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Invariant Gibbs measures and global strong
solutions for nonlinear Schrödinger

equations in dimension two

By Yu Deng, Andrea R. Nahmod, and Haitian Yue

Dedicated to the memory of Professor Jean Bourgain

Abstract

We consider the defocusing nonlinear Schrödinger equation on T2 with

Wick ordered power nonlinearity, and prove almost sure global well-posed-

ness with respect to the associated Gibbs measure. The heart of the matter

is the uniqueness of the solution as limit of solutions to canonically trun-

cated systems, and the invariance of the Gibbs measure under the global

dynamics follows as a consequence. The proof relies on the novel idea of

random averaging operators.

1. Introduction

In this paper we study the (defocusing) Wick ordered nonlinear Schrö-

dinger equation on the torus T2 = (R/2πZ)2,

(1.1)

{
(i∂t + ∆)u = W 2r+1(u),

u(0) = uin,

where r is a given positive integer, and W 2r+1 is the Wick ordered power

nonlinearity of degree 2r + 1, which will be defined below. We prove that,

almost surely with respect to the associated Gibbs measure, equation (1.1) has
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a global strong solution, which is the unique limit of solutions to the canonical

finite dimensional truncations. This solution map keeps the Gibbs measure

invariant.

For r = 1 (cubic nonlinearity), this was proved by Bourgain [11]; the re-

sults for r ≥ 2 are new. We remark that in [69], Oh and Thomann constructed

almost sure global weak solutions to (1.1) with respect to the Gibbs measure,

such that at any time the law of these random solutions is again given by

the Gibbs measure. The main point of the current paper is the almost sure

uniqueness of the solution with respect to the Gibbs measure.

1.1. Setup and the main theorem. In this section we setup the problem

and state our main theorem. For a review of the background and previous

results, see Section 1.2.

1.1.1. Wick ordering and Gibbs measure. We will fix a probability space

(Ω,B,P), and a set of independent complex Gaussian random variables {gk}k∈Z2

defined on Ω that are normalized, i.e., Egk = 0 and E|gk|2 = 1, such that the

law of gk is rotationally symmetric.

Let V = S ′(T2) be the space of distributions on T2. We define the V-valued

random variable

(1.2) f = f(ω) : ω 7→
∑
k∈Z2

gk(ω)

〈k〉
eik·x, ω ∈ Ω.

Let dρ be the Wiener measure on V, defined for Borel sets E ⊂ V by

(1.3) ρ(E) = P(f−1(E)),

so dρ is the law of the random variable f . This measure dρ is a countably

additive Gaussian measure supported in
⋂
ε>0H

−ε(T2), which we henceforth

denote by H0−(T2) (similarly Hs−(T2) =
⋂
ε>0H

s−ε(T2)), but not in L2(T2)

(see, e.g., Bogachev [9]). Define the spectral truncation ΠN by

(1.4) FxΠNu(k) := 1〈k〉≤N · Fxu(k),

where Fx is the space Fourier transform, 〈k〉 :=
√
|k|2 + 1 and 1P denotes the

indicator function of a set or property P , and define the expectation of the

truncated mass,

(1.5) σN :=
1

(2π)2
E‖ΠNf(ω)‖2L2 =

∑
〈k〉≤N

1

〈k〉2
∼ logN.
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For each N and each p ≥ 0, define the Wick ordered powers,

(1.6)

W 2p
N (u) =

p∑
j=0

(−1)p−j
Ç
p

j

å
σp−jN p!

j!
|u|2j ,

W 2p+1
N (u) =

p∑
j=0

(−1)p−j
Ç
p+ 1

p− j

å
σp−jN p!

j!
|u|2ju,

and the canonical finite dimensional truncations for (1.1),

(1.7)

{
(i∂t + ∆)uN = ΠNW

2r+1
N (uN ),

uN (0) = ΠNuin.

The following proposition ensures the convergence of the right-hand side of

(1.7) as N →∞ and provides the definition of W 2r+1(u) in (1.1).

Proposition 1.1. Let n be a nonnegative integer. Then almost surely in

u with respect to the Wiener measure dρ, the limit

lim
N→∞

Wn
N (ΠNu) = lim

N→∞
ΠNW

n
N (ΠNu)

exists in H0−(T2). We will denote this limit by Wn(u).

For each N , we also define the truncated potential energy

(1.8) VN [u] :=
1

r + 1

1

(2π)2

∫
T2

W 2r+2
N (ΠNu) dx.

By Proposition 1.1, the limit quantity

(1.9) V [u] = lim
N→∞

VN [u] =
1

r + 1

1

(2π)2

∫
T2

W 2r+2(u) dx

is defined dρ-almost surely in u. We can verify that (1.7) is a finite dimensional

Hamiltonian system with Hamiltonian

(1.10) HN [u] :=
1

(2π)2

∫
T2

|∇u|2 dx+ VN [u].

This HN [u], as well as the mass M[u] := 1
(2π)2

∫
T2 |u|2 dx, is conserved under

the flow (1.7).

Proposition 1.2. Define the measure dµ by

(1.11) dµ = Z−1e−V [u] dρ, Z :=

∫
V
e−V [u] dρ(u).

Then dµ is mutually absolutely continuous with dρ, and the Radon-Nikodym

derivative Z−1e−V [u] belongs to Lq(dρ) for any 1 ≤ q < ∞. We call this dµ

the Gibbs measure for (1.1).
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Propositions 1.1 and 1.2 stem from seminal works of Nelson [66], [67] and

of Glimm-Jaffe [36] in the context of quantum field theory (see also Simon [73]

and Da Prato-Tubaro [25]). As stated, a proof of these propositions can be

found in [69].

1.1.2. The main theorem. We can now state our main theorem.

Theorem 1.3. There exists a Borel set Σ ⊂ V with µ(V\Σ) = 0, such

that W 2r+1(u) ∈ H0−(T2) is well defined for u ∈ Σ. Furthermore,

(1) For each uin ∈ Σ and each t ∈ R, the solution uN (t) to (1.7) converges to

a unique limit

(1.12) lim
N→∞

uN (t) = u(t)

in H0−(T2), and u(t) ∈ Σ for each t ∈ R. This u(t) solves (1.1) in the

distributional sense.

(2) The limit u(t) in (1.12) defines, for each t ∈ R, a map from Σ to itself :

u(t) =: Φtuin. These maps then satisfy the usual group properties and keep

the Gibbs measure dµ invariant ; namely,

(1.13) µ(E) = µ(Φt(E))

for any Borel set E ⊂ Σ.

Remark 1.4. In proving Theorem 1.3, we will replace H0−(T2) by H−ε(T2)

where 0 < ε � 1, and throughout the proof we will fix this ε. (We then take

a countable intersection in ε.)

Remark 1.5. The Wick ordering (1.6) is needed in order to have a mean-

ingful solution theory, due to the infinite mass in the support H0−(T2) of the

Gibbs measure dµ; see, e.g., [45].

Remark 1.6. (1) Since the Gibbs measure dµ is mutually absolutely con-

tinuous with the Gaussian measure dρ, part (1) of Theorem 1.3 can also be

viewed as an almost sure global well-posedness result with random initial data

uin = f(ω) as in (1.2).

(2) The truncation frequency N in (1.7) can be any positive number. For

simplicity, in the proof below we will assume that N ∈ 2Z. The general case

follows from placing N between N ′/2 and N ′, where N ′ ∈ 2Z, and analyzing

the difference uN ′ − uN in the same way as uN ′ − uN ′/2.

(3) The solution u(t) defined in Theorem 1.3 is unique in the following

sense. Suppose we replace the truncation in (1.7) by any other canonical

truncation; say we replace ΠN in (1.4) by the multiplier with symbol k 7→
ϕ(〈k〉/N) in both (1.5) and the second line of (1.7), where ϕ(z) is either 1|z|≤1

or a smooth function supported in |z| ≤ 1 and ϕ(0) = 1. We may also keep the
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ΠN in the first line of (1.7) unchanged, or replaced it by 1. Then in any case

Theorem 1.3 remains true; moreover, the set Σ and the limit u(t) obtained do

not depend on ϕ. The proof is basically the same, with only minor adjustments

in a few places. We will not pursue these matters here.

Remark 1.7. (1) Theorem 1.3 is part of the program of constructing in-

variant Gibbs measures and studying their dynamics for the (renormalized)

defocusing nonlinear Schrödinger equation (1.1); see Section 1.2.1 below. With

Bourgain [10] completing all cases with d = 1 and Theorem 1.3 completing all

cases with d = 2 after Bourgain [11], the remaining cases that are expected

to be solvable1 are the invariance of Gibbs measure for (d, r) = (3, 1), and

invariance of white noise for (d, r) = (1, 1). We expect both to be strictly

harder than Theorem 1.3 as they are critical in the probabilistic scaling ; see

Section 1.3.1.

(2) The corresponding problem of constructing invariant Gibbs measures

for nonlinear wave equations is in general much easier than the Schrödinger

problem, due to the derivative gain in Duhamel’s formula. Indeed, this has

been completely solved, due to the results of Friedlander [33] (see Zhidkov [84]

under more restrictive assumptions on the nonlinearity) in dimension d = 1,

Bourgain [13] in dimension d = 2 (see also Oh-Thomann [70]), and the recent

result of the authors with Bringmann [16] for (d, r) = (3, 1) proved after the

current paper was submitted.

1.2. A review of previous results. We start by reviewing previous results

and methods on PDEs in the probabilistic setting. As the literature is now ex-

tensive, we will put emphasis on the works most relevant to the current paper.

1.2.1. Invariant measures. Since the pioneering works of Lebowitz-Rose-

Speer [58] and Bourgain [10, 11], there have been numerous results regarding in-

variant measures for nonlinear dispersive equations. In general, for any Hamil-

tonian dispersive equation, we may construct the associated Gibbs measure

(1.14) dµ ∼ e−βH
∏
x

dx,

where β > 0 is a fixed parameter (which we may set to be 1) and H is the

Hamiltonian. The definition (1.14) is only formal; in some cases it can be

1Gibbs measures for (1.1) are available only for d = 1 (both focusing and defocusing),

d = 2 (defocusing only), and (d, r) = (3, 1) (defocusing only). This is related to the exis-

tence/nonexistence of φ2r+2
d theories; see, for example, Aizenman [1], Fröhlich [35], Brydges-

Slade [17], and Aizenman-Duminil Copin [2]. The white noise measure is always formally

invariant under (1.1), but is compatible with the dynamics only when (d, r) = (1, 1).
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justified by using the Gaussian measure as a reference measure and writing dµ

as a weighted Wiener measure. For example, the Hamiltonian for (1.1) is

H =
1

(2π)2

∫
T2

(|∇u|2 +
1

r + 1
W 2r+2(u)) dx

and the Gibbs measure

dµ ∼ exp

ï −1

r + 1

1

(2π)2

∫
T2

W 2r+2(u) dx

ò
︸ ︷︷ ︸

weight

· exp

ï −1

(2π)2

∫
T2

|∇u|2 dx

ò ∏
x∈T2

dx︸ ︷︷ ︸
Gaussian measure

can be rigorously defined as a weighted Wiener measure,2 as in Proposition 1.2.

Defining such Gibbs-type measures and studying their properties under various

dynamics is a major problem in constructive quantum field theory.

The Gibbs measure dµ for a given dispersive equation is formally invariant

due to a “formal Liouville’s Theorem” and the conservation of Hamiltonian.

It is of great interest to establish this invariance rigorously, as this would be

the first step in studying the global dynamics from the statistical ensemble

point of view. In [10], [11], Bourgain developed a systematic way of showing

the invariance of dµ from the invariance of finite dimensional Gibbs measures,

provided we have local well-posedness or almost sure local well-posedness with

respect to dµ.

Therefore, justifying the invariance of dµ (and other similar formally in-

variant measures) basically reduces to proving almost sure local well-posedness

on the support of dµ. As this support is very rough in high dimensions (namely

H1− d
2
− for (1.1) in dimension d), most known results are limited to one di-

mension, or require strong symmetry. For the Schrödinger equation (1.1) on

the torus Td, Bourgain [10] solved the case d = 1, and he extended this to

d = 2 and r = 1 in [11]. These are the only results known for the nonlin-

ear Schrödinger equation prior to the current paper. More is known for wave

equations as noted in Remark 1.7(2) above; see [33], [84], [13], [70], [16].

Apart from the standard Schrödinger and wave models on tori, there

are many results, again mostly in one dimension or under radial symme-

try, where the invariance of corresponding Gibbs measures (or of associated

weighted Wiener measures) are justified for various dispersive models on var-

ious background manifolds (see, e.g., [79], [68], [80], [78], [62], [64], [75], [26],

2Strictly speaking the measure defined in Proposition 1.2 involves an additional weight

which is an exponential of the L2 mass. As the mass is also conserved, this does not affect

any invariance properties.
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[27], [31], [72], [77], [76] and references therein). We also mention the com-

pactness method of Alveberio and Cruzeiro [3] that explores the tightness

of the sequence of finite dimensional measures and applies the theorems of

Prokhorov and Skorokhod to obtain existence of weak solutions (see, e.g., [18],

[63], [69], [81]). These are less related to the current paper, and we will not

elaborate further.

1.2.2. Probabilistic well-posedness theory. It has long been known that

PDEs with randomness generally behave better in terms of local well-posedness

(i.e., probabilistic well-posedness holds below the deterministic well-posedness

threshold). Progress has been made in two parallel directions: random initial

data problems and stochastically forced problems.

The first results along this line are due to the seminal works by Bourgain

[11], [12] in the random data setting and later to Da Prato-Debussche [23],

[24] in the stochastic setting. The idea in both cases is to make a linear-

nonlinear decomposition and observe the effect of probabilistic smoothing. For

example, in [11], equation (1.1) with r = 1 on T2 is studied with random

initial data in H−ε for some 0 < ε � 1, in which (1.1) is deterministically

ill-posed. However with randomness we may construct solutions to (1.1) that

have the form u = eit∆u(0) + v, where u(0) ∈ H−ε is the random initial data,

and v belongs to some positive Sobolev space in which (1.1) is well posed. In

other words, the solution contains a rough random part ulin := eit∆u(0) and a

smooth remainder v. The point here is that, even though ulin is rough, it has an

explicit random structure that allows us to control the nonlinear interactions

between ulin and ulin, and between ulin and v, in a more regular space.

Until recently the method of Bourgain, as well as its higher order vari-

ants that include some nonlinear interactions of ulin with itself into the rough

random part,3 has been the dominant strategy of exploiting randomness in

the local well-posedness theory for dispersive and wave equations with random

data. After Bourgain’s pioneering work, there has been substantial success us-

ing this method. (For a sample of works, we refer the readers to [11], [19], [22],

[26], [14], [65], [82], [15], [55], [8], [32], [54] and references therein.) However

this method by itself has its limitations and does not lead to optimal results

in most cases.

A few years ago, a series of important works emerged, which revolutionized

the study of local well-posedness for stochastically forced PDEs, in fact reach-

ing the optimal exponents in the parabolic case. These include the theory

3This usually results in a finite or infinite tree expansion.
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of regularity structures of Hairer [46], [48], [47], [49] and the para-controlled

calculus of Gubinelli-Imkeller-Perkowski [37], [38]. A third method based

on Wilsonian renormalization group analysis was independently proposed by

Kupiainen in [57].

