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Abstract
In this note we further discuss the probabilistic scaling introduced by the authors in
(arXiv:1910.08492, 2019) and (Invent. Math. 228, 539–686, 2022). In particular we do a
case study comparing the stochastic heat equation, the nonlinear wave equation and the
nonlinear Schrödinger equation.
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1 Introduction

In recent years we have been interested in the general question of understanding and describ-
ing how randomness affects the behavior of solutions to PDEs, particularly the study of
propagation of randomness. Randomness may come into the problem in various ways but
two common ones are: from the equation such as in stochastic problems with additive or mul-
tiplicative noise; from random initial data which obeys some canonical law of distribution
(e.g. Gaussian law).
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Some1 fundamental questions are: what is the optimal regime where the solution exists
and is unique almost surely, at least locally in time; can one describe the solution in terms of
the random structure of the initial data at least for short times; if there are (formally invariant)
Gibbs measures, can we justify their invariance. In these works [21–23] and in subsequent
joint work with B. Bringmann [10] we provided some answers to these questions in the
context of nonlinear Schrödinger equations (NLS) and nonlinear wave equations (NLW).

In this paper we reprise and extend a cornerstone idea that lies behind the works above.
We consider general evolution PDEs of parabolic, hyperbolic and dispersive type, in the
probabilistic setting. We are interested in the local theory of these equations in different
regularity spaces, and in particular the threshold between probabilistic almost-sure well-
posedness and ill-posedness.

We will discuss the scaling heuristics for each type of equations that predicts a critical
regularity exponent. This is a guiding principle for the study of probabilistic local well-
posedness, and in many but not all cases this indeed matches the actual local well-posedness
and ill-posedness results. In fact, in the parabolic and deterministic settings, it is not uncom-
mon that the scaling does not match optimal local well-posedness threshold2, but the scaling
criticality still acts as a good guiding principle.

In the parabolic setting, the notion of scaling has been systematically studied in earlier
works [30, 31]. By using the theory of regularity structures [30], it has been proved that, under
suitable additional restrictions and with suitable renormalization, any nonlinear parabolic
SPDE that is above the scaling threshold must be almost-surely locally well-posed.

In the hyperbolic and dispersive settings, the situation is much more complicated. In [21,
22], the authors introduced the notion of probabilistic scaling for nonlinear Schrödinger
equations, and proved the analog result to [30], namely that any nonlinear Schrödinger
equation (of at least cubic nonlinearity) that is above the scaling threshold must be almost-
surely locally well-posed.

However, unlike parabolic equations, the behavior of dispersive equations, especially that
of resonances, is much richer and contains more possibilities. For this reason, results similar
to [22] have not been obtained for general dispersion relations.

In this note, we will describe a general framework of the heuristic (probabilistic) scaling
argument that treats the cases of parabolic, hyperbolic and dispersive equations in a unified
manner. In addition, we will describe the cases in which this scaling heuristics is known or
expected to be precise, as well as possible reasons that may cause it to deviate from the actual
threshold. Finally, we conclude by connecting this scaling heuristics to recent advancements
in wave turbulence theory.

2 The Scaling Heuristics

In this section, we describe the unified scaling argument that covers parabolic, hyperbolic
and dispersive equations. For the purpose of demonstration, we will fix the domain of

1 One may also ask about how their distribution evolve over time; at least how do the ensemble averages
evolve. Such questions arise in wave turbulence; see [11, 13, 14, 17–20] and the references therein.
2 Heuristically, one can check the following example [46]: ẋ = σ(x) ẇ. At leastwhenw is fractional Brownian
motion, there is no canonical stochastic definition of iterated integrals below the threshold γ = 1

4 (say for
σ(x) = x), where γ refers the regularity of w (which is of course also the regularity of the solution x).
However, the regime γ > 0 is in principle subcritical in the parabolic setting.
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our equation to be the d dimensional torus T
d , and consider the following three model

equations:

– The stochastic heat equation:

(∂t − �)u + Np(u) = ξ, (2.1)

where ξ is some spacetime Gaussian noise on R × T
d ;

– The semilinear wave equation:

(∂2t − �)u + Np(u) = 0, (2.2)

with initial data being a Gaussian random field on Td ;
– The semilinear Schrödinger equation:

(i∂t − �)u + Np(u) = 0, (2.3)

with initial data being a Gaussian random field on Td .

