)

Here, 𝛾⊗𝑘 denotes the usual k-fold tensor product of the distribution 𝛾. The geometric content of the map
𝜄, which we call the trivial embedding or factorization map, is that it preserves the Poisson structures
on 𝔤∗1 and 𝔊∗

∞, that is, it is a Poisson morphism in the sense of Definition 3.27.

Theorem 2.14. The map 𝜄 ∈ C∞(𝔤∗1,𝔊
∗
∞) is a morphism of the Lie–Poisson space (𝔤∗1, {·, ·}𝔤∗1 ) into the

weak Lie–Poisson space (𝔊∗
∞,A∞, {·, ·}𝔊∗

∞
):

∀F ,G ∈ A∞, {𝜄∗F , 𝜄∗G}𝔤∗1 = 𝜄∗{F ,G}𝔊∗
∞
. (2.50)

Let us now explain why the results of this section constitute a rigorous derivation of the Hamiltonian
structure for the Vlasov equation, as claimed in the title of the paper. The reader may check that (see
also Remark 6.3)

𝜄∗H𝑉 𝑙𝐻 = H𝑉 𝑙 , (2.51)

that is, the pullback of the Vlasov hierarchy Hamiltonian equals the Vlasov Hamiltonian. The identity
(2.51) together with Theorems 2.12 and 2.14 then show that the Hamiltonian functional and Poisson
bracket for the Vlasov equation are obtained via the pullback under the trivial embedding 𝜄 of the
Hamiltonian functional and Poisson bracket for the Vlasov hierarchy; moreover, 𝜄 sends solutions of the
Vlasov equation to special factorized solutions of the Vlasov hierarchy. Combined with the results of
Section 2.2, which provide a geometric correspondence between Newton’s equations/Liouville equation
and the BBGKY hierarchy, and Theorem 2.8, which allows us to take the infinite-particle limit of our
N-particle geometric constructions, we arrive at a rigorous derivation of the Hamiltonian structure of
the Vlasov equation directly from the Hamiltonian formulation of Newtonian mechanics.

Finally, as mentioned in Section 1.1, there is another way to derive the Vlasov equation from
the Newtonian N-body problem (1.6) via the empirical measure. It is an interesting fact, which to
our knowledge has not been previously observed, that the map 𝜄𝐸𝑀 assigning a position-velocity
configuration 𝑧

𝑁
∈ (R2𝑑)𝑁 to its empirical measure on R2𝑑 is, in fact, a Poisson morphism (see

Proposition 2.15 below). Since one also has 𝜄∗𝐸𝑀H𝑉 𝑙 = H𝑁𝑒𝑤 (see Remark 6.1), this implies the
previously mentioned fact that if 𝑧𝑡

𝑁
is a solution to equation (1.6), then the associated empirical

measure 𝜇𝑡
𝑁 is a weak solution to the Vlasov equation.

Proposition 2.15. The map

𝜄𝐸𝑀 : (R2𝑑)𝑁 → 𝔤∗1, 𝜄𝐸𝑀 (𝑧
𝑁
) �

1
𝑁

𝑁∑
𝑖=1

𝛿𝑧𝑖 , ∀𝑧
𝑁

∈ (R2𝑑)𝑁 (2.52)

belongs to C∞((R2𝑑)𝑁 , 𝔤∗1) and defines a morphism of Poisson vector spaces.
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2.5. Organization of paper

Let us close Section 2 with some comments on the organization of the remaining body of the article.
Section 3 contains background material on topological vector spaces, Lie algebras and (weak) Lie–

Poisson vector spaces. The reader may wish to skip this section upon first reading and instead consult
it as necessary during the reading of Sections 4 to 6.

Section 4 contains the N-particle setting results. The section is divided into several subsections, each
building upon the previous one. Section 4.1 concerns the setting of the Newtonian system (1.6) and
Liouville equation (1.9), proving Propositions 2.1 and 2.2 for 𝔤𝑘 and 𝔤∗𝑘 , respectively, Proposition 2.4 for
𝜄𝐿𝑖𝑜, and Proposition 2.15 for 𝜄𝐸𝑀 . Sections 4.2 and 4.3 concern the setting of the BBGKY hierarchy
(1.11), proving Theorems 2.5 and 2.6 for 𝔊𝑁 ,𝔊∗

𝑁 , respectively. Finally, Section 4.4 concerns the
operation of taking marginals, proving Proposition 4.18 for 𝜄𝑚𝑎𝑟 .

Section 5 contains the infinite-particle setting results. As with Section 4, the section is divided into
several subsections, each intended to build upon the previous one. Sections 5.1 and 5.2 are devoted to the
proofs of Theorems 2.8 and 2.11 for 𝔊∞,𝔊∗

∞, respectively. Section 5.3 contains the proof of Theorem
2.14 for the map 𝜄.

Lastly, Section 6 contains the proofs of the Hamiltonian flows results Proposition 2.13 and Theorems
2.7 and 2.12, which assert that that the Vlasov equation, BBGKY hierarchy and Vlasov hierarchy,
respectively, are Hamiltonian flows on their respective Lie–Poisson spaces given by Proposition 2.13
and Theorems 2.6 and 2.11. The section is broken into three subsections with Section 6.1 corresponding
to the Vlasov equation, Section 6.2 to the BBGKY hierarchy and Section 6.3 to the Vlasov hierarchy.

3. Background material

The purpose of this section is to collect in one place all the necessary preliminary facts—some rather
elementary—from functional analysis concerning topological vector spaces, function spaces and distri-
butions and Lie algebras and Lie–Poisson vector spaces. There is some overlap with [MNP+20, Section
4, Appendices A-B], but this section also contains notions new to the present work, such as Glöckner’s
aforementioned formalism of Poisson vector spaces. Moreover, our spaces of functions and distributions
are not comparable to [MNP+20], as here we deal with test functions and distributions over (R2𝑑)𝑘 , as
opposed to operators between spaces of test functions and spaces of distributions. This difference is, of
course, a reflection of the classical physics setting of the present work in contrast to the quantum setting
of the cited work, as explained in Section 1.3.

3.1. Some function analysis facts

In this subsection, we review functional analytic notions which will be used throughout the rest of the
paper. We begin by reviewing duality in topological vector spaces.

Definition 3.1. Let X be a topological vector space. We define 𝑋∗ to be the set of continuous linear
functionals on X and endow it with the strong dual topology, which is given as follows. Let A be the set
of bounded subsets of X. For each 𝐴 ∈ A, we define the seminorm

𝜌𝐴 : 𝑋∗ → [0,∞), 𝜌𝐴(𝑇) � sup
𝑓 ∈𝐴

|𝑇 ( 𝑓 ) |. (3.1)

Note that this is indeed a seminorm, since continuous linear operators are bounded. We define the
topology of 𝑋∗ to be the one generated by the above seminorms. If the cannonical embedding

𝑋 ↩→ (𝑋∗)∗ � 𝑋∗∗ (3.2)

is an isomorphism between topological vector spaces, then we say that X is reflexive.
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Definition 3.2. Let 𝑋,𝑌 be topological vector spaces, and let 𝐹 : 𝑋 → 𝑌 be a continuous linear map.
We define the adjoint of F to be 𝐹∗ : 𝑌 ∗ → 𝑋∗ with

𝐹∗(𝑇) (𝑥) � (𝑇 ◦ 𝐹) (𝑥), ∀𝑇 ∈ 𝑌 ∗, 𝑥 ∈ 𝑋. (3.3)

Proposition 3.3. Let 𝑋,𝑌 be topological vector spaces, and let 𝐹 : 𝑋 → 𝑌 be a continuous linear map.
Then 𝐹∗ : 𝑌 ∗ → 𝑋∗ is a continuous linear map.

We continue with the necessary background in functional analysis by reviewing the concepts of
barrelled, Montel and (DF) spaces following the presentation of [K6¨9, K7¨9].

Definition 3.4 (Barrelled space). Let X be a locally convex topological vector space. We say that X is
barrelled if every closed absorbent, absolutely convex subset of X is a neighborhood of 0 ∈ 𝑋 .

In the above definition, a subset M of X is said to be absorbent if for every 𝑥 ∈ 𝑋 , there exists a 𝜌 > 0
such that 𝑥 ∈ 𝜌𝑀; it is said to be absolutely convex if for every 𝑥, 𝑦 ∈ 𝑀 and 𝛼, 𝛽 ∈ Rwith |𝛼 | + |𝛽| ≤ 1,
the point 𝛼𝑥 + 𝛽𝑦 ∈ 𝑀 . For the following, we recall that a locally convex topological vector space is
Fréchet if it is metrizable and complete.

Lemma 3.5. Fréchet spaces are barrelled.

Proof. See [K6¨9, §21.6 (3)]. �

Definition 3.6 (Montel space). We say X is a Montel space if it is barrelled and every bounded subset
of X is relatively compact.

Lemma 3.7. Montel spaces are reflexive, and the strong dual of a Montel space is Montel.

Proof. See [K6¨9, §27.2 (1)-(2)]. �

Definition 3.8 ((DF) Spaces). Let X be a locally convex topological vector space. We say that X is a
dual Frechét (DF) space if the following conditions hold:

1. The space X has a fundamental sequence of bounded sets, that is, there exists a countable sequence
of bounded sets {𝐵𝑖}𝑖∈N such that any bounded set in X is contained in some 𝐵𝑖 .

2. Every bounded subset of 𝑋∗ (in the strong topology) which is the countable union of equicontinuous
sets is equicontinuous.

Lemma 3.9. The strong dual of a Fréchet space is a (DF) space.

Proof. See [K6¨9, §29.3]. �

Next, we recall the notions of sequential spaces and k-spaces as presented in [Eng89, pp. 53, 152].

Definition 3.10 (Sequential spaces). Let (𝑋, 𝜏) be a topological space. We say a set 𝑆 ⊂ 𝑋 is sequentially
closed if for any sequence (𝑥𝑖)

∞
𝑖=1 in S that converges to x implies that 𝑥 ∈ 𝑆. We say the space X is a

sequential space if every sequentially closed set is closed in X.

Definition 3.11 (k-space). Let (𝑋, 𝜏) be a topological space. We say X is a k-space if the following
condition holds: For every set 𝐴 ⊂ 𝑋 , 𝐾 ∩ 𝐴 is closed in A, endowed with the subspace topology, for
every compact K if and only if A is closed in X.

That a sequential space is a fortiori a k-space is, perhaps well known. For the sake of completeness,
we present a proof of this fact in the next proposition, which will be crucially used in Section 4.3.

Proposition 3.12 Sequential ⇒ 𝑘-space. Let (𝑋, 𝜏) be a sequential space. Then (𝑋, 𝜏) is a k-space.
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Proof. Assume that there exists a nonclosed set 𝐴 ⊂ 𝑋 which satisfies 𝐾 ∩ 𝐴 is closed in A for every
compact K. Since A is not closed, and X is a sequential space, we must have that A is not sequentially
closed. So, there exists some sequence (𝑥𝑖)

∞
𝑖=1 in A that converges to a point 𝑥 ∈ 𝑋 \ 𝐴. Note that the set

{𝑥𝑖 : 𝑖 ∈ N} ∪ {𝑥} is compact, and so

𝐴 ∩ ({𝑥𝑖 : 𝑖 ∈ N} ∪ {𝑥}) = {𝑥𝑖 : 𝑖 ∈ N} (3.4)

is closed in A. However, since closed sets are sequentially closed and the sequence 𝑥𝑖 converges to x, it
must be the case that 𝑥 ∈ 𝐴. This is a contradiction, so X is a k-space. �

We are now ready to state a result of Webb [Web68] which gives sufficient conditions for a topological
vector space to be a sequential space.

Theorem 3.13 [Web68, Proposition 5.7]. Let X be an infinite-dimensional Montel (DF) space. Then X
is a sequential space.

We close this subsection by stating the notions of derivative and smooth function for infinite-
dimensional spaces used in this work, which is that of the Gâteaux derivative. For more on calculus in
the setting of topological vector spaces, we refer to the lecture notes of Milnor [Mil84].

Definition 3.14 (Gâteaux derivative). Let 𝑋,𝑌 be topological vector spaces, and let 𝑓 : 𝑋 → 𝑌 .

1. The function f is called C0(𝑋,𝑌 ) if it is continuous.
2. The function f is called C1(𝑋,𝑌 ) if for every 𝑥, 𝑥 ′ ∈ 𝑋 , the limit

d 𝑓 [𝑥] (𝑥 ′) � lim
ℎ→0

1
ℎ
[ 𝑓 (𝑥 + ℎ𝑥 ′) − 𝑓 (𝑥)] (3.5)

exists in Y, and the mapping d 𝑓 : 𝑋 × 𝑋 → 𝑌 is continuous with respect to the product topology.
The function d 𝑓 is called the Gâteaux derivative of f.

3. For 𝑛 ∈ N, the function f is called C𝑛 (𝑋,𝑌 ) if d𝑛 𝑓 : 𝑋 × 𝑋𝑛 → 𝑌 exists and is continuous.
4. The function f is called C∞(𝑋,𝑌 ) if it is C𝑛 (𝑋,𝑌 ) for every 𝑛 ∈ N.

In the remainder of the paper, we write C (𝑋) (similarly, C𝑛 (𝑋), C∞(𝑋)) when the codomain is R,
that is, the maps are real-valued functionals.

3.2. Lie algebras and Poisson vector spaces

We start this subsection by giving a precise definition of Lie algebra and Poisson vector space that we
use in this paper. With these definitions in hand, we then present a result due to Glöckner [Glo09] which
allows one to canonically construct a Lie–Poisson vector space from a Lie algebra, assuming certain
topological conditions are met, as mentioned in Section 1.3. The use of Glöckner’s machinery is new to
the present work compared to [MNP+20].

Definition 3.15 (Lie algebra). Let 𝔤 be a locally convex topological vector space over R, and [·, ·]𝔤 :
𝔤 × 𝔤 → 𝔤. We say the pair (𝔤, [·, ·]𝔤) is a Lie algebra if the following conditions hold:

1. The bracket [·, ·]𝔤 is bilinear.
2. For all 𝑥, 𝑦 ∈ 𝔤, [𝑥, 𝑦]𝔤 = −[𝑦, 𝑥]𝔤.
3. For all 𝑥, 𝑦, 𝑧 ∈ 𝔤, the Jacobi identity is satisfied:[

𝑥, [𝑦, 𝑧]𝔤
]
𝔤
+

[
𝑦, [𝑧, 𝑥]𝔤

]
𝔤 +

[
𝑧, [𝑥, 𝑦]𝔤

]
𝔤
= 0. (3.6)

Remark 3.16. Note that in this work, a continuity requirement is not assumed in Definition 3.15. This
definition is consistent with the standard algebraic definition of a Lie algebra. In practice, all of our Lie
brackets will be at a minimum separately continuous.
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The next definition introduces the notion of a possibly infinite-dimensional Poisson vector space,
which is a natural extension of the finite-dimensional notion of a Poisson vector space, more generally
Poisson manifold (e.g., see [Wei98]). Our usage is consistent with that of Glöckner [Glo09, Definition
4.2]. For other possible notions of a infinite-dimensional Poisson vector spaces, which are not appropriate
for our purposes due to being restricted to the Banach category, we refer to [OR03, OR04].

Definition 3.17 (Poisson vector space). Let X be a locally convex topological vector space, and

{·, ·} : C∞(𝑋) × C∞(𝑋) → C∞(𝑋) (3.7)

be a bilinear map. We say the pair (𝑋, {·, ·}) is a Poisson vector space if it satisfies the following
properties:

1. (C∞(𝑋), {·, ·}) is a Lie algebra in the sense of Definition 3.15 obeying the Leibniz rule:

∀F ,G,H ∈ C∞(𝑋), {F ,GH} = H{F ,G} + G{F ,H}. (3.8)

2. For every F ∈ C∞(𝑋), there exists a smooth Hamiltonian vector field 𝑋F : 𝑋 → 𝑋 such that

∀G ∈ C∞(𝑋), 𝑋FG = {G,F }. (3.9)

We now state the theorem of Glöckner [Glo09, Theorem 4.10] which will allow us to construct
a Poisson vector space from a given Lie algebra in the N-particle setting (see Section 4.2). For the
purposes of this paper, the reader may view this theorem as a ‘black box’. But to use this black box,
certain topological conditions need to be satisfied. Namely, [Glo09] works in the context of 𝑘∞ spaces,
a class of topological vector spaces introduced in that paper. Accordingly, we shall start this portion of
the exposition by recalling the definition of this class of spaces, as well as the notion of reflexive locally
convex Poisson vector spaces which we also need.

Definition 3.18 (𝑘∞-spaces). Let (𝑋, 𝜏) be a topological space. We say that X is a 𝑘∞ space if, for every
𝑛 ∈ N, the space 𝑋𝑛 endowed with the product topology is a k-space (recall Definition 3.11).

Definition 3.19 (Reflexive locally convex Poisson space). A reflexive locally convex Poisson space is a
reflexive locally convex 𝑘∞ space E, together with a hypocontinuous5 map [·, ·] : 𝐸∗ × 𝐸∗ → 𝐸∗ which
makes (𝐸∗, [·, ·]) into a Lie algebra in the sense of Definition 3.15.

Equipped with Definitions 3.18 and 3.19, we are now prepared to state the following result from
[Glo09], the statement of which has been tailored to our setting.

Theorem 3.20 [Glo09, Theorem 4.10]. Let E be a reflexive locally convex Poisson space in the sense of
Definition 3.19 such that its dual 𝐸∗ is equipped with a hypocontinuous bracket [·, ·] : 𝐸∗ × 𝐸∗ → 𝐸∗.
For F ,G ∈ C∞(𝐸), the Lie–Poisson bracket {F ,G} : 𝐸 → R is defined by the expression

{F ,G}(Γ) � 〈[dF [Γ], dG [Γ]], Γ〉𝐸∗−𝐸 , ∀Γ ∈ 𝐸, (3.10)

where 〈·, ·〉𝐸∗−𝐸 denotes the duality pairing. The pair (𝐸, {·, ·}), called a Lie–Poisson space, is a Poisson
vector space in the sense of Definition 3.17.

Remark 3.21. The work [Glo09] does not specifically use the term Lie–Poisson space; however, we
feel this bit of terminology is appropriate to emphasize that the bracket as defined in equation (3.10) is
a Lie–Poisson construction, while in general a Poisson bracket—and therefore, Poisson vector space—
need not be of Lie–Poisson type.

5The condition of hypocontinuity is a weaker condition than continuity, but stronger condition than separate continuity. Here,
hypocontinuity is always defined with respect to the set 𝒜 of bounded subsets of E. See [K7¨9, p. 155] for a precise definition of
hypocontinuity.
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Remark 3.22. For our purposes, we will apply Theorem 3.20 with 𝐸 = 𝔤∗𝑘 ,𝔊
∗
𝑁 (defined in equations

(2.12) and (2.27), respectively), which requires our proving that 𝔤∗𝑘 ,𝔊
∗
𝑁 satisfy the assumptions of

the theorem. This will be shown in Sections 4.1 and 4.3. Note that since 𝔤∗𝑘 ,𝔊
∗
𝑁 are reflexive, 𝐸∗ is

identifiable with the Lie algebras 𝔤𝑘 ,𝔊𝑁 , respectively.

The space𝔊∗
∞ is a nontrivial countably infinite product of (DF) spaces and as such is not a (DF) space

itself (see [SW99, p. 196]). Therefore, Theorem 3.13 is not applicable, which renders verification of the
assumptions of Theorem 3.20 out of reach. To overcome this obstacle, we need a weaker notion of a
Poisson vector space than assumed in Theorem 3.20. Namely, we need to restrict to a proper subalgebra
A of functionals in C∞(𝐸) for which smoothness of the Poisson bracket and Hamiltonian vector field
can be verified. To this end, we use, as in the previous work [MNP+20], the framework of weak Poisson
vector spaces due to Neeb et al. [NST14].

Definition 3.23 (Weak Poisson vector space). Let X be a locally convex topological vector space, and
let A ⊂ C∞(𝑋) be an unital subalgebra. We say the triple (𝑋,A, {·, ·}) is a weak Poisson vector space
if the following properties hold:

1. The pair (A, {·, ·}) is a Lie algebra in the sense of Definition 3.15 obeying the Leibniz rule:

∀F ,G,H ∈ A, {F ,GH} = H{F ,G} + G{F ,H}. (3.11)

2. For each 𝑥, 𝑣 ∈ 𝑋 , if dF [𝑥] (𝑣) = 0 for every F ∈ A, then 𝑣 = 0.
3. For every F ∈ A, there exists a C∞ Hamiltonian vector field 𝑋F : 𝑋 → 𝑋 such that

∀G ∈ A, 𝑋FG = {G,F }. (3.12)

Remark 3.24. When the Poisson bracket {·, ·} in Definition 3.23 is of Lie–Poisson type, as in equation
(3.10), we shall use the terminology weak Lie–Poisson space.

Remark 3.25. As alluded to in the paragraph preceding Definition 3.23, a Poisson vector space in the
sense of Definition 3.17 is a fortiori a weak Poisson vector space.

Remark 3.26. The property (3.12) uniquely characterizes the Hamiltonian vector field. Indeed, if
𝑋F , 𝑋̃F are two C∞ vector fields obeying equation (3.12), then given 𝑥 ∈ 𝑋 ,

∀G ∈ A, ((𝑋F − 𝑋̃F ) (G)) (𝑥) = dG [𝑥] (𝑋F (𝑥) − 𝑋̃F (𝑥)). (3.13)

Applying 2 with 𝑣 = 𝑋F (𝑥) − 𝑋̃F (𝑥), we conclude that 𝑋F (𝑥) = 𝑋̃F (𝑥).

Finally, we need the notion of a morphism between (weak) Poisson vector spaces.

Definition 3.27. Let (𝐸1, {·, ·}𝐸1), (𝐸2, {·, ·}𝐸2) be Poisson vector spaces in the sense of Definition 3.17.
We say that a C∞ map 𝑇 : 𝐸1 → 𝐸2 is a morphism of Poisson vector spaces if

∀F ,G ∈ C∞(𝐸2), {𝑇∗F , 𝑇∗G}𝐸1 = 𝑇∗{F ,G}𝐸2 , (3.14)

where 𝑇∗ denotes the pullback under T. Suppose now that (𝐸1,A1, {·, ·}𝐸1), (𝐸2,A2, {·, ·}𝐸2) are weak
Poisson vector spaces in the sense of Definition 3.23. We say that a C∞ map 𝑇 : 𝐸1 → 𝐸2 is a morphism
of weak Poisson vector spaces if for any F ,G ∈ A2, 𝑇∗F , 𝑇∗G ∈ A1 and equation (3.14) holds with
C∞(𝐸2) replaced by A2.
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4. N-particle geometric structure

In this section, we present the proofs of the results stated in Sections 2.1 and 2.2.

4.1. N-particle Newton/Liouville equations

The goal of this subsection is to establish the Hamiltonian structure of the Newtonian system (1.6) and
the Liouville equation (1.9), as well as to connect the two structures through a Poisson morphism. Since
the Newtonian system is classical, we leave the proofs of the statements concerning it in Section 2.1 as
simple exercises for the reader.

We recall from equations (2.9) and (2.11) the definitions of the space 𝔤𝑘 and the bracket [·, ·]𝔤𝑘 . Our
first task is to prove Proposition 2.1 asserting that (𝔤𝑘 , [·, ·]𝔤𝑘 ) is a Lie algebra.

Proof of Proposition 2.1. Since our bracket is defined as a scalar multiple of the standard Poisson
bracket, the algebraic properties 1-3 are satisfied, so it only remains to check continuity. It suffices to
show that the multiplication and differentiation maps

𝑀 : 𝔤𝑘 × 𝔤𝑘 → 𝔤𝑘 , ( 𝑓 , 𝑔) ↦→ 𝑓 𝑔 (4.1)

and

𝜕𝛼 : 𝔤𝑘 → 𝔤𝑘 , 𝑓 ↦→ 𝜕𝛼 𝑓 (4.2)

are continuous for each multi-index𝛼 ∈ N2𝑑𝑘 . But this follows because [·, ·]𝔤𝑘 is just a linear combination
of compositions of 𝑀, 𝜕𝛼.

We first show that M is continuous. Since the spaces 𝔤𝑘 are Fréchet, it suffices to show that M is
sequentially continuous. To this end, let ( 𝑓 𝑗 , 𝑔 𝑗 ) → ( 𝑓 , 𝑔) be a convergent sequence in 𝔤𝑘 × 𝔤𝑘 . Note
that for any compact set 𝐾 ⊂ (R2𝑑)𝑘 and 𝑛 ∈ N, we have

max(sup
𝑗∈N

𝜌𝐾,𝑛 ( 𝑓 𝑗 ), sup
𝑗∈N

𝜌𝐾,𝑛 (𝑔 𝑗 )) ≤ 𝐶𝐾,𝑛, (4.3)

where the constant 𝐶𝐾,𝑛 depends only on the set K and the index n. Using the Leibniz rule and triangle
inequality, we now estimate

𝜌𝐾,𝑛 ( 𝑓 𝑗𝑔 𝑗 − 𝑓 𝑔) ≤ 𝜌𝐾,𝑛 ( 𝑓 𝑗 (𝑔 𝑗 − 𝑔)) + 𝜌𝐾,𝑛 (( 𝑓 𝑗 − 𝑓 )𝑔)

= sup
|𝛼 | ≤𝑛

‖𝜕𝛼 ( 𝑓 𝑗 (𝑔 𝑗 − 𝑔))‖𝐿∞ (𝐾 ) + sup
|𝛼 | ≤𝑛

‖𝜕𝛼 (( 𝑓 𝑗 − 𝑓 )𝑔)‖𝐿∞(𝐾 )

≤ sup
|𝛼 | ≤𝑛

∑
𝛽≤𝛼

(
𝛼

𝛽

)
‖𝜕𝛽 𝑓 𝑗 ‖𝐿∞ (𝐾 ) ‖𝜕

𝛼−𝛽 (𝑔 𝑗 − 𝑔)‖𝐿∞ (𝐾 )

+ sup
|𝛼 | ≤𝑛

∑
𝛽≤𝛼

(
𝛼

𝛽

)
‖𝜕𝛽 ( 𝑓 𝑗 − 𝑓 )‖𝐿∞ (𝐾 ) ‖𝜕

𝛼−𝛽𝑔‖𝐿∞ (𝐾 )

≤ 𝐶𝑑,𝑛
(
𝜌𝐾,𝑛 ( 𝑓 𝑗 )𝜌𝐾,𝑛 (𝑔 𝑗 − 𝑔) + 𝜌𝐾,𝑛 ( 𝑓 𝑗 − 𝑓 )𝜌𝐾,𝑛 (𝑔)

)
≤ 𝐶𝑑,𝑛,𝐾 (𝜌𝐾,𝑛 (𝑔 𝑗 − 𝑔) + 𝜌𝐾,𝑛 ( 𝑓 𝑗 − 𝑓 )), (4.4)

where in the last line we have used the bound (4.3). Since the last line converges to 0 as 𝑗 → ∞ and
𝐾, 𝑛 were arbitrary, we have shown that 𝑓 𝑗𝑔 𝑗 → 𝑓 𝑔 in 𝔤𝑘 . Thus, M is continuous.