The theory of regularity structures is based on the local-in-space properties

of solutions at fine scales (so it is particularly suitable for parabolic equations);

it builds a general theory of distributions that includes the profiles coming from

the noise, and allows for multiplications and analysis of the nonlinearity. Since

its success with the KPZ equation [46] and the Φ4
3 model [48], this theory

has been further developed by Hairer and collaborators and is now powerful

enough to solve a wide range of problems that are subcritical according to a

suitable parabolic scaling. We will not get into the details, but we refer the

reader to [34], [49], [50], [51], [52], [21], [61], [60] and references therein for nice

expositions of these ideas.

The theory of para-controlled calculus, which is in spirit the point of

departure of the present paper, takes a different approach and is based on

the following idea. In the approach of Bourgain and of Da Prato-Debussche

mentioned above, some nonlinear interactions between ulin and v may not

have enough regularity despite v being more regular than ulin. However, a

key observation is that the only bad terms here are the high-low interactions

where the high frequencies come from ulin and the low frequencies come from v,

and such terms can be para-controlled by the high-frequency inputs (which are

nonlinear interactions of ulin with itself). Here f being para-controlled by g

simply means that f equals the high-low paraproduct of g with some other

function h, up to a smoother remainder. With such structure, these para-

controlled terms can be shown to have similar randomness structures as the

nonlinear interactions of ulin with itself, and thus can be handled similarly as

in Bourgain’s or Da Prato-Debussche’s approach, leaving an even smoother

remainder. The para-controlled calculus also has a higher order variant; see

[5], [6]. We refer the reader to [20], [41], [42], [43], [44], [60], [71], [5], [4],

[6] and references therein for expositions of these ideas and some other recent

developments on this method.

Finally, we would like to mention two recent results of Gubinelli-Koch-

Oh [39] and Bringmann [15]. In [39] the authors applied a version of para-

controlled calculus to the stochastic wave equation setting, and they obtained

almost sure local well-posedness for a quadratic wave equation with additive

white noise on T3. This relied on several new ingredients, including the analysis

of a random operator (which is different from and unrelated to the random

averaging operator introduced in the current paper).
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In [15] the author studied the nonlinear wave equation with quadratic

derivative nonlinearity on R3 and improved the known well-posedness thresh-

old with random initial data, again by analyzing high-low interactions. This

work introduced an improved para-controlled scheme that accounts for all the

bad terms in the absence of linear smoothing effects, and also made the very

important observation that the high-frequency and low-frequency parts can in

fact be made independent. See Section 1.3.2 for more detailed discussions.

Remark 1.8. We note from previous discussions that, in the same dimen-

sion and for the same nonlinearity, the probabilistic improvement (defined as

the difference between exponents of the deterministic Hs well-posedness thresh-

old and the obtained probabilistic Hs well-posedness threshold) is always much

smaller for Schrödinger equations compared to wave and heat equations.

There are two reasons for this. First, heat equations are compatible with

Hölder spaces Cs, which scale much higher than Hs, but a function with in-

dependent Gaussian Fourier coefficients that belongs to Hs will automatically

belong to Cs− due to Khintchine’s inequality. This allows for a scaling at a

higher regularity, and hence we will be in a better situation when studying heat

equations. Such an advantage cannot be exploited for Schrödinger and wave

equations, since Cs spaces are not compatible even with their linear evolutioin

and cannot be used in any well-posedness theory.

Second, the Duhamel evolution for the heat equation gains two derivatives,

and for the wave equation gains one.4 This allows for room to apply Sobolev

embedding, and also reduces the task of controlling the nonlinearity to the task

of making sense of products, which is still hard but at least more manageable.

In comparison, the Duhamel evolution for Schrödinger has no smoothing effect,

and it can be challenging to close the estimates even when the relevant products

are well defined.

1.3. Difficulties and the strategy. We now turn to the proof of Theo-

rem 1.3. This proof consists of two parts: (a) proving almost sure local well-

posedness for (1.1) on the support of the Gibbs measure, and (b) applying

formal invariance to extend local solutions to global ones. Since part (b) is

essentially an adaptation of Bourgain’s classical proof [11], we shall focus on

the local theory in part (a). For exposition simplicity, we will also replace

W 2r+1(u) by the pure power |u|2ru in the discussion below.

4Note that the derivative wave equation studied in [15] behaves similarly to Schrödinger as

the one derivative gain is cancelled by the derivative nonlinearity. Therefore the probabilistic

improvement obtained in [15] is also a tiny amount compared to other results for wave

equations.
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The obvious difficulty here is that the Gibbs measure dµ is supported in

H0−, while the (deterministic) scaling threshold, below which (1.1) is ill-posed,

is sc = 1− 1
r → 1 as r →∞. In the language of Remark 1.8, we need to obtain

a probabilistic improvement ≈ 1. Therefore, it is important to understand

exactly how randomness allows us to beat scaling. This is contained in the

notion of probabilistic scaling, which we discuss below.

1.3.1. The probabilistic scaling. Consider the nonlinear Schrödinger equa-

tion

(1.15) (i∂t + ∆)u = |u|2ru, u(0) = uin

on Td. The scaling critical threshold for (1.15) is

(1.16) sc =
d

2
− 1

r
,

and (1.15) is expected to be locally well-posed in Hs only if s ≥ sc. This

can be demonstrated in multiple ways, but the one most relevant to us is as

follows. Suppose the initial data uin has Fourier transform Fxuin(k) supported

in |k| ∼ N with |Fxuin(k)| ∼ N−α with α = s + d
2 ; then ‖uin‖Hs ∼ 1. If local

well-posedness holds, then we should expect that the second iteration (say at

time t = 1),

u(1) :=

∫ 1

0

ei(1−t
′)∆(|eit′∆uin|2reit

′∆uin) dt′,

satisfies ‖u(1)‖Hs . 1. By performing Fourier expansions, we essentially get

(1.17)

Fxu(1)(k) ∼
∑

k1−···+k2r+1=k
|kj |.N

1

〈Σ〉

2r+1∏
j=1

”uin(kj), Σ = |k|2 − |k1|2 + · · · − |k2r+1|2,

where complex conjugates are omitted. In the worst scenario this gives, up to

logarithmic factors,

|Fxu(1)(k)| . N−(2r+1)α sup
m∈Z

#Sm,

where Sm = {(k1, . . . , k2r+1) : k1 − · · · + k2r+1 = k, |kj | . N, Σ = m}. By di-

mension counting, we expect that #Sm . N2rd−2, so in order for ‖u(1)‖Hs . 1

we need −(2r + 1)α+ 2rd− 2 ≤ −α, or equivalently s ≥ sc.
Now, in the random data setting, suppose the Fourier coefficients of initial

data {”uin(k)} are independent Gaussians of size N−α. The sum (1.17) will

then be a sum of products of independent Gaussian random variables, which is

reminiscent of the classical Central Limit Theorem. Recall that in the latter we

have a sum of M independent random objects of unit size, and under certain
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general conditions, this sum scales only like
√
M as opposed to M if without

randomness. In the same way, we would expect essentially a “square root gain”

here, that is,

|Fxu(1)(k)| . N−(2r+1)α sup
m∈Z

(#Sm)
1
2 . N−(2r+1)α+rd−1,

so in order for ‖u(1)‖Hs . 1, it suffices to have −(2r + 1)α + rd− 1 ≤ −α, or

equivalently

(1.18) s ≥ sp := − 1

2r
.

Note that sp is independent of the dimension and that we always have sp ≤ sc.
We will call this sp the critical threshold for probabilistic scaling.5 We refer the

reader to [30] for further discussions about the probabilistic scaling paradigm.

Remark 1.9. With the above heuristics, it is natural to expect that (1.1)

will be almost surely locally well-posed with random initial data in Hs−(Td);
that is,

uin =
∑
k∈Zd

gk
〈k〉α

eik·x, α = s+
d

2
,

in any probabilistically subcritical space with s > sp.

Indeed, after the current paper was submitted, the authors completed the

paper [29], which establishes this result. The proof in [29] is based on the theory

of random tensors , which is the natural extension of the main technique of the

current paper, i.e., the method of random averaging operators introduced in

Section 1.3.3 below.

1.3.2. Discussions of earlier methods. With the scaling heuristics in Sec-

tion 1.3.1, note that the support of the Gibbs measure dµ, which is H0−, is

above the probabilistic critical space Hsp−, where sp = − 1
2r . Therefore it is

reasonable to believe that almost sure local well-posedness of (1.1) should hold

in the support of dµ. However, the justification of such heuristics is far from

trivial, due to the intrinsic difficulties associated with the Schrödinger equation

explained in Remark 1.8.

To motivate the method of random averaging operators introduced in this

paper, we first discuss the possibility of applying existing methods6 to the

5This is associated with Gaussian random variables, but by the Central Limit Theorem,

the scaling is the same for more general types of random variables.
6We will not discuss the regularity structure theory [48], as it relies on local expansions

in physical space and is thus not compatible with Schrödinger or wave equations.
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setting of (1.1), the ideas behind these other methods, and why these ideas do

not work here. Below we set uin = f(ω) in (1.1).

::::::::
Method

:::
1:

:::::::::::::
Bourgain-Da

::::::::::::::::::
Prato-Debussche. We start with the classical

idea of Bourgain [11] and Da Prato-Debussche [23], [24]. As discussed in

Section 1.2.2, this idea is based on the following observation:

• Observation 1: Nonlinear components of random data solutions always have

higher regularity than linear ones.

Now, suppose we apply this idea to (1.1), which leads to the ansatz

u(t) = eit∆f(ω) + w, where w belongs to C0
tH

s
x, or more precisely Xs, 1

2
+

(see Section 2.3 for relevant definitions) for some positive s. In particular, this

w will contain components of form

(1.19) u(1)(t) = I(|eit∆f(ω)|2reit∆f(ω)), IF (t) :=

∫ t

0

ei(t−t
′)∆F (t′) dt′.

However, it is shown in [11] that even when r = 1 (and obviously also for

larger r), the u(1) defined in (1.19) belongs to Xs, 1
2

+ only for s < 1
2 . As

the space X
1
2
−, 1

2
+ is still supercritical with respect to deterministic scaling

for d = 2 and r ≥ 2, there will be no hope of solving (1.1) using the above

ansatz. We may perform higher order Picard iterations, but it turns out that

regardless of the order, there is always some contribution in the remainder that

has regularity X
1
2
−, 1

2
+, and the problem persists.

::::::::
Method

::
2:

::::::::::::::::
Para-controlled

:::::::::
calculus. Next we may try the idea of para-

controlled calculus of Gubinelli-Imkeller-Perkowski [37] (and Gubinelli-Koch-

Oh [39] for wave). This is based on the following observation, in addition to

Observation 1 above:

• Observation 2: In probabilistically subcritical settings, the bad regularity of

the nonlinear (and subsequent non-explicit) terms only come from high-low

interactions.

Now, applying this idea to (1.1) would lead to the ansatz

(1.20) u = ulin +X + Y,

where

(1.21) ulin = eit∆f(ω), X =
∑
N

I(PNulin · |P�Nu|2r),

I is as in (1.19), and PN are the standard Littlewood-Paley projections. The

term X para-controlled by ulin will be constructed in some less regular space

(say X
1
2
−, 1

2
+), which allows the remainder Y to be constructed in a more

regular space (say X1−, 1
2

+).



INVARIANT GIBBS MEASURES FOR 2D NLS 13

However, since the Duhamel operator I gains no derivative, the term Y

will contain contributions of form

(1.22) Z :=
∑
N

I(PNX · |P�Nu|2r),

which in fact also has regularity X
1
2
−, 1

2
+. This shows that the ansatz (1.20) is

still not sufficient for (1.1).

::::::::
Method

::
3:

::::::::::::::
Bringmann’s

:::::::::
method. Bringmann’s paper [15] introduced a

refinement to the para-controlled ansatz in [37], [39] designed for derivative

wave equations (where the Duhamel evolution gains no derivative), based on

the following observation in addition to Observations 1 and 2 above:

• Observation 3: The subsequent expansion terms of the form Z that are

similar to (1.22) can be packed in a para-linearized solution, and moreover

the high and low frequency inputs are independent.

More precisely, [15] suggests modification of the ansatz to

(1.23) u = ulin +X + Y,

where X is the solution to the para-linearized equation

(1.24) X =
∑
N

I(PN (ulin +X) · |P�Nαu|2r),

for some α ∈ (0, 1), which is constructed in the less regular space X
1
2
−, 1

2
+, and

the remainder Y is constructed in the more regular space X1−, 1
2

+. Moreover,

the low frequency input P�Nαu is essentially independent with PNulin, which

is a crucial observation first made in [15]. This allows for an inductive con-

struction, and also allows the use of more powerful probabilistic tools such as

multilinear Wiener chaos estimates.

However, the above ansatz is still not sufficient to control both X and Y

in the desired regularities, due to the following reason. Since Y contains high-

high interactions, where by “high” we mean frequencies & Nα, it is easy to see

that α has to be chosen close to 1 for large r, in order for Y to be bounded

in X1−, 1
2

+; in fact a calculation similar to those in Section 1.3.1 shows that

α ≥ 1− 2/r. But when α is close to 1, the expression of X will involve terms∑
N

I(PNulin · |P�NαX|2r).

To control this contribution, even with independence between PNulin and

P�NαX, we would still need to bound the power |P�NαX|2r in a suitable

space; however in the ansatz of [15] we only know that X is a function in
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X
1
2
−, 1

2
+, which does not imply any useful control for |P�NαX|2r due to super-

criticality of this space. Of course we may also exploit equation (1.24) satisfied

by X, but each iteration of this equation produces higher powers of X, which

again cannot be bounded using the ansatz of [15].

Note that when r = 2, it might be possible to carry out the scheme of [15]

with a small α by doing some refined analysis (which is by no means immediate

in view of all the difficulties for the Schrödinger equation in Remark 1.8). Our

approach, which is described below, allows instead for a unified treatment for

all values of r by synthesizing the main underlying ideas and crucially capturing

the true randomness structure of the solution.

1.3.3. Random averaging operators. It is now clear that, to solve (1.1), it

is necessary to exploit all three observations in Section 1.3.2 (in particular, it

is very important to exploit the independence between high and low frequency

inputs as first done by Bringmann in [15]), but this is still not enough. In fact,

the missing piece is the following observation, in addition to Observations 1–3

in Section 1.3.2:

• Observation 4: The input P�Nαu in (1.24) is not an arbitrary function in

X
1
2
−, 1

2
+; it has its own randomness structure, which must be captured in

order for the ansatz to be complete.

This randomness property of P�Nαu cannot be captured by any norm of

the para-controlled term X defined in (1.24). Indeed, to see and exploit this

randomness property, we need to perform a shift of paradigm, by turning

the focus from the para-controlled term X to the linear operator defined by

(1.25) Q : y → z, where z =
∑
N

I(PN (y + z) · |P�Nαu|2r);

note that by this definition we have X = Q(ulin). In practice it is more

convenient to consider the simpler operator

(1.26) P : y 7→
∑
N

I(PNy · |P�Nαu|2r),

which obeys the same estimates; in fact from (1.25) and (1.26) it is easy to see

that Q = P(1 − P)−1. Now we shall extract all the randomness properties of

P�Nαu, as well as properties of the multilinear expression | · |2r when applied

to these random objects, and turn them into two particular norm bounds for

the operator P defined in (1.26) (or Q in (1.25)).