Here in (2.1)–(2.3),Np(u) is a p-th order polynomial of u without derivative (the exact form
does not matter in local theory), and the precise form of noise or initial data will be specified
in Section 2.1 below.

2.1 Choice of Noise and Initial Data

2.1.1 The Parabolic Case

We start with the heat equation (2.1). A canonical choice of the noise would be a fractional
derivative (or antiderivative) of spacetime white noise, namely

ξ(t, x) =
∑

k∈Zd

〈k〉−αeik·xξk(t), (2.4)

for some α ∈ R, where ξk = dBk/dt are derivatives of independent one-dimensional Brow-
nian motions. In terms of regularity, we know that

ξ ∈ C0
t C

α−1−(d/2)−ε
x

almost surely3. Note that the linear noise component of the solution u to (2.1) is given by

ulin :=
∫ t

0
e(s−t)�η(s) ds;

since the parabolic regularity gains two derivatives, it is easy to see that

ulin ∈ C0
t C

α+1−(d/2)−ε
x

almost surely, which is the space in which the solution u is constructed provided the initial
data u(0) hasmatching regularity (see for example [30]). Ignoring the arbitrary small constant
ε, we may call the value α + 1− (d/2) the regularity level of the solution to (2.1) with noise
(2.4).

3 Here and also in the following parts of this paper we write Cγ for the Besov space Bγ∞,∞.
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2.1.2 The Hyperbolic Case

We now turn to the wave equation (2.2), for which the randomness comes from the initial
data. We fix the initial data (u0, u1) = (u(0), ∂t u(0)) as

u0 =
∑

k∈Zd

〈k〉−α−1eik·x gk, u1 =
∑

k∈Zd

〈k〉−αeik·x g′
k, (2.5)

where gk and g′
k are i.i.d. Gaussians, for some α ∈ R. In terms of regularity, we have that

u0 ∈ Cα+1−(d/2)−ε
x , u1 ∈ Cα−(d/2)−ε

x

almost surely, so the linear component of the solution

ulin := cos(t |∇|)u0 + sin(t |∇|)
|∇| u1

satisfies that
ulin ∈ Cα+1−(d/2)−ε

x

almost surely. In fact, by the properties of the i.i.d. Gaussians, it is easy to see that ulin is
also in Hα+1−(d/2)−ε

x almost surely. Similar to above, we call the value α + 1 − (d/2) the
regularity level of the solution to (2.2) with data (2.5).

2.1.3 The Dispersive Case

The case of the Schrödinger equation (2.3) is similar to (2.2), but we only need to specify
the initial data u(0). Suppose

u(0) = u0 =
∑

k∈Zd

〈k〉−α−1eik·x gk, (2.6)

where gk are i.i.d. Gaussians, then in the same way as (2.2), we have

u0 ∈ Cα+1−(d/2)−ε
x ,

and hence the linear component of the solution

ulin := e−i t�u0

satisfies that
ulin ∈ Cα+1−(d/2)−ε

x

almost surely. Similarly as in the hyperbolic case ulin is also in Hα+1−(d/2)−ε
x almost surely.

Again we call the value α + 1 − (d/2) the regularity level of the solution to (2.3) with data
(2.6).

2.2 The Criticality Threshold

Note that the noise (2.4), aswell as the initial data (2.5) and (2.6), are essentially homogeneous
when restricted to high frequency/small physical scales; in other words, rescaling the noise
(2.4) or the initial data (2.5) or (2.6) just corresponds to restricting to frequency ∼ N for
some N 	 1.
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The Probabilistic Scaling Paradigm 1005

In general, we can view the criticality of a given equation in a given space Cs (or Hs)
in the following aspect: suppose one starts with some initial data f , which is rescaled to
frequency ∼ N 	 1 and normalized to have Cs norm ∼ 1, and computes the second order
iterations of the nonlinearity with this f . Then, the equation is subrcritical if the result of
iteration carries a negative power of N when measured in Cs norm, is critical if the result of
iteration is independent of N when measured in Cs norm, and is supercritical if the result of
iteration carries a positive power of N when measured in Cs norm. Due to the above scaling
covariant observation, it is easy to see that the above definition is equivalent to the usual
definition of scaling criticality using rescaling.