Fix a multi-index 𝛼. To show that 𝜕𝛼 is continuous, let 𝑓 𝑗 → 𝑓 in 𝔤𝑘 and calculate

𝜌𝐾,𝑛 (𝜕
𝛼 ( 𝑓 𝑗 − 𝑓 )) = sup

|𝛾 | ≤𝑛
‖𝜕𝛾𝜕𝛼 ( 𝑓 𝑗 − 𝑓 )‖𝐿∞ (𝐾 ) ≤ sup

|𝛽 | ≤𝑛+|𝛼 |

‖𝜕𝛽 ( 𝑓 𝑗 − 𝑓 )‖𝐿∞ (𝑘) = 𝜌𝐾,𝑛+|𝛼 | ( 𝑓 𝑗 − 𝑓 ).

(4.5)

The right-hand side converges to 0 as 𝑗 → ∞, which shows that the operator 𝜕𝛼 is continuous. �
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Now, recall the definitions of the space 𝔤∗𝑘 and the bracket {·, ·}𝔤∗
𝑘

from equations (2.12) and (2.15),
respectively. Our next task is to prove Proposition 2.2, asserting that (𝔤∗𝑘 , {·, ·}𝔤∗𝑘 ) is a Lie–Poisson space.
To this end, we need the following technical lemma alluded to in Section 2.1.

Lemma 4.1. For each 𝑘 ∈ N, the space 𝔤𝑘 is reflexive, and 𝔤∗𝑘 is a (DF) Montel space.

Proof. We first prove that 𝔤𝑘 is Montel. The proof is an adaptation to symmetric functions of the
argument that the space C∞(R𝑛), for any 𝑛 ∈ N, is a Montel space (see [Sch66, Theorem VII, §2,
Chapter 3]). We reproduce it here for the reader’s convenience.

First, we fix an equivalent sequence of seminorms on 𝔤𝑘 which give the same topology. Let 𝐾𝑛 be a
compact exhaustion of (R2𝑑)𝑘 , that is, let {𝐾𝑛}

∞
𝑛=1 be an increasing sequence of compact sets such that⋃∞

𝑛=1 𝐾𝑛 = (R2𝑑)𝑘 . Then define the seminorms

𝜌̃𝑛 ( 𝑓 ) � sup
|𝛼 | ≤𝑛

‖𝜕𝛼 𝑓 ‖𝐿∞ (𝐾𝑛) . (4.6)

These seminorms are equivalent to those given in equation (2.10), as the reader may check. This implies
that 𝔤𝑘 is indeed a Fréchet space and hence a barrelled space by Lemma 3.5. We will now show that
𝔤𝑘 satisfies the Heine–Borel property, that is, that bounded closed subsets are compact. Note that since
𝔤𝑘 is a metric space, it suffices to show that bounded closed sets are sequentially compact. To this end,
let 𝐵 ⊂ 𝔤𝑘 be a bounded, closed set, and let { 𝑓𝑘 }∞𝑘=1 ⊂ 𝐵. Then by definition of bounded, there exist
constants 𝐶𝑛 > 0 such that

sup
𝑘∈N

‖𝜕𝛼 𝑓𝑘 ‖𝐿∞ (𝐾𝑛) ≤ 𝐶𝑛, ∀|𝛼 | ≤ 𝑛. (4.7)

We will be using the convention that subsequences of { 𝑓𝑘 } are still denoted by { 𝑓𝑘 }. We take subse-
quences and diagonalize in the following way:

1. Apply Arzelà-Ascoli and diagonalize with respect to 𝐾𝑛 to get a subsequence 𝑓𝑘 → 𝑓 locally
uniformly in 𝐿∞.

2. Apply Arzelà—Ascoli again and diagonalize with respect to each |𝛼 | ≤ 𝑛 to get a further subsequence
𝜕𝛼 𝑓𝑘 → 𝜕𝛼 𝑓 locally uniformly in 𝐿∞.

3. Now, we can conclude that 𝑓𝑘 → 𝑓 in 𝔤𝑘 . Hence, since B is closed in 𝔤𝑘 , we have proved that 𝑓 ∈ 𝐵.

Hence, the space 𝔤𝑘 satisfies the Heine–Borel property. Since we noted above that 𝔤𝑘 is also barrelled,
we conclude that it is a Montel space (recall Definition 3.6).

Finally, we are ready to conclude the proof of our lemma. By invoking Lemma 3.7, we now have
that 𝔤∗𝑘 is Montel and that 𝔤𝑘 is reflexive. The fact that 𝔤∗𝑘 is (𝐷𝐹) follows from Lemma 3.9 since 𝔤𝑘 is
a Fréchet space. �

We now have the necessary ingredients to prove Proposition 2.2.

Proof of Proposition 2.2. The proof is an application of Theorem 3.20 with 𝐸 = 𝔤∗𝑘 . Indeed, Proposition
2.1 tells us that [·, ·]𝔤𝑘 is continuous and using the canonical isomorphism (𝔤∗𝑘 )

∗ � 𝔤𝑘 given by Lemma
4.1, there is a continuous, a fortiori hypocontinuous, bracket [·, ·]𝔤𝑘 : 𝐸∗ × 𝐸∗ → 𝐸∗. It remains to
check that 𝔤∗𝑘 is a 𝑘∞-space.

To show this property, we need to check that for any 𝑛 ∈ N, the product (𝔤∗𝑘 )
𝑛 is a k-space. (𝔤∗𝑘 )

𝑛

is (DF) Montel, since 𝔤∗𝑘 is (DF) Montel by Lemma 4.1 and a finite product of (DF) Montel spaces is
still (DF) Montel (see [K6¨9, pp. 370, 403]. By Theorem 3.13, (𝔤∗𝑘 )

𝑛 is sequential, hence a k-space by
Proposition 3.12. This completes the proof of the proposition. �

We next turn to proving Proposition 2.4, asserting that the Liouville map 𝜄𝐿𝑖𝑜 : (R2𝑑)𝑁 → 𝔤∗𝑁 is a
morphism of Poisson vector spaces. To do this, we need the following technical lemma computing the
Gâteaux derivatives of 𝜄𝐿𝑖𝑜.
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Lemma 4.2. It holds that 𝜄𝐿𝑖𝑜 ∈ C∞((R2𝑑)𝑁 , 𝔤∗𝑁 ) and for every 𝑛 ∈ N, 𝑧
𝑁
, 𝑤1

𝑁 , . . . , 𝑤
𝑛
𝑁 ∈ (R2𝑑)𝑁 ,

d𝑛𝜄𝐿𝑖𝑜 [𝑧𝑁 ] (𝑤1
𝑁 , . . . , 𝑤

𝑛
𝑁 ) = (−1)𝑛

1
𝑁!

∑
𝜋∈S𝑁

∑
0≤𝑛1 ,...,𝑛𝑁 ≤𝑛
𝑛1+···+𝑛𝑁=𝑛

∑
I

𝑁⊗
𝑗=1

(
∇⊗𝑛 𝑗 𝛿𝑧𝜋 ( 𝑗) :

𝑛⊗
𝑘=1

𝑤
𝑖
𝑗
𝑘

𝜋 ( 𝑗)

)
, (4.8)

where the summation
∑

I is over all tuples

I = (i1, . . . , i𝑁 ), i 𝑗 := (𝑖
𝑗
1 , . . . , 𝑖

𝑗
𝑛) ∈ {0, 1}𝑛 with 𝑖

𝑗
1 + · · · + 𝑖

𝑗
𝑛 = 𝑛 𝑗 (4.9)

and 𝑤0
𝜋 ( 𝑗)

denotes the factor in the tensor product is vacuous. Here, ∇⊗𝑛 𝑗 𝛿𝑧𝜋 ( 𝑗) :
⊗𝑛

𝑘=1 𝑤
𝑖
𝑗
𝑘

𝜋 ( 𝑗)
is the

distribution in E ′(R2𝑑) defined

∀𝜑 ∈ C∞(R2𝑑),

〈
𝜑,∇⊗𝑛 𝑗 𝛿𝑧𝜋 ( 𝑗) :

𝑛⊗
𝑘=1

𝑤
𝑖
𝑗
𝑘

𝜋 ( 𝑗)

〉
= (−1)𝑛 𝑗∇⊗𝑛 𝑗𝜑(𝑧𝜋 ( 𝑗) ) :

𝑛⊗
𝑘=1

𝑤
𝑖
𝑗
𝑘

𝜋 ( 𝑗)
, (4.10)

with ∇⊗𝑛 𝑗𝜑 = (𝜕𝑥𝛼1 𝜕𝑣𝛽1 · · · 𝜕𝑥𝛼𝑛𝑗 𝜕𝑣𝛽𝑛𝑗 𝜑)
𝑑
𝛼1 ,𝛽1 ,...,𝛼𝑛𝑗 ,𝛽𝑛𝑗 =1 and : denoting the tensor inner product.

Proof. The proof follows from the multlinearity of the tensor product and Taylor’s theorem. �

Remark 4.3. Specializing the identity (4.8) to 𝑛 = 1, we obtain

d𝜄𝐿𝑖𝑜 [𝑧𝑁 ] (𝑤𝑁 ) = −
1
𝑁!

∑
𝜋∈S𝑁

𝑁∑
𝑖=1

𝛿𝑧𝜋 (1) ⊗ · · · ⊗ 𝛿𝑧𝜋 (𝑖−1) ⊗ (∇𝛿𝑧𝜋 (𝑖) · 𝑤𝜋 (𝑖) ) ⊗ 𝛿𝑧𝜋 (𝑖+1) ⊗ · · · ⊗ 𝛿𝑧𝜋 (𝑁 )
.

(4.11)

Proof of Proposition 2.4. Let F ,G ∈ C∞(𝔤∗𝑁 ), and set 𝐹 � F ◦ 𝜄𝐿𝑖𝑜, 𝐺 � G ◦ 𝜄𝐿𝑖𝑜 ∈ C∞((R2𝑑)𝑁 ). By
the chain rule, we have the identity

𝑁∑
𝑖=1

∇𝑧𝑖𝐹 (𝑧𝑁 ) · 𝑤𝑖 = d𝐹 [𝑧
𝑁
] (𝑤𝑁 ) = dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )]

(
d𝜄𝐿𝑖𝑜 [𝑧𝑁 ] (𝑤𝑁 )

)
, ∀𝑤𝑁 ∈ (R2𝑑)𝑁 . (4.12)

Identifying dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )] as an element of 𝔤𝑁 and using equation (4.11), the preceding right-hand side
equals 〈

dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )], d𝜄𝐿𝑖𝑜 [𝑧𝑁 ] (𝑤𝑁 )
〉
𝔤𝑁−𝔤∗𝑁

=
1
𝑁!

∑
𝜋∈S𝑁

𝑁∑
𝑖=1

𝑤𝜋 (𝑖) · ∇𝑧𝜋 (𝑖)dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )] (𝑧𝜋 (1) , . . . , 𝑧𝜋 (𝑁 ) ). (4.13)

Since dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )] is symmetric with respect to exchange of particle labels, the right-hand side
simplifies to

𝑁∑
𝑖=1

𝑤𝑖 · ∇𝑧𝑖dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )] (𝑧1, . . . , 𝑧𝑁 ). (4.14)

Returning to our starting identity (4.12), the arbitrariness of 𝑤𝑁 and the uniqueness of the gradient field
imply that

∇𝑧𝑖𝐹 (𝑧1, . . . , 𝑧𝑁 ) = ∇𝑧𝑖dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )] (𝑧1, . . . , 𝑧𝑁 ), ∀1 ≤ 𝑖 ≤ 𝑁. (4.15)
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With this identity, we compute

{𝐹, 𝐺}𝑁 (𝑧
𝑁
) = 𝑁

𝑁∑
𝑖=1

(
∇𝑥𝑖𝐹 · ∇𝑣𝑖𝐺 − ∇𝑣𝑖𝐹 · ∇𝑥𝑖𝐺

)
(𝑧

𝑁
)

= 𝑁
𝑁∑
𝑖=1

(
∇𝑥𝑖dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )] · ∇𝑣𝑖dG [𝜄𝐿𝑖𝑜 (𝑧𝑁 )] − ∇𝑣𝑖dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )] · ∇𝑥𝑖dG [𝜄𝐿𝑖𝑜 (𝑧𝑁 )]

)
(𝑧

𝑁
)

=
{
dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )], dG [𝜄𝐿𝑖𝑜 (𝑧𝑁 )]

}
𝑁
(𝑧

𝑁
). (4.16)

Since
{
dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )], dG [𝜄𝐿𝑖𝑜 (𝑧𝑁 )]

}
𝑁

is symmetric with respect to exchange of particle labels, the
last line may be rewritten as

1
𝑁!

∑
𝜋∈S𝑁

〈{
dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )], dG [𝜄𝐿𝑖𝑜 (𝑧𝑁 )]

}
𝑁
, 𝛿𝑧𝜋 (1) ⊗ · · · ⊗ 𝛿𝑧𝜋 (𝑁 )

〉
𝔤𝑁−𝔤∗𝑁

=
〈{

dF [𝜄𝐿𝑖𝑜 (𝑧𝑁 )], dG [𝜄𝐿𝑖𝑜 (𝑧𝑁 )]
}
𝑁
, 𝜄𝐿𝑖𝑜 (𝑧𝑁 )

〉
𝔤𝑁−𝔤∗𝑁

= {F ,G}𝔤∗𝑁 (𝜄𝐿𝑖𝑜 (𝑧𝑁 )), (4.17)

which is exactly what we needed to show. �

Using a similar argument, we can also prove that the empirical measure map 𝜄𝐸𝑀 from equation
(2.52) is also a Poisson morphism. This then proves Proposition 2.15. First, a technical lemma, analogous
to Lemma 4.2, for the Gâteaux derivatives of 𝜄𝐸𝑀 . We leave the proof to the reader.

Lemma 4.4. It holds that 𝜄𝐸𝑀 ∈ C∞((R2𝑑)𝑁 , 𝔤∗1) and for every 𝑛 ∈ N, 𝑧
𝑁
, 𝑤1

𝑁 , . . . , 𝑤
𝑛
𝑁 ∈ (R2𝑑)𝑁 ,

d𝑛𝜄𝐸𝑀 [𝑧
𝑁
] (𝑤1

𝑁 , . . . , 𝑤
𝑛
𝑁 ) =

1
𝑁

𝑁∑
𝑗=1

(−1)𝑛∇⊗𝑛𝛿𝑧 𝑗 :
𝑛⊗

𝑘=1
𝑤𝑘

𝑗 . (4.18)

Proof of Proposition 2.15. Let F ,G ∈ C∞(𝔤∗1), and set 𝐹 � F ◦ 𝜄𝐸𝑀 and 𝐺 � G ◦ 𝜄𝐸𝑀 , which belong
to C∞((R2𝑑)𝑁 ). By the chain rule, we have the identity

𝑁∑
𝑖=1

∇𝑧𝑖𝐹 (𝑧𝑁 ) · 𝑤𝑖 = dF [𝜄𝐸𝑀 (𝑧
𝑁
)] (d𝜄𝐸𝑀 [𝑧

𝑁
] (𝑤𝑁 )), ∀𝑤𝑁 ∈ (R2𝑑)𝑁 . (4.19)

Identifying dF [𝜄𝐸𝑀 (𝑧
𝑁
)] as an element of 𝔤1 and using the identity (4.18) specialized to 𝑛 = 1, the

preceding right-hand side equals

〈
dF [𝜄𝐸𝑀 (𝑧

𝑁
)], d𝜄𝐸𝑀 [𝑧

𝑁
] (𝑤𝑁 )

〉
𝔤1−𝔤∗1

=
1
𝑁

𝑁∑
𝑗=1

𝑤 𝑗 · (∇𝑧dF [𝜄𝐸𝑀 (𝑧
𝑁
)]) (𝑧 𝑗 ). (4.20)

Returning to our starting identity (4.19), the arbitrariness of 𝑤𝑁 and the uniqueness of the gradient field
imply

∇𝑧𝑖𝐹 (𝑧1, . . . , 𝑧𝑁 ) =
1
𝑁
(∇𝑧dF [𝜄𝐸𝑀 (𝑧

𝑁
)]) (𝑧𝑖), ∀1 ≤ 𝑖 ≤ 𝑁. (4.21)
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With this identity, we compute

{𝐹, 𝐺}𝑁 (𝑧
𝑁
) = 𝑁

𝑁∑
𝑖=1

(∇𝑥𝑖𝐹 · ∇𝑣𝑖𝐺 − ∇𝑣𝑖𝐹 · ∇𝑥𝑖𝐺) (𝑧
𝑁
)

= 𝑁
𝑁∑
𝑖=1

(
1
𝑁
(∇𝑥dF [𝜄𝐸𝑀 (𝑧

𝑁
)]) (𝑧𝑖) ·

1
𝑁
(∇𝑣dG [𝜄𝐸𝑀 (𝑧

𝑁
)]) (𝑧𝑖)

−
1
𝑁
(∇𝑣dF [𝜄𝐸𝑀 (𝑧

𝑁
)]) (𝑧𝑖) ·

1
𝑁
(∇𝑥dG [𝜄𝐸𝑀 (𝑧

𝑁
)]) (𝑧𝑖)

)
=

1
𝑁

𝑁∑
𝑖=1

(
(∇𝑥dF [𝜄𝐸𝑀 (𝑧

𝑁
)]) (𝑧𝑖) · (∇𝑣dG [𝜄𝐸𝑀 (𝑧

𝑁
)]) (𝑧𝑖)

−(∇𝑣dF [𝜄𝐸𝑀 (𝑧
𝑁
)]) (𝑧𝑖) · (∇𝑥dG [𝜄𝐸𝑀 (𝑧

𝑁
)]) (𝑧𝑖)

)
. (4.22)

But

{F ,G}𝔤∗1 (𝜄𝐸𝑀 (𝑧
𝑁
)) =

〈{
dF [𝜄𝐸𝑀 (𝑧

𝑁
)], dG [𝜄𝐸𝑀 (𝑧

𝑁
)]
}
(R2𝑑)

,
1
𝑁

𝑁∑
𝑖=1

𝛿𝑧𝑖

〉
𝔤1−𝔤∗1

=
1
𝑁

𝑁∑
𝑖=1

{
dF [𝜄𝐸𝑀 (𝑧

𝑁
)], dG [𝜄𝐸𝑀 (𝑧

𝑁
)]
}
(R2𝑑)

(𝑧𝑖), (4.23)

which equals the final two lines of equation (4.22). Thus, the proof is complete. �

We close this subsection by proving the Hamiltonian formulation of the Liouville equation as given by
Proposition 2.3. The reader will recall from equation (2.16) the definition of the Liouville Hamiltonian
functional H𝐿𝑖𝑜.

Proof of Proposition 2.3. We remark that since H𝐿𝑖𝑜 is a linear functional, it is trivial that we have the
identification dH𝐿𝑖𝑜 [𝛾] = H𝑁𝑒𝑤 ∈ 𝔤𝑁 for every 𝛾 ∈ 𝔤∗𝑁 . To find a formula for the Hamiltonian vector
field 𝑋H𝐿𝑖𝑜 with respect to the Poisson bracket {·, ·}𝔤∗𝑁 , we compute for any F ∈ C∞(𝔤∗𝑁 ) and 𝛾 ∈ 𝔤∗𝑁 ,

{F ,H𝐿𝑖𝑜}𝔤∗𝑁
(𝛾) =

〈
[dF [𝛾], dH𝐿𝑖𝑜 [𝛾]]𝔤𝑁 , 𝛾

〉
𝔤𝑁−𝔤∗𝑁

=
〈
[dF [𝛾],H𝑁𝑒𝑤 ]𝔤𝑁 , 𝛾

〉
𝔤𝑁−𝔤∗𝑁

=

〈
dF [𝛾],−𝑁

𝑁∑
𝑖=1

(
div𝑥𝑖

(
∇𝑣𝑖H𝑁𝑒𝑤𝛾

)
− div𝑣𝑖

(
∇𝑥𝑖H𝑁𝑒𝑤𝛾

))〉
𝔤𝑁−𝔤∗𝑁

, (4.24)

where the ultimate line follows from unpacking the definition of [·, ·]𝔤𝑁 and integration by parts. Since
the second entry of the pairing 〈·, ·〉𝔤𝑁−𝔤∗𝑁

in the last line satisfies the characterizing property of the
Hamiltonian vector field (recall that F was arbitrary), the uniqueness of the vector field implies that

𝑋H𝐿𝑖𝑜 (𝛾) = −𝑁
𝑁∑
𝑖=1

(
div𝑥𝑖 (∇𝑣𝑖H𝑁𝑒𝑤𝛾) − div𝑣𝑖 (∇𝑥𝑖H𝑁𝑒𝑤𝛾)

)
= −

𝑁∑
𝑖=1

���𝑣𝑖 · ∇𝑥𝑖𝛾 −
2
𝑁

∑
1≤ 𝑗≤𝑁

∇𝑊 (𝑥𝑖 − 𝑥 𝑗 ) · ∇𝑣𝑖𝛾
���, (4.25)
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where the second line follows from the product rule and the fact that ∇𝑥𝑖∇𝑣𝑖H𝑁𝑒𝑤 = ∇𝑣𝑖∇𝑥𝑖H𝑁𝑒𝑤 = 0.
Thus, we have shown that equation (1.9) is equivalent to

�𝛾 = 𝑋H𝐿𝑖𝑜 (𝛾), (4.26)

exactly as desired. �

Remark 4.5. Together, Propositions 2.3 and 2.15 imply that the Liouville map 𝜄𝐿𝑖𝑜 sends solutions of
the Newtonian N-particle system (1.6) to solutions of the N-particle Liouville equation (1.9). Indeed, if
𝑧
𝑁

∈ C∞(𝐼; (R2𝑑)𝑁 ) is a solution to equation (1.6) on some interval I, define 𝛾𝑡 � 𝜄𝐿𝑖𝑜 (𝑧
𝑡
𝑁
) for every

𝑡 ∈ 𝐼. Using that 𝜄∗𝐿𝑖𝑜H𝐿𝑖𝑜 = H𝑁𝑒𝑤 , which is easy to check from the symmetry of H𝑁𝑒𝑤 , Proposition
2.4 implies

∀F ∈ C∞(𝔤∗𝑁 ),
{
H𝑁𝑒𝑤 , 𝜄

∗
𝐿𝑖𝑜F

}
𝑁
(𝑧𝑡

𝑁
) = {H𝐿𝑖𝑜,F }𝔤∗𝑁

(𝛾𝑡 ). (4.27)

Since 𝜄∗𝐿𝑖𝑜F ∈ C∞((R2𝑑)𝑁 ) by Lemma 4.2 and the chain rule, one has that

𝑑

𝑑𝑡
F (𝛾𝑡 ) =

𝑑

𝑑𝑡
(𝜄∗𝐿𝑖𝑜F) (𝑧𝑡

𝑁
) =

{
H𝑁𝑒𝑤 , 𝜄

∗
𝐿𝑖𝑜F

}
𝑁
(𝑧𝑡

𝑁
) = {H𝐿𝑖𝑜,F }𝔤∗𝑁

(𝛾𝑡 ). (4.28)

Since F ∈ C∞(𝔤∗𝑁 ) was arbitrary, the claim follows.

4.2. Lie algebra 𝔊𝑁 of N particle observables

In this subsection, we transition to discussing N-hierarchies, with the goal of proving Theorem 2.5,
which asserts that (𝔊𝑁 , [·, ·]𝔊𝑁 ) is a Lie algebra in the sense of Definition 3.15. As sketched in Section
2.2, we accomplish this task through a series of lemmas.

The starting point is the introduction of the maps 𝜖𝑘,𝑁 : 𝔤𝑘 → 𝔤𝑁 for 𝑁 ≥ 𝑘 ≥ 1, which in turn will
be used to define a Lie bracket on the space of N-particle hierarchies of observables. For the reader’s
benefit, we recall from Section 2.2 the definition of 𝜖𝑘,𝑁 :

∀𝑧
𝑁

∈ (R2𝑑)𝑁 , 𝜖𝑘,𝑁 ( 𝑓 (𝑘) ) (𝑧
𝑁
) �

1
|𝑃𝑁

𝑘 |

∑
( 𝑗1 ,..., 𝑗𝑘 ) ∈𝑃

𝑁
𝑘

𝑓 (𝑘) (𝑧
( 𝑗1 ,..., 𝑗𝑘 )

), (4.29)

where 𝑧
( 𝑗1 ,..., 𝑗𝑘 )

� (𝑧 𝑗1 , . . . , 𝑧 𝑗𝑘 ) and

𝑃𝑁
𝑘 � {( 𝑗1, . . . , 𝑗𝑘 ) : 1 ≤ 𝑗𝑖 ≤ 𝑁 and 𝑗𝑖 distinct}. (4.30)

For example, if 𝑘 = 1, 𝑁 = 2, and 𝑓 (1) ∈ C∞(R2𝑑), then as a function we have

𝜖1,2 ( 𝑓
(1) ) (𝑧1, 𝑧2) =

1
2

(
𝑓 (1) (𝑧1) + 𝑓 (1) (𝑧2)

)
. (4.31)

In the sequel, it will be convenient to use the tuple shorthand j𝑘 = ( 𝑗1, . . . , 𝑗𝑘 ) ∈ 𝑃𝑁
𝑘 , similarly 𝑓 (𝑘)𝒋𝑘

and 𝑧
𝒋𝑘

.
The next two lemmas show that each map 𝜖𝑘,𝑁 is continuous, linear and injective (cf. [MNP+20,

Lemmas 5.3 and 5.4]). In particular, the first two properties imply that 𝜖𝑘,𝑁 ∈ C∞(𝔤𝑘 , 𝔤𝑁 ).

Lemma 4.6 𝜖𝑘,𝑁 are continuous. The maps 𝜖𝑘,𝑁 : 𝔤𝑘 → 𝔤𝑁 are continuous and linear.

Proof. Linearity follows directly from the definition. For continuity, note that the spaces 𝔤𝑘 , 𝔤𝑁 are
Fréchet, so it suffices to show that for any sequence ( 𝑓 𝑗 )

∞
𝑗=1 ⊂ 𝔤𝑘 with 𝑓 𝑗 → 𝑓 ∈ 𝔤𝑘 , we have
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𝜖𝑘,𝑁 ( 𝑓 𝑗 ) → 𝜖𝑘,𝑁 ( 𝑓 ) in 𝔤𝑁 . By linearity, we may assume that 𝑓 𝑗 → 0. Now, for any compact set
𝐾 ⊂ (R2𝑑)𝑁 and 𝑗 ∈ N, we estimate using triangle inequality

𝜌𝐾,𝑛 (𝜖𝑘,𝑁 ( 𝑓 𝑗 )) ≤
1

|𝑃𝑁
𝑘 |

∑
𝒑𝑘 ∈𝑃

𝑁
𝑘

sup
|𝛼 | ≤𝑛

‖𝜕𝛼 ( 𝑓 𝑗 )𝒑𝑘 ‖𝐿∞ (𝐾 ) ≤ 𝜌𝐾,𝑛 ( 𝑓 𝑗 ), (4.32)

which converges to 0 as 𝑗 → ∞. Since 𝐾, 𝑛 were arbitrary, we have that 𝜖𝑘,𝑁 ( 𝑓 𝑗 ) → 0 in 𝔤𝑁 . �

Lemma 4.7. (𝜖𝑘,𝑁 is injective) The maps 𝜖𝑘,𝑁 : 𝔤𝑘 → 𝔤𝑁 are injective and hence have well defined
inverses on their images.
Proof. Fix 1 ≤ 𝑘 ≤ 𝑁 . To prove injectivity, we will show the contrapositive statement: If 𝑓 (𝑘) ≠ 0, then
𝜖𝑘,𝑁 ( 𝑓 (𝑘) ) ≠ 0. The argument presented below is a ‘classical version’ of the argument used to prove
[MNP+20, Lemma 5.4].