This is the key idea behind our method of random averaging opera-

tors. The norms we choose are the operator norm ‖ · ‖OP and the Hilbert-

Schmidt norm ‖ · ‖HS with P (or Q) viewed as a linear operator from the space
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Xs, 1
2

+ to itself; this does not depend on s so we may in fact choose s = 0.

When the input y in (1.26) is a linear Schrödinger flow, we get an operator

from Hs to Xs, 1
2

+, and we will also measure the corresponding operator and

Hilbert-Schmidt norms. Suppose the maximum frequency of P�Nαu in (1.26)

is L� Nα. Then roughly speaking, these norm bounds will look like

(1.27) ‖P‖OP . L
−δ0 , ‖P‖HS . N

1
2

+δ1L−
1
2 ,

where δ1 � δ0 � 1. Note that these bounds are obviously false for arbitrary

functions P�Nαu ∈ X
1
2
−, 1

2
+, so they indeed encode the (implicit) randomness

structure of P�Nαu, which is reflected via the multilinear expression | · |2r.
We also remark that the choices of the operator and Hilbert-Schmidt

norms and the bounds in (1.27) are natural in the following sense: the operator

norm bound in (1.27) is what guarantees the solvability of the para-linearized

equation (1.24), and the Hilbert-Schmidt norm bound in (1.27) is what guar-

antees that the term X defined in (1.24) belongs to X
1
2
−, 1

2
+. Moreover, the

estimate (1.27) is preserved under multiplication (which is important in the

proof), due to the simple inequalities

‖P1P2‖OP ≤ ‖P1‖OP‖P2‖OP,

‖P1P2‖HS ≤ min(‖P1‖HS‖P2‖OP, ‖P1‖OP‖P2‖HS).

See Proposition 3.2 for details.

These operators P and Q, which will be of central importance in our

proof, depend on the object P�Nαu that has an implicit randomness structure.

Moreover, in the Fourier variables, this operator can be viewed as a weighted

average taken over smaller scales L� Nα. We thus call it a random averaging

operator, which explains the name of our method.

1.3.4. The full ansatz. We can now describe the full ansatz of the solution

u to (1.1), with random averaging operators. On the surface we consider the

same framework as in [15], namely u = ulin + X + Y , where X is defined as

in (1.24) and Y ∈ X1−, 1
2

+ is a smooth remainder. However, in our ansatz,

instead of merely estimating X in X
1
2
−, 1

2
+, we exploit the fact that X equals

a random averaging operator applied to ulin, where this random averaging

operator satisfies a bound of form (1.27). To be precise, choosing α < 1 close

to 1, we further write that

(1.28) X = Q(ulin),

so we have the ansatz

(1.29) u = ulin +Q(ulin) + Y.



16 YU DENG, ANDREA R. NAHMOD, and HAITIAN YUE

Here the random averaging operator Q is P(1− P)−1, and P has the form

P =
∑
N

∑
L�Nα

PNL,

where PNL has the form (1.26) with the maximum frequency of P�Nαu in

(1.26) being L. This PNL is a Borel function of (gk(ω))〈k〉≤L, which is inde-

pendent with eit∆PNf(ω), and satisfies (1.27); the operator Q has a similar

decomposition into QNL that satisfies the same bounds (1.27). See Section 3.1

for the precise formulas.

With the ansatz (1.29), the proof of local well-posedness then proceeds

by inducting on frequencies to show (1.27) and to bound Y in X1−, 1
2

+. In

fact, suppose these are true for components of frequency � Nα. Then the

bounds (1.27) and high-low frequency independence imply that the part of

P�Nαu involving the random averaging operators really behaves like a linear

Schrödinger flow, so in PNL (see (1.26)), we can effectively assume that P�Nαu

is replaced by either a linear flow or a smooth function in X1−, 1
2

+. Hence

(1.27) follows from large deviation estimates for multilinear Gaussians and a

T ∗T (random matrix) argument like the one of Bourgain [11], and the estimate

for Y follows from standard contraction mapping arguments. See Sections 3

and 5 for details.

1.4. Further discussions. The notion of probabilistic scaling introduced in

Section 1.3.1 is a general philosophy and is not specific to (1.1); in fact it can

be extended to more general situations. These include, but are not limited to,

the following ones.

1.4.1. Wave equations. For the wave equation (say with a power non-

linearity as in (1.15)), we can apply the same heuristics as in Section 1.3.1.

However, due to the gain of one derivative in the Duhamel fomrmula, instead

of (1.17) we essentially have that

(1.30)

Fxu(1)(k) ∼ 1

〈k〉
∑

k1−···+k2r+1=k
|kj |.N

1

〈Σ〉

2r+1∏
j=1

”uin(kj), Σ = |k| − |k1|+ · · · − |k2r+1|.

Now assume |k| ∼ N . Then compared to (1.17) we gain an extra fac-

tor N−1 due to the antiderivative, while in the dimension counting argu-

ment we gain one less power of N as Σ is now linear instead of quadratic.

In the deterministic setting this leads to the same scaling condition as the

Schrödinger equation, but in the probabilistic setting this trade-off leads to a

better bound than in the Schrödinger case as the one-dimension disadvantage

gets “square-rooted” by exploiting randomness as explained above. This then
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gives

|Fxu(2)(k)| . N−(2r+1)α−1N rd− 1
2 ,

which leads to a lower probabilistic scaling threshold, namely swave
p = − 3

4r .

However, unlike Schrödinger, there is also a “high-high to low” interaction,

namely |k| ∼ 1 in (1.30), that needs to be addressed. A similar calculation

using randomness and counting bounds yields heuristically that

|Fxu(2)(k)| . N−(2r+1)αN rd− 1
2 ,

which leads to the restriction s ≥ s′p := −d−1
2(2r+1) . Thus it is reasonable to

conjecture that the wave equation is almost surely locally well-posed in Hs ×
Hs−1 for

s > max(swave
p , s′p) = max

Å
− 3

4r
,− d+ 1

4r + 2

ã
.

In particular, when (d, r) = (3, 1), the conjectured threshold is H−
2
3 , which is

below H−
1
2
− where the Gibbs measure is supported, consistent with the recent

positive result [16].

1.4.2. Other dispersion relations and/or nonlinearities. For more general

dispersion relations on Td, say Λ = Λ(k), the only thing above that changes is

the counting bound for the set

Sm =
{

(k1, . . . , k2r+1) : k1 − · · ·+ k2r+1 = k,

Σ := Λ(k)− Λ(k1) + · · · − Λ(k2r+1) ∈ [m,m+ 1]
}
.

In contrast to parabolic equations (see [48]) where the exact form of the elliptic

operator is irrelevant once the order is fixed, here the properties of Sm depend

crucially on the choice of Λ, and they have to be analyzed on a case by case

basis. For simple dispersion relations like Schrödinger, wave or gravity water

wave (where Λ(k) =
√
|k|) this is doable, but when Λ gets more complicated

(say a high degree polynomial), determining the optimal local well-posedness

threshold requires getting sharp bounds for #Sm, which in itself may be a hard

problem in analytic number theory.

For derivative nonlinearities, the scaling heuristics can still be carried

out and the value of sp can be calculated in the same way as before (since

such heuristics essentially take into account only the high-high interactions).

However the actual almost sure well-posedness threshold may be strictly higher

than sp due to high-low interactions and derivative loss (in the same way that

the deterministic theory for quasilinear equations does not quite reach scaling

— see, e.g., [56], [74]), which may be worth looking at first in some simple

models. There is also the possibility of exponential nonlinearities but they are

more of an “endpoint” nature and will not be discussed here.
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1.4.3. Stochastic equations. We may also consider wave and heat equa-

tions with additive noise (Schrödinger is also possible but has worse behavior),

say of form

(1.31) (∂2
t −∆)u = |u|2ru+ ζ, or (∂t −∆)u = |u|2ru+ ζ,

where ζ is the spacetime white noise that is essentially (after discretizing the

time Fourier variable)

ζ =
∑
k,ξ

gk,ξe
i(k·x+ξt),

where gk,ξ are independent normalized Gaussians.

The heat case of (1.31) has been studied extensively; see [53] and the ref-

erences in Section 1.2.2. In this case we can confirm that the scaling heuristics

of Section 1.3.1 are consistent with that of [48]. Indeed, note that for (1.31),

the linear evolution eit∆uin in Section 1.3.1 is replaced by the linear noise term

ψ(t) =

∫ t

0

e(t−t′)∆ζ(t′) dt′ ∼
∑
k,ξ

gk,ξ
|k|2 + |ξ|

ei(k·x+ξt),

which belongs to C0
tH

s−
x for s = −d

2 + 1. The goal would then be to guarantee

that the second iteration

u(1)(t) =

∫ t

0

e(t−t′)∆(|ψ(s)|2rψ(t′)) dt′

belongs to the same space. By similar arguments, this time also taking into

account the time Fourier variable, we can show that this leads to the restriction

r(d − 2) < 2, which coincides with the subcriticality condition introduced in

[48] in the case of (1.31).

For the wave case of (1.31), similar calculations lead to the subcriticality

condition r(d−2) < 3
2 , which is consistent with the results in [39], [40]. In both

cases, due to the particular choice of white noise, the high-to-low interactions

studied in (1) above give the same condition on (d, r).

1.4.4. Other geometries. Considering more general geometries in addition

to Td will lead to different scenarios. For compact manifold, the canonical

randomization would be based on the spectral expansion of the Laplacian,

in which case the probabilistic scaling depends on the global geometry of the

underlying manifold. This is because the randomized data is not localized

and has the same amplitude at each point of the domain. In comparison, the

deterministic scaling threshold does not depend on the geometry because it

corresponds to the data zoomed out at a point, which is localized.

For non-compact manifolds (say Rd), the canonical randomization based

on Laplacian eigenfunctions (i.e., eiξ·x) would lead to initial data with infinite
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L2 mass, which is not compatible7 with the Schrödinger equation (1.1). There

is another kind of “Wiener randomization” based on dividing the Fourier space

into unit boxes and randomizing on each box (see, e.g., [83], [59], [7]), which

produces localized initial data (which is not preserved by the linear flow). In

the Rd case, this leads to the the critical threshold sp = −3/(4r) that is lower

than Td.

1.5. Notation and choice of parameters. In this section we collect some of

the notation and conventions that will be used in the proof. Throughout the

paper, the space and time Fourier transforms will be respectively fixed as

(1.32) (Fxu)(k) =
1

(2π)2

∫
T2

e−ik·xf(x) dx, (Ftu)(ξ) =
1

2π

∫
R
e−iξtf(x) dt.

We will be working in (k, t) or (k, ξ) variables, instead of the x variable; so

we will abbreviate (Fxu)(k) simply as uk and will abuse notation and write

u = uk(t). The symbol û will always represent time Fourier transform (or, for

the second formula in (1.34) below, the corresponding two-dimensional time

Fourier transform), so (Ft,xu)(k, ξ) = ûk(ξ).

Let the space mean A be defined by Au = (Fxu)(0) = u0. (This may

depend on time t if u does.) Define the twisted spacetime Fourier transform

(1.33) ũk(λ) = ũ(k, λ) = ûk(λ− |k|2).

We also need to study functions hkk∗(t) of variables k, k∗ ∈ Z2 and t ∈ R, and

hkk′(t, t
′) of variables k, k′ ∈ Z2 and t, t′ ∈ R; for these we will define

(1.34) h̃kk∗(λ) = ‘hkk∗(λ−|k|2) and h̃kk′(λ, λ
′) = 2π ĥkk′(λ−|k|2, |k′|2−λ′),

where λ and λ′ are Fourier variables corresponding to t and t′ respectively.

Recall that 〈k〉 =
√
|k|2 + 1, and 1P is the indicator function. The car-

dinality of a finite set E will be denoted by |E| or by #E. We will be using

smooth cutoff functions χ = χ(z) that equal 1 for |z| ≤ 1 and equal 0 for

|z| ≥ 2. For any Schwartz function ϕ and any 0 < τ � 1, we will define

ϕτ (t) = ϕ(τ−1t).

For a complex number z, define z+ := z and z− := z; we will also use the

notation zι, where ι will always be ±. In the proof we will encounter tuples

(k1, . . . , kn), or maybe (k∗1, . . . , k
∗
n), with associated signs ι1, . . . , ιn ∈ {±}; they

are usually linked by some equation ι1k1 + · · · + ιnkn = d or ι1|k1|2 + · · · +
ιn|kn|2 = α, where d and α are given, or by some expression gι1k∗1

· · · gιnk∗n .

7It is, however, compatible with the wave equation due to finite speed of propagation; in

particular, the result of [16] is expected to be true also for the Gibbs measure on R3. We will

not discuss this here, but see [16].
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Definition 1.10. In the above context we say that (ki, kj) is a pairing in

{k1, . . . , kn} if ki = kj and ιi = −ιj . We say a pairing is over-paired if ki =

kj = k` for some ` 6∈ {i, j}. Pairings and over-pairings in {k∗1, . . . , k∗n} are

defined similarly.

For example, suppose k = k1 − k2 + k3 + d. If k1 = k2, then (k1, k2) is

a pairing in {k1, k2, k3}; if k = k1, then (k, k1) is a pairing in {k, k1, k2, k3}.
If k = k1 = k2 6= k3, then (k1, k2) is over-paired if considered as a pairing in

{k, k1, k2, k3}, but not if considered a pairing in {k1, k2, k3}.
Recall Remark 1.6(2) that for the truncation ΠN defined in (1.4), N will

be a power of two that is also & 1. The same applies to other capital letters

like M , L, R, etc. Define also Π⊥N = Id−ΠN and ∆N = ΠN −ΠN
2

, so that

(∆Nu)k = 1N/2<〈k〉≤N · uk.

Let VN and V⊥N be the ranges of ΠN and Π⊥N . For N1, . . . , Nn, we will define

max(j)(N1, . . . , Nn) to be the j-th maximal element among them; we denote it

by N (j).

Definition 1.11. For any N as above, we denote by B≤N the σ-algebra

generated by the random variables gk for 〈k〉 ≤ N , and by B+
≤N the smallest

σ-algebra containing both B≤N and the σ-algebra generated by the random

variables |gk|2 for k ∈ Z2.

Recall that ε is fixed by Remark 1.4. Let 1 � δ0 � δ be two fixed small

positive constants depending on r and ε (think of δ0 = δ1/50). Define the

parameters

γ = δ
3
4 , γ0 = δ

5
4 , κ = δ−4,

b =
1

2
+ δ4, b1 = b+ δ4, b2 = b− δ6, a0 = 2b− 10δ6.

(1.35)

Then we have the following hierarchy:

(1.36) ε� δ0 � γ � δ � γ0 � δγ0 � b− 1

2
= b1 − b = κ−1 � δ6.