The advantage of such definition of criticality is that it is well adapted to the probabilistic
setting, since the functions involved are not rescaling of Schwartz functions, but of Fourier-
randomized Schwartz functions.

2.2.1 The Parabolic Case

Start with (2.1). Since we are interested in local theory, for simplicity we will periodize the
time, so the noise

ξ ∼
∑

(k,
)∈Zd+1

〈k〉−αei(k·x+
·t)gk,
,

where gk,
 are i.i.d. Gaussians, and hence

ulin ∼
∑

(k,
)∈Zd+1

〈k〉−α(1 + |k|2 + |
|)−1ei(k·x+
·t)gk,
.

Plugging into (2.1) and assuming (say) Np(u) = u p , we obtain that the second iteration

uiter ∼
∑

(k,
)∈Zd+1

Xk,
e
i(k·x+
·t),

where the random variables

Xk,
 := (1 + |k|2 + |
|)−1
∑

k1+···+kp=k

1+···+
p=


p∏

q=1

〈kq〉−α(1 + |kq |2 + |
q |)−1gkq ,
q .

Here, assuming all the (kq , 
q) involved are different, one may invoke the square root can-
cellation4 for sums of independent Gaussians to obtain that with high probability,

|Xk,
| � (1 + |k|2 + |
|)−1

⎛

⎜⎜⎜⎝
∑

k1+···+kp=k

1+···+
p=


p∏

q=1

〈kq〉−2α(1 + |kq |2 + |
q |)−2

⎞

⎟⎟⎟⎠

1/2

. (2.7)

Now, assume we are dealing with high-high-to-high interactions, then each |kq | ∼ |k| ∼
N , and |
q | ∼ |
| ∼ N 2, hence by the heuristic dimensional counting argument of (kq , 
q) ∈
Z
d+1 for q = 1, . . . , p in the above sum, the parabolic scaling being d + 2 when (kq , 
q) ∈

Z
d+1, the inequality (2.7) implies

|Xk,
| � N−pα−2p−2+(d+2)(p−1)/2.

4 This square root cancellation is derived from a classic large deviation property for the sum of independent
Gaussian variables, as referenced in Lemma 4.4 in [22].
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From this it is easy to see that

‖uiter‖C0
t Cs

x
� N−(p−1)α−2+(d−2)(p−1)/2,

where s = α +1− d/2 is the regularity level of the solution. We thus see that the equation is
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

subcritical, if α >
d

2
− 1 − 2

p − 1
or s >

−2

p − 1
,

critical, if α = d

2
− 1 − 2

p − 1
or s = −2

p − 1
,

supercritical, if α <
d

2
− 1 − 2

p − 1
or s <

−2

p − 1
.

In this way we get the critical threshold of (2.1) is Cs where s = −2/(p − 1), which agrees
with the standard parabolic scaling as described in Hairer’s work [30].

2.2.2 The Hyperbolic Case

In the hyperbolic case (2.2) we argue similarly, but also need to take into account the time
oscillation. For simplicity we shall replace u1 = ∂t u(0) by 0, which does not affect the
scaling argument; then the linear component

ulin =
∑

k∈Zd

cos(t |k|)〈k〉−α−1eik·x gk .

By using sin z = (eiz − e−i z/2), plugging the linear component into (2.2) and assuming
(say) Np(u) = u p , we obtain that the second iteration

uiter ∼
∑

k∈Zd

Xke
i(k·x±0|k|t),

where the random variables

Xk := 〈k〉−1
∑

k1+···+kp=k

eit�−1

�

p∏

q=1

〈kq〉−α−1gkq ,

where
� = ∓0|k| ±1 |k1| + · · · ±p |kp|.

Here, assuming all the kq involved are different, one may invoke the square root cancellation
for sums of independent Gaussians to obtain that with high probability,

|Xk | � 〈k〉−1

⎛

⎝
∑

k1+···+kp=k

〈�〉−1
p∏

q=1

〈kq〉−2α−2

⎞

⎠
1/2

. (2.8)

Now, assumingwe are dealingwith high-high-to-high interactions, then each |kq | ∼ |k| ∼ N ,
hence by omitting a loss of N ε and the lattice counting with fixed � (Lemma 3.1), except
for the case when d ∈ {1, 2} and p = 2, we have

|Xk | � N−p(α+1)+d(p−1)/2−3/2.