We introduce a parameter 𝑛 ∈ N0 with 𝑛 < 𝑘 . We say that 𝑓 (𝑘) has propertyP𝑛 if the following holds:
If 𝑛 = 0, then there exists a point 𝑧0 ∈ R2𝑑 such that

𝑓 (𝑘) (𝑧0, . . . , 𝑧0) ≠ 0 (4.33)

and if 𝑛 ≥ 1, then there exist points 𝑧0, . . . , 𝑧𝑛 ∈ R2𝑑 such that

𝑓 (𝑘) (𝑧×𝑘−𝑛0 , 𝑧1, . . . , 𝑧𝑛) ≠ 0, (4.34)

where 𝑧×𝑘−𝑛0 � (𝑧0, . . . , 𝑧0) ∈ (R2𝑑)𝑘−𝑛 and the Cartesian product is understood as vacuous when
𝑛 = 𝑘 . Observe that 𝑓 (𝑘) always has property P𝑘−1, since 𝑓 (𝑘) is nonzero by assumption, therefore there
exist points 𝑧0, . . . , 𝑧𝑘−1 ∈ R2𝑑 such that 𝑓 (𝑘) (𝑧0, . . . , 𝑧𝑘−1) ≠ 0. We define the integer 𝑛min by

𝑛min � min{0 ≤ 𝑛 < 𝑘 : 𝑓 (𝑘) has property P𝑛}. (4.35)

To avoid confusion over notation, we first dispense with the trivial case 𝑛min = 0. The definition of
P0 implies that there exists a point 𝑧0 ∈ R2𝑑 such that 𝑓 (𝑘) (𝑧0, . . . , 𝑧0) ≠ 0. It then follows from the
definition of 𝑓 (𝑘)

( 𝑗1 ,..., 𝑗𝑘 )
that 𝑓 (𝑘)

( 𝑗1 ,..., 𝑗𝑘 )
(𝑧×𝑁

0 ) = 𝑓 (𝑘) (𝑧×𝑘0 ) for each tuple ( 𝑗1, . . . , 𝑗𝑘 ) ∈ 𝑃𝑁
𝑘 . Hence,

𝜖𝑘,𝑁 ( 𝑓 (𝑘) ) (𝑧×𝑁
0 ) = 𝑓 (𝑘) (𝑧×𝑘0 ) ≠ 0. (4.36)

We next consider the case 1 ≤ 𝑛min < 𝑘 . The definition of P𝑛min implies that there exist points
𝑧0, . . . , 𝑧𝑛min ∈ R2𝑑 such that

𝑓 (𝑘) (𝑧×𝑘−𝑛min
0 , 𝑧1, . . . , 𝑧𝑛min) ≠ 0. (4.37)

We claim that 𝜖𝑘,𝑁 ( 𝑓 (𝑘) ) (𝑧×𝑁−𝑛min
0 , 𝑧1, . . . , 𝑧𝑛min) ≠ 0. To see this, we observe from unpacking the

definition of 𝜖𝑘,𝑁 ( 𝑓 (𝑘) ) that

𝜖𝑘,𝑁 ( 𝑓 (𝑘) ) (𝑧×𝑁−𝑛min
0 , 𝑧1, . . . , 𝑧𝑛min) = 𝐶𝑘,𝑁

∑
j𝑘 ∈𝑃𝑁𝑘

𝑓 (𝑘)
( 𝑗1 ,..., 𝑗𝑘 )

(𝑧×𝑁−𝑛min
0 , 𝑧1, . . . , 𝑧𝑛min). (4.38)

For each j𝑘 = ( 𝑗1, . . . , 𝑗𝑘 ) ∈ 𝑃𝑁
𝑘 , we can use the symmetry of 𝑓 (𝑘) to write

𝑓 (𝑘)
( 𝑗1 ,..., 𝑗𝑘 )

(𝑧×𝑁−𝑛min
0 , 𝑧1, . . . , 𝑧𝑛min) = 𝑓 (𝑘) (𝑤1, . . . , 𝑤𝑘 ), (4.39)

where for some 𝑟 ≤ 𝑘 , 𝑤1 = · · · = 𝑤𝑟 = 𝑧0 and for 𝑟 < 𝑖 ≤ 𝑘 , the 𝑤𝑖 are distinct elements of
{𝑧1, . . . , 𝑧𝑛min }. If 𝑟 > 𝑘 − 𝑛min, then by definition of 𝑛min, 𝑓 (𝑘) (𝑤1, . . . , 𝑤𝑘 ) = 0. Since only 𝑛min
coordinates of (𝑧×𝑁−𝑛min

0 , 𝑧1, . . . , 𝑧𝑛min) are not equal to 𝑧0, we must have 𝑟 = 𝑘 − 𝑛min. But in this case,
the symmetry of 𝑓 (𝑘) implies
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𝑓 (𝑘) (𝑤1, . . . , 𝑤𝑘 ) = 𝑓 (𝑘) (𝑧×𝑘−𝑛min
0 , 𝑧1, . . . , 𝑧𝑛min) ≠ 0, (4.40)

by choice of the points 𝑧0, 𝑧1, . . . , 𝑧𝑛min . Therefore, we have shown that

𝐶𝑘,𝑁

∑
j𝑘 ∈𝑃𝑁𝑘

𝑓 (𝑘)
( 𝑗1 ,..., 𝑗𝑘 )

(𝑧×𝑁−𝑛min
0 , 𝑧1, . . . , 𝑧𝑛min) = 𝐶 ′

𝑘,𝑁 𝑓 (𝑘) (𝑤1, . . . , 𝑤𝑘 )

= 𝐶 ′
𝑘,𝑁 𝑓 (𝑘) (𝑧×𝑘−𝑛min

0 , 𝑧1, . . . , 𝑧𝑛min)

≠ 0, (4.41)

where 𝐶 ′
𝑘,𝑁 is some other combinatorial factor depending on 𝑘, 𝑁 . This then implies 𝜖𝑘,𝑁 ( 𝑓 (𝑘) ) ≠ 0,

completing the proof of injectivity. �

We now present a technical lemma which will be applied to prove Lemma 4.9 for the filtration
property. It shows the commutativity of the following diagram.

𝔤𝑎 𝔤𝑏

𝔤𝑁

𝜖
𝑏,𝑁 ◦𝜖

𝑎,𝑏

𝜖𝑎,𝑏

𝜖𝑏,𝑁

Lemma 4.8. Let 1 ≤ 𝑎 ≤ 𝑏 ≤ 𝑁 . Then we have that 𝜖𝑎,𝑁 = 𝜖𝑏,𝑁 ◦ 𝜖𝑎,𝑏 .

Proof. Let 𝑓 ∈ 𝔤𝑎. Then by definition of 𝜖𝑎,𝑏 and 𝜖𝑏,𝑁 ,

𝜖𝑏,𝑁 (𝜖𝑎,𝑏 ( 𝑓 )) (𝑧𝑁 ) =
1

|𝑃𝑁
𝑏 |

∑
m𝑏 ∈𝑃𝑁𝑏

𝜖𝑎,𝑏 ( 𝑓 ) (𝑧 (𝑚1 ,𝑚2 ,...,𝑚𝑏)
)

=
1

|𝑃𝑁
𝑏 | |𝑃𝑏

𝑎 |

∑
m𝑏 ∈𝑃𝑁𝑏

∑
n𝑎 ∈𝑃𝑏𝑎

𝑓 (𝑧
(𝑚𝑛1 ,𝑚𝑛2 ,...,𝑚𝑛𝑎 )

). (4.42)

Fix an a-tuple l𝑎 = (𝑙1, . . . , 𝑙𝑎) ∈ 𝑃𝑁
𝑎 . Let 𝒜l𝑎 denote the set of b-tuples m𝑏 ∈ 𝑃𝑁

𝑏 such that
{𝑙1, . . . , 𝑙𝑎} ⊂ {𝑚1, . . . , 𝑚𝑏}. Any element in m𝑏 ∈ 𝒜l𝑎 is a permutation of (𝑙1, . . . , 𝑙𝑎, 𝑗1, . . . , 𝑗𝑏−𝑎) for
some choice 1 ≤ 𝑗1 < · · · < 𝑗𝑏−𝑎 ≤ 𝑁 not in {𝑙1, . . . , 𝑙𝑎}. There are

(𝑁−𝑎
𝑏−𝑎

)
such choices ( 𝑗1, . . . , 𝑗𝑏−𝑎),

and 𝑏! permutations of b letters, hence

|𝒜l𝑎 | =

(
𝑁 − 𝑎

𝑏 − 𝑎

)
𝑏! =

𝑏!(𝑁 − 𝑎)!
(𝑁 − 𝑏)!(𝑏 − 𝑎)!

. (4.43)

We also see that, given m𝑏 ∈ 𝒜l𝑎 , there is a unique choice of indices 𝑛1, . . . , 𝑛𝑎 ∈ {1, . . . , 𝑏} such that
(𝑚𝑛1 , . . . , 𝑚𝑛𝑎 ) = (𝑙1, . . . , 𝑙𝑎). Let us denote this unique choice by n𝑎,l𝑎 . We write∑

m𝑏 ∈𝑃𝑁𝑏

∑
n𝑎 ∈𝑃𝑏𝑎

(· · · ) =
∑

l𝑎 ∈𝑃𝑁𝑎

∑
(m𝑏 ,n𝑎) ∈𝑃𝑁𝑏 ×𝑃𝑏𝑎

(𝑚𝑛1 ,...,𝑚𝑛𝑎 )=(𝑙1 ,...,𝑙𝑎)

(· · · ) =
∑

l𝑎 ∈𝑃𝑁𝑎

∑
(m𝑏 ,n𝑎) ∈𝒜l𝑎×{n𝑎,l𝑎 }

(· · · ). (4.44)

https://doi.org/10.1017/fms.2023.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.72


Forum of Mathematics, Sigma 31

For any (m𝑏 , n𝑎) ∈ 𝒜l𝑎 × {n𝑎,l𝑎 }, we have 𝑓 (𝑧
(𝑚𝑛1 ,...,𝑚𝑛𝑎 )

) = 𝑓 (𝑧l𝑎
). Returning to equation (4.42),

this identity and equation (4.43) imply

𝜖𝑏,𝑁 (𝜖𝑎,𝑏 ( 𝑓 )) (𝑧𝑁 ) =
1

|𝑃𝑁
𝑏 | |𝑃𝑏

𝑎 |

𝑏!(𝑁 − 𝑎)!
(𝑁 − 𝑏)!(𝑏 − 𝑎)!

∑
l𝑎 ∈𝑃𝑁𝑎

𝑓 (𝑧l𝑎
)

=
(𝑁 − 𝑎)!

𝑁!

∑
l𝑎 ∈𝑃𝑁𝑎

𝑓 (𝑧l𝑎
)

= 𝜖𝑎,𝑁 ( 𝑓 ) (𝑧
𝑁
), (4.45)

where the penultimate line follows from simplification of the combinatorial factor in the first line and
the ultimate line is tautological. Hence, the lemma is proved. �

Lemma 4.9. (𝜖𝑘,𝑁 filters) Let 𝑁 ∈ N, and let 1 ≤ ℓ, 𝑗 ≤ 𝑁 . Then for any 𝑓 (ℓ) ∈ 𝔤ℓ and 𝑔 ( 𝑗) ∈ 𝔤 𝑗 , there
exists a unique ℎ (𝑘) ∈ 𝔤𝑘 such that[

𝜖ℓ,𝑁 ( 𝑓 (ℓ) ), 𝜖 𝑗 ,𝑁 (𝑔 ( 𝑗) )
]
𝔤𝑁

= 𝜖𝑘,𝑁 (ℎ (𝑘) ), with 𝑘 � min(ℓ + 𝑗 − 1, 𝑁), (4.46)

given by

ℎ (𝑘) =
min(ℓ, 𝑗)∑
𝑟=𝑟0

(𝑁 − ℓ)!(𝑁 − 𝑗)!
(𝑁 − 1)!(𝑁 − ℓ − 𝑗 + 𝑟)!

𝜖ℓ+ 𝑗−𝑟 ,𝑘 (Symℓ+ 𝑗−𝑟 ( 𝑓
(ℓ) ∧𝑟 𝑔

( 𝑗) )), (4.47)

where 𝑟0 � max(1, ℓ + 𝑗 − 𝑁) and for 1 ≤ 𝑟 ≤ min(ℓ, 𝑗), 𝑓 (ℓ) ∧𝑟 𝑔
( 𝑗) ∈ C∞((R2𝑑)ℓ+ 𝑗−𝑟 ) is defined by

𝑓 (ℓ) ∧𝑟 𝑔
( 𝑗) (𝑧

ℓ+ 𝑗−𝑟
) �

(
ℓ

𝑟

) (
𝑗

𝑟

)
𝑟!

𝑟∑
𝑖=1

(
∇𝑥𝑖 𝑓

(ℓ) (𝑧
ℓ
) · ∇𝑣𝑖𝑔

( 𝑗) (𝑧
(1,...,𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

)

−∇𝑥𝑖𝑔
( 𝑗) (𝑧

𝑗
) · ∇𝑣𝑖 𝑓

(ℓ) (𝑧
(1,...,𝑟 , 𝑗+1,...,ℓ+ 𝑗−𝑟 )

)
)
. (4.48)

Remark 4.10. In the right-hand side of equation (4.48), the ranges in the tuple (1, . . . , 𝑟, ℓ + 1, . . . , ℓ +
𝑗 − 𝑟) or (1, . . . , 𝑟, 𝑗 +1, . . . , 𝑗 + ℓ− 𝑟) are understood as vacuous whenever the lower and upper bounds
do not make sense. For example, if 𝑗 = 1, then 𝑟 = 1 and (1, . . . , 𝑟, ℓ + 1, . . . , ℓ + 𝑗 − 𝑟) is understood
as just (1). Singling out these exceptional cases would be tedious, and therefore we will not do so.

Proof of Lemma 4.9. Injectivity of the 𝜖𝑘,𝑁 operators shows uniqueness. The case where ℓ + 𝑗 − 1 ≥ 𝑁
is trivial since the operator 𝜖𝑁 ,𝑁 is the identity on 𝔤𝑁 . So, assume that ℓ + 𝑗 − 1 < 𝑁 , in which case
𝑘 = ℓ+ 𝑗−1. From the definition (4.29) of 𝜖𝑘,𝑁 , we obtain the following equality of functions on (R2𝑑)𝑁 :[

𝜖ℓ,𝑁 ( 𝑓 (ℓ) ), 𝜖 𝑗 ,𝑁 (𝑔 ( 𝑗) )
]
𝔤𝑁

= 𝑁
{
𝜖ℓ,𝑁 ( 𝑓 (ℓ) ), 𝜖 𝑗 ,𝑁 (𝑔 ( 𝑗) )

}
(R2𝑑)𝑁

=
𝑁

|𝑃𝑁
ℓ | |𝑃𝑁

𝑗 |

𝑁∑
𝑖=1

∑
𝒎ℓ ∈𝑃

𝑁
ℓ

∑
𝒏 𝑗 ∈𝑃

𝑁
𝑗

(
∇𝑥𝑖 𝑓

(ℓ)
𝒎ℓ · ∇𝑣𝑖𝑔

( 𝑗)
𝒏 𝑗 − ∇𝑥𝑖𝑔

( 𝑗)
𝒏 𝑗 · ∇𝑣𝑖 𝑓

(ℓ)
𝒎ℓ

)
=

𝑁

|𝑃𝑁
ℓ | |𝑃𝑁

𝑗 |

min(ℓ, 𝑗)∑
𝑟=1

∑
(𝒎ℓ ,𝒏 𝑗 ) ∈𝑃

𝑁
ℓ
×𝑃𝑁𝑗

| {𝑚1 ,...,𝑚ℓ }∩{𝑛1 ,...𝑛 𝑗 } |=𝑟

𝑁∑
𝑖=1

(
∇𝑥𝑖 𝑓

(ℓ)
𝒎ℓ · ∇𝑣𝑖𝑔

( 𝑗)
𝒏 𝑗

− ∇𝑥𝑖𝑔
( 𝑗)
𝒏 𝑗 · ∇𝑣𝑖 𝑓

(ℓ)
𝒎ℓ

)
. (4.49)
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To avoid any confusion over notation, we remind the reader that, here, 𝑓 (ℓ)𝒎ℓ , 𝑔
( 𝑗)
𝒏 𝑗 are regarded as functions

on (R2𝑑)𝑁 , and therefore, for instance,

∇𝑥𝑖 𝑓
(ℓ)
𝒎ℓ (𝑧𝑁 ) = lim

ℎ→0

𝑓 (ℓ)𝒎ℓ (𝑧𝑁 + ℎ𝑒𝑖,𝑥) − 𝑓 (ℓ)𝒎ℓ (𝑧𝑁 )

ℎ
, (4.50)

where 𝑒𝑖,𝑥 denotes the basis vector in (R2𝑑)𝑁 for the 𝑥𝑖 variable. Note that if 𝑖 ∉ {𝑚1, . . . , 𝑚ℓ } ∩

{𝑛1, . . . , 𝑛 𝑗 }, then ∇𝑧𝑖 𝑓
(ℓ)
𝒎ℓ = 0 or ∇𝑧𝑖𝑔

( 𝑗)
𝒏 𝑗 = 0. Thus,

𝑁∑
𝑖=1

(· · · ) =
∑

𝑖∈{𝑚1 ,...,𝑚ℓ }∩{𝑛1 ,...𝑛 𝑗 }

(· · · ). (4.51)

In particular, if the cardinality of the intersection equals r, then there are only r indices i for which the
expression inside the parentheses is possibly nonzero.

Let 1 ≤ 𝑟 ≤ min(ℓ, 𝑗). Let us count the number of elements in the set

{(𝒎ℓ , 𝒏 𝑗 ) ∈ 𝑃𝑁
ℓ × 𝑃𝑁

𝑗 : |{𝑚1, . . . , 𝑚ℓ } ∩ {𝑛1, . . . , 𝑛 𝑗 }| = 𝑟}. (4.52)

For a positive integer q, let 𝒫𝑁
𝑞 denote the subsets of {1, . . . , 𝑁} with cardinality q. As the reader may

check, there is a bijection between the set (4.52) and the set of tuples

T = (𝐴𝑜,𝑟 , 𝐴𝑜𝑝𝑜𝑠,𝑚, 𝐴𝑜𝑝𝑜𝑠,𝑛, 𝐴𝑛𝑜,𝑚, 𝐴𝑛𝑜,𝑛, 𝜋𝑟 ,𝑚, 𝜋𝑟 ,𝑛, 𝜏ℓ−𝑟 ,𝑚, 𝜏𝑗−𝑟 ,𝑛)

∈ 𝒫𝑁
𝑟 ×𝒫ℓ

𝑟 ×𝒫
𝑗
𝑟 ×𝒫𝑁−𝑟

ℓ−𝑟 ×𝒫𝑁−𝑟
𝑗−𝑟 × S2

𝑟 × Sℓ−𝑟 × S 𝑗−𝑟 . (4.53)

In words, 𝐴𝑜,𝑟 is the set of r overlaps between the elements of 𝒎ℓ and 𝒏 𝑗 ; 𝐴𝑜𝑝𝑜𝑠,𝑚, 𝐴𝑜𝑝𝑜𝑠,𝑛 are the
sets of indices corresponding to the placements of the overlaps in 𝒎ℓ , 𝒏 𝑗 , respectively; 𝐴𝑛𝑜,𝑚, 𝐴𝑛𝑜,𝑛

are the remaining sets of elements in 𝒎ℓ , 𝒏 𝑗 , respectively, which do not overlap (and therefore which
are disjoint from 𝐴𝑜,𝑟 ); 𝜋𝑟 ,𝑚, 𝜋𝑟 ,𝑛 are permutations of the sets 𝐴𝑜𝑝𝑜𝑠,𝑚, 𝐴𝑜𝑝𝑜𝑠,𝑛; and 𝜏ℓ−𝑟 ,𝑚, 𝜏𝑗−𝑟 ,𝑛 are
permutations of the sets {1, . . . , 𝑁} \ 𝐴𝑜𝑝𝑜𝑠,𝑚, {1, . . . , 𝑁} \ 𝐴𝑜𝑝𝑜𝑠,𝑛, respectively. We note that

(𝐴𝑜,𝑟 , 𝐴𝑜𝑝𝑜𝑠,𝑚, 𝐴𝑛𝑜,𝑚, 𝜋𝑟 ,𝑚, 𝜏ℓ−𝑟 ,𝑚) ↦→ 𝒎ℓ (4.54)

(𝐴𝑜,𝑟 , 𝐴𝑜𝑝𝑜𝑠,𝑛, 𝐴𝑛𝑜,𝑛, 𝜋𝑟 ,𝑛, 𝜏𝑗−𝑟 ,𝑛) ↦→ 𝒏 𝑗 (4.55)

define bijections.
Fix an overlap set 𝐴𝑜,𝑟 , and fix nonoverlap sets 𝐴𝑛𝑜,𝑚, 𝐴𝑛𝑜,𝑛. If

𝒎ℓ ↔ (𝐴𝑜,𝑟 , 𝐴𝑜𝑝𝑜𝑠,𝑚, 𝐴𝑛𝑜,𝑚, 𝜋𝑟 ,𝑚, 𝜏ℓ−𝑟 ,𝑚), (4.56)

𝒎′
ℓ ↔ (𝐴𝑜,𝑟 , 𝐴

′
𝑜𝑝𝑜𝑠,𝑚, 𝐴𝑛𝑜,𝑚, 𝜋

′
𝑟 ,𝑚, 𝜏

′
ℓ−𝑟 ,𝑚), (4.57)

where ↔ denotes the bijection, then the symmetry of 𝑓 (ℓ) implies 𝑓 (ℓ)𝒎ℓ = 𝑓 (ℓ)
𝒎′
ℓ

. Similarly, if

𝒏 𝑗 ↔ (𝐴𝑜,𝑟 , 𝐴𝑜𝑝𝑜𝑠,𝑛, 𝐴𝑛𝑜,𝑛, 𝜋𝑟 ,𝑛, 𝜏𝑗−𝑟 ,𝑛), (4.58)

𝒏′
𝑗 ↔ (𝐴𝑜,𝑟 , 𝐴

′
𝑜𝑝𝑜𝑠,𝑛, 𝐴𝑛𝑜,𝑛, 𝜋

′
𝑟 ,𝑛, 𝜏

′
𝑗−𝑟 ,𝑛), (4.59)
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then the symmetry of 𝑔 ( 𝑗) implies 𝑔 ( 𝑗)
𝒏 𝑗 = 𝑔

( 𝑗)
𝒏′
𝑗
. Since |𝒫ℓ

𝑟 | =
(ℓ
𝑟

)
, |𝒫 𝑗

𝑟 | =
( 𝑗
𝑟

)
and |S𝑟 | = 𝑟!, it follows that

∑
(𝒎ℓ ,𝒏 𝑗 ) ∈𝑃

𝑁
ℓ
×𝑃𝑁𝑗

| {𝑚1 ,...,𝑚ℓ }∩{𝑛1 ,...𝑛 𝑗 } |=𝑟

∑
𝑖∈{𝑚1 ,...,𝑚ℓ }∩{𝑛1 ,...,𝑛 𝑗 }

(
∇𝑥𝑖 𝑓

(ℓ)
𝒎ℓ · ∇𝑣𝑖𝑔

( 𝑗)
𝒏 𝑗 − ∇𝑥𝑖𝑔

( 𝑗)
𝒏 𝑗 · ∇𝑣𝑖 𝑓

(ℓ)
𝒎ℓ

)

=

(
𝑗

𝑟

) (
ℓ

𝑟

)
𝑟!

∑
T

𝐴𝑜𝑝𝑜𝑠,𝑚=𝐴𝑜𝑝𝑜𝑠,𝑛={1,...,𝑟 }
𝜋𝑟,𝑛=𝜋𝑟,𝑚

𝑟∑
𝑖=1

(
∇𝑥𝑖 𝑓

(ℓ)
𝒎ℓ · ∇𝑣𝑖𝑔

( 𝑗)
𝒏 𝑗 − ∇𝑥𝑖𝑔

( 𝑗)
𝒏 𝑗 · ∇𝑣𝑖 𝑓

(ℓ)
𝒎ℓ

)
. (4.60)

Since there is a bijection between tuples 𝒑ℓ+ 𝑗−𝑟 ∈ 𝑃𝑁
ℓ+ 𝑗−𝑟 and tuples

(𝐴𝑜,𝑟 , 𝐴𝑛𝑜,𝑚, 𝐴𝑛𝑜,𝑛, 𝜋𝑟 ,𝑚, 𝜏ℓ−𝑟 ,𝑚, 𝜏𝑗−𝑟 ,𝑛 (∈ 𝒫𝑁
𝑟 ×𝒫𝑁−𝑟

ℓ−𝑟 ×𝒫𝑁−ℓ
𝑗−𝑟 × S𝑟 × Sℓ−𝑟 × S 𝑗−𝑟 , (4.61)

we conclude upon relabeling that equation (4.49) equals

𝑁

|𝑃𝑁
ℓ | |𝑃𝑁

𝑗 |

min(ℓ, 𝑗)∑
𝑟=1

(
𝑗

𝑟

) (
ℓ

𝑟

)
𝑟!

∑
𝒑ℓ+ 𝑗−𝑟

𝑟∑
𝑖=1

(
∇𝑥𝑝𝑖

𝑓 (ℓ)𝒑ℓ
· ∇𝑣𝑝𝑖

𝑔
( 𝑗)
(𝒑𝑟 ,𝒑ℓ+1;ℓ+ 𝑗−𝑟 )

− ∇𝑥𝑝𝑖
𝑔
( 𝑗)
𝒑 𝑗

· ∇𝑣𝑝𝑖
𝑓 (ℓ)
(𝒑𝑟 ,𝒑 𝑗+1; 𝑗+ℓ−𝑟 )

)
,

(4.62)

where we have used the shorthand ( 𝒑𝑟 , 𝒑ℓ+1;ℓ+ 𝑗−𝑟 ) = (𝑝1, . . . , 𝑝𝑟 , 𝑝ℓ+1, . . . , 𝑝ℓ+ 𝑗−𝑟 ) (similarly when ℓ
and j are swapped). Note that for 1 ≤ 𝑟 < max(1, ℓ + 𝑗 − 𝑁) � 𝑟0, the preceding sum is vacuous.

Using the ∧𝑟 wedge product notation and the fact that the sum over pℓ+ 𝑗−𝑟 ∈ 𝑃𝑁
ℓ+ 𝑗−𝑟 is invariant

under the Sℓ+ 𝑗−𝑟 action, we can rewrite the expression (4.62) as

𝑁

|𝑃𝑁
ℓ | |𝑃𝑁

𝑗 |

min(ℓ, 𝑗)∑
𝑟=𝑟0

∑
𝒑ℓ+ 𝑗−𝑟 ∈𝑃

𝑁
ℓ+ 𝑗−𝑟

( 𝑓 (ℓ) ∧𝑟 𝑔
( 𝑗) )𝒑ℓ+ 𝑗−𝑟

=
𝑁

|𝑃𝑁
ℓ | |𝑃𝑁

𝑗 |

min(ℓ, 𝑗)∑
𝑟=𝑟0

|𝑃𝑁
ℓ+ 𝑗−𝑟 |𝜖ℓ+ 𝑗−𝑟 ,𝑁 (Symℓ+ 𝑗−𝑟 ( 𝑓

(ℓ) ∧𝑟 𝑔
( 𝑗) ))

= 𝜖ℓ+ 𝑗−1,𝑁

(
𝑁

|𝑃𝑁
ℓ | |𝑃𝑁

𝑗 |

min(ℓ, 𝑗)∑
𝑟=𝑟0

𝑁!
(𝑁 − ℓ − 𝑗 + 𝑟)!