Denote by θ any positive quantity that is small enough depending on δ (for

example θ � δ50). This θ may take different values at different places. Let C

be any large absolute constant depending only on r, and let Cθ be any constant

depending on θ. Unless otherwise stated, the constants in the ., � and O(·)
symbols will depend on Cθ. Finally, if some statement S about a random

variable holds with probability P(S) ≥ 1 − Cθe−A
θ

for some quantity A > 0

and with given θ and Cθ independent of A, we will say this S is A-certain.
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The rest of the paper is organized as follows. In Section 2 we introduce

the gauge transform and reduce to a favorable nonlinearity, and we define

the norms that will be used in the proof below. In Section 3 we identify

the precise structure of the solution according to the ideas of Section 1.3,

and reduce the local well-posedness to some multilinear estimates, namely

Proposition 3.4. In Section 4 we then set up the necessary tools (large deviation

and counting estimates) needed in the proof of Proposition 3.4, and Section 5

contains the proof itself. Finally in Section 6 we apply an adapted version of

Bourgain’s argument to extend local solutions to global ones and finish the

proof of Theorem 1.3.

1.6. Acknowledgment. The second author thanks Hendrik Weber for help-

ful comments regarding references on the φ4 model.

2. Equations, measures and norms

In this section we make some preparations for the proof of Theorem 1.3.

These include definitions of Wick ordering and gauge transform, properties of

Gibbs and Gaussian measures and their finite dimensional truncations, and

choices of function and operator norms and linear estimates.

2.1. Wick ordering and a gauge transform. We start by defining the Wick

ordering and the gauge transform. Consider a general polynomial Mn(u) or

Hn(u) of degree n, defined by

[Mn(u)]k =
∑

ι1k1+···+ιnkn=k

akk1···knu
ι1
k1
· · ·uιnkn ,(2.1)

[Hn(u)]kk′ =
∑

ι1k1+···+ιnkn+ιk′=k

akk′k1···knu
ι1
k1
· · ·uιnkn ,(2.2)

where akk1···kn and akk′k1···kn are constants. Recall the definition of pairings in

Definition 1.10.

Definition 2.1. We say that the polynomial in (2.1) is input-simple if

akk1···kn = 0, unless each pairing in {k1, . . . , kn} is over-paired. Similarly we

say it is simple if akk1···kn = 0 unless each pairing in {k, k1, . . . , kn} is over-

paired, and we say the polynomial in (2.2) is simple if akk′k1···kn = 0 unless

each pairing in {k, k′, k1, . . . , kn} is over-paired. These notions also apply to

multilinear forms.

For m := A|u|2, define the following polynomials of degree n ∈ {2p, 2p+1}
(this u may also be replaced by v):
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(2.3)

:|u|2p: =

p∑
j=0

(−1)p−j
Ç
p

j

å
mp−jp!

j!
|u|2j ,

:|u|2pu: =

p∑
j=0

(−1)p−j
Ç
p+ 1

p− j

å
mp−jp!

j!
|u|2ju.

We will see in the proof of Proposition 2.2 that each of these is input-simple.

Define a gauge transform vN = GNuN associated with (1.7) by

(2.4) vN (t) = uN (t) · exp

Å
(r + 1)i

∫ t

0

A[W 2r
N (uN )] dt′

ã
.

Then uN solves (1.7) if and only if vN solves the gauged equation

(2.5)

{
(i∂t + ∆)vN = ΠNQN (vN ),

vN (0) = ΠNuin,

where

(2.6) QN (v) = W 2r+1
N (v)− (r + 1)A[W 2r

N (v)]v.

Since the gauge transform does not change the t = 0 data, we will write

vin = uin. The inverse of GN is given by

(2.7) uN (t) = vN (t) · exp

Å
− (r + 1)i

∫ t

0

A[W 2r
N (vN )] dt′

ã
,

since by (1.6), if v = eiαu where α ∈ R, then Wn(u) = Wn(v) for even n and

Wn(u) = eiαWn(v) for odd n. Now assume vN is a solution to (2.5). Let mN

be the truncated mass, which is conserved under (2.5),

(2.8) mN := A|vN |2 =
∑
〈k〉≤N

|(uin)k|2,

and let m∗N := mN − σN , where σN is as in (1.5). Note that mN and m∗N are

random terms if uin = f(ω) as in (1.2). The following proposition give us a

useful formula for QN .

Proposition 2.2. We have

(2.9) QN (vN ) =
r∑
l=0

Ç
r + 1

r − l

å
(m∗N )r−lr!

l!
N2l+1(vN ),

where

(2.10) N2l+1(v) =:|v|2lv: −(l + 1)(A :|v|2l:)v.

Here N2l+1 is a simple polynomial of degree 2l+ 1. By standard procedure, we

can define a (2l + 1)-multilinear form, which we still denote by N2l+1, such

that it reduces to N2l+1(v) when all inputs equal to v.
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Proof. First we prove (2.9). By the definition of QN (v) (see (2.6)), it will

suffice to obtain that

(2.11) W 2r+1
N (vN ) =

r∑
l=0

Ç
r + 1

r − l

å
(m∗N )r−lr!

l!
:|vN |2lvN :

and

(2.12) (r + 1)W 2r
N (vN ) =

r∑
l=0

Ç
r + 1

r − l

å
(m∗N )r−lr!

l!
(l + 1) :|vN |2l: .

By the definition of :|v|2lv: (see (2.3)), and combinatorial identities, we

have that

the right-hand side of (2.11)

=
r∑
l=0

Ç
r + 1

r − l

å
(m∗N )r−lr!

l∑
k=0

(−1)l−k
Ç
l + 1

l − k

å
ml−k
N

k!
|vN |2kvN

=
r∑

k=0

(−1)r−k
Ç
r + 1

r − k

å
r!

k!
|vN |2kvN

r∑
l=k

Ç
r − k
l − k

å
ml−k
N (−m∗N )r−l,

(2.13)

which implies (2.11) due to binomial expansion.

Similarly we can calculate

the right-hand side of (2.12)

=
r∑
l=0

Ç
r + 1

r − l

å
(m∗N )r−lr! (l + 1)

l∑
k=0

(−1)l−k
Ç
l

k

å
ml−k
N

k!
|vN |2k

= (r + 1)
r∑

k=0

(−1)r−k
Ç
r

k

å
r!

k!
|vN |2k

r∑
l=k

Ç
r − k
l − k

å
ml−k
N (−m∗N )r−l,

(2.14)

which implies (2.12).

Next we prove that :|v|2p: and :|v|2pv: are input-simple. Working in Fourier

space, for any monomial

X := (vk1)a1(vk1)b1 · · · (vkn)an(vkn)bn ,

where the kj ’s are different and aj and bj are nonnegative integers, we will

calculate the coefficient of X in the polynomial :|v|2p: and :|v|2pv:, and we will

prove that this coefficient is zero provided a1 = b1 = 1. Now clearly the

coefficient of X in |v|2p and |v|2pv, denoted by [X](|v|2p) and [X](|v|2pv), are

[X](|v|2p) =
(p!)2

a1! · · · an!b1! · · · bn!
, [X](|v|2pv) =

p!(p+ 1)!

a1! · · · an!b1! · · · bn!
,

under the assumptions b1 + · · ·+bn = p and a1 + · · ·+an = p (or a1 + · · ·+an =

p+ 1).
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Recalling that m = A|v|2, we can calculate that

[X](:|v|2p:) =

p∑
l=0

(−1)p−l
p!

l!

Ç
p

l

å
(p− l)!(l!)2

∑
c1+···+cn=p−l

n∏
s=1

1

cs!(as−cs)!(bs− cs)!

=(−1)p(p!)2
p∑
l=0

(−1)l
∑

c1+···+cn=p−l

n∏
s=1

1

cs!(as − cs)!(bs − cs)!
.

(2.15)

Now suppose that a1 = b1 = 1; then c1 ∈ {0, 1}. Clearly the terms for l and

with c1 = 0 exactly cancel the terms for l+1 and with c1 = 1, so [X](:|v|2p:) = 0.

Similarly we can prove [X](:|v|2pv:) = 0.

Finally, we prove that N2p+1(v) =:|v|2pv: −(p + 1)(A :|v|2p:)v is simple.

By definition it suffices to prove that

A(N2p+1(v)v) = A(v :|v|2pv:)− (p+ 1)mA :|v|2p:

is input-simple. We will actually show that this equals A :|v|2p+2: whence the

result will follow. In fact, by (2.3) we have

A :|v|2p+2: =

p+1∑
l=0

(−1)p−l+1

Ç
p+ 1

l

å
(p+ 1)!

l!
mp−l+1A|v|2l,

A(v :|v|2pv:) =

p+1∑
l=1

(−1)p−l+1

Ç
p+ 1

l

å
p!

(l − 1)!
mp−l+1A|v|2l,

−(p+ 1)mA :|v|2p: =

p∑
l=0

(−1)p−l+1(p+ 1)

Ç
p

l

å
p!

l!
mp−l+1A|v|2l,

so the first line equals the sum of the second and third lines by direct calcula-

tion. �

Remark 2.3. Later on we will consider general multilinear forms Nn, which

are simple and can be written as

(2.16) [Nn(v(1), . . . , v(n))]k =
∑

ι1k1+···+ιnkn=k

akk1···kn(v
(1)
k1

)ι1 · · · (v(n)
kn

)ιn .

We may assume that the coefficient akk1···kn is symmetric in the kj ’s for which

ιj = +, and also symmetric in the kj ’s for which ιj = −. Moreover, we assume

that this coefficient only depends on the set of pairings among {k, k1, . . . , kn}.
The multilinear form N2l+1 corresponding to (2.10) satisfies the above

properties, and we will assume without any loss of generality that ιj =+ (i.e.,

N2l+1 is linear in v(j)) for j odd, and ιj = − (i.e., N2l+1 is conjugate linear

in v(j)) for j even.
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2.2. Finite and infinite dimensional measures. We now summarize some

properties of the infinite dimensional and finite dimensional (or truncated)

Gaussian and Gibbs measures, which willl be used later in the proof.

Recall that VN and V⊥N are respectively the ranges of the projections ΠN

and Π⊥N . We will identify V with VN ×V⊥N . Let dρN and dρ⊥N be the Gaussian

measures defined on VN and V⊥N respectively, such that dρ = dρN × dρ⊥N .

Define the measures dµ◦N on VN and dµN on V by

(2.17)

dµ◦N = Z−1
N e−VN [u] dρN , dµN = Z−1

N e−VN [u] dρ; ZN =

∫
VN

e−VN [u] dρN (u).

Then we have that dµN = dµ◦N × dρ⊥N . Recall also the measure dµ defined in

Proposition 1.2; all these are probability measures.

Proposition 2.4. When N → ∞, we have ZN → Z , with 0 < Z < ∞.

The sequence Z−1
N e−VN [u] converges to Z−1e−V [u] almost surely, and also in

Lq(dρ) for any 1 ≤ q < ∞. The measure dµN converges to dµ in the sense

that the total variation of µN − µ converges to 0. Finally, the measure dµ◦N is

invariant under the flows of (1.7) and (2.5).

Proof. The convergence results are proved in [69]. The measure dµ◦N is

invariant under (1.7), because the latter is a finite dimensional Hamiltonian

system, and

dµ◦N (uN ) =
1

EN
e−HN [uN ]−M[uN ] dLN (uN )

is its Gibbs measure (weighted by another conserved quantity), where EN is

some positive constant, HN and M are as in (1.10), and dLN is the Lebesgue

measure on the finite dimensional space VN .

To prove that dµ◦N is invariant under (2.5), it suffices to show that it

is preserved8 by the gauge transform GN . In fact, by (1.6) and (1.10) we

know HN [uN ] = HN [vN ] and M[uN ] =M[vN ], so it suffices to prove that GN
preserves the Lebesgue measure dLN . Working in the coordinates (rk, θk)〈k〉≤N
and (r∗k, θ

∗
k)〈k〉≤N , which are defined by (uN )k = rke

iθk and (vN )k = r∗ke
iθ∗k , we

can write the measure dLN as

(2.18) dLN =
∏
〈k〉≤N

rkdrkdθk.

If vN = GNuN , then we have r∗k = rk and θ∗k = θk + F ((rj , θj)〈j〉≤N ), where F

may also depend on t, but does not depend on k. Moreover, by (1.6) and (2.4)

8For fixed time t, we can view GN as a mapping from VN to itself, by requiring uN to

solve (1.7).
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we know that F actually depends only on rj and on the differences θj − θ`,
which are invariant under the mapping θk 7→ θ∗k. It then follows that the

transformation (rk, θk) 7→ (r∗k, θ
∗
k) preserves the measure (2.18), by a simple

calculation of its Jacobian. �

2.3. Function spaces and linear estimates. From now on we will work with

equation (2.5) with the nonlinearity defined by (2.9) and (2.10), which has the

form (2.16). Recall the well-known Xs,b spaces (where b may be replaced by

b1 or b2)

(2.19) ‖u‖Xs,b = ‖〈k〉s〈λ〉b ũk(λ)‖`2kL2
λ
.

We will mostly consider s = 0 and will denote X0,b = Xb. In addition we intro-

duce matrix norms that measure the functions h = hkk∗(t) and h = hkk′(t, s),

namely,

(2.20)

‖h‖Y b =‖〈λ〉b h̃kk∗(λ)‖`2
k∗→`

2
kL

2
λ
, ‖h‖Y b,b =‖〈λ〉b〈λ′〉−b h̃kk′(λ, λ′)‖`2

k′L
2
λ′→`

2
kL

2
λ
,

(2.21)

‖h‖Zb = ‖〈λ〉b h̃kk∗(λ)‖`2
k,k∗L

2
λ
, ‖h‖

Z b̃,b
= ‖〈λ〉b̃〈λ′〉−b h̃kk′(λ, λ′)‖`2

k,k′L
2
λ,λ′

,

where b̃ ∈ {b, b1}, ‖·‖`2
k∗→`

2
kL

2
λ

and ‖·‖`2
k′L
′2
λ→`2kL2

λ
represent the operator norms

of linear operators with the given kernels; for example,

(2.22)

‖h‖Y b,b =sup

ß∥∥∥∥∑
k′

∫
dµ·〈λ〉b〈λ′〉−b h̃kk′(λ, λ′)yk′(λ′)

∥∥∥∥
`2kL

2
λ

: ‖yk′(λ′)‖`2
k′L

2
λ′

=1

™
.

By definition we can verify that

(2.23) ‖h‖Y b,b = sup
‖y‖

Xb
= 1

∥∥∥∥∑
k′

∫
dt′ · hkk′(t, t′)yk′(t′)

∥∥∥∥
Xb

.

For any of the above spaces, we can localize them in the standard way to a

time interval J ,

(2.24) ‖u‖Z(J) = inf{‖v‖Z : v ≡ u on J}.

We will need the following simple estimates.

Proposition 2.5. The norms ‖h‖Y b and ‖h‖Y b,b do not increase when h̃

or h̃ is multiplied by a function of (k, λ), or a function of k∗ (or (k′, λ′) for h̃),

which is at most 1 in the l∞L∞ or l∞ norms.