From this it is easy to see that

‖uiter‖C0
t Hs

x
� N−(p−1)α+(d−2)(p−1)/2−3/2,
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where s = α+1−d/2 is the regularity level of the solution. Also we hold the same bound in
C0
t C

s
x by Khintchine’s inequality (see the similar estimates in Section 7.2 of [10]). We thus

see that the equation is
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

subcritical, if α >
d

2
− 1 − 3

2(p − 1)
or s >

−3

2(p − 1)
,

critical, if α = d

2
− 1 − 3

2(p − 1)
or s = −3

2(p − 1)
,

supercritical, if α <
d

2
− 1 − 3

2(p − 1)
or s <

−3

2(p − 1)
.

In this way we get the critical threshold of (2.2) is Cs , where s = − 3
2(p−1) except for the

case when d = 1, 2 and p = 2.
In the case d = 1 and p = 2, by Lemma 3.1 we have |Xk | � N−p(α+1)+d(p−1)/2−1. And

hence it is easy to see that the critical threshold is Cs , where s = −1. In the case d = 2 and
p = 2, by Lemma 3.1 we have |Xk | � N−p(α+1)+d(p−1)/2−1. And hence it is easy to see
that the critical threshold is Cs , where s = − 5

4 .

2.2.3 The Dispersive Case

In the dispersive case (2.3), then the linear component

ulin =
∑

k∈Zd

〈k〉−α−1ei(k·x+|k|2t)gk .

Plugging into (2.3) and assuming (say) Np(u) = u±1 · · · u±p (denote that u+ := u and
u− := u), we obtain that the second iteration

uiter ∼
∑

k∈Zd

Xke
i(k·x±0|k|2t),

where the random variables

Xk :=
∑

±1k1+···±pkp=k

eit�−1

�

p∏

q=1

〈kq〉−α−1gkq ,

where
� = ∓0|k|2 ±1 |k1|2 + · · · ±p |kp|2.

Here, assuming there are no parings5 in the p-th order powerNp , one may invoke the square
root cancellation for sums of independent Gaussians to obtain that with high probability,

|Xk | �

⎛

⎝
∑

±1k1+···±pkp=k

〈�〉−1
p∏

q=1

〈kq〉−2α−2

⎞

⎠
1/2

. (2.9)

Now, assumingwe are dealingwith high-high-to-high interactions, then each |kq | ∼ |k| ∼ N .
From this it is easy to see that

‖uiter‖C0
t Hs

x
� N−(p−1)(α+1)−d/2 × (2.10)

(
#{k, kq ∈ Z

d for all q : |k| ∼ N , |kq | ∼ N , for all q, ±1k1 + · · · ±p kp = k, � is fixed}
) 1

2
,

5 ki �= k j if the corresponding signs ±i and ± j are the opposite.
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where s = α + 1 − d/2 is the regularity level of the solution. Hence by omitting a loss of
N ε and the lattice counting with fixed � (Lemma 3.2), we have

‖uiter‖C0
t Hs

x
� N−(p−1)α+(d−2)(p−1)/2−1.

Also we hold the same bound in C0
t C

s
x by Khintchine’s inequality. We thus see that the

equation is ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

subcritical, if α >
d

2
− 1 − 1

p − 1
or s >

−1

p − 1
,

critical, if α = d

2
− 1 − 1

p − 1
or s = −1

p − 1
,

supercritical, if α <
d

2
− 1 − 1

p − 1
or s <

−1

p − 1
.

In this way we get the critical threshold of (2.3) is Cs , where s = − 1
p−1 .

Remark 2.1 The estimate in (2.10) heavily relies on the square root cancellation for sums
of independent Gaussians. If we replace the Gaussians in the data (2.6) simply by 1 and
restrict the data to frequency ∼ N , then the data would be a smooth data whose Fourier
modes are supported around N . With such smooth deterministic data, we lose the square
root gain in (2.10), and by the similar calculations as above we get another critical threshold
s = d

2 − 2
p−1 of (2.2) in Hs , which coincides the usual deterministic scaling for (2.3).