𝜖ℓ+ 𝑗−𝑟 ,ℓ+ 𝑗−1(Symℓ+ 𝑗−𝑟 ( 𝑓
(ℓ) ∧𝑟 𝑔

( 𝑗) ))

)
, (4.63)

where to obtain the final line, we have used Lemma 4.8 with 𝑎 = ℓ + 𝑗 − 𝑟, 𝑏 = ℓ + 𝑗 − 1 and have used
the linearity of 𝜖ℓ+ 𝑗−1,𝑁 . Observing

𝑁

|𝑃𝑁
ℓ | |𝑃𝑁

𝑗 |

𝑁!
(𝑁 − ℓ − 𝑗 + 𝑟)!

=
(𝑁 − ℓ)!(𝑁 − 𝑗)!

(𝑁 − 1)!(𝑁 − ℓ − 𝑗 + 𝑟)!
, (4.64)

we arrive at the stated assertion of the lemma. This completes the proof in all cases of ℓ, 𝑗 . �

With Lemma 4.9 in hand, we can show that the expression (2.25) for [𝐹, 𝐺]𝔊𝑁 is well defined. Indeed,
fix 1 ≤ 𝑘 < 𝑁 , given 𝐹 = ( 𝑓 (ℓ) )𝑁ℓ=1, 𝐺 = (𝑔 ( 𝑗) )𝑁𝑗=1 ∈ 𝔊𝑁 , Lemma 4.9 yields, for any 1 ≤ ℓ, 𝑗 ≤ 𝑁
satisfying ℓ + 𝑗 − 1 = 𝑘 ,

https://doi.org/10.1017/fms.2023.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.72


34 J. K. Miller et al.

[
𝜖ℓ,𝑁 ( 𝑓 (ℓ) ), 𝜖 𝑗 ,𝑁 (𝑔 ( 𝑗) )

] (𝑘)
𝔤𝑁

= 𝜖𝑘,𝑁

(min(ℓ, 𝑗)∑
𝑟=𝑟0

(𝑁 − ℓ)!(𝑁 − 𝑗)!
(𝑁 − 1)!(𝑁 − ℓ − 𝑗 + 𝑟)!

𝜖ℓ+ 𝑗−𝑟 ,𝑘 (Symℓ+ 𝑗−𝑟 ( 𝑓
(ℓ) ∧𝑟 𝑔

( 𝑗) ))

)
. (4.65)

Summing over ℓ, 𝑗 such that ℓ + 𝑗 − 1 = 𝑘 and applying 𝜖−1
𝑘,𝑁 to both sides, we arrive at equation (2.25).

In fact, we have also obtained an explicit formula for [𝐹, 𝐺]𝔊𝑁 :

[𝐹, 𝐺]
(𝑘)
𝔊𝑁

=
∑

1≤ℓ, 𝑗≤𝑁
ℓ+ 𝑗−1=𝑘

min(ℓ, 𝑗)∑
𝑟=𝑟0

(𝑁 − ℓ)!(𝑁 − 𝑗)!
(𝑁 − 1)!(𝑁 − ℓ − 𝑗 + 𝑟)!

𝜖ℓ+ 𝑗−𝑟 ,𝑘 (Symℓ+ 𝑗−𝑟 ( 𝑓
(ℓ) ∧𝑟 𝑔

( 𝑗) )). (4.66)

If 𝑘 = 𝑁 , then we should modify the preceding reasoning to sum over ℓ + 𝑗 − 1 ≥ 𝑁 . In all cases of k,
we obtain

[𝐹, 𝐺]
(𝑘)
𝔊𝑁

=
∑

1≤ℓ, 𝑗≤𝑁
min(ℓ+ 𝑗−1,𝑁 )=𝑘

min(ℓ, 𝑗)∑
𝑟=𝑟0

(𝑁 − ℓ)!(𝑁 − 𝑗)!
(𝑁 − 1)!(𝑁 − ℓ − 𝑗 + 𝑟)!

𝜖ℓ+ 𝑗−𝑟 ,𝑘 (Symℓ+ 𝑗−𝑟 𝑓 (ℓ) ∧𝑟 𝑔
( 𝑗) )).

(4.67)

Remark 4.11. Note that the constant

𝐶 𝑗ℓ𝑁𝑟 �
(𝑁 − ℓ)!(𝑁 − 𝑗)!

(𝑁 − 1)!(𝑁 − ℓ − 𝑗 + 𝑟)!
(4.68)

satisfies lim𝑁→∞ 𝐶 𝑗ℓ𝑁𝑟 = lim𝑁→∞ 𝑁1−𝑟 = 1𝑟=1. This observation will be used in Sections 5.1 and 5.2
to evaluate 𝑁 → ∞ limits of N-particle Lie and Lie–Poisson brackets.

We now have all the ingredients to prove Theorem 2.5.

Proof of Theorem 2.5. We first consider the algebraic part, which amounts to checking properties 1-3
from Definition 3.15. This part is similar to the algebraic portion of the proof of [MNP+20, Proposition
2.1], but we present again the computations in an effort to make the present article self-contained.

The first two properties are a ready consequence of the definition of [·, ·]𝔊𝑁 . For the third property,
let 𝐹, 𝐺, 𝐻 ∈𝔊𝑁 . We need to show that[

𝐹, [𝐺, 𝐻]𝔊𝑁
]
𝔊𝑁

+
[
𝐻, [𝐹, 𝐺]𝔊𝑁

]
𝔊𝑁

+
[
𝐺, [𝐻, 𝐹]𝔊𝑁

]
𝔊𝑁

= 0. (4.69)

Since 𝜖𝑘,𝑁 is injective, it suffices to show that 𝜖𝑘,𝑁 applied to the k-th component of the left-hand side
of the preceding identity equals the zero element of 𝔤𝑁 . We only consider the case 1 ≤ 𝑘 < 𝑁 and leave
the 𝑘 = 𝑁 case as an exercise for the reader. Using the definition of the Lie bracket and bilinearity, we
have the identities

𝜖𝑘,𝑁

( [
𝐹, [𝐺, 𝐻]𝔊𝑁

] (𝑘)
𝔊𝑁

)
=

∑
𝑗1+ 𝑗2−1=𝑘

[
𝜖 𝑗1 ,𝑁 (𝐹 ( 𝑗1) ), 𝜖 𝑗2 ,𝑁 ( [𝐺, 𝐻]

( 𝑗2)
𝔊𝑁

)
]
𝔤𝑁

=
∑

𝑗1+ 𝑗2−1=𝑘

∑
𝑗3+ 𝑗4−1= 𝑗2

[
𝜖 𝑗1 ,𝑁 (𝐹 ( 𝑗1) ),

[
𝜖 𝑗3 ,𝑁 (𝐺 ( 𝑗3) ), 𝜖 𝑗4 ,𝑁 (𝐻 ( 𝑗4) )

]
𝔤𝑁

]
𝔤𝑁

=
∑

ℓ1+ℓ2+ℓ3=𝑘+2

[
𝜖ℓ1 ,𝑁 (𝐹 (ℓ1) ),

[
𝜖ℓ2 ,𝑁 (𝐺 (ℓ2) ), 𝜖ℓ3 ,𝑁 (𝐻 (ℓ3) )

]
𝔤𝑁

]
𝔤𝑁

, (4.70)
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𝜖𝑘,𝑁

( [
𝐻, [𝐹, 𝐺]𝔊𝑁

] (𝑘)
𝔊𝑁

)
=

∑
𝑗1+ 𝑗2−1=𝑘

[
𝜖 𝑗1 ,𝑁 (𝐻 ( 𝑗1) ), 𝜖 𝑗2 ,𝑁 ( [𝐹, 𝐺]

( 𝑗2)
𝔊𝑁

)
]
𝔤𝑁

=
∑

𝑗1+ 𝑗2−1=𝑘

∑
𝑗3+ 𝑗4−1= 𝑗2

[
𝜖 𝑗1 ,𝑁 (𝐻 ( 𝑗1) ),

[
𝜖 𝑗3 ,𝑁 (𝐹 ( 𝑗3) ), 𝜖 𝑗4 ,𝑁 (𝐺 ( 𝑗4) )

]
𝔤𝑁

]
𝔤𝑁

=
∑

ℓ1+ℓ2+ℓ3=𝑘+2

[
𝜖ℓ3 ,𝑁 (𝐻 (ℓ3) ),

[
𝜖ℓ1 ,𝑁 (𝐹 (ℓ1) ), 𝜖ℓ2 ,𝑁 (𝐺 (ℓ2) )

]
𝔤𝑁

]
𝔤𝑁

, (4.71)

𝜖𝑘,𝑁

( [
𝐺, [𝐻, 𝐹]𝔊𝑁

] (𝑘)
𝔊𝑁

)
=

∑
𝑗1+ 𝑗2−1=𝑘

[
𝜖 𝑗1 ,𝑁 (𝐺 ( 𝑗1) ), 𝜖 𝑗2 ,𝑁 ( [𝐻, 𝐹]

( 𝑗2)
𝔊𝑁

)
]
𝔤𝑁

=
∑

𝑗1+ 𝑗2−1=𝑘

∑
𝑗3+ 𝑗4−1= 𝑗2

[
𝜖 𝑗1 ,𝑁 (𝐺 ( 𝑗1) ),

[
𝜖 𝑗3 ,𝑁 (𝐻 ( 𝑗3) ), 𝜖 𝑗4 ,𝑁 (𝐹 ( 𝑗4) )

]
𝔤𝑁

]
𝔤𝑁

=
∑

ℓ1+ℓ2+ℓ3=𝑘+2

[
𝜖ℓ2 ,𝑁 (𝐺 (ℓ2) ),

[
𝜖ℓ3 ,𝑁 (𝐻 (ℓ3) ), 𝜖ℓ1 ,𝑁 (𝐹 (ℓ1) )

]
𝔤𝑁

]
𝔤𝑁

. (4.72)

Since [·, ·]𝔤𝑁 is a Lie bracket and therefore satisfies the Jacobi identity, it follows that for fixed integers
1 ≤ ℓ1, ℓ2, ℓ3 ≤ 𝑁 ,

0 =

[
𝜖ℓ1 ,𝑁 (𝐹 (ℓ1) ),

[
𝜖ℓ2 ,𝑁 (𝐺 (ℓ2) ), 𝜖ℓ3 ,𝑁 (𝐻 (ℓ3) )

]
𝔤𝑁

]
𝔤𝑁

+

[
𝜖ℓ3 ,𝑁 (𝐻 (ℓ3) ),

[
𝜖ℓ1 ,𝑁 (𝐹 (ℓ1) ), 𝜖ℓ2 ,𝑁 (𝐺 (ℓ2) )

]
𝔤𝑁

]
𝔤𝑁

(4.73)

+

[
𝜖ℓ2 ,𝑁 (𝐺 (ℓ2) ),

[
𝜖ℓ3 ,𝑁 (𝐻 (ℓ3) ), 𝜖ℓ1 ,𝑁 (𝐹 (ℓ1) )

]
𝔤𝑁

]
𝔤𝑁

.

Hence,

𝜖𝑘,𝑁

( [
𝐹, [𝐺, 𝐻]𝔊𝑁

] (𝑘)
𝔊𝑁

+
[
𝐻, [𝐹, 𝐺]𝔊𝑁

] (𝑘)
𝔊𝑁

+
[
𝐺, [𝐻, 𝐹]𝔊𝑁

] (𝑘)
𝔊𝑁

)
= 0 ∈ 𝔤𝑁 . (4.74)

We now consider the analytic part, which amounts to checking the continuity of [·, ·]𝔊𝑁 . We wish to
show that

𝔊𝑁 ×𝔊𝑁 →𝔊𝑁 , (𝐹, 𝐺) ↦→ [𝐹, 𝐺]𝔊𝑁 (4.75)

is continuous, for which it suffices to show that for each 𝑘 ∈ {1, . . . , 𝑁}, the map

𝔊𝑁 ×𝔊𝑁 → 𝔤𝑘 , (𝐹, 𝐺) ↦→ [𝐹, 𝐺]
(𝑘)
𝔊𝑁

is continuous. By the𝔊𝑁 Lie bracket formula given in equation (4.67) and the continuity of 𝜖𝑘,𝑁 from
Lemma 4.6, the continuity of (𝐹, 𝐺) ↦→ [𝐹, 𝐺]𝔊𝑁 is then reduced to proving continuity of the map

C∞((R2𝑑)ℓ) × C∞((R2𝑑) 𝑗 ) → C∞((R2𝑑)ℓ+ 𝑗−𝑟 ), ( 𝑓 (ℓ) , 𝑔 ( 𝑗) ) ↦→ 𝑓 (ℓ) ∧𝑟 𝑔
( 𝑗) , (4.76)

where ∧𝑟 is defined in equation (4.48). Since ∧𝑟 is a linear combination of products of derivatives, it is
continuous by a similar argument to the analytic part of the proof of Proposition 2.1. �

We conclude this subsection with what we believe is an interesting fact relating the mappings 𝜖𝑘,𝑁
with the notion of taking the marginal of a distribution, the latter notion being important to obtaining

https://doi.org/10.1017/fms.2023.72 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.72


36 J. K. Miller et al.

Hamiltonian vector field formulae in Sections 4.3 and 5.2. For each 1 ≤ 𝑘 < 𝑁 , define the k-particle
marginal mapping ∫

(R2𝑑)𝑁−𝑘
𝑑𝑧

𝑘+1;𝑁 : 𝔤∗𝑁 → 𝔤∗𝑘 , (4.77)

where, for 𝛾 ∈ 𝔤∗𝑁 ,
∫
(R2𝑑)𝑁−𝑘 𝑑𝑧𝑘+1;𝑁 𝛾 is the unique element in 𝔤∗𝑘 satisfying

∀𝜙 ∈ 𝔤𝑘 ,

〈
𝜙,

∫
(R2𝑑)𝑁−𝑘

𝑑𝑧
𝑘+1;𝑁 𝛾

〉
𝔤𝑘−𝔤∗𝑘

�
〈
Sym𝑁 (𝜙 ⊗ 1⊗𝑁−𝑘 ), 𝛾

〉
𝔤𝑁−𝔤∗𝑁

. (4.78)

We additionally define the mapping
∫
𝑑𝑧𝑁+1,𝑁 : 𝔤∗𝑁 → 𝔤∗𝑁 to be the identity map. Sometimes,

we use the alternative notation
∫
(R2𝑑)𝑁−𝑘 𝑑𝛾(·, 𝑧𝑘+1;𝑁 ). Our duality result for the maps 𝜖𝑘,𝑁 and∫

(R2𝑑)𝑁−𝑘 𝑑𝑧𝑘+1;𝑁 is the following proposition.

Proposition 4.12. For 1 ≤ 𝑘 ≤ 𝑁 , the map
∫
𝑑𝑧𝑘+1,𝑁 : 𝔤∗𝑁 → 𝔤∗𝑘 is a continuous linear operator and

we have the operator equality

𝜖∗𝑘,𝑁 =
∫

𝑑𝑧
𝑘+1;𝑁 . (4.79)

Proof. Let 𝛾 ∈ 𝔤∗𝑁 and 𝜙 ∈ 𝔤𝑘 . We calculate

〈
𝜙, 𝜖∗𝑘,𝑁 (𝛾)

〉
𝔤𝑘−𝔤∗𝑘

=
〈
𝜖𝑘,𝑁 (𝜙), 𝛾

〉
𝔤𝑁−𝔤∗𝑁

=

〈
1

|𝑃𝑁
𝑘 |

∑
m𝑘 ∈𝑃𝑁𝑘

𝜙m𝑘 , 𝛾

〉
𝔤𝑁−𝔤∗𝑁

(4.80)

and 〈
𝜙,

∫
(R2𝑑)𝑁−𝑘

𝑑𝑧
𝑘+1;𝑁 𝛾

〉
𝔤𝑘−𝔤∗𝑘

=
〈
Sym𝑁 (𝜙 ⊗ 1⊗𝑁−𝑘 ), 𝛾

〉
𝔤𝑁−𝔤∗𝑁

=

〈
1
𝑁!

∑
𝜎∈S𝑁

(𝜙 ⊗ 1⊗(𝑁−𝑘) )𝜎 , 𝛾

〉
𝔤𝑁−𝔤∗𝑁

, (4.81)

where (𝜙⊗1⊗𝑁−𝑘 )𝜎 (𝑧𝑁 ) � (𝜙⊗1⊗𝑁−𝑘 ) (𝑧𝜎 (1) , . . . , 𝑧𝜎 (𝑁 ) ). For each k-tuple m𝑘 ∈ 𝑃𝑁
𝑘 , define the set

𝐴(𝒎𝑘 ) � {𝜎 ∈ S𝑁 : (𝜎(1), . . . , 𝜎(𝑘)) = m𝑘 }, (4.82)

which has cardinality (𝑁 − 𝑘)!. If 𝜎 ∈ 𝐴(m𝑘 ) ∩ 𝐴(m′
𝑘 ), then m′

𝑘 = (𝜎(1), . . . , 𝜎(𝑘)) = m𝑘 , which im-
plies that the sets 𝐴(m𝑘 ) are pairwise disjoint. Given a permutation𝜎 ∈ S𝑁 , set m𝑘 = (𝜎(1), . . . , 𝜎(𝑘)).
Then trivially, 𝜎 ∈ 𝐴(𝒎𝑘 ) and we have shown the partition⊔

m𝑘 ∈𝑃𝑁𝑘

𝐴(m𝑘 ) = S𝑁 . (4.83)
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Hence, we have ∑
𝜎∈S𝑁

(𝜙 ⊗ 1⊗(𝑁−𝑘) )𝜎 =
∑

m𝑘 ∈𝑃𝑁𝑘

∑
𝜎∈𝐴(m𝑘 )

(𝜙 ⊗ 1⊗(𝑁−𝑘) )𝜎

=
∑

m𝑘 ∈𝑃𝑁𝑘

∑
𝜎∈𝐴(m𝑘 )

𝜙m𝑘

= (𝑁 − 𝑘)!
∑

m𝑘 ∈𝑃𝑁𝑘

𝜙m𝑘 . (4.84)

Recalling that |𝑃𝑁
𝑘 | = 𝑁!/(𝑁 − 𝑘)!, we have shown that equation (4.80) equals equation (4.81). This

equality of operators proves the continuity of
∫
(R2𝑑)𝑁−𝑘 𝑑𝑧𝑘+1;𝑁 by Proposition 3.3 and Lemma 4.6. �

Remark 4.13. One may also obtain Proposition 4.12 stated below as a corollary of Propositions 4.17
and 4.18, but we feel the argument presented above is more direct.

4.3. Lie–Poisson space 𝔊∗
𝑁 of N-hierarchies of states

We turn to proving Theorem 2.6, which asserts that there is a well-defined Lie–Poisson structure on the
dual space 𝔊∗

𝑁 of N-hierarchies of states. Later, in Section 6.2, we will use this Lie–Poisson structure
to demonstrate a Hamiltonian formulation of the BBGKY hierarchy.

We start with a technical lemma, which is a straightforward consequence of Lemma 4.1.

Lemma 4.14. For each 𝑁 ∈ N, the space 𝔊𝑁 is reflexive.

Proof. Since each 𝔤𝑘 is reflexive by Lemma 4.1,𝔊𝑁 is also reflexive since, by using once again [K6¨9,
Proposition 2 §14, Chapter 3], we have the chain of isomorphisms

𝔊∗∗
𝑁 =

(
𝑁⊕
𝑘=1

𝔤𝑘

)∗∗
�

(
𝑁∏
𝑘=1

𝔤∗𝑘

)∗
�

𝑁⊕
𝑘=1

𝔤∗∗𝑘 �
𝑁⊕
𝑘=1

𝔤𝑘 � 𝔊𝑁 . (4.85)

�

Proof of Theorem 2.6. The proof is similar to that of Proposition 2.2 for 𝔤∗𝑘 , except now we will apply
Theorem 3.20 with 𝐸 = 𝔊∗

𝑁 . First, note that by Lemma 4.14, Theorem 2.5 and equation (2.14), the
bracket on 𝐸∗ = 𝔊∗∗

𝑁 is continuous, a fortiori hypocontinuous. It therefore suffices to show that E is a
𝑘∞-space in the sense of Definition 3.18. To show this, note that for 𝑛 ∈ N,

(𝔊∗
𝑁 )𝑛 �

𝑛∏
𝑗=1

𝑁∏
𝑘=1

𝔤∗𝑘 , (4.86)

which shows that (𝔊∗
𝑁 )𝑛 is a finite product of (DF) Montel spaces 𝔤∗𝑘 (recall Lemma 4.1), hence (𝐷𝐹)

Montel itself. Therefore, Theorem 3.13 implies that (𝔊∗
𝑁 )𝑛 is a sequential space, which in turn implies

that (𝔊∗
𝑁 )𝑛 is a k-space by Proposition 3.12. Since 𝑛 ∈ N was arbitrary, it follows that 𝔊∗

𝑁 is a 𝑘∞-
space. �

Abstractly, Theorem 2.6 tells us that for any functional G ∈ C∞(𝔊∗
𝑁 ), there exists a unique Hamilto-

nian vector field 𝑋G ∈ C∞(𝔊∗
𝑁 ,𝔊

∗
𝑁 ) characterized by the property that

∀F ∈ C∞(𝔊∗
𝑁 ),

(
𝑋G (F)

)
(Γ𝑁 ) = dF [Γ𝑁 ] (𝑋G (Γ𝑁 )) = {G,F }𝔊∗

𝑁
(Γ𝑁 ). (4.87)
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For applications, in particular as it pertains to the BBGKY and Vlasov hierarchies (see Sections 6.2 and
6.3) and evaluating limits as 𝑁 → ∞ (see Section 5.1), it is useful to have an explicit formula for the
Hamiltonian vector field 𝑋G . We provide such a formula with the next proposition.

Proposition 4.15. If G ∈ C∞(𝔊∗
𝑁 ), then we have the following formula for the Hamiltonian vector field

𝑋G with respect to the bracket {·, ·}𝔊∗
𝑁

: for 1 ≤ ℓ ≤ 𝑁 and any Γ = (𝛾 (𝑘) )𝑁𝑘=1 ∈𝔊∗
𝑁 ,

𝑋G (Γ)
(ℓ) =

𝑁∑
𝑗=1

min(ℓ, 𝑗)∑
𝑟=𝑟0

𝐶ℓ 𝑗𝑁𝑟

(
𝑗

𝑟

) ∫
(R2𝑑)𝑘−ℓ

𝑑𝑧
ℓ+1;𝑘

⎧⎪⎪⎨⎪⎪⎩
∑

a𝑟 ∈𝑃ℓ𝑟

dG [Γ] ( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

, 𝛾 (𝑘)

⎫⎪⎪⎬⎪⎪⎭ (R2𝑑)𝑘

, (4.88)

where 𝐶ℓ 𝑗𝑁𝑟 �
(𝑁−ℓ)!(𝑁− 𝑗)!

(𝑁−1)!(𝑁−ℓ− 𝑗+𝑟 )! , 𝑘 � min(ℓ + 𝑗 − 1, 𝑁), and 𝑟0 � max(1, ℓ + 𝑗 − 𝑁).

Before proceeding to the proof of Proposition 4.15, some explanation regarding the well definedness
of the expression (4.88) is in order. First, thanks to the identification 𝔤 𝑗 � 𝔤∗∗𝑗 , each dG [Γ] ( 𝑗) ∈

𝔤 𝑗 is a symmetric element of the test function space C∞((R2𝑑) 𝑗 ). Thus, the symmetrized function∑
a𝑟 ∈𝑃ℓ𝑟 dG [Γ] ( 𝑗)

(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )
is an element of 𝔤𝑘 , that is, a symmetric element of C∞((R2𝑑)𝑘 ). Although

𝛾 (𝑘) ∈ 𝔤∗𝑘 , that is, a symmetric distribution on C∞((R2𝑑)𝑘 ), is not a function, the usual rules for
multiplication of a distribution by a test function and differentiation of a distribution show that the
Poisson bracket above is again a well-defined element of 𝔤∗𝑘 . Hence, by Proposition 4.12, we can take
its ℓ-particle marginal, which is symbolically denoted in equation (4.88) by the integration over the last
𝑘 − ℓ coordinates, to obtain an element of 𝔤∗ℓ . Thus, the right-hand side in equation (4.88) is nothing but
a linear combination of elements in 𝔤∗ℓ , hence itself an element of 𝔤∗ℓ . With these clarifications, we turn
to the proof of Proposition 4.15.

Remark 4.16. There are some exceptional cases concerning our notation in the right-hand side of
equation (4.88), which, out of convenience, we do not separate out. When 𝑘 = ℓ the integration is
vacuous. When 𝑗 = 1 (and therefore 𝑟0 = 1), the tuple (a𝑟 , ℓ +1, . . . , ℓ + 𝑗 − 𝑟) should be replaced by a1.
When 𝑗 = 2, the tuple (a𝑟 , ℓ + 1, . . . , ℓ + 𝑗 − 𝑟) should be replaced by (a1, ℓ + 1) if 𝑟 = 1 and a2 if 𝑟 = 2.

Proof of Proposition 4.15. To increase the transparency of our computations, it is convenient to use
integral notation, instead of distributional pairings, throughout the proof. By definition of the 𝔊∗

𝑁
Poisson bracket (2.28),

{F ,G}𝔊∗
𝑁
(Γ) =

𝑁∑
𝑘=1

∫
(R2𝑑)𝑘

𝑑𝛾 (𝑘) (𝑧
𝑘
) [dF [Γ], dG [Γ]] (𝑘)𝔊𝑁

(𝑧
𝑘
). (4.89)

By the formula (4.67) for the𝔊𝑁 Lie bracket,

[dF [Γ], dG [Γ]] (𝑘)𝔊𝑁
=

∑
1≤ℓ, 𝑗≤𝑁

min(ℓ+ 𝑗−1,𝑁 )=𝑘

min(ℓ, 𝑗)∑
𝑟=𝑟0

𝐶ℓ 𝑗𝑁𝑟 𝜖ℓ+ 𝑗−𝑟 ,𝑘

(
Symℓ+ 𝑗−𝑟 (dF [Γ] (ℓ) ∧𝑟 dG [Γ] ( 𝑗) )

)
,

(4.90)

where 𝐶ℓ 𝑗𝑁𝑟 is as above. To compactify the notation, let us set 𝑓 (ℓ) � dF [Γ] (ℓ) and 𝑔 ( 𝑗) � dG [Γ] ( 𝑗) ,
the dependence on Γ being implicit. By definition of 𝜖ℓ+ 𝑗−𝑟 ,𝑘 and using the invariance of the summation∑

𝒑ℓ+ 𝑗−𝑟 ∈𝑃
𝑘
ℓ+ 𝑗−𝑟

under the Sℓ+ 𝑗−𝑟 action, we have that
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𝜖ℓ+ 𝑗−𝑟 ,𝑘

(
Symℓ+ 𝑗−𝑟 ( 𝑓

(ℓ) ∧𝑟 𝑔
( 𝑗) )

)
=

1
|𝑃𝑘

ℓ+ 𝑗−𝑟 |

∑
pℓ+ 𝑗−𝑟 ∈𝑃𝑘ℓ+ 𝑗−𝑟

(
𝑓 (ℓ) ∧𝑟 𝑔

( 𝑗)
)
𝒑ℓ+ 𝑗−𝑟

=
1

|𝑃𝑘
ℓ+ 𝑗−𝑟 |

∑
pℓ+ 𝑗−𝑟 ∈𝑃𝑘ℓ+ 𝑗−𝑟

(
ℓ

𝑟

) (
𝑗

𝑟

)
𝑟!