Next, if H is defined by

(2.25) ‹Hkk∗(λ) =
∑
k′

∫
dλ′ · h̃kk′(λ, λ′) h̃k′k∗(λ′),
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where h̃kk′(λ, λ
′) is supported in |k − k′| . L, then for any α > 0, we have

(2.26)

∥∥∥∥Å1 +
|k − k∗|

L

ãα
H

∥∥∥∥
Zb
. ‖h‖Y b,b ·

∥∥∥∥Å1 +
|k′ − k∗|

L

ãα
h

∥∥∥∥
Zb
.

Proof. The first statement follows directly from definition (2.22). Now let

us prove (2.26). We may fix k∗, and by translation invariance, we may assume

k∗ = 0. Relabeling ‹Hk0(λ) =: ‹Hk(λ) and h̃k′0(λ) =: h̃k′(λ), we may decompose‹Hk(λ) =
∑
M≥L

(‹HM )k(λ); (‹HM )k(λ) =

{
1|k|∼M ‹Hk(λ), M > L,

1|k|.L‹Hk(λ), M = L,

and similarly for h̃, so that we have

(2.27)

∥∥∥∥〈λ〉bÅ1 +
|k|
L

ãα‹Hk(λ)

∥∥∥∥2

`2kL
2
λ

∼
∑
M≥L

L−2αM2α‖〈λ〉b(‹HM )k(λ)‖2`2kL2
λ

and similarly for h. Since h̃ is supported in |k − k′| . L, we have

|(‹HM )k(λ)| ≤
∑

M ′∼M

∣∣∣∣∑
k′

∫
dλ′ · h̃kk′(λ, λ′)(h̃M

′
)k′(λ

′)

∣∣∣∣,
therefore

‖〈λ〉b(‹HM )k(λ)‖2`2kL2
λ

. ‖〈λ〉b〈λ′〉−bh̃kk′(λ, λ′)‖2`2
k′L

2
λ′→`

2
kL

2
λ

∑
M ′∼M

‖〈λ′〉b(h̃M ′)k′(λ′)‖2`2
k′L
′2
λ
,

which, combined with (2.27), implies (2.26). �

Let χ be a smooth cutoff as in Section 1.5, and define the time truncated

Duhamel operator

(2.28) IF (t) := χ(t)

∫ t

0

ei(t−t
′)∆χ(t′)F (t′) dt′.

Lemma 2.6. We have 2 IF (t) = JF (t) − χ(t)eit∆JF (0), where J is

defined by

(2.29) JF (t) = χ(t)

Å ∫ t

−∞
−
∫ ∞
t

ã
ei(t−t

′)∆χ(t′)F (t′) dt′.

Moreover, we have the formula

(2.30) J̃F (k, λ) =

∫
R
J (λ, µ)‹F (k, µ) dµ, |∂αλ,µJ (λ, µ)| .α,A

1

〈λ− µ〉A
1

〈µ〉
.

For the proof of Lemma 2.6, see the calculations in [28, Lemma 3.1].
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Proposition 2.7. Let ϕ be any Schwartz function, and recall that ϕτ (t) =

ϕ(τ−1t) for any 0 < τ � 1. Then for any u = uk(t) and h = hkk′(t, t
′), we

have

(2.31) ‖ϕτ · u‖Xs,b . τ b1−b‖u‖Xs,b1 , ‖ϕτ (t) · h‖Zb,b . τ b1−b‖h‖Zb1,b ,

provided that uk(0) = hkk′(0, t
′) = 0.

Proof. Using the definition of the Z b̃,b norms and fixing the (k′, λ′) vari-

ables, we can reduce the second inequality in (2.31) to the first, and by fixing

k and conjugating by the linear Schrödinger flow, we can reduce the first to

‖〈ξ〉b(ϕ̂τ ∗ v̂)(ξ)‖L2 . τ b1−b ‖〈η〉b1 v̂(η)‖L2

for v satisfying v(0) = 0. Let v̂ = g1 + g2, where

g1(ξ) = 1|ξ|≥τ−1(ξ)v̂(ξ), g2(ξ) = 1|ξ|<τ−1(ξ)v̂(ξ).

We will prove that

(2.32) ‖〈ξ〉b(ϕ̂τ ∗ gj)(ξ)‖L2 . τ b1−b ‖〈η〉b1 v̂(η)‖L2

for j ∈ {1, 2}. To prove (2.32) for j = 1, we can reduce it to the L2 → L2

bound for the operator

g(η) 7→
∫
R
R(ξ, η)g(η) dη, R(ξ, η) = 1|η|≥τ−1 · τϕ̂(τ(ξ − η))

〈ξ〉b

〈η〉b1
.

Since

1|η|≥τ−1 ·
〈ξ〉b

〈η〉b1
. τ b1−b

〈Tξ〉b

〈τη〉b1
. τ b1−b〈τ(ξ − η)〉b,

it follows from Schur’s estimate that this L2 → L2 bound is at most

τ b1−b‖τϕ̂(τζ)〈τζ〉b‖L1
ζ
. τ b1−b,

which proves (2.32) for j = 1.

To prove (2.32) for j=2, note that since v(0)=0, we have
∫
R v̂(η) dη=0, so

|(ϕ̂τ ∗ g2)(ξ)| =
∣∣∣∣− τϕ̂(τξ)

∫
|η|≥τ−1

v̂(η) dη

−
∫
|η|<τ−1

τ v̂(η)
[
ϕ̂(τξ)− ϕ̂(τ(ξ − η))

]
dη

∣∣∣∣
. τ〈τξ〉−4

∫
R

min(1, |τη|)|v̂(η)| dη,

and by Hölder’s inequality we have∫
R

min(1, |τη|)|v̂(η)| dη

. ‖〈η〉b1 v̂(η)‖L2 · ‖min(1, |τη|)〈η〉−b1‖L2 . τ b1−
1
2 ‖〈η〉b1 v̂(η)‖L2 .
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Using also the elementary bound

‖τ〈τξ〉−4〈ξ〉b‖L2 . τ
1
2
−b,

we deduce (2.32) for j = 2, and hence (2.31). �

3. Structure of the solution: random averaging operators

We now fix a short time 0 < τ � 1, and focus on the local theory for

(2.5), with initial data distributed according to the Gaussian measure dρN , on

J := [−τ, τ ]. By definition, this is equivalent to considering (2.5) with random

initial data uin = vin = f(ω), which we will assume from now on, until the

end of Section 5. Most functions that appear in the proof will be random (i.e.,

depend on ω), whether or not we explicitly write ω in their expressions.

3.1. The decomposition. We start by writing down the ansatz of the so-

lution to (2.5). Recall that the truncated mass mN defined in (2.8) and the

corresponding m∗N are random variables given by

(3.1) mN =
∑
〈k〉≤N

|gk|2

〈k〉2
, m∗N =

∑
〈k〉≤N

|gk|2 − 1

〈k〉2
.

Note that they are Borel functions of |gk|2 for 〈k〉 ≤ N . Let νN := m∗N −m∗N
2

.

By standard large deviation estimates, we have

(3.2) P(|νN | ≥ AN−1) ≤ Ce−C−1A

for any A > 0, where C is an absolute constant. In particular, by removing a

set of measure ≤ Cθe−τ
−θ

(which will be done before proving any estimates) we

may assume the following bounds, which are used below without any further

mentioning:

(3.3) |gk| . τ−θ〈k〉θ, |m∗N | . τ−θ, |νN | . τ−θN−1+θ.

Our goal here is to obtain a quantitative estimate for the difference yN :=

vN − vN
2

. By (2.5), this yN satisfies the equation

(3.4)

(i∂t + ∆)yN = ΠNQN (yN + vN
2

)−ΠN
2
QN

2
(vN

2
),

yN (0) = ∆Nf(ω).
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By (2.9) we can rewrite the above equation as

(3.5)



(i∂t + ∆)yN =
r∑
l=0

crl (m
∗
N )r−l

ß
ΠN

[
N2l+1(yN + vN

2
)

−N2l+1(vN
2

)
]

+ ∆NN2l+1(vN
2

)

™
+

r∑
j=0

crl
[
(m∗N

2

+ νN )r−l − (m∗N
2

)r−l
]
·ΠN

2
N2l+1(vN

2
),

yN (0) = ∆Nf(ω),

where crl are constants that will not be important in the proof.

Define the set

(3.6) K := {(N,L) ∈ (2Z)2 : 2−1 ≤ L < N1−δ}.

For each (N,L) ∈ K, we define the function ψN,L as the solution to the (linear)

equation

(3.7){
(i∂t + ∆)ψN,L =

∑r
l=0(l + 1) crl (m

∗
N )r−l ΠNN2l+1(ψN,L, vL, . . . , vL),

ψN,L(0) = ∆Nf(ω).

It is important to place ψN,L in the first position of N2l+1 in (3.7); see Re-

mark 3.5. By linearity, we have

(3.8) (ψN,L)k =
∑
k∗

HN,L
kk∗

gk∗(ω)

〈k∗〉
,

where for N
2 < 〈k∗〉 ≤ N and 〈k〉 ≤ N , HN,L

kk∗ = ϕk is the k-th mode of the

solution ϕ to the equation

(3.9)

{
(i∂t + ∆)ϕ =

∑r
l=0(l + 1)crl(m

∗
N )r−l ΠNN2l+1(ϕ, vL, . . . , vL),

ϕ(0) = eik
∗·x,

and for other (k, k∗) ∈ (Z2)2, define HN,L
kk∗ = 0. By definition these HN,L

kk∗ , as

well as the hN,Lkk∗ defined below, are B≤N measurable and B+
≤L measurable in

the sense of Definition 1.11.

For any N , let L0 be the largest L satisfying (N,L) ∈ K. We further

define

(3.10) ζN,L := ψN,L−ψN,L
2
, hN,L := HN,L−HN,L

2 ; zN := yN−ψN,L0 .

Note that ψN, 1
2

= eit∆(∆Nf(ω)), and that H
N, 1

2
kk∗ is e−i|k|

2t1k=k∗ restricted

to the frequency band N
2 < 〈k〉 ≤ N . Moreover, zN is B≤N measurable,
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zN (0) = 0, and satisfies the equation

(i∂t + ∆)zN =
r∑
l=0

crl(m
∗
N )r−l

·ΠN

[
N2l+1(zN + ψN,L0 + vN

2
)−N2l+1(vN

2
) + ∆NN2l+1(vN

2
)
]

−
r∑
l=0

crl(m
∗
N )r−l ·ΠN

[
(l + 1)N2l+1(ψN,L0 , vL0 , . . . , vL0)

]
+

r∑
l=0

crl
[
(m∗N

2

+ νN )r−l − (m∗N
2

)r−l
]
·ΠN

2
N2l+1(vN

2
).

(3.11)

Remark 3.1. With the above construction, if we let v = limN→∞ vN be

the gauged version of the solution u to (1.1), we then have

(3.12) v = eit∆f(ω) +
∑

(N,L)∈K

ζN,L + z, where z =
∑
N

zN .

This is the ansatz (1.29) in Section 1.3.4, where ζN,L can be viewed as a random

averaging operator PNL, whose kernel is essentially given by hN,L, applied to

the Gaussian free field eit∆f(ω). There are, however, two differences: (1) our

PNL is not exactly the one in (1.26), but an infinite iteration of the latter,

because (1.26) has no smoothing effect; and (2) our PNL is not exactly a Borel

function of (gk)〈k〉≤L as it also depends on m∗N , but as it turns out this does

not affect any probabilistic estimates; see Lemma 4.1.

3.2. The a priori bounds. We now state the local well-posedness result for

(2.5). Its proof will occupy the rest of this section and Sections 4 and 5.

Proposition 3.2. Recall the relevant constants defined in (1.35), and

that τ � 1, J = [−τ, τ ]. Then, τ−1-certainly, i.e., with probability bigger than

or equal to 1− Cθe−τ
−θ
, the following estimates hold for all (N,L) ∈ K:

(3.13)

‖hN,L‖Y b(J) ≤ L−δ0 , ‖hN,L‖Zb(J) ≤ N
1
2

+δ
5
4L−

1
2 , ‖zN‖Xb(J) ≤ N−1+γ .

3.2.1. The extensions. In proving Proposition 3.2 we will restrict zN and

hN,L to J and construct extensions of these restrictions that are defined for all

time. This has to be done carefully so as to maintain the correct independence

properties. We define these extensions inductively, as follows.

First, let z†1(t) := z1(t)χτ (t) and ψ†
N, 1

2

(t) := χ(t)eit∆(∆Nf(ω)), and define

HN, 1
2
,† accordingly. Suppose M ≥ 1 is a dyadic number and that we have

defined z†N for all N ≤M and hN,L,† for all (N,L) ∈ K and L < M . Then for
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L ≤M , we may define

v†L =
∑
L′≤L

y†L′ , where y†L = z†L + χ(t)eit∆(∆Lf(ω)) +
∑

(L,R)∈K

ζ†L,R,

which is acceptable since for (L,R) ∈ K we must have R < L1−δ ≤ M , so

hL,R,† and HL,R,† are well defined, hence ζ†L,R and ψ†L,R can be defined by (3.8)

and (3.10).

Next, for (N,L) ∈ K and L = M , we can define HN,M,† such that for
N
2 < 〈k∗〉 ≤ N and 〈k〉 ≤ N , HN,M,†

kk∗ = ϕ†k is the k-th mode of the solution ϕ†

to the equation

ϕ†(t) = χ(t)eit∆(eik
∗·x)− iχτ (t)

r∑
l=0

(l + 1) crl (m
∗
N )r−l

× IΠNN2l+1

(
ϕ†, v†M , . . . , v

†
M

)
,

(3.14)

provided this solution exists and is unique; otherwise simply define HN,M,† =

HN,M · χτ (t). This defines HN,M,† and hence also hN,M,†, ψ†N,M and ζ†N,M .

Finally we will define z2M . As ψ†2M,L0
is already defined, where L0 ≤ M

is the largest L such that (2M,L) ∈ K, we can define z†2M to be the unique

fixed point of the mapping

z 7→ − iχτ (t)
r∑
l=0

crl (m
∗
2M )r−l · IΠ2M

ß
N2l+1

(
z+ψ†2M,L0

+v†M
)
−N2l+1

(
v†M
)™

+ iχτ (t)
r∑
l=0

(l + 1)crl (m
∗
N )r−l · IΠ2MN2l+1

(
ψ†2M,L0

, v†L0
, . . . , v†L0

)
− iχτ (t)

r∑
l=0

crl
[
(m∗M + ν2M )r−l − (m∗M )r−l

]
· IΠMN2l+1

(
v†M
)

− iχτ (t)
r∑
l=0

crl (m
∗
2M )r−l · I∆2MN2j+1

(
v†M
)

(3.15)

on the set Z = {z : ‖z‖Xb ≤ (2M)−1+γ}, provided that this mapping is a

contraction mapping from Z to itself. If it is not a contraction mapping, then

simply define z†2M = z2M · χτ (t). This completes the inductive construction.

We may then easily verify the following:

• The z†N and hN,L,† we constructed indeed coincide with zN and hN,L on J .

• The z†N is supported in 〈k〉 ≤ N , and hN,L,†kk∗ is supported in 〈k〉 ≤ N and
N
2 < 〈k∗〉 ≤ N .
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• The random variable hN,L,† is B+
≤L measurable, and z†N and hN,L,† are B≤N

measurable.