Similarly in the hyperbolic case with such smooth deterministic data, we can also obtain the
usual deterministic scaling critical s for (2.2).

3 Discussions

3.1 Possible Discrepancies

We should point out that the scaling heuristics in Section 2 provide only a guiding principle
to the probabilistic well-posedness problem of the corresponding dynamics and should not
be understood that the actual threshold between a.s. local well-posedness and ill-posedness
is always given by scaling criticality. In most cases this is indeed true, including for example
general NLS equations of cubic or higher nonlinearity [22], but in some cases, especially
concerning low dimensions and/or low degree nonlinearity, discrepanciesmay occur between
the scaling prediction and well-posedness result6.

Such discrepancy is not uncommon in other settings involving the notion of scaling, in
fact it is well-known that:

– In the deterministic setting, the local well-posedness threshold for NLW equations gen-
erally does not equal that predicted by scaling criticality due to the Lorentzian symmetry;
similar phenomena happen for NLS equations involving negative regularity data.

– In the case of stochastic heat equations, the local well-posedness threshold again deviates
from the parabolic scaling prediction, if the noise involved is rougher than the spacetime
white noise (for a more comprehensive description, see [37] and the references therein).

In our case, the discrepancy ismainly caused by twomechanisms: (1) the high-high-to-low
interaction, which is the same reason for the discrepancy in the stochastic heat equations,

6 For example [36, 41] focus on such discrepancies.
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The Probabilistic Scaling Paradigm 1009

and (2) the anomalies occurring in various counting estimates depending on the specific
dispersion relation, which is related to the discrepancy in deterministic problems for NLW.
We now describe these mechanisms in more detail.

3.1.1 The Role of High-High-to-Low Interactions

As indicated in Section 2.2, the probabilistic scaling criticality is determined through heuristic
calculations of the high-high-to-high interactions, which are also taken into account when
obtaining the critical exponent for the usual deterministic scaling. As indicated in Section 3.1,
the high-high-to-low interactions may also play a role in the local theory of the random data
problem for the dispersive and wave equations in some special cases which we will discuss
below.

Following similar calculations as in Section 2.2 (see (2.7) for the heat equation, (2.8) for
the wave equation and (2.9) for the Schrödinger equation) and assuming we are dealing with
high-high-to-low interactions (each |kq | ∼ N and |k| ∼ 1) then up to an N ε loss and using
the lattice counting lemmas in Section 3.1.2, we can obtain that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

heat: ‖uiter‖C0
t Cs

x
� N−sp−(d+2)/2,

wave: ‖uiter‖C0
t Cs

x
�

{
N−sp−d/2 when Np(u) = u2,

N−sp−(d+1)/2 otherwise,

Schrödinger : ‖uiter‖C0
t Cs

x
�

{
N−sp−(d+1)/2 when Np(u) = |u|2,
N−sp−(d+2)/2 otherwise.

,

where s = α + 1 − d/2. As a result, we can see the critical threshold arising from the
high-high-to-low interactions is Cs , where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

heat: s = −d + 2

2p
,

wave: s =
{

− d
2p when Np(u) = u2,

− d+1
2p otherwise,

Schrödinger : s =
{

− d+1
2p when Np(u) = |u|2,

− d+2
2p otherwise.

Let us compare the probabilistic scaling critical threshold spr and the critical threshold
s above which we denote now by shhl for the high-high-to-low interactions in the context
of the stochastic heat equation (2.1), the semilinear wave equation (2.2) and the semilinear
Schrödinger equation (2.3). As shown in Table 1, for (2.1) we obtain spr ≥ shhl when d > 2
and p ≥ d+2

d−2 ; for (2.2) we obtain spr ≥ shhl when d > 2, p ≥ max( d+1
d−2 , 3) and when

d ≥ 5, p = 2; for (2.3) we obtain spr ≥ shhl when d ≥ 3,Np(u) = |u|2 and when p ≥ d+2
d ,

Np(u) �= |u|2.

3.1.2 The Role of Dispersion Relations and Counting Estimates

The scaling estimates in Sections 2.2 and 3.1.1 crucially rely on the following counting
estimates which are intimately related to the dispersion at hand. Although in Lemma 3.1 and
Lemma 3.2 we only state upper bounds, in most cases these are optimal. For the sake of
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1010 Y. Deng et al.