𝑟∑
𝑖=1

(
∇𝑥𝑝𝑖

𝑓 (ℓ)pℓ · ∇𝑣𝑝𝑖
𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

− ∇𝑥𝑝𝑖
𝑔
( 𝑗)
p 𝑗 · ∇𝑣𝑝𝑖

𝑓 (ℓ)
(p𝑟 ,p 𝑗+1; 𝑗+ℓ−𝑟 )

)
,

(4.91)

where the ultimate line follows from the definition (4.48) of ∧𝑟 . Thus, setting 𝐶ℓ 𝑗𝑁𝑟𝑘 �
𝐶ℓ 𝑗𝑁𝑟 (ℓ𝑟)(

𝑗
𝑟)𝑟 !

|𝑃𝑘
ℓ+ 𝑗−𝑟

|
,

we arrive at the identity

{F ,G}𝔊∗
𝑁
(Γ) =

𝑁∑
𝑘=1

∑
1≤ℓ, 𝑗≤𝑁

min(ℓ+ 𝑗−1,𝑁 )=𝑘

min(ℓ, 𝑗)∑
𝑟=𝑟0

𝐶ℓ 𝑗𝑁𝑟𝑘

∑
pℓ+ 𝑗−𝑟 ∈𝑃𝑘ℓ+ 𝑗−𝑟

𝑟∑
𝑖=1

( ∫
(R2𝑑)𝑘

𝑑𝛾 (𝑘) (𝑧
𝑘
)

(
∇𝑥𝑝𝑖

𝑓 (ℓ)pℓ (𝑧
𝑘
) · ∇𝑣𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
) − ∇𝑥𝑝𝑖

𝑔
( 𝑗)
p 𝑗 (𝑧𝑘 ) · ∇𝑣𝑝𝑖

𝑓 (ℓ)
(p𝑟 ,p 𝑗+1; 𝑗+ℓ−𝑟 )

(𝑧
𝑘
)
))
. (4.92)

By introducing in the second term of the last line the relabeling 𝒒ℓ+ 𝑗−𝑟 of pℓ+ 𝑗−𝑟 according to

𝒒𝑟 � p𝑟 , 𝒒𝑟+1;ℓ � p 𝑗+1; 𝑗+ℓ−𝑟 , 𝒒ℓ+1;ℓ+ 𝑗−𝑟 � p𝑟+1; 𝑗 , (4.93)

we see that

∑
pℓ+ 𝑗−𝑟 ∈𝑃𝑘ℓ+ 𝑗−𝑟

𝑟∑
𝑖=1

∫
(R2𝑑)𝑘

𝑑𝛾 (𝑘) (𝑧
𝑘
)
(
∇𝑥𝑝𝑖

𝑓 (ℓ)pℓ (𝑧
𝑘
) · ∇𝑣𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
)

−∇𝑥𝑝𝑖
𝑔
( 𝑗)
p 𝑗 (𝑧𝑘 ) · ∇𝑣𝑝𝑖

𝑓 (ℓ)
(p𝑟 ,p 𝑗+1; 𝑗+ℓ−𝑟 )

(𝑧
𝑘
)
)

=
∑

pℓ+ 𝑗−𝑟 ∈𝑃𝑘ℓ+ 𝑗−𝑟

𝑟∑
𝑖=1

∫
(R2𝑑)𝑘

𝑑𝛾 (𝑘) (𝑧
𝑘
)
(
∇𝑥𝑝𝑖

𝑓 (ℓ)pℓ (𝑧
𝑘
) · ∇𝑣𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
)

−∇𝑥𝑝𝑖
𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
) · ∇𝑣𝑝𝑖

𝑓 (ℓ)pℓ (𝑧
𝑘
)
)
. (4.94)

Integrating by parts (in the distributional sense) the ∇𝑥𝑝𝑖
, we have that

∫
(R2𝑑)𝑘

𝑑𝛾 (𝑘) (𝑧
𝑘
)∇𝑥𝑝𝑖

𝑓 (ℓ)pℓ (𝑧
𝑘
) · ∇𝑣𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
)

= −

∫
(R2𝑑)𝑘

𝑑𝛾 (𝑘) (𝑧
𝑘
) 𝑓 (ℓ)pℓ (𝑧

𝑘
) div𝑥𝑝𝑖

∇𝑣𝑝𝑖
𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
)

−

∫
(R2𝑑)𝑘

𝑑∇𝑥𝑝𝑖
𝛾 (𝑘) (𝑧

𝑘
) · 𝑓 (ℓ)pℓ (𝑧

𝑘
)∇𝑣𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
). (4.95)
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Similarly, integrating by parts the ∇𝑣𝑝𝑖
,

−

∫
(R2𝑑)𝑘

𝑑𝛾 (𝑘) (𝑧
𝑘
)∇𝑣𝑝𝑖

𝑓 (ℓ)pℓ (𝑧
𝑘
) · ∇𝑥𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
)

=
∫
(R2𝑑)𝑘

𝑑𝛾 (𝑘) (𝑧
𝑘
) 𝑓 (ℓ)pℓ (𝑧

𝑘
) div𝑣𝑝𝑖

∇𝑥𝑝𝑖
𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
)

+

∫
(R2𝑑)𝑘

𝑑∇𝑣𝑝𝑖
𝛾 (𝑘) (𝑧

𝑘
) · 𝑓 (ℓ)pℓ (𝑧

𝑘
)∇𝑥𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
). (4.96)

Since 𝑔 ( 𝑗) is locally C∞, we have the equality div𝑥𝑝𝑖
∇𝑣𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

= div𝑣𝑝𝑖
∇𝑥𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

.
Therefore,∫

(R2𝑑)𝑘
𝑑𝛾 (𝑘) (𝑧

𝑘
)
(
∇𝑥𝑝𝑖

𝑓 (ℓ)pℓ (𝑧
𝑘
) · ∇𝑣𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
) − ∇𝑣𝑝𝑖

𝑓 (ℓ)pℓ (𝑧
𝑘
) · ∇𝑥𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
)
)

= −

∫
(R2𝑑)𝑘

𝑑∇𝑥𝑝𝑖
𝛾 (𝑘) (𝑧

𝑘
) · 𝑓 (ℓ)pℓ (𝑧

𝑘
)∇𝑣𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
)

+

∫
(R2𝑑)𝑘

𝑑∇𝑣𝑝𝑖
𝛾 (𝑘) (𝑧

𝑘
) · 𝑓 (ℓ)pℓ (𝑧

𝑘
) · ∇𝑥𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
). (4.97)

Let us make the change of variable 𝑧
𝑘
↦→ 𝑤𝑘 according to

𝑤𝑘 = (𝑤1, . . . , 𝑤𝑘 ) = (𝑧𝑝1 , . . . , 𝑧𝑝ℓ+ 𝑗−𝑟 , 𝑧𝑚1 , . . . , 𝑧𝑚𝑘−(ℓ+ 𝑗−𝑟 ) ), (4.98)

where 𝑚1 < · · · < 𝑚𝑘−(ℓ+ 𝑗−𝑟 ) is the increasing ordering of the set {1, . . . , 𝑘} \ {𝑝1, . . . , 𝑝ℓ+ 𝑗−𝑟 }. Write
𝑤𝑖 = (𝑦𝑖 , 𝑢𝑖). Since 𝛾 (𝑘) is symmetric with respect to exchange of particle labels,

−

∫
(R2𝑑)𝑘

𝑑∇𝑥𝑝𝑖
𝛾 (𝑘) (𝑧

𝑘
) · 𝑓 (ℓ)pℓ (𝑧

𝑘
)∇𝑣𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
)

+

∫
(R2𝑑)𝑘

𝑑∇𝑣𝑝𝑖
𝛾 (𝑘) (𝑧

𝑘
) · 𝑓 (ℓ)pℓ (𝑧

𝑘
)∇𝑥𝑝𝑖

𝑔
( 𝑗)
(p𝑟 ,pℓ+1;ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
)

= −

∫
(R2𝑑)𝑘

𝑑∇𝑦𝑖𝛾
(𝑘) (𝑤𝑘 ) · 𝑓

(ℓ)
1;ℓ (𝑤𝑘 )∇𝑢𝑖𝑔

( 𝑗)
(1;𝑟 ,ℓ+1;ℓ+ 𝑗−𝑟 )

(𝑤𝑘 )

+

∫
(R2𝑑)𝑘

𝑑∇𝑢𝑖𝛾
(𝑘) (𝑤𝑘 ) · 𝑓

(ℓ)
1;ℓ (𝑤𝑘 )∇𝑦𝑖𝑔

( 𝑗)
(1;𝑟 ,ℓ+1;ℓ+ 𝑗−𝑟 )

(𝑤𝑘 ). (4.99)

Next, since we have the partition

𝑁⊔
𝑘=1

{(ℓ, 𝑗) ∈ {1, . . . , 𝑁}2 : min(ℓ + 𝑗 − 1, 𝑁) = 𝑘} = {1, . . . , 𝑁}2, (4.100)

we can interchange the order of summation over k and summation over ℓ, 𝑗 in the right-hand side of
equation (4.92) to obtain

{F ,G}𝔊∗
𝑁
(Γ)

=
𝑁∑
ℓ=1

𝑁∑
𝑗=1

𝐶ℓ 𝑗𝑁𝑟

min(ℓ, 𝑗)∑
𝑟=𝑟0

(
ℓ

𝑟

) (
𝑗

𝑟

)
𝑟!

𝑟∑
𝑖=1

(
−

∫
(R2𝑑)𝑘

𝑑∇𝑦𝑖𝛾
(𝑘) (𝑤𝑘 ) · 𝑓

(ℓ)
1;ℓ (𝑤𝑘 )∇𝑢𝑖𝑔

( 𝑗)
(1;𝑟 ,ℓ+1;ℓ+ 𝑗−𝑟 )

(𝑤𝑘 )

+

∫
(R2𝑑)𝑘

𝑑∇𝑢𝑖𝛾
(𝑘) (𝑧

𝑘
) · 𝑓 (ℓ)1;ℓ (𝑤𝑘 )∇𝑦𝑖𝑔

( 𝑗)
(1;𝑟 ,ℓ+1;ℓ+ 𝑗−𝑟 )

(𝑤𝑘 )

)
. (4.101)
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By the distributional Fubini–Tonelli theorem, the sum of the integrals in the right-hand side may be
re-expressed as∫

(R2𝑑)ℓ
𝑑𝑤ℓ 𝑓

(ℓ) (𝑤ℓ)

( ∫
(R2𝑑)𝑘−ℓ

𝑑𝑤ℓ+1;𝑘

(
∇𝑢𝑖𝛾

(𝑘) (𝑤𝑘 ) · ∇𝑦𝑖𝑔
( 𝑗)
(1;𝑟 ,ℓ+1;ℓ+ 𝑗−𝑟 )

(𝑤𝑘 )

−∇𝑦𝑖𝛾
(𝑘) (𝑤𝑘 ) · ∇𝑢𝑖𝑔

( 𝑗)
(1;𝑟 ,ℓ+1;ℓ+ 𝑗−𝑟 )

(𝑤𝑘 )
))
, (4.102)

where the inner integral should be understood as the ℓ-particle marginal (recall Proposition 4.12) of the
distribution given by the integrand. Going forward, we return to the original 𝑧, 𝑥, 𝑣 notation.

We claim that we can rewrite the preceding right-hand side more concisely in terms of the canonical
Poisson bracket {·, ·}(R2𝑑)𝑘 on (R2𝑑)𝑘 . Indeed, consider the expression

∫
(R2𝑑)𝑘−ℓ

𝑑𝑧
ℓ+1;𝑘

⎧⎪⎪⎨⎪⎪⎩
∑

a𝑟 ∈𝑃ℓ𝑟

𝑔
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

, 𝛾 (𝑘)

⎫⎪⎪⎬⎪⎪⎭ (R2𝑑)𝑘

=
∑

a𝑟 ∈𝑃ℓ𝑟

𝑘∑
𝛽=1

∫
(R2𝑑)𝑘−ℓ

𝑑𝑧
ℓ+1;𝑘

(
∇𝑥𝛽𝑔

( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

· ∇𝑣𝛽𝛾
(𝑘) − ∇𝑣𝛽𝑔

( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

· ∇𝑥𝛽𝛾
(𝑘)

)
.

(4.103)

If 𝛽 ∈ {ℓ + 1, . . . , 𝑘}, then integrating by parts to swap ∇𝑥𝛽 and ∇𝑣𝛽 , we see that the resulting summand
is zero. Therefore, only coordinates 𝛽 ∈ {1, . . . , ℓ} produce a nonzero contribution. Similarly, for
𝛽 ∈ {1, . . . , ℓ} \ {𝑎1, . . . , 𝑎𝑟 },

∇𝑥𝛽𝑔
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

= ∇𝑣𝛽𝑔
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

= 0. (4.104)

Therefore, by relabeling the sum over 𝛽, we have the equality

𝑘∑
𝛽=1

∫
(R2𝑑)𝑘−ℓ

𝑑𝑧
ℓ+1;𝑘

(
∇𝑥𝛽𝑔

( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

· ∇𝑣𝛽𝛾
(𝑘) − ∇𝑣𝛽𝑔

( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

· ∇𝑥𝛽𝛾
(𝑘)

)
=

𝑟∑
𝑖=1

∫
(R2𝑑)𝑘−ℓ

𝑑𝑧
ℓ+1;𝑘

(
∇𝑥𝑎𝑖

𝑔
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

· ∇𝑣𝑎𝑖
𝛾 (𝑘) − ∇𝑣𝑎𝑖

𝑔
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

· ∇𝑥𝑎𝑖
𝛾 (𝑘)

)
.

(4.105)

We claim that

∑
a𝑟 ∈𝑃ℓ𝑟

𝑟∑
𝑖=1

∫
(R2𝑑)ℓ

𝑑𝑧
ℓ
𝑓 (ℓ) (𝑧

ℓ
)

∫
(R2𝑑)𝑘−ℓ

𝑑𝑧
ℓ+1;𝑘

(
∇𝑥𝑎𝑖

𝑔
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

· ∇𝑣𝑎𝑖
𝛾 (𝑘)

−∇𝑣𝑎𝑖
𝑔
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

· ∇𝑥𝑎𝑖
𝛾 (𝑘)

)
(𝑧

𝑘
)

=

(
ℓ

𝑟

)
𝑟!

𝑟∑
𝑖=1

∫
(R2𝑑)ℓ

𝑑𝑧
ℓ
𝑓 (ℓ) (𝑧

ℓ
)

∫
(R2𝑑)𝑘−ℓ

𝑑𝑧
ℓ+1;𝑘

(
∇𝑥𝑖𝑔

( 𝑗)
(1,...,𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

· ∇𝑣𝑖𝛾
(𝑘)

−∇𝑣𝑖𝑔
( 𝑗)
(1,...,𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

· ∇𝑥𝑖𝛾
(𝑘)

)
(𝑧

𝑘
). (4.106)
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Indeed, let 𝑚1 < · · · < 𝑚ℓ−𝑟 denote the increasing ordering of the set {1, . . . , ℓ} \ {𝑎1, . . . , 𝑎𝑟 }, and
consider the change of variable

𝑤𝑘 = (𝑤1, . . . , 𝑤𝑘 ) = (𝑧𝑎1 , . . . , 𝑧𝑎𝑟 , 𝑧𝑚1 , . . . , 𝑧𝑚ℓ−𝑟 , 𝑧ℓ+1, . . . , 𝑧𝑘 ). (4.107)

Then since 𝑓 (ℓ) is symmetric with respect to permutation of particle labels,

𝑓 (ℓ) (𝑧1, . . . , 𝑧ℓ) = 𝑓 (ℓ) (𝑤1, . . . , 𝑤ℓ). (4.108)

Similarly,

∇𝑣𝑎𝑖
𝛾 (𝑘) (𝑧

𝑘
) = ∇𝑢𝑖𝛾

(𝑘) (𝑤𝑘 ), (4.109)

∇𝑥𝑎𝑖
𝛾 (𝑘) (𝑧

𝑘
) = ∇𝑦𝑖𝛾

(𝑘) (𝑤𝑘 ), (4.110)

∇𝑥𝑎𝑖
𝑔
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
) = ∇𝑦𝑖𝑔

( 𝑗)
(1,...,𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

(𝑤𝑘 ), (4.111)

∇𝑣𝑎𝑖
𝑔
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

(𝑧
𝑘
) = ∇𝑢𝑖𝑔

( 𝑗)
(1,...,𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

(𝑤𝑘 ). (4.112)

Making the change of variable 𝑧
𝑘
↦→ 𝑤𝑘 in the first two lines of equation (4.106) and recalling that

|𝑃ℓ
𝑟 | =

(ℓ
𝑟

)
𝑟!, we arrive at the desired conclusion. Therefore, we have shown that

{F ,G}𝔊∗
𝑁
(Γ) =

𝑁∑
ℓ=1

𝑁∑
𝑗=1

𝐶ℓ 𝑗𝑁𝑟

min(ℓ, 𝑗)∑
𝑟=𝑟0

(
𝑗

𝑟

) ∫
(R2𝑑)ℓ

𝑑𝑧
ℓ
𝑓 (ℓ) (𝑧

ℓ
)

∫
(R2𝑑)𝑘−ℓ

𝑑𝑧
ℓ+1;𝑘

⎧⎪⎪⎨⎪⎪⎩
∑

a𝑟 ∈𝑃ℓ𝑟

𝑔
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

, 𝛾 (𝑘)

⎫⎪⎪⎬⎪⎪⎭ (R2𝑑)𝑘

(𝑧
𝑘
), (4.113)

which, upon recalling that 𝑓 (ℓ) = dF [Γ] (ℓ) and 𝑔 ( 𝑗) = dG [Γ] ( 𝑗) , implies that

𝑋G (Γ)
(ℓ) =

𝑁∑
𝑗=1

𝐶ℓ 𝑗𝑁𝑟

min(ℓ, 𝑗)∑
𝑟=𝑟0

(
𝑗

𝑟

) ∫
(R2𝑑)𝑘−ℓ

𝑑𝑧
ℓ+1;𝑘

⎧⎪⎪⎨⎪⎪⎩
∑

a𝑟 ∈𝑃ℓ𝑟

dG [Γ] ( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

, 𝛾 (𝑘)

⎫⎪⎪⎬⎪⎪⎭ (R2𝑑)𝑘

,

(4.114)

completing the proof of the lemma. �

4.4. Marginals

We close this section with the observation that the operation of forming an N-hierarchy of marginals from
an N-particle distribution defines a map which is a Poisson morphism. The material in this subsection
closely parallels that of [MNP+20, Section 5.3] for the quantum setting, as the underlying algebraic
structure is the same. Therefore, we shall be brief in our remarks.

Proposition 4.17 below states that there is a linear homomorphism of Lie algebras𝔊𝑁 → 𝔤𝑁 induced
by the embeddings {𝜖𝑘,𝑁 }𝑁𝑘=1. The proof carries over verbatim from [MNP+20, Proposition 5.28].

Proposition 4.17. For any 𝑁 ∈ N, the map 𝜄𝜖 : 𝔊𝑁 → 𝔤𝑁 defined by

∀𝐹 = ( 𝑓 (𝑘) )𝑁𝑘=1 ∈𝔊𝑁 , 𝜄𝜖 (𝐹) �
𝑁∑
𝑘=1

𝜖𝑘,𝑁 ( 𝑓 (𝑘) ), (4.115)

is a continuous linear homomorphism of Lie algebras.
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The dual of a Lie algebra homomorphism is automatically a Poisson morphism between the induced
Lie–Poisson structures [MR13, Proposition 10.7.2].6 Therefore, by showing that the map 𝜄𝑚𝑎𝑟 : 𝔤∗𝑁 →

𝔊∗
𝑁 defined by

∀𝛾 ∈ 𝔤∗𝑁 , 𝑘 ∈ {1, . . . , 𝑁}, 𝜄𝑚𝑎𝑟 (𝛾)
(𝑘) �

∫
(R2𝑑)𝑁−𝑘

𝑑𝑧
𝑘+1;𝑁 𝛾 (4.116)

is the dual of the map 𝜄𝜖 , it follows that 𝜄𝑚𝑎𝑟 is a Poisson morphism. The proof is completely analogous
to that of [MNP+20, Proposition 5.29], replacing the trace pairing 𝑖 Tr1,...,𝑁 (·) by the duality pairing
〈·, ·〉𝔊𝑁−𝔊∗

𝑁
; therefore, we omit the details.

Proposition 4.18. The map 𝜄𝑚𝑎𝑟 : 𝔤∗𝑁 →𝔊∗
𝑁 defined above is a morphism of Poisson vector spaces in

the sense of Definition 3.27.

5. ∞-particle geometric structure

We now turn to the geometric structure at the infinite-particle level and proving the results announced
in Section 2.3.

5.1. The Lie algebra 𝔊∞ of observable ∞-hierarchies

We recall from equation (2.33) that 𝔊∞ =
⊕∞

𝑘=1 𝔤𝑘 equipped with the locally convex direct sum
topology, and we can identify𝔊𝑁 as a subspace via inclusion. We also recall that any element 𝐹 ∈𝔊∞

belongs to𝔊𝑁 for all N sufficiently large. The goal of this subsection is to prove Theorem 2.8, asserting
that for any 𝐹, 𝐺 ∈ 𝔊∞, lim𝑁→∞ [𝐹, 𝐺]𝔊𝑁 � [𝐹, 𝐺]𝔊∞

exists and defines a Lie bracket for 𝔊∞. In
contrast to the quantum setting (see [MNP+20, Section 6.2]), the limit 𝔊∞ of the spaces 𝔊𝑁 is large
enough to contain all ∞-hierarchies of observables of interest. This is a technical advantage of the
classical setting versus the quantum setting.

Proof of Theorem 2.8. We first show the limit (2.34). Fix 𝐹 = ( 𝑓 (ℓ) )∞ℓ=1, 𝐺 = (𝑔 ( 𝑗) )∞𝑗=1 ∈ 𝔊∞ and
𝑘 ∈ N. Let 𝑀0 ∈ N be such that 𝑓 (ℓ) = 𝑔 ( 𝑗) = 0 for min(ℓ, 𝑗) > 𝑀0. Note that for 𝑘 = ℓ + 𝑗 − 1 ≥ 2𝑀0,
we must have max(ℓ, 𝑗) > 𝑀0, implying

𝑓 (ℓ) ∧𝑟 𝑔
( 𝑗) = 0, 1 ≤ 𝑟 ≤ min(ℓ, 𝑗). (5.1)

For any 𝑁 ≥ 𝑀0, 𝐹, 𝐺 can be identified as elements of 𝔊𝑁 by projection onto the first N components,
without any loss of information. For 1 ≤ 𝑘 ≤ 𝑁 , the formula (4.67) gives

[𝐹, 𝐺]
(𝑘)
𝔊𝑁

=
∑
ℓ, 𝑗≥1

ℓ+ 𝑗−1=𝑘

min(ℓ, 𝑗)∑
𝑟=𝑟0

𝐶ℓ 𝑗𝑁𝑟 𝜖ℓ+ 𝑗−𝑟 ,𝑘 (Symℓ+ 𝑗−𝑟 ( 𝑓
(ℓ) ∧𝑟 𝑔

( 𝑗) )), (5.2)

where we recall that 𝐶ℓ 𝑗𝑁𝑟 = (𝑁−ℓ)!(𝑁− 𝑗)!
(𝑁−1)!(𝑁−ℓ− 𝑗+𝑟 )! and 𝑟0 = max(1, ℓ + 𝑗 − 𝑁). Suppose 𝑁 ≥ 2𝑀0.

Then if ℓ + 𝑗 − 𝑁 > 1, we have max(ℓ, 𝑗) > 𝑀0 + 1, implying either 𝑓 (ℓ) = 0 or 𝑔 ( 𝑗) = 0, hence
Symℓ+ 𝑗−𝑟 ( 𝑓

(ℓ) ∧𝑟 𝑔
( 𝑗) ) = 0. So there is no harm in starting the summation at 𝑟 = 1 in the right-hand

side of equation (5.2). More importantly, we note that for any 𝑁 ≥ 2𝑀0 and 2𝑀0 ≤ 𝑘 ≤ 𝑁 , we have
[𝐹, 𝐺]

(𝑘)
𝔊𝑁

= 0. By Remark 4.11, we have lim𝑁→∞ 𝐶ℓ 𝑗𝑁𝑟 = 1𝑟=1. Using that there are only finitely many
terms in the right-hand side of equation (5.2) independent of N, we compute, for fixed k,

6The dual of a Lie algebra homomorphism is, in fact, a momentum map (also called moment map) and therefore is a Poisson
morphism (see [GS80, MRW84]).
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lim
𝑁→∞

[𝐹, 𝐺]
(𝑘)
𝔊𝑁

=
∑
ℓ, 𝑗≥1

ℓ+ 𝑗−1=𝑘

𝜖ℓ+ 𝑗−1,𝑘 (Symℓ+ 𝑗−1 ( 𝑓
(ℓ) ∧1 𝑔

( 𝑗) )). (5.3)

Observing that ℓ + 𝑗 − 1 = 𝑘 and therefore 𝜖ℓ+ 𝑗−1,𝑘 is the identity map 𝔤𝑘 → 𝔤𝑘 , we arrive at equation
(2.34).

Next, we turn to showing that (𝔊∞, [·, ·]𝔊∞
) is a Lie algebra in the sense of Definition 3.15. This

step, which is algebraic, consists of the verification that the bracket [·, ·]𝔊∞
satisfies properties 1-3. The

argument is essentially identical to that for the quantum case (cf. [MNP+20, proof of Proposition 2.7]),
therefore we omit the details.

Finally, we turn to the analytic matter of showing that [·, ·]𝔊∞
is boundedly hypocontinuous, which

is unique to this work. First, note that the sum defining [𝐹, 𝐺]
(𝑘)
𝔊∞

is finite: For k fixed, there are k
pairs (ℓ, 𝑗) ∈ N2 satisfying ℓ + 𝑗 − 1 = 𝑘 . Furthermore, our remarks at the beginning of the proof give
that [𝐹, 𝐺]

(𝑘)
𝔊∞

= 0 for 𝑘 > 2𝑀0. Let B ⊂ 𝔊∞ be bounded, and let Pℓ be the projection onto the ℓ-th
component of 𝔊∞. Then there exists an 𝑁 ∈ N such that Pℓ (B) = {0} for ℓ > 𝑁 and Pℓ (B) is bounded
in 𝔤ℓ for every 1 ≤ ℓ ≤ 𝑁 (see [K6¨9, (4), p. 213]). Equicontinuity of {[·, 𝐺]𝔊∞

: 𝐺 ∈ B} now follows
from the the equicontinuity of ∧1. �

5.2. The weak Lie–Poisson space𝔊∗
∞ of state ∞-hierarchies

The objective of this subsection is to prove Theorem 2.11, asserting that the Lie bracket [·, ·]𝔊∞

constructed in Theorem 2.8 induces a well-defined weak Lie–Poisson structure on 𝔊∗
∞ in the sense of

Definition 3.23, if we choose equation (2.39) as our unital subalgebra A∞ ⊂ C∞(𝔊∗
∞).