• All the above are smooth and compactly supported in time t ∈ [−2, 2].

We will prove Proposition 3.2 by induction in M , but in the process we will

need some auxiliary estimates. More precisely, we will prove the following

result, which contains Proposition 3.2.

Proposition 3.3. Recall the relevant constants defined in (1.35), and

that τ � 1. Consider the following statement, which we call Loc(M) for

M ≥ 1: for any (N,L) ∈ K with L < M , we have

‖hN,L,†‖Y b ≤ L−δ0 ,(3.16)

‖hN,L,†‖Zb ≤ N
1
2

+γ0L−
1
2 ,(3.17) ∥∥∥∥Å1 +

|k − k∗|
L

ãκ
hN,L,†kk∗

∥∥∥∥
Zb
≤ N.(3.18)

Define the operators9 (where 0 ≤ l ≤ r)

P+(w) := χτ (t) · IΠN

[
N2l+1(w, v†L, . . . , v

†
L)−N2l+1(w, v†L

2

, . . . , v†L
2

)
]
,

(3.19)

P−(w) := χτ (t) · IΠN

[
N2l+1(v†L, w, v

†
L, . . . , v

†
L)−N2l+1(v†L

2

, w, v†L
2

, . . . , v†L
2

)
]
.

(3.20)

Then for any (N,L) ∈ K as defined in (3.6) with L < M , we have

(3.21) ‖P±‖Xb→Xb ≤ τ θL−δ
1
2
0 .

Let the kernel of P+ be hN,Lkk′ (t, t′). Then for any (N,L) ∈ K with L < M , we

have

(3.22) ‖1|k|,|k′|≥N
4
· hN,Lkk′ (t, t′)‖Zb,b ≤ τ θN

1
2

+γ0−δ3L−
1
2 .

Finally for any N ≤M , we have

(3.23) ‖z†N‖Xb ≤ N−1+γ .

Now suppose that the statement Loc(M) is true for ω ∈ Ξ, where Ξ is a

set. Then the statement Loc(2M) is true for ω ∈ Ξ′ where Ξ′ is another set

such that P(Ξ\Ξ′) ≤ Cθe
−(τ−1M)θ . In particular, apart from a set of ω with

probability ≤ Cθe−τ
−θ

, the statement Loc(M) is true for all M .

9In fact we will prove stronger bounds where the low frequency inputs in (3.19) are replaced

by v†L1
, . . . , v†L2r

with max(Lj) = L, and similarly for (3.20). But for simplicity we will just

write (3.19) and (3.20).
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3.3. The proof of Proposition 3.3: reduction to multilinear estimates. The

heart of the proof of Proposition 3.3 is a collection of (probabilistic) multilinear

estimates for N2l+1. We will state them in Proposition 3.4 below and show that

they imply Proposition 3.3. We leave the proof of Proposition 3.4 to Section 5.

Proposition 3.4. Recall the relevant constants defined in (1.35), and

that τ � 1. Let the multilinear form Nn be as in (2.16), where 1 ≤ n ≤ 2r+1.

We will also consider Nn+1, in which we assume ι1 = +. For each 1 ≤ j ≤ n,

the input function v(j) satisfies one of the following :

(i) Type (G), where we define Lj = 1, and

(3.24) (ṽ(j))kj (λj) = 1Nj/2<〈kj〉≤Nj
gkj (ω)

〈kj〉
χ̂(λj).

(ii) Type (C), where

(3.25) (ṽ(j))kj (λj) =
∑

Nj/2<〈k∗j 〉≤Nj

h
(j)
kjk∗j

(λj , ω)
gk∗j (ω)

〈k∗j 〉
,

with h
(j)
kjk∗j

(λj , ω) supported in the set
{
〈kj〉 ≤ Nj ,

Nj
2 < 〈k∗j 〉 ≤ Nj

}
,

B≤Nj measurable and B+
≤Lj measurable for some Lj ≤ N1−δ

j , and satis-

fying the bounds

(3.26)

‖〈λj〉bh(j)
kjk∗j

(λj)‖`2
k∗j
→`2kjL

2
λj
. L−δ0j , ‖〈λj〉bh(j)

kjk∗j
(λj)‖`2

kj,k
∗
j
L2
λj
. N

1
2

+γ0
j L

− 1
2

j ,∥∥∥∥〈λj〉bÅ1 +
|kj − k∗j |
Lj

ãκ
h

(j)
kjk∗j

(λj)

∥∥∥∥
`2
kj,k
∗
j
L2
λj

. Nj .

(iii) Type (D), where (ṽ(j))kj (λj) is supported in {|kj | . Nj}, and satisfies

(3.27) ‖〈λj〉b(ṽ(j))kj (λj)‖`2kjL2
λj
. N−(1−γ)

j .

In each case, we will assume that derivatives in λj of these functions satisfy

the same bounds. This can always be guaranteed, since in practice everything

will be compactly supported in time.

Assume for n1 ≤ n that v(j) are of type (D) for n1 + 1 ≤ j ≤ n, and of

type (G) or (C) for 1 ≤ j ≤ n1. Let G and C be the sets of j such that v(j)

are of type (G) and (C) respectively, similarly denote by D := {n1 + 1, . . . , n}.
Let N (j) = max(j)(N1, . . . , Nn) as before, and let 1 ≤ a ≤ n be such that

N (1) ∼ Na. Given N∗ ≥ 1, the following hold τ−1N∗-certainly. We emphasize

that the exceptional set of ω removed does not depend on the choice of the

functions vj(j ≥ n1 + 1).
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(1) If a ≥ n1 + 1 (say a = n) and N∗ & N (2), then we have (recall

b1 = b+ δ4)

(3.28) ‖INn(v(1), . . . , v(n))‖Xb1 . τ
−θ(N∗)

Cκ−1
(N (1))−1+γ(N (2))−δ

1
3
0 .

Here the exceptional set does not depend on N (1).

(2) If a ≤ n1 and N∗ & N (1), then we have

(3.29) ‖INn(v(1), . . . , v(n))‖Xb1 . τ
−θ(N∗)

Cκ−1
(N (1)N (2))−

1
2

(1−γ0).

Moreover, if ιa = −, then we have the stronger bound

(3.30) ‖INn(v(1), . . . , v(n))‖Xb1 . τ
−θ(N∗)

Cκ−1
(N (1))−(1−γ0).

Moreover, if ιa = + and N (2) . (N (1))1−δ , then we have stronger bound for

the projected term

(3.31) ‖IΠ⊥
N(1)Nn(v(1), . . . , v(n))‖Xb1 . τ

−θ(N∗)
Cκ−1

(N (1))−(1− 4γ
5

).

(3) Now consider the operator

(3.32) Q+(w) := IΠN0Nn+1(w, v(1), . . . , v(n)),

and let its kernel be hkk′(t, t
′). If N (1) . N1−δ

0 and N∗ & N0, then we have

(3.33) ‖1|k|,|k′|≥N0
4

· hkk′(t, t′)‖Zb1,b . τ
−θ(N∗)

Cκ−1
N

1
2

0 (N (1))−
1
2

+γ0 .

Remark 3.5. The improvement (3.31) is due to the exact projection Π⊥
N(1) .

In fact this implies that in the expression (2.16) there exist some 1 ≤ a ≤ n

and some Γ, namely Γ = (N (1))2 − 1, such that

(3.34) |k|2 ≥ Γ ≥ |ka|2 or |k|2 ≤ Γ ≤ |ka|2, and N (1) ∼ Na.

We call (3.34) the Γ-condition. If we put some other projections in Nn that

also guarantee (3.34), for example ΠMNn(· · · ,Π⊥Mv(a), · · · ) where N (1) ∼ Na,

then the same improvement (3.31) will remain true.

In the proof below we will see that the Γ condition provides the needed

improvements in the case N (1) ∼ Na and ιa = +. This is the reason why

we place ψN,L in the first position of N2l+1 in (3.7). On the other hand, the

term where ψN,L is placed in the second position can be handled using the

improvement (3.30).

Proof of Proposition 3.3 assuming Proposition 3.4. To prove the statement

Loc(2M) we start with (3.21) and (3.22), and we may assume L = M . The

proof for P− in (3.21) is similar, so let us consider P+. Since v†M =
∑

L′≤M y†L′ ,

by definition we can write P+ as a superposition of forms

w 7→ χτ (t) · IΠNN2l+1(w, y†N2
, . . . , y†N2l+1

),
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where max(N2, . . . , N2l+1) = M . As we have the decomposition

(3.35) y†Nj = χ(t)eit∆(∆Njf(ω)) +
∑

Lj :(Nj ,Lj)∈K

ζ†Nj ,Lj + z†Nj ,

by Loc(M) we know that each y†Nj can be decomposed into terms of type (G),

type (C) (corresponding to some Lj . N
1−δ
j ), and type (D). The bound (3.21)

is then a consequence of (2.31) and (3.28), after removing a set of ω with

measure ≤ Cθe
−(τ−1M)θ that is independent of N . Note that by (2.23), the

L = M case of (3.21) is equivalent to

(3.36) ‖hN,M‖Y b,b ≤ τ θM−δ
1
2
0 .

Similarly (3.22) follows from (2.31) and (3.33), because we have

τ b1−bτ−θNCκ−1
N

1
2M−

1
2

+γ0 � τ θN
1
2

+γ0−2δ3M−
1
2

using the fact that M . N1−δ. The set of ω removed here will depend on N ,

but it will have measure ≤ Cθe
−(τ−1N)θ , so summing in N ≥ M we still get a

set of measure ≤ Cθe−(τ−1M)θ .

Next we prove (3.16)–(3.18), again assuming L = M . By (3.21) and

Loc(M) we already know that the right-hand side of (3.14) gives a contraction

mapping in Xb, so (3.14) does have a unique solution. Subtracting equa-

tion (3.14) with M and with M
2 instead of M , we deduce that

(3.37)

hN,M,†
kk∗ (t) = −i

r∑
l=0

(l + 1) crl (m
∗
N )r−l

ß∑
L≤M

∑
k′

∫
dt′ · hN,Lkk′ (t, t′)hN,M,†

k′k∗ (t′)

+
∑
L<M

∑
k′

∫
dt′ · hN,Mkk′ (t, t′)hN,L,†k′k∗ (t′) +

∫
dt′ · hN,Mkk∗ (t, t′)H

N, 1
2
,†

k∗k∗ (t′)

™
,

where hN,Lkk′ (t, t′) is the kernel corresponding to P+ in the (k, k′, t, t′) variables.

Recall that we are already in a set where (3.3) is true, which allows us to control

m∗N . Now by the definition of Y b and Y b,b norms, the statement Loc(M) and

(3.36), we conclude that

‖hN,M,†‖Y b .
∑
L≤M

‖hN,L‖Y b,b · ‖hN,M,†‖Y b+‖hN,M‖Y b,b
Å∑
L<M

‖hN,L,†‖Y b+1

ã
. ‖hN,M,†‖Y b ·

∑
L≤M

τ θL−δ
1
2
0

+
∑
L<M

τ θM−δ
1
2
0 L−δ0 . τ θ‖hN,M,†‖Y b + τ θM−δ

1
2
0 ,
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which implies (3.16) as desired. In the same way we can prove (3.18) by using

(2.26), noting that fihN,L is supported in |k − k′| . L.

As for (3.17), recall that for‹Hkk∗(λ) =
∑
k′

∫
dλ′ · hkk′(λ, λ′)hk′k∗(λ′)

we have, by definition of the relevant norms, that

‖H‖l2
k,k∗L

2
λ
≤ min(‖h‖l2

k,k′L
2
λ,λ′
‖h‖`2

k∗→`
2
k′L

2
λ′
, ‖h‖l2

k,k′→L
2
λ,λ′
‖h‖`2

k′,k∗L
2
λ′

).

Now in (3.37) we may assume |k−k∗| ≤ 2−10N and |k′−k∗| ≤ 2−10N (otherwise

the bound follows trivially from (3.18) which we just proved) so, in particular,

|k|, |k′| ≥ N
4 as |k∗| ≥ N

2 . Using the statement Loc(M) and (3.22) we get

‖hN,M,†‖Zb .
∑
L≤M

‖hN,L‖Y b,b · ‖hN,M,†‖Zb

+ ‖1|k|,|k′|≥N
4
· hN,Mkk′ (t, t′)‖Zb,b

Å∑
L<M

‖hN,L,†‖Y b + 1

ã
. ‖hN,M,†‖Zb ·

∑
L≤M

τ θL−δ
1
2
0 +

∑
L<M

τ θN
1
2

+γ0−δ3M−
1
2L−δ0

. τ θ‖hN,M,†‖Y b + τ θN
1
2

+γ0−δ3M−
1
2 ,

which proves (3.17).

Finally we prove (3.23) with L = 2M , by showing that the mapping

defined in (3.15) is indeed a contraction mapping from the given set Z = {z :

‖z‖Xb ≤ (2M)−1+γ} to itself. Actually we will only prove that this mapping

sends Z to Z, as the difference estimate is done in the same way.

We will separate the right-hand side of (3.15) into six groups, each of

which has the form

χτ (t) · (m∗2M )r−lIΠ2MN2l+1(v(1), . . . , v(2l+1)),

where

(a) at least two of the v(j) are equal to z + ψ†2M,L0
, and others are either

z + ψ†2M,L0
or v†M ;

(b) we have v(2) = ψ†2M,L0
, and all others equal v†M ;

(c) one of v(1) or v(2) equals z, and all others equal v†M ;

(d) we have v(1) = ψ†2M,L0
, another v(j) equals v†M − v

†
L0

, and all others equal

either v†M or v†L0
;

(e) the factor (m∗2M )r−l is replaced by (m∗M + ν2M )r−l− (m∗M )r−l and all v(j)

equal v†M ;

(f) same as (a), but with ∆2M instead of Π2M , and all v(j) equal v†M .
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By (2.31), it suffices to prove that each of these terms in (a) through (f),

but without the χτ (t) factor, is bounded in Xb1 by τ−θ(2M)−1+γ . Let one

such term be denoted by M, and notice that we can decompose

v†M =
∑
L≤M

y†L, v†L0
=
∑
L≤L0

y†L, vM − vL0 =
∑

L0<L≤M
y†L,

ψ†2M,L0
= χ(t)eit∆(∆2Mf(ω)) +

∑
L≤L0

ζ2M,L.

Moreover, by what we have proved so far, we know that y†L for L ≤M can be

decomposed into terms of types (G), (C) and (D), and that χ(t)eit∆(∆2Mf(ω))

is of type (G), ζ2M,L is of type (C), and z is of type (D). By such decomposition

we can reduceM to the terms studied in Proposition 3.4, with various choices

of Nj and Lj . We now proceed case by case.

Case (a): Here we have at least two inputs v(j) with Nj = 2M , so by

either (3.28) or (3.29) we can bound

‖M‖Xb1 . τ
−θ(2M)−1+γ0+Cκ−1

by removing a set of measure ≤ Cθe−(τ−1M)θ , which suffices.

Case (b): Here we have v(2) = N (1) = 2M , while ι2 = −. By (3.30) we

have the same bound as above.