Table 1 Probabilistic scaling
criticality v.s. high-high-to-low
criticality

Np(u) spr shhl

Heat all p − 2
p−1 − d+2

2p

Wave p = 2 − 3
2
a − d

4

p ≥ 3 − 3
2(p−1) − d+1

2p

Schrödinger p = 2b −1 − d+1
4

p ≥ 3 − 1
p−1 − d+2

2p

a Note that, for d ∈ {1, 2}, the actual threshold is higher than this
value −3/2, which has to do with specific counting estimates for wave
equations; see Lemma 3.1. This same discrepancy between scaling crit-
ical and well-posedness result also happens for the deterministic wave
equation in 2D
bHere p = 2 only means the case Np(u) = |u|2. When Np(u) = u2

or u2, shhl still follows − d+2
2p = − d+2

4

brevity, we do not repeat the proofs in this note, but the reader may find these in [10, 16,
21, 22]. Note in particular the less favorable counting estimate in (3.1) when A � N , which
corresponds to high-high-to-low interactions discussed above, and the different counting
estimates (3.2) and (3.3), which has to do with the anomalous scaling for wave equation in
2D.

Lemma 3.1 (The counting lemma for wave equations) Given dyadic numbers A, N and
a ∈ Z

d satisfying |a| ∼ A, we have the following lattice point counting bounds

(1) when d ≥ 3

sup
m∈Z

#{n ∈ Z
d : |n| ∼ N , |〈a + n〉 − 〈n〉 − m| ≤ 1} � min(A, N )−1Nd . (3.1)

(2) when d ≥ 3

sup
m∈Z

#{n ∈ Z
d : |n| ∼ N , |〈a + n〉 + 〈n〉 − m| ≤ 1} � Nd−1. (3.2)

(3) when d = 2

sup
m∈Z

#{n ∈ Z
2 : |n| ∼ N , |〈a + n〉 − 〈n〉 − m| ≤ 1} � N

3
2 . (3.3)

(4) when d = 1

sup
m∈Z

#{n ∈ Z : |n| ∼ N , |〈a + n〉 − 〈n〉 − m| ≤ 1} � N . (3.4)

Lemma 3.2 (The counting lemma for Schrödinger equations) Given dyadic numbers N and
a ∈ Z

d , we have the following lattice point counting bounds

(1)
sup
m∈Z

#{n ∈ Z
d : |n| ∼ N ,

∣∣|a + n|2 − |n|2 − m
∣∣ ≤ 1} � Nd−1.

(2)
sup
m∈Z

#{n ∈ Z
d : |n| ∼ N ,

∣∣|a + n|2 + |n|2 − m
∣∣ ≤ 1} � Nd−2+ε.

123



The Probabilistic Scaling Paradigm 1011

3.2 The Comparison with Existing Results and with Gibbs Measures

The Gibbs measure associated to the stochastic heat equation with space-time white noise
(2.1), the nonlinear wave equation (2.2) and the nonlinear Schrödinger equation (2.3) is
known to exist for d = 1, 2 and for all power nonlinearity Np(u) with odd p ≥ 3 (see
[7, 40] for details). When d = 3, the Gibbs measure is also known to exist but only when
p = 3; this is so-called �4

3 measure (see [4, 5, 26] and the references therein for details).
However, one has the marginal triviality of the �4

d -measure for d ≥ 4 (see the works of
Aizenman [1], Fröhlich [25], and Aizenman–Duminil–Copin [2]). Loosely speaking, this
implies that the �4

d -measure in dimension d ≥ 4 essentially yields a Gaussian measure, for
any renormalization of the potential energy term giving rise to a well defined measure.