The reader will recall Remark 2.10 that any expectation in A∞ has constant Gâteaux derivative. We
record below the following observation on the structure of elements of A∞, which will be crucial to
verification of the weak Poisson properties 1–3 from Definition 3.23.

Remark 5.1. By definition, any element F ∈ A∞ takes the form

F =
∞∑

𝑚=0
𝐶𝑚

𝑛𝑚∑
𝑎=0

F𝑚1𝑎 · · ·F𝑚𝑚𝑎, (5.4)

where, for each 𝑚 ∈ N0, 𝑛𝑚 ∈ N0, F𝑚1𝑎 = 〈𝐹𝑚1𝑎, ·〉𝔊∞−𝔊∗
∞
, . . . ,F𝑚𝑚𝑎 = 〈𝐹𝑚𝑚𝑎, ·〉𝔊∞−𝔊∗

∞
for some

𝐹1𝑚𝑎, . . . , 𝐹𝑚𝑚𝑎 ∈𝔊∞ and (𝐶𝑚)
∞
𝑚=0 are real coefficients such that there exists 𝑀 ∈ N for which𝐶𝑚 = 0

if 𝑚 > 𝑀 . In words, F is a linear combination of finite products of expectations. This observation will
be quite useful in the sequel, as invocation of some form of linearity will allow us to verify certain
identities under the assumption that F is just a finite product of expectations.

We break the proof of Theorem 2.11, which entails the verification of the properties 1–3, into a series
of lemmas. We begin with the following technical lemma for the Gâteaux derivative of {·, ·}𝔊∗

∞
.

Lemma 5.2. If G1 = G1,1 · · ·G1,𝑛1 and G2 = G2,1 · · ·G2,𝑛2 are the product of 𝑛1 and 𝑛2 expectations in
A∞, respectively, then through the isomorphism 𝔊∗∗

∞ � 𝔊∞, the Gâteaux derivative d{G1,G2}𝔊∗
∞
[Γ] at

the point Γ ∈𝔊∗
∞ may be identified with

𝑛1∑
𝑖1=1

𝑛2∑
𝑖2=1

( ∏
1≤𝑞≤𝑛1
𝑞≠𝑖1

G1,𝑞 (Γ)
) ( ∏

1≤𝑞≤𝑛2
𝑞≠𝑖2

G2,𝑞 (Γ)
) [

dG1,𝑖1 [0], dG2,𝑖2 [0]
] (𝑘)
𝔊∞

∈𝔊∞. (5.5)

In particular, if G1,G2 are expectations, that is G𝑞 (Γ) =
〈
dG𝑞 [0], Γ

〉
𝔊∞−𝔊∗

∞
, then d{G1,G2}𝔊∗

∞
[Γ] may

be identified with the element

[dG1 [0], dG2 [0]]𝔊∞
∈𝔊∞. (5.6)
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Proof. Observe from the Leibniz rule for the Gâteaux derivative and the bilinearity of the wedge product
∧1 (remember that for fixed Γ, G1,𝑞 (Γ),G2,𝑞 (Γ) ∈ R),

dG1 [Γ]
(ℓ) ∧1 dG2 [Γ]

( 𝑗) =
𝑛1∑
𝑖1=1

𝑛2∑
𝑖2=1

( ∏
1≤𝑞≤𝑛1
𝑞≠𝑖1

G1,𝑞 (Γ)
) ( ∏

1≤𝑞≤𝑛2
𝑞≠𝑖2

G2,𝑞 (Γ)
) (

dG1,𝑖1 [0]
(ℓ) ∧1 dG2,𝑖2 [0]

( 𝑗)
)
.

(5.7)

Hence, using Theorem 2.8 and the linearity of the Sym𝑘 operator, we find that

[dG1 [Γ], dG2 [Γ]]
(𝑘)
𝔊∞

=
∑

1≤ℓ, 𝑗≤𝑁
min(ℓ+ 𝑗−1,𝑁 )=𝑘

Sym𝑘

(
dG1 [Γ]

(ℓ) ∧1 dG2 [Γ]
( 𝑗)

)
=

𝑛1∑
𝑖1=1

𝑛2∑
𝑖2=1

( ∏
1≤𝑞≤𝑛1
𝑞≠𝑖1

G1,𝑞 (Γ)
) ( ∏

1≤𝑞≤𝑛2
𝑞≠𝑖2

G2,𝑞 (Γ)
) ∑

1≤ℓ, 𝑗≤𝑁
min(ℓ+ 𝑗−1,𝑁 )=𝑘

Sym𝑘

(
dG1,𝑖1 [0]

(ℓ) ∧1 dG2,𝑖2 [0]
( 𝑗)

)
=

𝑛1∑
𝑖1=1

𝑛2∑
𝑖2=1

( ∏
1≤𝑞≤𝑛1
𝑞≠𝑖1

G1,𝑞 (Γ)
) ( ∏

1≤𝑞≤𝑛2
𝑞≠𝑖2

G2,𝑞 (Γ)
) [

dG1,𝑖1 [0], dG2,𝑖2 [0]
] (𝑘)
𝔊∞

, (5.8)

where the ultimate equality follows from the definition of the 𝔊∞ Lie bracket. This completes the
proof. �

Recall from the previous subsection that if 𝑀0 is the maximal nonzero component index for 𝐹, 𝐺 ∈

𝔊∞, then [𝐹, 𝐺]
(𝑘)
𝔊∞

= 0 for 𝑘 > 2𝑀0. Moreover, there are only k terms in the sum defining [𝐹, 𝐺]
(𝑘)
𝔊∞

.
Since for anyF ,G ∈ C∞(𝔊∗

∞), dF [Γ], dG [Γ] ∈𝔊∗∗
∞ � 𝔊∞, it follows that the Poisson bracket {F ,G}𝔊∗

∞

is well-defined pointwise. The next lemma shows that for F ,G ∈ A∞, the bracket {F ,G}𝔊∗
∞

in fact
belongs to A∞ and the pair (A∞, {·, ·}𝔊∗

∞
) is a Lie algebra obeying the Leibniz rule.

Lemma 5.3. The formula (2.40) defines a map A∞×A∞ → A∞ which satisfies property 1 in Definition
3.23.

Proof. We first show that for F ,G ∈ A∞, one has {F ,G}𝔊∗
∞
∈ A∞. Recalling Remark 5.1, the Leibniz

rule, bilinearity of the bracket [·, ·]𝔊∞
, and the bilinearity of the duality pairing 〈·, ·〉𝔊∞−𝔊∗

∞
allow us to

consider only the case where F = F1 · · ·F𝑛,G = G1 · · ·G𝑚 are both finite products of expectations.
Unpacking the definition of the Poisson bracket {·, ·}𝔊∗

∞
and appealing to Lemma 5.2, we find

∀Γ ∈𝔊∗
∞, {F ,G}𝔊∗

∞
(Γ)

=
𝑛∑

𝑖1=1

𝑚∑
𝑖2=1

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑚
𝑗≠𝑖2

G 𝑗 (Γ)
) 〈 [

dF𝑖1 [0], dG𝑖2 [0]
]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

. (5.9)

So, we only need to show that for each pair of indices 1 ≤ 𝑖1 ≤ 𝑛 and 1 ≤ 𝑖2 ≤ 𝑚, the functional

Γ ↦→
〈[

dF𝑖1 [0], dG𝑖2 [0]
]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

(5.10)

defines an element of A∞. But this follows from the fact that dF𝑖1 [0] and dG𝑖2 [0] are both identifiable as
elements of𝔊∞, and therefore

[
dF𝑖1 [0], dG𝑖2 [0]

]
𝔊∞

∈𝔊∞, implying equation (5.10) is the expectation
of

[
dF𝑖1 [0], dG𝑖2 [0]

]
𝔊∞

.
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Bilinearity and antisymmetry of {·, ·}𝔊∗
∞

are immediate from the bilinearity and antisymmetry of
[·, ·]𝔊∞

and the bilinearity of the duality pairing 〈·, ·〉𝔊∞−𝔊∗
∞

, so it remains to verify the Jacobi identity.
Let F ,G,H ∈ A∞. As we argued above, it suffices to consider the case where

F = F1 · · ·F𝑛, G = G1 · · ·G𝑚, H = H1 · · ·H𝑞 (5.11)

are all finite products of expectations. By multiplying by the constant functional 1, we may assume
without loss of generality that 𝑛 = 𝑚 = 𝑞. Thus, we need to show that for every Γ ∈𝔊∗

∞,

0 =
{
F , {G,H}𝔊∗

∞

}
𝔊∗

∞
(Γ) +

{
G, {H,F }𝔊∗

∞

}
𝔊∗

∞
(Γ) +

{
H, {F ,G}𝔊∗

∞

}
𝔊∗

∞
(Γ)

=
〈[

dF [Γ], d{G,H}𝔊∗
∞
[Γ]

]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

+
〈[

dG [Γ], d{H,F }𝔊∗
∞
[Γ]

]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

+
〈[

dH[Γ], d{F ,G}𝔊∗
∞
[Γ]

]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

, (5.12)

which we do by direct computation.
First, since

dF [Γ] =
𝑛∑
𝑖=1

( ∏
1≤ 𝑗≤𝑛

𝑗≠𝑖

F 𝑗 (Γ)
)
dF𝑖 [0] (5.13)

(here, we are implicitly using Remark 2.10 for F𝑖), it follows from the bilinearity of the duality pairing
that 〈[

dF [Γ], d{G,H}𝔊∗
∞
[Γ]

]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

=
𝑛∑

𝑖1=1

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) 〈 [

dF𝑖1 [0], d{G,H}𝔊∗
∞
[Γ]

]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

. (5.14)

Since the identity (5.13) also holds with F replaced by G or H in both sides, we also have by Lemma
5.2 that

{G,H}𝔊∗
∞
(Γ) =

𝑛∑
𝑖2 ,𝑖3=1

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) 〈 [

dG𝑖2 [0], dH𝑖3 [0]
]
𝔊∞

, Γ
〉
. (5.15)

For each pair 1 ≤ 𝑖2, 𝑖3 ≤ 𝑛, define the expectation EGH
𝑖2𝑖3

(Γ) �
〈[

dG𝑖2 [0], dH𝑖3 [0]
]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

.

Evidently, dEGH
𝑖2𝑖3

[Γ] =
[
dG𝑖2 [0], dH𝑖3 [0]

]
𝔊∞

. Therefore, it follows from an application of the Leibniz
rule to the right-hand side of equation (5.15), and using that the G 𝑗 ,H 𝑗 are expectations, that

∀Γ ∈𝔊∗
∞, d{G,H}𝔊∗

∞
[Γ] =

𝑛∑
𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖2

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖2 , 𝑝

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
)
EGH
𝑖2𝑖3

(Γ)dG𝑝 [0]

+

𝑛∑
𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖3

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3 , 𝑝

H 𝑗 (Γ)
)
EGH
𝑖2𝑖3

(Γ)dH𝑝 [0]

+

𝑛∑
𝑖2 ,𝑖3=1

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) [

dG𝑖2 [0], dH𝑖3 [0]
]
𝔊∞

.

(5.16)
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Substituting this identity into the right-hand side of equation (5.14) and using the bilinearity of the Lie
bracket and the duality pairing, we obtain〈[

dF [Γ], d{G,H}𝔊∗
∞
[Γ]

]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

=
𝑛∑

𝑖1 ,𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖2

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2 , 𝑝

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
)
EGH
𝑖2𝑖3

(Γ)
〈[

dF𝑖1 [0], dG𝑝 [0]
]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

+

𝑛∑
𝑖1 ,𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖3

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3 , 𝑝

H 𝑗 (Γ)
)
EGH
𝑖2𝑖3

(Γ)
〈[

dF𝑖1 [0], dH𝑝 [0]
]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

+

𝑛∑
𝑖1 ,𝑖2 ,𝑖3=1

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) 〈 [

dF𝑖1 [0],
[
dG𝑖2 [0], dH𝑖3 [0]

]
𝔊∞

]
𝔊∞

, Γ

〉
𝔊∞−𝔊∗

∞

.

(5.17)

To further compactify the notation, let us set EFG
𝑖1 𝑝

(Γ) �
〈[

dF𝑖1 [0], dG𝑝 [0]
]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

and similarly

for EFH
𝑖1 𝑝

(Γ). By the same reasoning, we also obtain〈[
dG [Γ], d{H,F }𝔊∗

∞
[Γ]

]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

=
𝑛∑

𝑖1 ,𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖3

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3 , 𝑝

H 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
)
EHF
𝑖3𝑖1

(Γ)EGH
𝑖2 𝑝

(Γ)

+

𝑛∑
𝑖1 ,𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖1

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖1 , 𝑝

F 𝑗 (Γ)
)
EHF
𝑖3𝑖1

(Γ)EGF
𝑖2 𝑝

(Γ)

+

𝑛∑
𝑖1 ,𝑖2 ,𝑖3=1

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) 〈 [

dG𝑖2 [0],
[
dH𝑖3 [0], dF𝑖1 [0]

]
𝔊∞

]
𝔊∞

, Γ

〉
𝔊∞−𝔊∗

∞

,

(5.18)

〈[
dH[Γ], d{F ,G}𝔊∗

∞
[Γ]

]
𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

=
𝑛∑

𝑖1 ,𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖1

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖1 , 𝑝

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
)
EFG
𝑖1𝑖2

(Γ)EHF
𝑖3 𝑝

(Γ)

+

𝑛∑
𝑖1 ,𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖2

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2 , 𝑝

G 𝑗 (Γ)
)
EFG
𝑖1𝑖2

(Γ)EHG
𝑖3 𝑝

(Γ)

+

𝑛∑
𝑖1 ,𝑖2 ,𝑖3=1

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) 〈 [

dH𝑖3 [0],
[
dF𝑖1 [0], dG𝑖2 [0]

]
𝔊∞

]
𝔊∞

, Γ

〉
𝔊∞−𝔊∗

∞

,

(5.19)

where EFG
𝑖1𝑖2

, EHF
𝑖3 𝑝

, EHG
𝑖3 𝑝

are defined analogously to above.
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Since the Lie bracket [·, ·]𝔊∞
satisfies the Jacobi identity, we have

0 =
[
dF𝑖1 [0],

[
dG𝑖2 [0], dH𝑖3 [0]

]
𝔊∞

]
𝔊∞

+
[
dG𝑖2 [0],

[
dH𝑖3 [0], dF𝑖1 [0]

]
𝔊∞

]
𝔊∞

+
[
dH𝑖3 [0],

[
dF𝑖1 [0], dG𝑖2 [0]

]
𝔊∞

]
𝔊∞

, (5.20)

implying

0 =
𝑛∑

𝑖1 ,𝑖2 ,𝑖3=1

(( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
)

×

〈[
dF𝑖1 [0],

[
dG𝑖2 [0], dH𝑖3 [0]

]
𝔊∞

]
𝔊∞

, Γ

〉
𝔊∞−𝔊∗

∞

+
( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) 〈 [

dG𝑖2 [0],
[
dH𝑖3 [0], dF𝑖1 [0]

]
𝔊∞

]
𝔊∞

, Γ

〉
𝔊∞−𝔊∗

∞

+
( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) 〈 [

dH𝑖3 [0],
[
dF𝑖1 [0], dG𝑖2 [0]

]
𝔊∞

]
𝔊∞

, Γ

〉
𝔊∞−𝔊∗

∞

)
.

(5.21)

Since EFG
𝑖1𝑖2

(Γ) = −EGF
𝑖2𝑖1

(Γ) by antisymmetry of the Lie bracket, it follows from swapping 𝑖1 ↔ 𝑝 that

0 =
𝑛∑

𝑖1 ,𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖1

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖1 , 𝑝

F 𝑗 (Γ)
)
EHF
𝑖3𝑖1

(Γ)EGF
𝑖2 𝑝

(Γ)

+

𝑛∑
𝑖1 ,𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖1

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖1 , 𝑝

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
)
EFG
𝑖1𝑖2

(Γ)EHF
𝑖3 𝑝

(Γ). (5.22)

Similarly, by swapping 𝑖2 ↔ 𝑝, we see that

0 =
𝑛∑

𝑖1 ,𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖2

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2 , 𝑝

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
)
EGH
𝑖2𝑖3

(Γ)EFG
𝑖1 𝑝

(Γ)

+

𝑛∑
𝑖1 ,𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖2

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖3

H 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2 , 𝑝

G 𝑗 (Γ)
)
EFG
𝑖1𝑖2

(Γ)EHG
𝑖3 𝑝

(Γ) (5.23)

and by swapping 𝑖3 ↔ 𝑝,

0 =
𝑛∑

𝑖1 ,𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖3

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3 , 𝑝

H 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
)
EHF
𝑖3𝑖1

(Γ)EGH
𝑖2 𝑝

(Γ)

+

𝑛∑
𝑖1 ,𝑖2 ,𝑖3=1

∑
1≤𝑝≤𝑛
𝑝≠𝑖3

( ∏
1≤ 𝑗≤𝑛
𝑗≠𝑖1

F 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖2

G 𝑗 (Γ)
) ( ∏

1≤ 𝑗≤𝑛
𝑗≠𝑖3 , 𝑝

H 𝑗 (Γ)
)
EGH
𝑖2𝑖3

(Γ)EFH
𝑖1 𝑝

(Γ). (5.24)
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After a little bookkeeping, we realize the Jacobi identity (5.12) has been shown.
Finally, we claim that {·, ·}𝔊∗

∞
satisfies the Leibniz rule (3.8). Since d(FG) [Γ] = F (Γ)dG [Γ] +

G (Γ)dF [Γ] by the Leibniz rule for the Gâteaux derivative, we see that

{FG,H}𝔊∗
∞
(Γ) =

〈
[d(FG) [Γ], dH[Γ]]𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

= F (Γ)
〈
[dG [Γ], dH[Γ]]𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞
+ G (Γ)

〈
[dF [Γ], dH[Γ]]𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞

= F (Γ){G,H}𝔊∗
∞
(Γ) + G (Γ){F ,H}𝔊∗

∞
(Γ), (5.25)

where the penultimate equality follows by bilinearity of the Lie bracket and duality pairing and the
ultimate equality follows from the definition of the Poisson bracket. �

We next verify that A∞ satisfies the nondegeneracy property 2.

Lemma 5.4. A∞ satisfies property 2 in Definition 3.23.

Proof. Let Γ ∈ 𝔊∗
∞ and 𝑣 ∈ 𝔊∗

∞. Suppose that dF [Γ] (𝑣) = 0 for every F ∈ A∞. We will show that
𝑣 = 0.

Consider functionals of the form F 𝑓 ,𝑘0 (·) �
〈
𝐹𝑘0 , ·

〉
𝔊∞−𝔊∗

∞
, where

𝐹 (𝑘)
𝑘0
�

{
𝑓 (𝑘0) , 𝑘 = 𝑘0

0, otherwise
, (5.26)

for 𝑘0 ∈ N and 𝑓 (𝑘0) ∈ 𝔤𝑘0 . F 𝑓 ,𝑘0 is an expectation, hence in A∞. Since F 𝑓 ,𝑘0 is linear, we have
dF 𝑓 ,𝑘0 [Γ] (·) = F 𝑓 ,𝑘0 (·), so if 𝑣 = (𝑣 (𝑘) )∞𝑘=1 ∈𝔊∗

∞ is as above, we have by definition of F 𝑓 ,𝑘0 that

F 𝑓 ,𝑘0 (𝑣) =
〈
𝑓 (𝑘0) , 𝑣 (𝑘0)

〉
𝔤𝑘−𝔤∗𝑘

= 0. (5.27)

Since 𝑓 (𝑘0) ∈ 𝔤𝑘0 was arbitrary, it follows that 𝑣 (𝑘0) = 0; and since 𝑘0 ∈ N was arbitrary, it follows that
𝑣 = 0. �

We now turn to verifying property 3 concerning the Hamiltonian vector field. Unlike the N-particle
situation, we do not a priori know that 𝑋G exists for an element G ∈ A∞, let alone have an explicit
formula for 𝑋G . To show 3, we will find a candidate vector field 𝑋G , for any G ∈ C∞(𝔊∗

∞), with the
property that

∀F ∈ C∞(𝔊∗
∞), Γ ∈𝔊∗

∞, {F ,G}𝔊∗
∞
(Γ) = dF [Γ] (𝑋G (Γ)). (5.28)

Unfortunately, G ∈ C∞(𝔊∗
∞) is not enough information for us to prove that 𝑋G is C∞; however, we are

able to show by direct computation that if G ∈ A∞, then it is C∞. As previously commented, this issue
is a primary reason for the introduction of the algebra A∞.

Just as with the N-particle case, having an explicit formula for 𝑋G is advantageous (cf. [MNP+20,
Lemma 6.15] for the quantum case). Indeed, we will use such a formula to show in Section 6.3 that the
Vlasov hierarchy can be interpreted as a Hamiltonian equation of motion on the weak Poisson vector
space (𝔊∗

∞,A∞, {·, ·}𝔊∗
∞
).

Proposition 5.5. If G ∈ C∞(𝔊∗
∞), then there exists a unique vector field 𝑋G : 𝔊∗

∞ → 𝔊∗
∞ satisfying

equation (5.28), which is given as follows: for ℓ ∈ N and any Γ = (𝛾 (𝑘) )∞𝑘=1 ∈𝔊∗
∞,

𝑋G (Γ)
(ℓ) =

∞∑
𝑗=1

𝑗

∫
(R2𝑑) 𝑗−1

𝑑𝑧
ℓ+1;ℓ+ 𝑗−1

{
ℓ∑

𝛼=1
dG [Γ] ( 𝑗)

(𝛼,ℓ+1,...,ℓ+ 𝑗−1) , 𝛾
(ℓ+ 𝑗−1)

}
(R2𝑑)ℓ+ 𝑗−1

. (5.29)

If G ∈ A∞, then 𝑋G as defined in equation (5.29) belongs to C∞(𝔊∗
∞,𝔊

∗
∞).
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Proof. One can prove the proposition by repeating the argument for the analogous N-particle result
Proposition 4.15, focusing only on the case 𝑟 = 1. Instead, we show how to obtain the result as an
𝑁 → ∞ limiting consequence of Proposition 4.15.

Recall that 𝑟0 (𝑁) = max{1, ℓ + 𝑗 − 𝑁}. It is evident that 𝑟0 (𝑁)
𝑁→∞
−−−−−→ 1 uniformly over fixed finite

subsets of (ℓ, 𝑗) ∈ {1, . . . , 𝑁}2. On the other hand, from Remark 4.11 we have that 𝐶ℓ 𝑗𝑁𝑟 → 1𝑟=1 as
𝑁 → ∞. So at least formally, we expect from letting 𝑁 → ∞ in the N-particle Hamiltonian vector field
formula (4.88) that the Hamiltonian vector field associated to the functional G ∈ C∞(𝔊∗

∞) with respect
to the Poisson bracket {·, ·}𝔊∗

∞
is given by the right-hand side of equation (5.29). We then need to check

that

∀F ∈ C∞(𝔊∗
∞), Γ ∈𝔊∗

∞, dF [Γ] (𝑋G (Γ)) = {F ,G}𝔊∗
∞
(Γ). (5.30)

Fix Γ0 = (𝛾 (𝑘)
0 )∞𝑘=1 ∈ 𝔊∗

∞, and let FΓ0 ,GΓ0 be the expectations generated by dF [Γ0], dG [Γ0],
respectively. Let 𝑀0 denote the maximal component index k such that dF [Γ0]

(𝑘) , dG [Γ0]
(𝑘) are nonzero.

By definition of the𝔊∗
∞ Poisson bracket, for any Γ ∈𝔊∗

∞,

{F ,G}𝔊∗
∞
(Γ) =

〈
[dF [Γ], dG [Γ]]𝔊∞

, Γ
〉
𝔊∞−𝔊∗

∞
=

∞∑
𝑘=1

〈
[dF [Γ], dG [Γ]] (𝑘)𝔊∞

, 𝛾 (𝑘)
〉
𝔤𝑘−𝔤∗𝑘

. (5.31)

Since dF [Γ0]
(𝑘) = dG [Γ0]

(𝑘) = 0 for 𝑘 > 𝑀0, we see from equation (2.34) that [dF [Γ0], dG [Γ0]]
(𝑘)
𝔊∞

=
0 for 𝑘 > 2𝑀0. Indeed, 𝑘 = ℓ + 𝑗 − 1 > 2𝑀0 implies min(ℓ, 𝑗) > 𝑀0, therefore

Sym𝑘 (dF [Γ0]
(ℓ) ∧1 dG [Γ0]

( 𝑗) ) = 0. (5.32)

By projection onto the first N components, dF [Γ0], dG [Γ0] ∈𝔊𝑁 for any 𝑁 > 𝑀0; and by examination
of equation (4.67), we also have [dF [Γ0], dG [Γ0]]

(𝑘)
𝔊𝑁

= 0 for any 2𝑀0 < 𝑘 ≤ 𝑁 . Furthermore, FΓ0 ,GΓ0

are linear functionals on 𝔊∗
𝑁 for any 𝑁 > 𝑀0. By separate continuity of the distributional pairing and

Theorem 2.8,〈
[dF [Γ0], dG [Γ0]]

(𝑘)
𝔊∞

, 𝛾 (𝑘)
0

〉
𝔤𝑘−𝔤∗𝑘

= lim
𝑁→∞

〈
[dF [Γ0], dG [Γ0]]

(𝑘)
𝔊𝑁

, 𝛾 (𝑘)
0

〉
𝔤𝑘−𝔤∗𝑘

= lim
𝑁→∞

〈[
dFΓ0 [Γ0], dGΓ0 [Γ0]

] (𝑘)
𝔊𝑁

, 𝛾 (𝑘)
0

〉
𝔤𝑘−𝔤∗𝑘

. (5.33)

Now, introducing the notation Γ0,𝑀 to denote the projection of Γ0 onto the first M components, we have
for 𝑁 ≥ 2𝑀0 + 1,

2𝑀0+1∑
𝑘=1

〈[
dFΓ0 [Γ0], dGΓ0 [Γ0]

] (𝑘)
𝔊𝑁

, 𝛾 (𝑘)
0

〉
𝔤𝑘−𝔤∗𝑘

=
𝑁∑
𝑘=1

〈[
dFΓ0 [Γ0], dGΓ0 [Γ0]

] (𝑘)
𝔊𝑁

, 𝛾 (𝑘)
0

〉
𝔤𝑘−𝔤∗𝑘

=
{
FΓ0 ,GΓ0

}
𝔊∗
𝑁
(Γ0,𝑁 )

= dFΓ0 [Γ0] (𝑋GΓ0 ,𝑁
(Γ0,𝑁 ))

=
𝑀0∑
ℓ=1

〈
dFΓ0 [Γ0]

(ℓ) , 𝑋GΓ0 ,𝑁
(Γ0,𝑁 ) (ℓ)

〉
𝔤ℓ−𝔤∗ℓ

, (5.34)

where the penultimate line follows from Proposition 4.15 and using that dFΓ0 [Γ0]
(ℓ) = 0 for ℓ > 𝑀0.