Case (c): This term, with the χτ (t) factor, can be written as∑
L≤M

P±L (z),

where P±L are defined as in (3.19) and (3.20). (Such expressions can be defined

even if (2M,L) 6∈ K, and we use subscript L to indicate L dependence.) If

L ≤ L0, then by (3.21) we can bound

‖χτ (t) · M‖Xb ≤ (2M)−1+γ
∑
L≤L0

τ θL−δ
1
2
0 . τ θ(2M)−1+γ ,

which suffices. Note that here no further set of ω needs to be removed. If

L > L0, then this term can be bounded in the same way as in case (d) below,

by removing a set of measure ≤ Cθe−(τ−1M)θ .

Case (d): Here we have, due to the factor v†M − v
†
L0

, that N (1) = 2M and

N (2) &M1−δ; so by either (3.28) or (3.29), we can bound

‖M‖Xb1 . τ
−θM−1+ δ

2
+Cγ0

by removing a set of measure ≤ Cθe−(τ−1M)θ , which suffices.
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Case (e): The bound for this term follows from the bound for ν2M and

the trivial bound (say (3.28) or (3.29)) for the N2l+1 term.

Case (f): We may assume N (1) = Na ∼M . If either v(a) is of type (D) or

N (2) & M1−δ or ιa = −, we can reduce to one of the previous cases (namely

(c) or (d) or (b)) and close as before; if v(a) is of type (G) or (C), ιa = + and

N (2) � M1−δ, then the ∆2M projection allows us to apply the improvement

(3.31), which leads to

‖M‖Xb1 . τ
−θM−1+ 4

5
γ+Cκ−1

by removing a set of measure ≤ Cθe
−(τ−1M)θ , which suffices. This completes

the proof. �

4. Large deviation and counting estimates

Proposition 3.4 will be proved in Section 5. In this section we make some

preparations for the proof, namely we introduce two large deviation estimates

and some counting estimates for integer lattice points.

4.1. Large deviation estimates. We first prove the following large devia-

tion estimate for multilinear Gaussians, which as far as we know is new.

Lemma 4.1. Let E ⊂ Z2 be a finite subset, and let B be the σ-algebra

generated by {gk : k ∈ E}. Let C be a σ-algebra independent with B, and let

C+ be the smallest σ-algebra containing both C and the σ-algebra generated by

{|gk|2 : k ∈ E}. Consider the expression

(4.1) F (ω) =
∑

(k1,...,kn)∈En
ak1···kn(ω)

n∏
j=1

gkj (ω)ιj ,

where n ≤ 2r + 1, ιj ∈ {±} and the coefficients ak1···kn(ω) are C+ measurable.

Let A ≥ #E. Then A-certainly we have

(4.2) |F (ω)| ≤ AθM(ω)
1
2 ,

where

(4.3) M(ω) =
∑

(X,Y )

∑
(km):m6∈X∪Y

Å ∑
pairing (kis ,kjs ):1≤s≤p

|ak1···kn(ω)|
ã2

.

In the summation (4.3) we require that all kj ∈ E, and that X := {i1, . . . , ip}
and Y := {j1, . . . , jp} are two disjoint subsets of {1, 2, . . . , n}. Recall also the

definition of pairing in Definition 1.10.
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Proof. Write in polar coordinates gk(ω) = ρk(ω)ηk(ω) where ρk = |gk| and

ηk = ρ−1
k gk. Then all the ρk and ηk are independent, and each ηk is uniformly

distributed on the unit circle of C. We may write

(4.4)

F (ω) =
∑

(k1,...,kn)∈En
bk1···kn(ω)

n∏
j=1

ηkj (ω)ιj , bk1···kn(ω) := ak1···kn(ω)
n∏
j=1

ρkj (ω).

Since ak1···kn(ω) are C+ measurable, we know that the collection {bk1···kn} is

independent with the collection {ηk : k ∈ E}. The goal is to prove that

(4.5) P(|F (ω)| ≥ BM1(ω)
1
2 ) ≤ Ce−B1/n

,

where C is an absolute constant, and M1(ω) is the same as M(ω) but with the

coefficients a replaced by the coefficients b. In fact, as A ≥ #E, we have

A-certainly that |bk1···kn(ω)|≤Aθ|ak1···kn(ω)|, so (4.5) implies the desired bound.

We now prove (4.5). By independence, we may condition on the σ-algebra

generated by {bk1···kn} and prove (4.5) for the conditional probability, and then

take another expectation; therefore we may assume that bk1···kn are constants

(so M1(ω) = M1 is a constant). Now let {hk : k ∈ E} be another set of

independent and identically distributed normalized complex Gaussian random

variables, and define

(4.6) G =
∑

(k1,...,kn)∈En
|bk1···kn |

n∏
j=1

h
ιj
kj
.

We want to compare F and G and show E|F |2d ≤ E|G|2d for any positive

integer d. In fact,

E(|F |2d) =
∑

(kij ,`
i
j :1≤i≤d,1≤j≤n)

d∏
i=1

bki1···kinb`i1···`inE
Å d∏
i=1

n∏
j=1

η
ιj
kij
η
ιj
`ij

ã
,(4.7)

E(|G|2d) =
∑

(kij ,`
i
j :1≤i≤d,1≤j≤n)

d∏
i=1

|bki1···kin ||b`i1···`in |E
Å d∏
i=1

n∏
j=1

h
ιj
kij
h
ιj
`ij

ã
.(4.8)

The point is that we always have∣∣∣∣EÅ d∏
i=1

n∏
j=1

η
ιj
kij
η
ιj
`ij

ã∣∣∣∣ ≤ ReE
Å d∏
i=1

n∏
j=1

h
ιj
kij
h
ιj
`ij

ã
.

In fact, by collecting all different factors we can write the expectations as

E
Å∏

α

(ηk(α))
xα(ηk(α))

yα

ã
and E

Å∏
α

(hk(α))
xα(hk(α))

yα

ã
,
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where the k(α) are pairwise distinct. If xα 6= yα for some α, both expectations

will be 0; if xα = yα for each α, then the first expectation will be 1 and the

second expectation will be
∏
α xα! ≥ 1.

Now, since G is an exact multilinear Gaussian expression, by the standard

hypercontractivity estimate (see [69]), we have

E|F |2d ≤ E|G|2d ≤ (2d− 1)nd(E|G|2)d,

so for any D > 0 by using Chebyshev’s inequality and optimizing in d, we have

P(|F (ω)| ≥ D) ≤ min
d

ß
(2d− 1)nd

Å
E|G|2

D2

ãd ™
≤ C exp

{
−1

2e

Å
D2

E|G|2

ã 1
n

}
with some constant C depending only on n. It then suffices to prove E|G|2 .
M1 with constants depending only on n.

By dividing the sum (4.6) into finitely many terms and rearranging the

subscripts, we may assume

k1 = · · · = kj1 , kj1+1 = · · · = kj2 , . . . , kjr−1+1 = · · · = kjr , 1 ≤ j1 < · · · < jr=n,

and the kjs are different for 1 ≤ s ≤ r. Such a monomial that appears in (4.6)

has the form
r∏
s=1

hβskjs
(hkjs )

γs , βs + γs = js − js−1 (j0 = 0),

where the factors for different s are independent. We may also assume βs = γs
for 1 ≤ s ≤ q and βs 6= γs for q + 1 ≤ s ≤ r, and that ιj has the same sign as

(−1)j for 1 ≤ j ≤ jq. Then we can further rewrite this monomial as a linear

combination of
p∏
s=1

βs!

q∏
s=p+1

(|hkjs |
2βs − βs!)

r∏
s=q+1

hβskjs
(hkjs )

γs

for 1 ≤ p ≤ q. Thus, G is a finite linear combination of expressions of the form∑
kj1 ,...,kjr

|bkj1 ,...,kj1 ,...,kjr ,···kjr |
p∏
s=1

βs!

q∏
s=p+1

(|hkjs |
2βs − γs!)

r∏
s=q+1

hβskjs
(hkjs )

γs .

Due to independence and the fact that E(|h|2β − β!) = E(hβ(h)γ) = 0 for a

normalized Gaussian h and β 6= γ, we conclude that

E|G|2 .
∑

kjp+1
,···kjr

Å ∑
kj1 ,...,kjp

|bkj1 ,...,kj1 ,...,kjr ,···kjr |
ã2

,

which is bounded by M1 choosing X = {1, 3, . . . , jp−1} and Y = {2, 4, . . . , jp},
since by our assumptions (k2i−1, k2i) is a pairing for 2i ≤ jp. This completes

the proof. �
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For the purpose of Section 5 we will also need the following lemma, which

is a more general large deviation-type estimate restricted to the no-pairing case.

Lemma 4.2. Let δ be as in Section 1.5, let n ≤ 2r + 1, and consider the

following expression :

M(ω) =
∑

(k1,...,kn)

∑
(k∗1 ,...,k

∗
n)

∫
dλ1 · · · dλn · ak1···kn(λ1, . . . , λn)

·
n∏
j=1

gk∗j (ω)ιjh
(j)
kjk∗j

(λj , ω)±,

(4.9)

where ak1···kn(λ1, . . . , λn) is a given (deterministic) function of (k1, . . . , kn) and

(λ1, . . . , λn). Moreover, in the summation we assume that there are no pairings

among {k∗1, . . . , k∗n}, that 〈kj〉≤Nj and
Nj
2 < 〈k∗j 〉≤Nj , and that h

(j)
kjk∗j

(λj , ω),

as a random variable, is B+

≤N1−δ
j

measurable. Let N∗≥max(N1, . . . , Nn). Then

N∗-certainly (the exceptional set removed will depend on the coefficients a) we

have

(4.10) |M(ω)| . (N∗)
θ

n∏
j=1

‖h(j)
kjk∗j

(λj , ω)‖`2
k∗j
→`2kjL

2
λj
· ‖ak1···kn(λ1, · · ·λn)‖L,

where L is an auxiliary norm defined (where ∂λ = (∂λ1 , . . . , ∂λn)) by

(4.11)

‖ak1···kn(λ1, · · ·λn)‖2L :=
∑

k1,···kn

∫
dλ1 · · · dλn ·

(
max

1≤j≤n
〈λj〉

)δ6
(|a|2 + |∂λa|2).

Proof. Consider the big box {|λj | ≤ (N∗)
δ−7}, and divide it into small

boxes of size (N∗)
−δ−1

. By exploiting the weight (max1≤j≤n〈λj〉)δ
6

in (4.11)

and using Poincaré’s inequality, we can find a function b that is supported in

the big box and is constant on each small box, such that

(4.12) sup
kj ,k∗j

‖a− b‖L2
λ1,...,λn

. (N∗)
−δ−1‖a‖L.

Exploiting this (N∗)
−δ−1

gain, summing over |kj |, |k∗j | . N∗ and using the

simple bound

sup
kj ,k∗j

∣∣∣∣ ∫ dλ1 · · · dλn · ak1···kn(λ1, . . . , λn)
n∏
j=1

h
(j)
kjk∗j

(λj)
±
∣∣∣∣

. sup
kj ,k∗j

‖a‖L2
λ1,...,λn

n∏
j=1

sup
kj ,k∗j

‖h(j)
kjk∗j

(λj)‖L2
λj

suffices to bound the contribution with a replaced by a− b; thus we may now

replace a by b (or equivalently, assume a is supported in the big box and is
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constant on each small box) and will prove (4.10) N∗-certainly, with the L
norm replaced by the l2L2 norm, by induction.

By symmetry we may assume N1 ≥ · · · ≥ Nn. Choose the smallest q such

that Nq > 210Nq+1. Then N1 ∼ Nq with constant depending only on n. Unless

N1 ≤ C, in which case (4.10) is trivial, we can conclude that

h
(j)
kjk∗j

(λj , ω)±, 1 ≤ j ≤ n, are B+

≤N1−δ
1

measurable; N1−δ
1 ≤ 2−10Nq,

gk∗j (ω)±, q + 1 ≤ j ≤ n, are B≤Nq+1 measurable; Nq+1 ≤ 2−10Nq.

Note that in this case, there is no pairing among {k∗1, . . . , k∗n} if and only if

there is no pairing among {k∗1, . . . , k∗q} and no pairing among {k∗q+1, . . . , k
∗
n}.

We can then write M(ω) as

(4.13) M(ω) =
∑

k∗1 ,...,k
∗
q

bk∗1 ···k∗q (ω) ·
q∏
j=1

gk∗j (ω)ιj ,

where

bk∗1 ···k∗q (ω) =
∑

k1,...,kq

∫
dλ1 · · · dλq

q∏
j=1

h
(j)
kjk∗j

(λj , ω)±

×
∑

(kq+1,···kn)

∑
(k∗q+1,...,k

∗
n)

∫
dλq+1 · · · dλn · ak1···kn(λ1, . . . , λn)

×
n∏

j=q+1

gk∗j (ω)ιjh
(j)
kjk∗j

(λj , ω)±

(4.14)

are B+
≤2−10Nq

measurable. We then apply Lemma 4.1 and conclude that, after

removing a set of ω with probability ≤ Cθe−(N∗)θ , we have

(4.15) |M(ω)|2 . (N∗)
θ
∑

k∗1 ,···k∗q

|bk∗1 ···k∗q (ω)|2.

Now by (4.14) we have∑
k∗1 ,···k∗q

|bk∗1 ···k∗q (ω)|2 .
q∏
j=1

‖h(j)
kjk∗j

(λj , ω)‖2`2→`2L2

∑
k1,...,kq

∫
dλ1 · · · dλq

×
∣∣∣∣ ∑

(kq+1,···kn)

∑
(k∗q+1,...,k

∗
n)

∫
dλq+1 · · · dλn · ak1···kn(λ1, . . . , λn)

×
n∏

j=q+1

gk∗j (ω)ιjh
(j)
kjk∗j

(λj , ω)±
∣∣∣∣2;

(4.16)
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by induction hypothesis, we get that∣∣∣∣ ∑
(kq+1,···kn)

∑
(k∗q+1,...,k

∗
n)

∫
dλq+1 · · · dλnak1···kn(λ1, . . . , λn)

×
n∏

j=q+1

gk∗j (ω)ιjh
(j)
kjk∗j

(λj , ω)±
∣∣∣∣2

. (N∗)
θ

n∏
j=q+1

‖h(j)
kjk∗j

(λj , ω)‖2`2
k∗j
→`2kjL

2
λj

×
∑

kq+1,···kn

∫
dλq+1 · · · dλn · |ak1···kn(λ1, . . . , λn)|2,

(4.17)

up to a set of ω with probability ≤ Cθe
−(N∗)θ , for any fixed (kj , λj) for 1 ≤

j ≤ q. By our assumption on the coefficients a, the function

(kq+1, . . . , kn, λq+1, . . . , λn) 7→ ak1···kn(λ1, . . . , λn),

which depends on the parameters (kj , λj) for 1 ≤ j ≤ q, has only (N∗)
Cδ−7

different possibilities, so by removing a set of ω with probability ≤ Cθe−(N∗)θ ,

we may assume (4.17) holds for all (kj , λj), 1 ≤ j ≤ q. Thus we can sum (4.17)

over kj and integrate over λj , and combine with (4.15) and (4.16) to get that

|M(ω)|2 . (N∗)
θ

n∏
j=1

‖h(j)
kjk∗j

(λj , ω)‖2`2
k∗j
→`2kjL

2
λj

×
∑

k1,...,kn

∫
dλ1 · · · dλn · |ak1···kn(λ1, . . . , λn)|2.