To rigorously justify the invariance of theGibbsmeasures under the corresponding dynam-
ics, we need to first fully understand the a.s. local wellposedness of (2.1), (2.2) and (2.3) with
Gaussian data (α = 0) (2.4), (2.5) and (2.6) respectively. The Gibbs measure is supported in
HsG−, where sG = 1 − d

2 .
An interesting question arises in the context of dispersive andwave equations. Let us focus

on the NLS. In 1996, Bourgain proved in a seminal paper [8] the a.s. global wellposedness
and the invariance of the Gibbs measure under the dynamics of the 2D cubic NLS. But since
the measure is known to exist in 2D for odd p ≥ 5 and in 3D for p = 3, it is natural to ask
about the a.s. global wellposedness and the invariance of the Gibbs measure in these cases.
See also [7, 34] for more works about the invariance of Gibbs measures under nonlinear
Schödinger equations. In our paper [21], we indeed proved these facts for d = 2 and odd
p ≥ 5. The interesting question is why is it that the random averaging operator method
introduced in [21] does not suffice when d = 3 and p = 3. Note that the deterministic

scaling scr = d
2 − 2

p−1 when d = 2 and p = 5 is H
1
2 (Td) same as when d = 3 and p = 3.

What tells these two cases apart is precisely the probabilistic scaling spr . When d = 2 and
p = 5 the probabilistic scaling spr = − 1

4 < 0− = sG−, so the the a.s. local wellposedness
problem corresponding to the Gibbs measure is probabilistic subcritical. But when d = 3
and p = 3 the probabilistic scaling spr = − 1

2 = sG , so the the corresponding a.s. local
wellposedness problem is probabilistic critical. The probabilistic scaling is thus the correct
lens through which we should view the probabilistic wellposedness problems.

In the case of the cubic nonlinear wave equation in dimension three (the hyperbolic �4
3

model), the statistiscal ensemble of its associatedGibbsmeasure is probabilistical subcritical.
In [10] in joint work with B. Bringmann we prove the invariance of the Gibbs measure under
the dynamics of the three-dimensional cubic wave equation (see [9, 24, 29, 42, 43, 48] for
more about the hyperbolic�p+1 models). This result is the hyperbolic counterpart to seminal
works on the parabolic�4

3 model by Hairer [30] and Hairer–Matetski [32]. See [3, 12, 15, 27,
28, 33, 37–39, 44] and the references therein for more works on the parabolic �p+1 models.

To end this section, Table 2 shows the optimal number of derivatives β that the initial data
can be rougher than the Gaussian data (α = 0) corresponding to the Gibbs measure, when
analyzing the high-high into high (probabilistical scaling) interactions. In contrast in Table 3
we lay out the optimal number of derivatives β that arises when analyzing the high-high into
low interactions.

3.3 Long Time Solutions and Connection toWave Turbulence Theory

The same scaling heuristics in Section 2 can also be applied to more general context beyond
local well-posedness. For example, fix a dyadic scale N , and assume that the initial data is
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Table 2 β is the number of the derivatives that the initial data can be rougher than the Gaussian data α = 0
corresponding to the Gibbs measure concerning the high-high into high (probabilistical scaling) interaction

2D Quad. 2D Cubic 3D Quad. 3D Cubic 4D Quad. 4D Cubic

Heat β = 2 β = 1 β = 3
2 β = 1

2 β = 1 β = 0

Wave β = 5
4 β = 3

4 β = 1 β = 1
4 β = 1

2 β = − 1
4

Schrödinger β = 1 β = 1
2 β = 1

2 β = 0 β = 0 β = − 1
2

supported at scale N as in Section 2.2. Suppose instead of local well-posedness (i.e. existence
up to time 1) we are interested in existence up to time scale T ∼ Nβ for some β, where
β > 0 corresponds to long-time existence result as N → ∞, and β < 0 corresponds to
short-time existence result as N → ∞. Then, we may consider the following questions:

– Suppose β is fixed, what is the optimal decay rate of the initial data, in terms of the
exponent α in Sections 2.2.1–2.2.3, such that solution to the given equation exists with
high probability up to time T = Nβ?

– Conversely, given the decay rate α, what is the best time T = Nβ up to which a solution
exists with high probability?

In fact, the above questions are exactly those encountered in the mathematical theory of
wave turbulence. The key prediction of the wave turbulence theory, starting from random
initial data (or stochastically forced) problems, is the so-called wave kinetic equation, which
not only claims the existence of solutions, but also calculates the effective dynamics of
statistical quantities of the solution. This effective dynamics occurs at a particular time scale
Tkin, called the kinetic or Van Hove time scale.