Here, the subscript N in 𝑋GΓ0 ,𝑁
signifies that the Hamiltonian vector field is computed with respect
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to the bracket {·, ·}𝔊∗
𝑁

. By definition, dFΓ0 [Γ0] = dF [Γ0] and from Proposition 4.15 again, using that
dG [Γ0]

( 𝑗) = 0 for 𝑗 > 𝑀0, we see that for 1 ≤ ℓ ≤ 𝑀0,

𝑋GΓ0 ,𝑁
(Γ0,𝑁 ) (ℓ)

=
𝑀0∑
𝑗=1

min{ℓ, 𝑗 }∑
𝑟=1

𝐶ℓ 𝑗𝑁𝑟

(
𝑗

𝑟

) ∫
(R2𝑑) 𝑗−1

𝑑𝑧
ℓ+1;ℓ+ 𝑗−1

⎧⎪⎪⎨⎪⎪⎩
∑

a𝑟 ∈𝑃ℓ𝑟

dG [Γ0]
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

, 𝛾 (ℓ+ 𝑗−1)
⎫⎪⎪⎬⎪⎪⎭ (R2𝑑)ℓ+ 𝑗−1

,

(5.35)

provided N is sufficiently large. By our previous remarks, the preceding right-hand side converges in 𝔤∗ℓ
as 𝑁 → ∞ to 𝑋G (Γ0)

(ℓ) as defined by equation (5.29) uniformly over finite subsets of indices ℓ. After
a little bookkeeping, we realize we have shown that

{F ,G}𝔊∗
∞
(Γ0) =

𝑀0∑
ℓ=1

lim
𝑁→∞

〈
dF [Γ0]

(ℓ) , 𝑋GΓ0 ,𝑁
(Γ0,𝑁 ) (ℓ)

〉
𝔤ℓ−𝔤∗ℓ

=
𝑀0∑
ℓ=1

〈
dF [Γ0]

(ℓ) , 𝑋G (Γ0)
(ℓ)

〉
𝔤ℓ−𝔤∗ℓ

, (5.36)

where to obtain the penultimate line we use the separate continuity of the distributional pairing.
Comparing this expression with equation (5.30), we are done.

We now verify that 𝑋G ∈ C∞(𝔊∗
∞,𝔊

∗
∞), assuming G ∈ A∞. By the observation (5.4) for the structure

of elements in A∞ and using linearity, we can reduce to the case where G = G1 · · ·G𝑛 is a finite product
of expectations.

By the Leibniz rule for the operator d,

∀Γ ∈𝔊∗
∞, dG [Γ] =

𝑛∑
𝑖=1

( ∏
1≤𝑞≤𝑛
𝑞≠𝑖

G𝑞 (Γ)
)
dG𝑖 [0] . (5.37)

Since the G𝑞 (Γ) are just real numbers, we can use the bilinearity of the Poisson bracket {·, ·}(R2𝑑)ℓ+ 𝑗−1

to write {
ℓ∑

𝛼=1
dG [Γ] ( 𝑗)

(𝛼,ℓ+1,...,ℓ+ 𝑗−𝑟 )
, 𝛾 (ℓ+ 𝑗−1)

}
(R2𝑑)ℓ+ 𝑗−1

=
𝑁∑
𝑖=1

( ∏
1≤𝑞≤𝑛
𝑞≠𝑖

G𝑞 (Γ)
){ ℓ∑

𝛼=1
dG𝑖 [0] ( 𝑗)(𝛼,ℓ+1,...,ℓ+ 𝑗−𝑟 )

, 𝛾 (ℓ+ 𝑗−1)

}
(R2𝑑)ℓ+ 𝑗−1

. (5.38)

Being a linear combination of products of derivatives, the expression corresponding to the Poisson
bracket in the second line defines a map in the variable 𝛾 (ℓ+ 𝑗−1) which belongs to C∞(𝔤∗ℓ+ 𝑗−1, 𝔤

∗
ℓ+ 𝑗−1).

Since the map 𝔊∗
∞ → 𝔤∗ℓ+ 𝑗−1, Γ ↦→ 𝛾 (ℓ+ 𝑗−1) is also C∞ and G1, . . . ,G𝑛 are C∞ real-valued maps, it

follows that the second line of equation (5.38) is in C∞(𝔊∗
∞, 𝔤

∗
ℓ+ 𝑗−1). Now,∫

(R2𝑑) 𝑗−1
𝑑𝑧

ℓ+1;ℓ+ 𝑗−1

{
ℓ∑

𝛼=1
dG [Γ] ( 𝑗)

(𝛼,ℓ+1,...,ℓ+ 𝑗−𝑟 )
, 𝛾 (ℓ+ 𝑗−1)

}
(R2𝑑)ℓ+ 𝑗−1

=
𝑛∑
𝑖=1

( ∏
1≤𝑞≤𝑛
𝑞≠𝑖

G𝑞 (Γ)
) ∫

(R2𝑑) 𝑗−1
𝑑𝑧

ℓ+1;ℓ+ 𝑗−1

{
ℓ∑

𝛼=1
dG𝑖 [0] ( 𝑗)(𝛼,ℓ+1,...,ℓ+ 𝑗−𝑟 )

, 𝛾 (ℓ+ 𝑗−1)

}
(R2𝑑)ℓ+ 𝑗−1

. (5.39)
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By Proposition 4.12, we see that each of the summands in the right-hand side is in C∞(𝔊∗
∞, 𝔤

∗
ℓ), hence

their sum is as well. Finally, multiplying by j and summing over 1 ≤ 𝑗 ≤ 𝑀0, where 𝑀0 is the maximum
of all k such that dG1 [0] (𝑘) , dG2 [0] (𝑘) are nonzero, we also obtain a map in C∞(𝔊∗

∞, 𝔤
∗
ℓ). Since ℓ was

arbitrary, we conclude that 𝑋G ∈ C∞(𝔊∗
∞,𝔊

∗
∞). �

5.3. The Poisson morphism 𝜄 : 𝔤∗1 →𝔊∗
∞

We close Section 5 by proving Theorem 2.14, which asserts that the trivial embedding 𝜄 : 𝔤∗1 → 𝔊∗
∞

introduced in equation (2.49) is a morphism of Poisson vector spaces in the sense of Definition 3.27.
To prove Theorem 2.14, we first need a formula for the the Gâteaux derivative of 𝜄. The proof of the

following lemma is a simple application of the product rule, which we leave for the reader to check.
Lemma 5.6. The map 𝜄 ∈ C∞(𝔤∗1,𝔊

∗
∞). Moreover, for any 𝑛 ∈ N, 𝜇, 𝜈1, . . . , 𝜈𝑛 ∈ 𝔤∗1, we have

d𝑛𝜄[𝜇] (𝑘) (𝜈1, . . . , 𝜈𝑛) =

{
0, 𝑛 > 𝑘∑

(𝑖1 ,...,𝑖𝑛) ∈𝑃
𝑘
𝑛
I(𝑖1 ,...,𝑖𝑛) , 𝑘 ≤ 𝑛,

(5.40)

where

I(𝑖1 , · · · ,𝑖𝑛) �
𝑛⊗
𝑖=1

𝜁𝑖 , with 𝜁𝑖 =

{
𝜇, 𝑖 ∉ {𝑖1, . . . , 𝑖𝑛}

𝜈𝑘 , 𝑖 = 𝑖𝑘 .
(5.41)

Proof of Theorem 2.14. Since 𝜄 is a C∞ map and composition of C∞ maps is again C∞, we have that
𝜄∗C∞(𝔊∗

∞) ⊂ C∞(𝔤∗1), implying a fortiori that 𝜄∗A∞ ⊂ C∞(𝔤∗1). To verify that 𝜄 is a morphism of Poisson
vector spaces, we need to check that

𝜄∗{·, ·}𝔊∗
∞
= {𝜄∗·, 𝜄∗·}𝔤∗1

. (5.42)

To this end, let F∞,G∞ ∈ C∞(𝔊∗
∞), and set F � F∞ ◦ 𝜄,G � G∞ ◦ 𝜄. For any 𝜇 ∈ 𝔤∗1, we compute

{F∞,G∞}𝔊∗
∞
(𝜄(𝜇)) = dF∞[𝜄(𝜇)]

(
𝑋G∞

(𝜄(𝜇))
)

=
∞∑
ℓ=1

∫
(R2𝑑)ℓ

𝑑𝑧
ℓ
dF∞[𝜄(𝜇)] (ℓ) (𝑧

ℓ
)

(
∞∑
𝑗=1

𝑗

∫
(R2𝑑) 𝑗−1

𝑑𝑧
ℓ+1;ℓ+ 𝑗−1

×

{
ℓ∑

𝛼=1
dG∞[𝜄(𝜇)]

( 𝑗)
(𝛼,ℓ+1,...,ℓ+ 𝑗−1) , 𝜇

⊗ℓ+ 𝑗−1

}
(R2𝑑)ℓ+ 𝑗−1

(𝑧
ℓ+ 𝑗−1)

)
. (5.43)

Above, we have implicitly used the Hamiltonian vector field formula (5.29) on 𝑋G∞
. Let us analyze the

inner integral, which after unpacking the Poisson bracket and using the linearity of the marginal, equals

ℓ+ 𝑗−1∑
𝛽=1

ℓ∑
𝛼=1

( ∫
(R2𝑑) 𝑗−1

𝑑𝑧
ℓ+1;ℓ+ 𝑗−1∇𝑥𝛽dG∞[𝜄(𝜇)]

( 𝑗)
(𝛼,ℓ+1,...,ℓ+ 𝑗−1) (𝑧ℓ+ 𝑗−1) · ∇𝑣𝛽 𝜇

⊗ℓ+ 𝑗−1(𝑧
ℓ+ 𝑗−1)

−

∫
(R2𝑑) 𝑗−1

𝑑𝑧
ℓ+1;ℓ+ 𝑗−1∇𝑣𝛽dG∞[𝜄(𝜇)]

( 𝑗)
(𝛼,ℓ+1,...,ℓ+ 𝑗−1) (𝑧ℓ+ 𝑗−1) · ∇𝑥𝛽 𝜇

⊗ℓ+ 𝑗−1(𝑧
ℓ+ 𝑗−1)

)
. (5.44)

Observe that for every 1 ≤ 𝛼 ≤ ℓ and 1 ≤ 𝛽 ≤ ℓ + 𝑗 − 1,∫
(R2𝑑) 𝑗−1

𝑑𝑧
ℓ+1;ℓ+ 𝑗−1∇𝑥𝛽dG∞[𝜄(𝜇)]

( 𝑗)
(𝛼,ℓ+1,...,ℓ+ 𝑗−1) (𝑧ℓ+ 𝑗−1) · ∇𝑣𝛽 𝜇

⊗ℓ+ 𝑗−1(𝑧
ℓ+ 𝑗−1)

= 𝜇⊗𝛼−1 ⊗
(
∇𝑥𝜙G, 𝑗 · ∇𝑣𝜇

)
⊗ 𝜇⊗ℓ−𝛼, (5.45)
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if 𝛽 = 𝛼 and zero otherwise, where 𝜙G, 𝑗 is the unique test function in 𝔤1 with the property that

∀𝜈 ∈ 𝔤∗1,
〈
𝜙G, 𝑗 , 𝜈

〉
𝔤1−𝔤∗1

=
〈
dG∞[𝜄(𝜇)] ( 𝑗) , 𝜈 ⊗ 𝜇⊗ 𝑗−1

〉
C∞ ( (R2𝑑) 𝑗 )−E′ ( (R2𝑑) 𝑗 )

. (5.46)

We note that since dG∞[𝜄(𝜇)] ( 𝑗) = 0 for all but finitely many j, we have 𝜙G, 𝑗 = 0 for all but finitely
many j. Similarly, we have that∫

(R2𝑑) 𝑗−1
𝑑𝑧

ℓ+1;ℓ+ 𝑗−1∇𝑣𝛽dG∞[𝜄(𝜇)]
( 𝑗)
(𝛼,ℓ+1,...,ℓ+ 𝑗−1) (𝑧ℓ+ 𝑗−1) · ∇𝑥𝛽 𝜇

⊗ℓ+ 𝑗−1(𝑧
ℓ+ 𝑗−1)

= 𝜇⊗𝛼−1 ⊗
(
∇𝑣𝜙G, 𝑗 · ∇𝑥𝜇

)
⊗ 𝜇⊗ℓ−𝛼 . (5.47)

Therefore, recalling Lemma 5.6 specialized to 𝑛 = 1,

∞∑
𝑗=1

𝑗

∫
(R2𝑑) 𝑗−1

𝑑𝑧
ℓ+1;ℓ+ 𝑗−1

{
ℓ∑

𝛼=1
dG∞[𝜄(𝜇)]

( 𝑗)
(𝛼,ℓ+1,...,ℓ+ 𝑗−1) , 𝜇

⊗ℓ+ 𝑗−1

}
(R2𝑑)ℓ+ 𝑗−1

= d𝜄[𝜇] (ℓ)���
∞∑
𝑗=1

𝑗 (∇𝑥𝜙G, 𝑗 · ∇𝑣𝜇 − ∇𝑣𝜙G, 𝑗 · ∇𝑥𝜇)
���. (5.48)

Substituting this identity into the right-hand side of equation (5.43), we arrive at

{F∞,G∞}𝔊∗
∞
(𝜄(𝜇)) =

∞∑
ℓ=1

〈
dF∞[𝜄(𝜇)] (ℓ) , d𝜄[𝜇] (ℓ)

( ∞∑
𝑗=1

𝑗 (∇𝑥𝜙G, 𝑗 · ∇𝑣𝜇 − ∇𝑣𝜙G, 𝑗 · ∇𝑥𝜇)
)〉

𝔤ℓ−𝔤∗ℓ

.

(5.49)

By the chain rule and the definition of the functional F ,

∀𝜇, 𝜈 ∈ 𝔤∗1, dF [𝜇] (𝜈) = dF∞[𝜄(𝜇)]
(
d𝜄[𝜇] (𝜈)

)
. (5.50)

Applying this identity to the right-hand side of equation (5.49) with 𝜈 =
∑∞

𝑗=1 𝑗 (∇𝑥𝜙G, 𝑗 ·∇𝑣𝜇−∇𝑣𝜙G, 𝑗 ·

∇𝑥𝜇), we obtain that

{F∞,G∞}𝔊∗
∞
(𝜄(𝜇)) = dF [𝜇] (

∞∑
𝑗=1

𝑗 (∇𝑥𝜙G, 𝑗 · ∇𝑣𝜇 − ∇𝑣𝜙G, 𝑗 · ∇𝑥𝜇))

=

〈
dF [𝜇],

∞∑
𝑗=1

𝑗 (∇𝑥𝜙G, 𝑗 · ∇𝑣𝜇 − ∇𝑣𝜙G, 𝑗 · ∇𝑥𝜇)

〉
𝔤1−𝔤∗1

=

〈
∇𝑥dF [𝜇] · ∇𝑣

∞∑
𝑗=1

𝑗𝜙G, 𝑗 − ∇𝑣dF [𝜇] · ∇𝑥

∞∑
𝑗=1

𝑗𝜙G, 𝑗 , 𝜇

〉
𝔤1−𝔤∗1

=

〈⎡⎢⎢⎢⎢⎣dF [𝜇],
∞∑
𝑗=1

𝑗𝜙G, 𝑗

⎤⎥⎥⎥⎥⎦𝔤1

, 𝜇

〉
𝔤1−𝔤∗1

, (5.51)

where the second line comes from identification of dF [𝜇] as an element of 𝔤1, the third line comes
from integration by parts, and the fourth line is by definition of the Lie bracket [·, ·]𝔤1 .

In order to conclude the proof, we need to analyze the functions 𝜙G, 𝑗 . More precisely, returning to
the definition (5.46), we see from the S 𝑗 -symmetry of dG∞[𝜄(𝜇)] ( 𝑗) that
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∀𝜈 ∈ 𝔤∗1, 𝑗
〈
𝜙G, 𝑗 , 𝜈

〉
𝔤1−𝔤∗1

=
𝑗∑

𝛼=1

〈
dG∞[𝜄(𝜇)] ( 𝑗) , 𝜇⊗𝛼−1 ⊗ 𝜈 ⊗ 𝜇⊗ 𝑗−𝛼

〉
C∞ ( (R2𝑑) 𝑗 )−E′ ( (R2𝑑) 𝑗 )

=
〈
dG∞[𝜄(𝜇)] ( 𝑗) , d𝜄[𝜇] ( 𝑗) (𝜈)

〉
𝔤 𝑗−𝔤∗𝑗

. (5.52)

Hence, 〈
∞∑
𝑗=1

𝑗𝜙G, 𝑗 , 𝜈

〉
𝔤1−𝔤∗1

=
∞∑
𝑗=1

〈
dG∞[𝜄(𝜇)] ( 𝑗) , d𝜄[𝜇] ( 𝑗) (𝜈)

〉
𝔤 𝑗−𝔤∗𝑗

= dG [𝜇] (𝜈), (5.53)

where the ultimate equality follows from the chain rule and the definition of G. Thus,
∑∞

𝑗=1 𝑗𝜙G, 𝑗 is the
unique element of 𝔤1 identifiable with the Gâteaux derivative dG [𝜇]. Returning to equation (5.51), we
have shown that

{F∞,G∞}𝔊∗
∞
(𝜄(𝜇)) =

〈
[dF [𝜇], dG [𝜇]]𝔤1 , 𝜇

〉
𝔤1−𝔤∗1

= {F ,G}𝔤∗1 (𝜇), (5.54)

where the ultimate equality is tautological. This is precisely what we needed to show, and therefore the
proof of Theorem 2.14 is complete. �

6. Hamiltonian Flows

This last section of the article is devoted to the proofs of our Hamiltonian flows results, Proposition
2.13 and Theorems 2.7 and 2.12, announced in Section 2.2. These results respectively show that the
Vlasov equation (1.1), BBGKY hierarchy (1.11) and Vlasov hierarchy (1.12) each admits a Hamiltonian
formulation. We mention again that while it has been known for some time that both the Vlasov equation
and BBGKY hierarchy are Hamiltonian, the fact that the Vlasov hierarchy is also Hamiltonian appears
to be a new observation.

6.1. Vlasov

We start with Proposition 2.13 for the Vlasov equation, which one should view as putting the formal
calculations of [ZI76, Mor80, Gib81, MW82] on firm functional-analytic footing.

Proof of Proposition 2.13. Recall the definition (2.45) of H𝑉 𝑙 . We compute the Hamiltonian vector
field of H𝑉 𝑙 with respect to the Poisson bracket {·, ·}𝔤∗1 , denoted by 𝑋H𝑉𝑙 , as follows. First, we compute
the Gâteaux derivative of H𝑉 𝑙 . Observe that for any 𝛾, 𝛿𝛾 ∈ 𝔤∗1, it follows from the linearity of the
kinetic energy and bilinearity of the potential energy that

lim
𝜖→0

H𝑉 𝑙 (𝛾 + 𝜖𝛿𝛾) −H𝑉 𝑙 (𝛾)

𝜖
= lim

𝜖→0

(
1
2
〈
|𝑣 |2, 𝛿𝛾

〉
𝔤1−𝔤∗1

+ 2〈𝑊 ∗ 𝜌, 𝛿𝜌〉𝔤1−𝔤∗1
+ 𝜖 〈𝑊 ∗ 𝛿𝜌, 𝛿𝜌〉𝔤1−𝔤∗1

)
=

1
2
〈
|𝑣 |2, 𝛿𝛾

〉
𝔤1−𝔤∗1

+ 2〈𝑊 ∗ 𝜌, 𝛿𝜌〉𝔤1−𝔤∗1
, (6.1)

where above we have introduced the notation 𝛿𝜌 �
∫
R𝑑

𝑑𝛿𝛾(·, 𝑣) for the density of 𝛿𝛾. Thus, we can
identify the Gâteaux derivative dH𝑉 𝑙 [𝛾] as the element of 𝔤1 given by

dH𝑉 𝑙 [𝛾] =
1
2
|𝑣 |2 + 2𝑊 ∗ 𝜌, (6.2)
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where the convolution 𝑊 ∗ 𝜌 is taken in the distributional sense.7 For any functional F ∈ 𝐶∞(𝔤∗1), we
have by definition of the Poisson bracket {·, ·}𝔤∗1 that

{F ,H𝑉 𝑙}𝔤∗1
(𝛾) =

〈
[dF [𝛾], dH𝑉 𝑙 [𝛾]]𝔤1 , 𝛾

〉
𝔤1−𝔤∗1

. (6.3)

To compactify the notation, let us set 𝑓 � dF [𝛾] and ℎ � dH𝑉 𝑙 [𝛾], the dependence on 𝛾 being
implicit. Note that h equals the right-hand side of equation (6.2). Unpacking the definition of the Lie
bracket [ 𝑓 , ℎ]𝔤1 , we have

{F ,H𝑉 𝑙}𝔤∗1
(𝛾) = 〈(∇𝑥 𝑓 · ∇𝑣ℎ − ∇𝑣 𝑓 · ∇𝑥ℎ), 𝛾〉𝔤1−𝔤∗1

= 〈 𝑓 ,−(∇𝑣ℎ · ∇𝑥𝛾 − ∇𝑥ℎ · ∇𝑣𝛾)〉𝔤1−𝔤∗1

= dF [𝜇] (−(∇𝑣ℎ · ∇𝑥𝛾 − ∇𝑥ℎ · ∇𝑣𝛾(), (6.4)

where the penultimate line follows from integration by parts (i.e., the definition of the distributional
derivative) together with the fact that ∇𝑥∇𝑣ℎ = ∇𝑣∇𝑥ℎ by the smoothness of h and the ultimate line
follows from the definition of f. Substituting in the right-hand side of equation (6.2) for h, we arrive at
the identity

{F ,H𝑉 𝑙}𝔤∗1
(𝛾) = dF [𝛾] (−(𝑣 · ∇𝑥𝛾 − 2(∇𝑊 ∗ 𝜌) · ∇𝑣𝛾(), (6.5)

which, by the characterizing property of the Hamiltonian vector field, implies the identity

𝑋H𝑉𝑙 (𝛾) = −(𝑣 · ∇𝑥𝛾 − 2(∇𝑥𝑊 ∗ 𝜌) · ∇𝑣𝛾. (6.6)

Thus, the Vlasov equation (1.1) is equivalently to the infinite-dimensional ODE

�𝛾 = 𝑋H𝑉𝑙 (𝛾), (6.7)

as originally claimed. �

Remark 6.1. We can use the Hamiltonian formulation to show that the empirical measure map 𝜄𝐸𝑀 :
(R2𝑑)𝑁 → 𝔤∗1 introduced in equation (2.52) sends solutions of the Newtonian system (1.6) to (weak)
solutions of the Vlasov equation. We compute

(𝜄∗𝐸𝑀H𝑉 𝑙) (𝑧𝑁 ) =
1
2

∫
(R2𝑑)

𝑑
(
𝜄𝐸𝑀 (𝑧

𝑁
)
)
(𝑧) |𝑣 |2 +

∫
(R2𝑑)2

𝑑
(
𝜄𝐸𝑀 (𝑧

𝑁
)
) ⊗2

(𝑧, 𝑧′)𝑊 (𝑥 − 𝑥 ′)

=
1

2𝑁

𝑁∑
𝑖=1

|𝑣𝑖 |
2 +

1
𝑁2

𝑁∑
𝑖, 𝑗=1

𝑊 (𝑥𝑖 − 𝑥 𝑗 )

= H𝑁𝑒𝑤 (𝑧
𝑁
). (6.8)

Since 𝜄𝐸𝑀 is a Poisson morphism by Proposition 2.15, it follows that

∀F ∈ C∞(𝔤∗1), (𝜄∗𝐸𝑀 {F ,H𝑉 𝑙}𝔤∗1
) (𝑧

𝑁
) =

{
𝜄∗𝐸𝑀F , 𝜄∗𝐸𝑀H𝑉 𝑙

}
𝑁
(𝑧

𝑁
)

=
{
𝜄∗𝐸𝑀F ,H𝑁𝑒𝑤

}
𝑁
(𝑧

𝑁
). (6.9)

Now, if 𝑧𝑡
𝑁

is a solution to equation (1.6), then

𝑑

𝑑𝑡
(𝜄∗𝐸𝑀F) (𝑧𝑡

𝑁
) =

{
𝜄∗𝐸𝑀F ,H𝑁𝑒𝑤

}
𝑁
(𝑧𝑡

𝑁
) = {F ,H𝑉 𝑙}𝔤∗1

(𝜄𝐸𝑀 (𝑧𝑡
𝑁
)). (6.10)

Since F ∈ C∞(𝔤∗1) was arbitrary, the claim follows.

7Here, we are using the well-known fact that the convolution of an element of C∞(R2𝑑) with a distribution of compact support
is again in C∞(R2𝑑) .
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6.2. BBGKY hierarchy

We next turn to Theorem 2.7 for the BBGKY hierarchy. As mentioned in Section 2.2, this result is
the classical analogue of [MNP+20, Theorem 2.3] asserting that the quantum BBGKY hierarchy is
Hamiltonian, which was not known prior to that work. Interestingly, the proof of the cited result was
inspired by the formal computations of [MMW84] for the classical BBGKY hierarchy. It will not
surprise the reader then to learn that the proof of Theorem 2.7 here is algebraically similar to that of
[MNP+20, Theorem 2.3] and the core is the calculation of the Hamiltonian vector field 𝑋H𝐵𝐵𝐺𝐾𝑌 .

Proof of Theorem 2.7. As N will be fixed throughout the proof, we drop N in our subscripts when there
is no ambiguity. We recall from Proposition 4.15 that given any G ∈ C∞(𝔊∗

𝑁 ), the Hamiltonian vector
field 𝑋G is given by formula

∀1 ≤ ℓ ≤ 𝑁, 𝑋G (Γ)
(ℓ) =

𝑁∑
𝑗=1

𝐶ℓ 𝑗𝑁𝑟

min(ℓ, 𝑗)∑
𝑟=𝑟0

(
𝑗

𝑟

) ∫
(R2𝑑)𝑘−ℓ

𝑑𝑧
ℓ+1;𝑘

×

⎧⎪⎪⎨⎪⎪⎩
∑

a𝑟 ∈𝑃ℓ𝑟

dG [Γ] ( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

, 𝛾 (𝑘)

⎫⎪⎪⎬⎪⎪⎭ (R2𝑑)𝑘

, (6.11)

where 𝐶ℓ 𝑗𝑁𝑟 = (𝑁−ℓ)!(𝑁− 𝑗)!
(𝑁−1)!(𝑁−ℓ− 𝑗+𝑟 )! , 𝑘 = min(ℓ + 𝑗 − 1, 𝑁), and 𝑟0 = max(1, ℓ + 𝑗 − 𝑁). Note that the

bracket in formula (6.11) is well defined for 𝑔 ( 𝑗) ∈ 𝔤 𝑗 and 𝛾 (𝑘) ∈ 𝔤∗𝑘 , as explained in the paragraph
after the statement of Proposition 4.15. Recall the definition (2.29) of H𝐵𝐵𝐺𝐾𝑌 . Now, note that by the
linearity of H𝐵𝐵𝐺𝐾𝑌 we may identify

dH𝐵𝐵𝐺𝐾𝑌 [Γ] = W𝐵𝐵𝐺𝐾𝑌 = (
1
2
|𝑣 |2,

(𝑁 − 1)
𝑁

𝑊 (𝑥1 − 𝑥2) +
𝑊 (0)
𝑁

, 0, . . . ,). (6.12)

Consequently, dH𝐵𝐵𝐺𝐾𝑌 [Γ] is constant in Γ and dH𝐵𝐵𝐺𝐾𝑌 [Γ] ( 𝑗) = 0 for 3 ≤ 𝑗 ≤ 𝑁 . For 𝑗 = 1, we
have

𝑟0 = max(1, ℓ + 1 − 𝑁) = 1 and 𝑘 = min(ℓ, 𝑁) = ℓ, (6.13)

implying

dH𝐵𝐵𝐺𝐾𝑌 [Γ]
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

= (W(1)
𝐵𝐵𝐺𝐾𝑌 )(𝑎) , 1 ≤ 𝑎 ≤ ℓ. (6.14)

For 𝑗 = 2, we have

𝑟0 = max(1, ℓ + 2 − 𝑁) =

{
1, ℓ ≤ 𝑁 − 1
2, ℓ = 𝑁,

and 𝑘 = min(ℓ + 1, 𝑁) =

{
ℓ + 1, ℓ ≤ 𝑁 − 1
𝑁, ℓ = 𝑁,

(6.15)

implying

dH𝐵𝐵𝐺𝐾𝑌 [Γ]
( 𝑗)
(a𝑟 ,ℓ+1,...,ℓ+ 𝑗−𝑟 )

=

{
(W(2)

𝐵𝐵𝐺𝐾𝑌 )(𝑎,ℓ+1) , 𝑟 = 1
(W(2)

𝐵𝐵𝐺𝐾𝑌 )(a2) , 𝑟 = 2.
(6.16)

So our vector field reduces to

𝑋H𝐵𝐵𝐺𝐾𝑌 (Γ)
(ℓ) = 𝐶ℓ1𝑁 1

{
ℓ∑

𝑎=1
(𝑾 (1)

𝐵𝐵𝐺𝐾𝑌 ) (𝑎) , 𝛾
(ℓ)

}
(R2𝑑)ℓ

+ 𝐶ℓ2𝑁𝑟

min(ℓ,2)∑
𝑟=𝑟0

(
2
𝑟

) ∫
(R2𝑑)𝑘−ℓ

𝑑𝑧
ℓ+1;𝑘

⎧⎪⎪⎨⎪⎪⎩
∑

a𝑟 ∈𝑃ℓ𝑟

𝑾 (2)
𝐵𝐵𝐺𝐾𝑌 (a𝑟 ,ℓ+1) , 𝛾

(𝑘)

⎫⎪⎪⎬⎪⎪⎭ (R2𝑑)𝑘

, (6.17)
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where (a𝑟 , ℓ + 1) should really be replaced by (a𝑟 ) if 𝑟 = 2 and the integration is understood as vacuous
if 𝑘 − ℓ ≤ 0. The relevant cases are when ℓ = 1, when 2 ≤ ℓ ≤ 𝑁 − 1, and when ℓ = 𝑁 .8 We proceed to
consider each of these cases individually.

1. The case ℓ = 1. The formula (6.17) further simplifies to

𝑋H𝐵𝐵𝐺𝐾𝑌 (Γ)
(1) = 𝐶11𝑁 1

{
𝑾 (1)

𝐵𝐵𝐺𝐾𝑌 , 𝛾
(1)

}
R2𝑑

+ 𝐶12𝑁 1

(
2
1

) ∫
R2𝑑

𝑑𝑧2

{
(𝑾𝐵𝐵𝐺𝐾𝑌

(2)
(1,2) , 𝛾

(2)
}
(R2𝑑)2

=

{
1
2
|𝑣1 |

2, 𝛾 (1)
}
R2𝑑

+ 2
(𝑁 − 1)

𝑁

∫
R2𝑑

𝑑𝑧2

{
𝑊 (𝑥1 − 𝑥2), 𝛾

(2)
}
(R2𝑑)2

. (6.18)

2. The case 2 ≤ ℓ ≤ 𝑁 − 1. The formula (6.17) in this case becomes

𝑋H𝐵𝐵𝐺𝐾𝑌 (Γ)
(ℓ) = 𝐶ℓ1𝑁 1

(
1
1

){ ℓ∑
𝑎=1

𝑾 (1)
𝐵𝐵𝐺𝐾𝑌 (𝑎)

, 𝛾 (ℓ)

}
(R2𝑑)ℓ

+

2∑
𝑟=1

𝐶ℓ2𝑁𝑟

(
2
𝑟

) ∫
R2𝑑

𝑑𝑧ℓ+1

⎧⎪⎪⎨⎪⎪⎩
∑

a𝑟 ∈𝑃ℓ𝑟

(𝑾 (2)
𝐵𝐵𝐺𝐾𝑌 ) (a𝑟 ,ℓ+1) , 𝛾

(ℓ+1)
⎫⎪⎪⎬⎪⎪⎭ (R2𝑑)ℓ+1

= 𝐶ℓ1𝑁 1

{
ℓ∑

𝑎=1
(𝑾 (1)

𝐵𝐵𝐺𝐾𝑌 ) (𝑎) , 𝛾
(ℓ)

}
(R2𝑑)ℓ

+ 2𝐶ℓ2𝑁 1

∫
R2𝑑

𝑑𝑧ℓ+1

{
ℓ∑

𝑎=1
(𝑾 (2)

𝐵𝐵𝐺𝐾𝑌 ) (𝑎,ℓ+1) , 𝛾
(ℓ+1)

}
(R2𝑑)ℓ+1

+ 𝐶ℓ2𝑁 2

∫
R2𝑑

𝑑𝑧ℓ+1

⎧⎪⎪⎨⎪⎪⎩
∑

a2∈𝑃
ℓ
2

(𝑾 (2)
𝐵𝐵𝐺𝐾𝑌 ) (a2)

, 𝛾 (ℓ+1)
⎫⎪⎪⎬⎪⎪⎭ (R2𝑑)ℓ+1

. (6.19)

We can calculate the constants explicitly as

𝐶ℓ1𝑁 1 =
(𝑁 − ℓ)!(𝑁 − 1)!
(𝑁 − 1)!(𝑁 − ℓ)!

= 1, (6.20)

𝐶ℓ2𝑁 1 =
(𝑁 − ℓ)!(𝑁 − 2)!

(𝑁 − 1)!(𝑁 − ℓ − 1)!
=

𝑁 − ℓ

𝑁 − 1
, (6.21)

𝐶ℓ2𝑁 2 =
(𝑁 − ℓ)!(𝑁 − 2)!
(𝑁 − 1)!(𝑁 − ℓ)!

=
1

𝑁 − 1
. (6.22)

Moreover, by definition of W(2)
𝐵𝐵𝐺𝐾𝑌 we have that

ℓ∑
𝑎=1

(𝑾 (2)
𝐵𝐵𝐺𝐾𝑌 )(𝑎,ℓ+1) =

(𝑁 − 1)
𝑁

ℓ∑
𝑎=1

𝑊 (𝑥𝑎 − 𝑥ℓ+1) +
ℓ𝑊 (0)
𝑁

, (6.23)∑
a2∈𝑃

ℓ
2

(𝑾 (2)
𝐵𝐵𝐺𝐾𝑌 )(a2) =

(𝑁 − 1)
𝑁

∑
1≤𝑖≠ 𝑗≤ℓ

𝑊 (𝑥𝑖 − 𝑥 𝑗 ) +
ℓ(ℓ − 1)

𝑁
𝑊 (0). (6.24)

8The case ℓ = 1 is singled out to take care of min(ℓ, 2) in the second sum.
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Putting all of these simplifications together and using that the Poisson bracket with a constant is
zero, we arrive at

𝑋H𝐵𝐵𝐺𝐾𝑌 (Γ)
(ℓ) =

{
ℓ∑

𝑎=1

1
2
|𝑣𝑎 |

2, 𝛾 (ℓ)

}
(R2𝑑)ℓ

+
2(𝑁 − ℓ)

𝑁

∫
R2𝑑

𝑑𝑧ℓ+1

{
ℓ∑

𝑎=1
𝑊 (𝑥𝑎 − 𝑥ℓ+1), 𝛾

(ℓ+1)

}
R2𝑑 (ℓ+1)

+
1
𝑁

∫
R2𝑑

𝑑𝑧ℓ+1

⎧⎪⎨⎪⎩
∑

1≤𝑖≠ 𝑗≤ℓ

𝑊 (𝑥𝑖 − 𝑥 𝑗 ), 𝛾
(ℓ+1)

⎫⎪⎬⎪⎭ (R2𝑑)ℓ+1

. (6.25)

One can replace the sum
∑

1≤𝑖≠ 𝑗≤ℓ 𝑊 (𝑥𝑖 − 𝑥 𝑗 ) with
∑ℓ

𝑖, 𝑗=1 𝑊 (𝑥𝑖 − 𝑥 𝑗 ) in the third term since W
is continuous at the origin and

{
𝑊 (0), 𝛾 (ℓ+1)}

(R2𝑑)ℓ+1 = 0.
3. The case ℓ = 𝑁 . In this case, equation (6.17) becomes

𝑋H𝐵𝐵𝐺𝐾𝑌 (Γ)
(𝑁 ) = 𝐶𝑁 1𝑁 1

{
𝑁∑
𝑎=1

(𝑾 (1)
𝐵𝐵𝐺𝐾𝑌 )(𝑎) , 𝛾

(𝑁 )

}
(R2𝑑)𝑁

+ 𝐶𝑁 2𝑁 2

⎧⎪⎪⎨⎪⎪⎩
∑

a2∈𝑃
𝑁
2

(𝑾 (2)
𝐵𝐵𝐺𝐾𝑌 )(a2) , 𝛾

(𝑁 )

⎫⎪⎪⎬⎪⎪⎭ (R2𝑑)𝑁

=
⎧⎪⎨⎪⎩

𝑁∑
𝑎=1

1
2
|𝑣𝑎 |

2 +
1
𝑁

𝑁∑
𝑖, 𝑗=1

𝑊 (𝑥𝑖 − 𝑥 𝑗 ), 𝛾
(𝑁 )

⎫⎪⎬⎪⎭ (R2𝑑)𝑁

, (6.26)

where to obtain the ultimate line we have used the bilinearity of the Poisson bracket to combine both
terms in the penultimate line.

Evaluating the Poisson brackets and comparing the resulting expressions with equation (1.11) (re-
member that 𝛾 (𝑁 ) by convention satisfies the Liouville equation (1.9)), we see that Γ𝑡 = (𝛾 (ℓ) ,𝑡 )𝑁ℓ=1 is a
solution to the BBGKY hierarchy if and only if �Γ𝑡 = 𝑋H𝐵𝐵𝐺𝐾𝑌 (Γ

𝑡 ). Hence, the proof is complete. �

Remark 6.2. Similar to Remark 6.1, we can use the Hamiltonian formulation to show that the N-
hierarchy of marginals of a solution to the Liouville equation (1.9) is a solution to the BBGKY hierarchy
(1.11). Indeed, since 𝜄𝑚𝑎𝑟 is a Poisson morphism by Proposition 4.18,

∀F ∈ C∞(𝔊∗
𝑁 ), 𝜄∗𝑚𝑎𝑟 {F ,H𝐵𝐵𝐺𝐾𝑌 }𝔊∗

𝑁
=

{
𝜄∗𝑚𝑎𝑟F , 𝜄∗𝑚𝑎𝑟H𝐵𝐵𝐺𝐾𝑌

}
𝔤∗𝑁

. (6.27)

By definition of 𝜄𝑚𝑎𝑟 and H𝐵𝐵𝐺𝐾𝑌 ,

∀𝛾 ∈ 𝔤∗𝑁 , (𝜄∗𝑚𝑎𝑟H𝐵𝐵𝐺𝐾𝑌 ) (𝛾) =

〈
1
2
|𝑣 |2, 𝛾 (1)

〉
𝔤1−𝔤∗1

+

〈
(𝑁 − 1)

𝑁
𝑊 (𝑥1 − 𝑥2) +

𝑊 (0)
𝑁

, 𝛾 (2)
〉
𝔤2−𝔤∗2

=

〈
Sym𝑁

(
1
2
|𝑣1 |

2 +
(𝑁 − 1)

𝑁
𝑊 (𝑥1 − 𝑥2) +

𝑊 (0)
𝑁

)
, 𝛾

〉
𝔤𝑁−𝔤∗𝑁

.

(6.28)

Given any distinct integers 1 ≤ 𝑗1, . . . , 𝑗𝑘 ≤ 𝑁 ,

|{𝜎 ∈ S𝑁 : (𝜎(1), . . . , 𝜎(𝑘)) = ( 𝑗1, . . . , 𝑗𝑘 )}| = (𝑁 − 𝑘)!. (6.29)
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Hence,

Sym𝑁

(
1
2
|𝑣1 |

2 +
(𝑁 − 1)

𝑁
𝑊 (𝑥1 − 𝑥2) +

𝑊 (0)
𝑁

)
=

1
2𝑁

𝑁∑
𝑖=1

|𝑣𝑖 |
2 +

1
𝑁2

∑
1≤𝑖≠ 𝑗≤𝑁

𝑊 (𝑥𝑖 − 𝑥 𝑗 ) +
𝑊 (0)
𝑁

= H𝑁𝑒𝑤 , (6.30)

which, upon substitution into equation (6.28), implies

𝜄∗𝑚𝑎𝑟H𝐵𝐵𝐺𝐾𝑌 (𝛾) = 〈H𝑁𝑒𝑤 , 𝛾〉𝔤𝑁−𝔤∗𝑁
= H𝐿𝑖𝑜 (𝛾). (6.31)

Combining this identity with equation (6.27) and using the fact (shown in Section 4.1) that the Liouville
equation is Hamiltonian, we see that if 𝛾𝑡 is a solution to the Liouville equation, then

∀F ∈ C∞(𝔊∗
𝑁 ),

𝑑

𝑑𝑡
F (𝜄𝑚𝑎𝑟 (𝛾

𝑡 )) =
𝑑

𝑑𝑡
(𝜄∗𝑚𝑎𝑟F) (𝛾𝑡 ) =

{
𝜄∗𝑚𝑎𝑟F ,H𝐿𝑖𝑜

}
𝔤∗𝑁

(𝛾𝑡 )

= {F ,H𝐵𝐵𝐺𝐾𝑌 }𝔊∗
𝑁
(𝜄𝑚𝑎𝑟 (𝛾

𝑡 )). (6.32)

Since F was arbitrary, we conclude that 𝑑
𝑑𝑡 𝜄𝑚𝑎𝑟 (𝛾

𝑡 ) = 𝑋H𝐵𝐵𝐺𝐾𝑌 (𝜄𝑚𝑎𝑟 (𝛾
𝑡 )), that is 𝜄𝑚𝑎𝑟 (𝛾

𝑡 ) is a
solution of the BBGKY hierarchy as claimed.

6.3. Vlasov hierarchy

We close out Section 6 with the proof of Theorem 2.12 for the Vlasov hierarchy. As commented
in Section 2.3, Theorem 2.12 is the classical analogue of [MNP+20, Theorem 2.10] demonstrating a
Hamiltonian formulation for the Gross–Pitaevskii hierarchy,9 which again was a new observation. As
for the N-particle level, the proof of Theorem 2.12 proceeds algebraically similarly to that of [MNP+20,
Theorem 2.10], and as with the proof of Theorem 2.7 carried out in the previous subsection, the main
step is the computation of the Hamiltonian vector field 𝑋H𝑉𝑙𝐻 .

Proof of Theorem 2.12. Applying the formula (5.29) of Proposition 5.5, we have the identity

𝑋H𝑉𝑙𝐻 (Γ)
(ℓ) =

∞∑
𝑗=1

𝑗

∫
(R2𝑑) 𝑗−1

𝑑𝑧
ℓ+1;ℓ+ 𝑗−1

{
ℓ∑

𝑎=1
dH𝑉 𝑙𝐻 [Γ] ( 𝑗)

(𝑎,ℓ+1,...,ℓ+ 𝑗−1) , 𝛾
(ℓ+ 𝑗−1)

}
(R2𝑑)ℓ+ 𝑗−1

, (6.33)

so we are reduced to computing the bracket in the integrand. We remind the reader of the following
notation conventions: if 𝑗 = 1, the integration is vacuous and (𝑎, ℓ + 1, . . . , ℓ + 𝑗 − 1) = 𝑎; if 𝑗 = 2, then
(𝑎, ℓ + 1, . . . , ℓ + 𝑗 − 1) = (𝑎, ℓ + 1).

Since H𝑉 𝑙𝐻 is linear, it is evident, upon recalling the definition (2.41), that dH𝑉 𝑙𝐻 [Γ] is iden-
tifiable with W𝑉 𝑙𝐻 through the pairing 〈·, ·〉𝔊∞−𝔊∗

∞
. In particular, dH𝑉 𝑙𝐻 [Γ] is constant in Γ and

dH𝑉 𝑙𝐻 [Γ] ( 𝑗) = 0 for 𝑗 ≥ 3. For 𝑗 = 1, we have that

dH𝑉 𝑙𝐻 [Γ] ( 𝑗)
(𝑎,ℓ+1,...,ℓ+ 𝑗−1) = (W(1)

𝑉 𝑙𝐻 )(𝑎) =
1
2
|𝑣𝑎 |

2, (6.34)

and for 𝑗 = 2, we have that

dH𝑉 𝑙𝐻 [Γ] ( 𝑗)
(𝑎,ℓ+1,...,ℓ+ 𝑗−1) = (W(2)

𝑉 𝑙𝐻 )(𝑎,ℓ+1) = 𝑊 (𝑥𝑎 − 𝑥ℓ+1). (6.35)

9This result is not just aesthetically pleasing: It was subsequently used in [MNP+19] to investigate the origins of the one-
dimensional cubic nonlinear Schrödinger equation as an integrable classical field theory from an integrable quantum field theory.
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Now, for each 1 ≤ 𝑎 ≤ ℓ, it follows that{
(W(1)

𝑉 𝑙𝐻 )(𝑎) , 𝛾
(ℓ)

}
(R2𝑑)ℓ

=
ℓ∑

𝛽=1

(
∇𝑥𝛽 (W

(1)
𝑉 𝑙𝐻 )(𝑎) · ∇𝑣𝛽𝛾

(ℓ) − ∇𝑣𝛽 (W
(1)
𝑉 𝑙𝐻 )(𝑎) · ∇𝑥𝛽𝛾

(ℓ)
)

= ∇𝑥𝑎 (W
(1)
𝑉 𝑙𝐻 )(𝑎) · ∇𝑣𝑎𝛾

(ℓ) − ∇𝑣𝑎 (W
(1)
𝑉 𝑙𝐻 )(𝑎) · ∇𝑥𝑎𝛾

(ℓ)

= −𝑣𝑎 · ∇𝑥𝑎𝛾
(ℓ) . (6.36)

Similarly, {
(W(2)

𝑉 𝑙𝐻 )(𝑎,ℓ+1) , 𝛾
(ℓ+1)

}
(R2𝑑)ℓ+1

=
ℓ∑

𝛽=1

(
∇𝑥𝛽 (W

(2)
𝑉 𝑙𝐻 )(𝑎,ℓ+1) · ∇𝑣𝛽𝛾

(ℓ+1)

− ∇𝑣𝛽 (W
(2)
𝑉 𝑙𝐻 )(𝑎,ℓ+1) · ∇𝑥𝛽𝛾

(ℓ+1)
)

= ∇𝑥𝑎 (W
(2)
𝑉 𝑙𝐻 )(𝑎,ℓ+1) · ∇𝑣𝑎𝛾

(ℓ+1) − ∇𝑣𝑎 (W
(2)
𝑉 𝑙𝐻 )(𝑎,ℓ+1) · ∇𝑥𝑎𝛾

(ℓ+1)

= ∇𝑊 (𝑥𝑎 − 𝑥ℓ+1) · ∇𝑣𝑎𝛾
(ℓ+1) . (6.37)

Substituting the identities (6.36), (6.37) into equation(6.33), we arrive at
∞∑
𝑗=1

𝑗

∫
(R2𝑑) 𝑗−1

𝑑𝑧
ℓ+1;ℓ+ 𝑗−1

{
ℓ∑

𝑎=1
dH𝑉 𝑙𝐻 [Γ] ( 𝑗)

(𝑎,ℓ+1,...,ℓ+ 𝑗−1) , 𝛾
(ℓ+ 𝑗−1)

}
(R2𝑑)ℓ+ 𝑗−1

=
ℓ∑

𝑎=1

(
− 𝑣𝑎 · ∇𝑥𝑎𝛾

(ℓ) + 2
∫
R2𝑑

𝑑𝑧ℓ+1∇𝑊 (𝑥𝑎 − 𝑥ℓ+1) · ∇𝑣𝑎𝛾
(ℓ+1)

)
. (6.38)

Comparing this expression to equation (1.12), we see that Γ𝑡 = (𝛾 (ℓ) ,𝑡 )∞ℓ=1 is a solution to the Vlasov
hierarchy if and only if �Γ𝑡 = 𝑋H𝑉𝑙𝐻 (Γ

𝑡 ), hence the proof of the theorem is complete. �

Remark 6.3. We end this paper by using the Hamiltonian formulation to show that the factorization
map 𝜄 : 𝔤∗1 →𝔊∗

∞, introduced in equation (2.49), maps solutions of the Vlasov equation to solutions of
the Vlasov hierarchy.

Observe that

∀𝛾 ∈ 𝔤∗1, (𝜄∗H𝑉 𝑙𝐻 ) (𝛾) =

〈
1
2
|𝑣 |2, 𝛾

〉
𝔤1−𝔤∗1

+
〈
𝑊 (𝑥1 − 𝑥2), 𝛾

⊗2〉
𝔤2−𝔤∗2

=

〈
1
2
|𝑣 |2, 𝛾

〉
𝔤1−𝔤∗1

+ 〈𝑊 ∗ 𝜌, 𝜌〉𝔤1−𝔤∗𝑞

= H𝑉 𝑙 (𝛾). (6.39)

In other words, the pullback of the Vlasov hierarchy Hamiltonian equals the Vlasov Hamiltonian, as
originally announced in Section 1.2. Since 𝜄 is a Poisson morphism by Theorem 2.14, it follows from
equation (6.39) and the Hamiltonian formulation of the Vlasov equation proven in Section 6.1 that if 𝛾𝑡

is a solution to the Vlasov equation,

∀F ∈ C∞(𝔊∗
∞),

𝑑

𝑑𝑡
F (𝜄(𝛾𝑡 )) =

𝑑

𝑑𝑡
(𝜄∗F) (𝛾𝑡 ) = {𝜄∗F ,H𝑉 𝑙}𝔤∗1

(𝛾𝑡 )

= {F ,H𝑉 𝑙𝐻 }𝔊∗
∞
(𝛾𝑡 ). (6.40)

Since F was arbitrary, we conclude that 𝑑
𝑑𝑡 𝜄(𝛾

𝑡 ) = 𝑋H𝑉𝑙𝐻 (𝜄(𝛾
𝑡 )), that is 𝜄(𝛾𝑡 ) is a solution of the

Vlasov hierarchy.
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Table 1. Notation.

Symbol Definition

𝑧, 𝑧𝑖 (𝑥, 𝑣) , (𝑥𝑖 , 𝑣𝑖)
𝑧
𝑘

(𝑧1 , . . . , 𝑧𝑘 )

𝑧
𝑚1;𝑚𝑘

(𝑧𝑚1 , . . . , 𝑧𝑚𝑘 )

𝑧
𝑖;𝑖+𝑘 (𝑧𝑖 , . . . , 𝑧𝑖+𝑘 )

𝑑𝑧
𝑘

𝑑𝑧1 · · · 𝑑𝑧𝑘
𝑑𝑧
𝑖;𝑖+𝑘 𝑑𝑧𝑖 · · · 𝑑𝑧𝑖+𝑘

N, N0 natural numbers exclusive, inclusive of 0
S𝑘 symmetric group on k elements
𝑃𝑁𝑘 set of k-tuples (𝑖1 , . . . , 𝑖𝑘 ) drawn from {1, . . . , 𝑁 }, equation (2.24)
𝒋𝑘 k-tuple ( 𝑗1 , . . . , 𝑗𝑘 )

𝑥×𝑘 k-fold Cartesian product of x with itself
𝜙⊗𝑘 k-fold tensor of 𝜙 with itself
C∞ (R𝑘 ) , E′ (R𝑘 ) smooth functions on R𝑘 and distributions on R𝑘 with compact support
〈·, ·〉 duality pairing
dF Gâteaux derivative of F , equation (3.5)
𝑋F Hamiltonian vector field associated to F , equation (3.12)
𝑓 (𝑘)
( 𝑗1 ,..., 𝑗𝑘 )

, 𝑓 (𝑘)
𝒋𝑘

N-particle extension of k-particle observable acting on 𝑗1 , . . . , 𝑗𝑘 coordinates, equation (2.23)
Sym𝑘 ( 𝑓 (𝑘) ) k-particle symmetrization operator, equation (2.36)
{·, ·}(R2𝑑 )𝑁 , {·, ·}𝑁 standard Poisson bracket on (R2𝑑)𝑁 , equation (2.5)/rescaled standard Poisson bracket, equation (2.7)
𝔤𝑘 , 𝔤∗𝑘 spaces of k-particle observables/states, equations (2.9)/(2.12)
𝔊𝑁 ,𝔊∗

𝑁 space of N-hierarchies of observables/states, equations (2.21)/(2.27)
𝔊∞ ,𝔊∗

∞ space of ∞-hierarchies of observables/states, equations (2.33)/(2.37)
[ ·, ·]𝔤𝑘 , {·, ·}𝔤∗𝑘

Lie bracket/Lie–Poisson bracket for k-particle observables/states, equations (2.11)/(2.15)
[ ·, ·]𝔊𝑁 , {·, ·}𝔊∗

𝑁
Lie bracket/Lie–Poisson bracket for N-hierarchies of obervables/states, equations (2.25),
equation (4.67)/(2.28)

[ ·, ·]𝔊∞
, {·, ·}𝔊∗

∞
Lie bracket/Lie–Poisson bracket for ∞-hierarchies of observables/states, equations (2.34)/(2.38)

A∞ Unital subalgebra of C∞ (𝔊∗
∞) generated by constants and expectations, equation (2.39)

∧𝑟 r-fold contraction, equation (4.48)
𝜖𝑘,𝑁 embedding of k-particle observable in space of N-particle observables, equation (2.22)∫
(R2𝑑 )𝑁−𝑘 𝑑𝑧𝑘+1;𝑁 k-particle marginal, equation (4.78)
H𝑁𝑒𝑤 Newton Hamiltonian functional, equation (2.7)
H𝐿𝑖𝑜 Liouville Hamiltonian functional, equation (2.16)
H𝐵𝐵𝐺𝐾𝑌 , W𝐵𝐵𝐺𝐾𝑌 BBGKY Hamiltonian functional/generator, equations (2.29)/(2.30)
H𝑉𝑙𝐻 , W𝑉𝑙𝐻 Vlasov hierarchy Hamiltonian functional/generator, equations (2.41)/(2.42)
H𝑉𝑙 Vlasov Hamiltonian functional, equations (2.45)
𝜄𝐸𝑀 empirical measure map, equation (2.52)
𝜄𝐿𝑖𝑜 Liouville map, equation (2.18)
𝜄𝜖 Lie algebra homomorphism induced by {𝜖𝑘,𝑁 }𝑁𝑘=1, (2.26)
𝜄𝑚𝑎𝑟 marginals map, equation (4.116)
𝜄 factorization map, equation (2.49)
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