In fact, this notion of Tkin is precisely the time scale predicted by the heuristic calculations
in Sections 2.2.1–2.2.3: given the decay of initial data quantified by the exponent α, this
Tkin = Nβ is exactly the value such that the (Cs or) Hs norms of uiter and ulin are comparable
at time T . In particular, the probabilistically critical, subcritical and supercritical problems
in the sense of Section 2, precisely correspond7 to those problems where Tkin = 1, Tkin 	 1
and Tkin � 1.

In the paper [22], as a consequence of the sharp subcritical a.s. local wellposedness of
(2.3) in Hs(Td) with s > spr , we also obtained the long time existence8 of solutions for
well prepared smooth random data—such as that arising in the derivation of the wave kinetic
equation as we explained above up to the time T = N (p−1)(s−spr )−. In the case of general
odd p, one can show that the kinetic time scale Tkin referred above is N 2(p−1)(s−spr )+2. After
a suitable rescaling, the time T obtained in [22] reaches N−εTkin when s − spr = ε/(p− 1),
for all p ≥ 3 odd.

The physical theory of wave turbulence started in the 1920s [45] and had developed into
a substantial field of research with a wide range of scientific and practical applications;
the rigorous mathematical theory started much later around the 2000s, and has become
particularly active in recent years, see [13, 14, 17, 18] and references therein. It has been
a major open problem in wave turbulence theory to derive the wave kinetic equation up to
the time scale Tkin; recently this has been accomplished by the first author with Z. Hani in

7 In wave turbulence theory it is customary to perform another reduction so the space scale becomes N and
time scale becomes N2; in this setting the probabilistically critical problem would correspond to Tkin = N2.
8 Thus, in particular, proving that with high probability, there is no energy cascade between Fourier modes
(i.e. |̂u(t, k)|2 ≈ |̂u(0, k)|2 with negligible error for large N ).
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Table 3 β is the number of the derivatives that the initial data can be rougher than the Gaussian data (α = 0)
corresponding to the Gibbs measure concerning the high-high into low interaction

2D Quad. 2D Cubic 3D Quad. 3D Cubic 4D Quad. 4D Cubic

Heat β = 1 β = 2
3 β = 3

4 β = 1
3 β = 1

2 β = 0

Wave β = 1
2 β = 1

2 β = 1
4 β = 1

6 β = 0 β = − 1
6

Schrödinger β = 3
4 β = 2

3 β = 1
2 β = 1

3 β = 1
4 β = 0

the work [18] for the cubic NLS, and the methods used in [18] are closely related to those
employed in [21, 22]. Note that [18] covers the probabilistically critical case Tkin = 1, so it in
fact solves a critical problem, which may shed some light on the Gibbs measure invariance
problem described in Section 3.2 above. Though, this latter problem is still much harder, due
to the many potential logarithmic divergences.

3.4 Other Geometries

In the context of expanding to more general geometries, includingTd , we encounter different
scenarios. In the case of compact manifolds, the canonical randomization would be based on
the spectral expansion of the Laplacian. Here, the probabilistic scaling depends on the global
geometry of the underlying manifold. This is because of the fact that the randomized data is
not localized and has the same amplitude at each point within the domain. In comparison, the
deterministic scaling threshold remains independent of the geometry, because it corresponds
to the data zoomed out at a point, which is localized. On the other hand, although theGaussian
measure can be defined canonically on manifolds by expanding the eigenfunctions of the
Laplacian and this concept itself does not depend too much on the geometry, when we
treat nonlinear problems, the (probabilistic) analysis in this case will depend on multilinear
integrals involving eigenfunctions which depend on the underlying geometry.

In the case of non-compact manifolds, for instanceRd , the canonical randomization based
on Laplacian eigenfunctions (i.e., eiξ ·x ) leads to initial data with infinite L2 mass, which is
not feasible 9 for the Schrödinger equation (2.3). There is an alternative “Wiener random-
ization” approach that involves sectioning the Fourier space into unit boxes and performing
randomization within each box (refer to, for example, [6, 35, 47]). This randomization gen-
erates localized initial data, which is not conserved by the linear flow. In the R

d scenario,
this results in a critical threshold sp = − 3

2(p−1) that is lower than that of Td .
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