(4.18)

This completes the proof. �

Remark 4.3. In the proof of Lemma 4.2 above, the first step involves ap-

proximating the function a by another function b that is supported in a big box

of size (N∗)
δ−7

and is constant in each small box of size (N∗)
−δ−1

. This reduces

the infinitely many choices for the λj variables to essentially at most (N∗)
2δ−7

choices, which allows us to bound the probability of the tail event in question

by Cθe
−(N∗)θ . This trick, which we refer to as the meshing argument, will be

used frequently below (especially in Section 5) without further explanation.

4.2. Counting estimates for lattice points. We start with a simple lemma

and then state the main integer lattice point counting bounds that will be used

in the proof below.
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Lemma 4.4. (1) Let R = Z or Z[i]. Then, given 0 6= m ∈ R, and

a0, b0 ∈ C, the number of choices for (a, b) ∈ R2 that satisfy

(4.19) m = ab, |a− a0| ≤M, |b− b0| ≤ N

is O(M θN θ) with constant depending only on θ > 0.

(2) Given dyadic numbers N1 & N2 & N3, consider the set

(4.20)

S =
{

(x, y, z) ∈ (Z2)3 : ι1x+ ι2y + ι3z = d, ι1|x|2 + ι2|y|2 + ι3|z|2 = α,

|x− a| . N1, |y − b| . N2, |z − c| . N3

}
.

Assume also there is no pairing in S. Then, uniformly in (a, b, c, d) ∈ (Z2)4

and α ∈ Z, we have #S . N1+θ
2 N3. Moreover, if ι1 = ι2, then we have the

stronger bound #S . N θ
2N

2
3 .

Proof. (1) This strengthened divisor estimate is essentially proved in [28,

Lemma 3.4]. We know that R has unique factorization and satisfies the stan-

dard divisor estimate, namely the number of divisors of 0 6= m ∈ R is O(|m|θ).
Now suppose max(|a0|,M) ≥ max(|b0|, N); then |m| . max(|a0|,M)2. We

may assume M1 ∼ |a0| �M4, and hence |m| .M2
1 .

We then claim that the number of divisors a ofm that satisfies |a−a0| ≤M
is at most two. In fact, suppose a, b, c are different divisors of m that belong

to the ball |x−a0| ≤M . Then by unique factorization, we have lcm(a, b, c)|m,

hence
abc

gcd(a, b) gcd(b, c) gcd(c, a)

divides m. As |a| ∼ M1 etc., and | gcd(a, b)| ≤ |a − b| . M etc., we conclude

that

M2
1 & |m| ≥

∣∣∣∣ abc

gcd(a, b) gcd(b, c) gcd(c, a)

∣∣∣∣ &M3
1M

−3,

contradicting the assumption M1 �M4.

(2) Let x = (x1, x2), etc. If ι1 = ι2, then with fixed z (which has O(N2
3 )

choices), x+ y will be constant. Let x− y = w. Then

(w1 + iw2)(w1 − iw2) = |w|2 = 2(|x|2 + |y|2)− |x+ y|2

is constant. As w belongs to a ball of radius O(N2) in R2, by (1) we know that

the number of choices for w is O(N θ
2 ), hence #S = O(N θ

2N
2
3 ). Below we will

assume that ι1 = + and ι2 = −.

(a) Suppose ι3 = +. Then we have that

(d1 − z1)(z1 − y1) + (d2 − z2)(z2 − y2) = (d− z) · (z − y) =
|d|2 − α

2
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is constant. If (d1 − z1)(z1 − y1) 6= 0 (or similarly if (d2 − z2)(z2 − y2) 6= 0),

then with fixed (y2, z2) (which has O(N2N3) choices), (d1 − z1)(z1 − y1) will

be constant. As d1 − z1 belongs to an interval of size O(N3) in R, and z1 − y1

belongs to an interval of size O(N2) in R, by (1) we know that the number of

choices for (y1, z1) is O(N θ
2 ), so #S . N θ

2N2N3.

If (d1− z1)(z1− y1) = 0 and (d2− z2)(z2− y2) = 0, as there is no pairing,

we may assume that d1 = z1 and z2 = y2 (or z1 = y1 and d2 = z2, which is

treated similarly), so z1 = d1 and x2 = d2 are fixed, z2 has O(N3) choices and

x1 = y1 has O(N2) choices, which implies #S . N2N3.

(b) Suppose ι3 = −. Then similarly we have that

(d1 + z1)(d1 + y1) + (d2 + z2)(d2 + y2) = (d+ z) · (d+ y) =
|d|2 + α

2

is constant. If (d1 + z1)(d1 + y1) 6= 0 (or similarly if (d2 + z2)(d2 + y2) 6= 0),

then with fixed (y2, z2) (which has O(N2N3) choices), (d1 + z1)(d1 + y1) will

be constant. As d1 + z1 belongs to an interval of size O(N3) in R, and d1 + y1

belongs to an interval of size O(N2) in R, by (1) we know that the number of

choices for (y1, z1) is O(N θ
2 ), so #S . N θ

2N2N3.

If (d1 + z1)(d1 + y1) = 0 and (d2 + z2)(d2 + y2) = 0, as there is no pairing,

we may assume that d1 + z1 = 0 and d2 + y2 = 0 (or d2 + z2 and d1 + y1 = 0,

which is treated similarly), so z1 = −d1 and y2 = −d2 are fixed, z2 has O(N3)

choices and y1 has O(N2) choices, which implies #S . N2N3. �

Proposition 4.5. Recall the relevant constants defined in (1.35). The

following bounds are uniform in all parameters. Given d, d′, k0 ∈ Z2 and k0
j ∈

Z2 with 1 ≤ j ≤ n, let α,Γ ∈ R, ι, ιj ∈ {+1,−1} for 1 ≤ j ≤ n, and 2p ≤ n.

Also, let dyadic numbers M,Nj (for 0 ≤ j ≤ n) and Ri (for 1 ≤ i ≤ p) be such

that for 1 ≤ i ≤ p, we have

N2i−1 ∼ N2i, ι2i−1 = −ι2i, and Ri . N
1−δ
2i−1.

Let N (j) = max(j)(N1, . . . , Nn), NPR = max(N1, . . . , N2p) and N∗ &
max(N0, N

(1)). Also fix a subset A of {1, . . . , n} that contains {1, . . . , 2p},
and recall the definition of the Γ-condition (3.34). Consider the sets

S1 =

ß
(k, k1, . . . , kn) ∈ (Z2)n+1 :

n∑
j=1

ιjkj = k + d,
n∑
j=1

ιj |kj |2 = |k|2 + α,

|kj − k0
j | . Nj (1 ≤ j ≤ n), |k2i−1 − k2i| . Ri(N∗)Cκ

−1
(1 ≤ i ≤ p)

™
,

(4.21)
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S2 =

ß
(k, k′, k1, . . . , kn) ∈ (Z2)n+2 : ιk′ +

n∑
j=1

ιjkj = k + d,

ι|k′|2+
n∑
j=1

ιj |kj |2 = |k|2 + α, |k|, |k′|.N0, |kj − k0
j |.Nj (1 ≤ j ≤ n),

k2i−1 − k2i| . Ri(N∗)Cκ
−1

(1 ≤ i ≤ p)
™
,

(4.22)

S+ =

ß
(k, k1, . . . , kn) ∈ (Z2)n+1 and

(k, k′, k1, . . . , kn) ∈ (Z2)n+2 :
∑
j∈A

ιjkj = d′
™
,

(4.23)

S3 =

ß
(k, k1, . . . , kn) ∈ (Z2)n+1 :

n∑
j=1

ιjkj = k + d,

∣∣∣∣|k|2 − n∑
j=1

ιj |kj |2 − α
∣∣∣∣ .M, |k| . N0, |kj | . Nj (1 ≤ j ≤ n),

|k2i−1 − k2i| . Ri(N∗)Cκ
−1

(1 ≤ i ≤ p), and (3.34) holds

™
.

(4.24)

Assume that there is no pairing among the variables k, k′ and kj in the

sets above. Let S+
j = Sj ∩ S+. Then for S1, we have

(4.25) (#S1) ·
p∏
i=1

N1+2γ0
2i−1

Ri
. (NPR)2γ0(N∗)

Cκ−1
(N (1)N (2))−1

n∏
j=1

N2
j .

If N (1) ∼ Na and ιa = −, then we have

(4.26) (#S1) ·
p∏
i=1

N1+2γ0
2i−1

Ri
. (NPR)2γ0(N∗)

Cκ−1
(N (1))−2

n∏
j=1

N2
j .

For S2 and S3, we have

(4.27) (#S2) ·
p∏
i=1

N1+2γ0
2i−1

Ri
. (NPR)2γ0(N∗)

Cκ−1
N0(N (1))−1

n∏
j=1

N2
j ,

(4.28)

(#S3) ·
p∏
i=1

N1+2γ0
2i−1

Ri
. (NPR)2γ0(N∗)

Cκ−1
M

max((N (2))2, |α|)
(N (2))2

(N (1))−2
n∏
j=1

N2
j .
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Finally, suppose we replace any of these Sj by the set S+
j . Then (4.25)–

(4.27) hold with the right-hand side multiplied by an extra factor

(4.29)
[

min
(
N (2), max

j∈A,j≥2p+1
Nj

)]−1
.

If N (1) ∼ Na and a ∈ A, then the stronger bound (4.26) holds for S+
1 with

the right-hand side multiplied by an extra factor (4.29), regardless of whether

ιa = − or not. If N (1) ∼ Na and 2p+1 ≤ a ∈ A, then (4.27) holds for S+
2 with

the right-hand side multiplied by an extra factor (N (1))−1. As for S+
3 , either

it satisfies (4.28) with the same extra factor (4.29), or it satisfies

(4.30) (#S+
3 ) ·

p∏
i=1

N1+2γ0
2i−1

Ri
. (N∗)

Cκ−1
M(NPR)2γ0 min

Å
max((N (2))2, |α|)

(N (1)N (2))2

×
( (2)

max{Nj : 2p+ 1 ≤ j ∈ A}
)−1

, (N (1))−1(N (2))−2

ã n∏
j=1

N2
j .

Proof. Let a, b, c be such that N (1) ∼ Na, N
(2) ∼ Nb, and max({Nj :

2p + 1 ≤ j ∈ A}) ∼ Nc. In the proof below any factor that is . (N∗)
Cκ−1

will be negligible, so we will pretend they are 1. For simplicity, let us first also

ignore all N2γ0
2i−1 factors; at the end of the proof we will explain how to put

them back.

(1) We start with (4.25). If a, b ≥ 2p + 1, we may fix all kj(j 6∈ {a, b}),
and then apply Lemma 4.4(2) to count the triple (k, ka, kb). This gives

(4.31) (#S1)

p∏
i=1

N2i−1

Ri
.
Å p∏
i=1

N3
2i−1Ri

∏
2p+1≤j 6∈{a,b}

N2
j

ã
NaNb,

which proves (4.25) as Rj . N1−δ
2j−1. If a ≥ 2p + 1 and b ≤ 2p (say b = 1), we

may fix all kj (j 6∈ {1, a}), and then apply Lemma 4.4(2) to count the triple

(k, k1, ka), noticing that k1 belongs to a disc of radius O(R1(N∗)
Cκ−1

) once k2

is fixed. This gives

(4.32) (#S1)

p∏
i=1

N2i−1

Ri
.
Å
N2

1

p∏
i=2

N3
2i−1Ri

∏
2p+1≤j 6=a

N2
j

ã
NaR1

N1

R1
,

which proves (4.25). Finally, if a ≤ 2p (say a = 1), then we may assume b = 2.

We may fix all kj(j ≥ 3), and then apply Lemma 4.4(2) to count the triple

(k, k1, k2), noticing that k belongs to a disc of radius O(R1(N∗)
Cκ−1

) once all

kj(j ≥ 3) are fixed. This gives

(4.33) (#S1)

p∏
i=1

N2i−1

Ri
.
Å p∏
i=2

N3
2i−1Ri

∏
j≥2p+1

N2
j

ã
N1R1

N1

R1
,

which proves (4.25).
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As for (4.26) and (4.27) we only need to consider a. If a ≥ 2p+ 1, we may

fix all kj(j 6= a), and then apply Lemma 4.4(2) to count the pair (k, ka) for

(4.26) (using the fact ιa = −) and the triple (k, k′, ka) for (4.27). Then we get

(4.34) (#S1)

p∏
i=1

N2i−1

Ri
.
Å p∏
i=1

N3
2i−1Ri

∏
2p+1≤j 6=a

N2
j

ã
,

(4.35) (#S2)

p∏
i=1

N2i−1

Ri
.
Å p∏
i=1

N3
2i−1Ri

∏
2p+1≤j 6=a

N2
j

ã
N0Na,

which proves (4.26) and (4.27). If a ≤ 2p (say a = 1), we may assume b = 2 —

in particular, N (1) ∼ N (2) and (4.26) follows from (4.25); for (4.27), we may

fix all kj(j ≥ 2) and then apply Lemma 4.4(2) to count the triple (k, k′, k1),

noticing that k1 belongs to a disc of radius O(R1(N∗)
Cκ−1

) once k2 is fixed.

Then we get

(4.36) (#S2)

p∏
i=1

N2i−1

Ri
.
Å
N2

1

p∏
i=2

N3
2i−1Ri

∏
j≥2p+1

N2
j

ã
N0R1

N1

R1
,

which proves (4.27).

(2) Next we prove the improvements to (4.25)–(4.27) for S+
j . We start

with (4.25). If a, b 6∈ A, we may fix all kj(c 6= j ∈ A) and apply (4.25) to the

rest variables and get

(4.37) (#S+
1 )

p∏
i=1

N2i−1

Ri
. (NaNb)

−1
∏
j 6∈A

N2
j

p∏
i=1

N3
2i−1Ri

∏
j∈A,c6=j≥2p+1

N2
j ,

which gains a factor N−2
c upon (4.25). If a 6∈ A and 2p + 1 ≤ b ∈ A, we may

fix all kj(b 6= j ∈ A) and apply (4.25) to the rest variables and get

(4.38) (#S+
1 )

p∏
i=1

N2i−1

Ri
. N−1

a

∏
j 6∈A

N2
j

p∏
i=1

N3
2i−1Ri

∏
j∈A,b 6=j≥2p+1

N2
j ,

which gains a factor N−1
b upon (4.25). If a 6∈ A and b ≤ 2p (say b = 1),

we may fix all kj(2 ≤ j 6= a), noticing that kc belongs to a ball of radius

min(Nc, R1(N∗)
Cκ−1

) once all kj(3 ≤ j 6∈ {a, c}) are fixed. We then apply

Lemma 4.4(2) to count the pair (k, ka). Then we get

(4.39)

(#S+
1 )

p∏
i=1

N2i−1

Ri
.
Å
N2

1 min(N2
c , R

2
1)

p∏
i=2

N3
2i−1Ri

∏
2p+1≤j 6∈{a,c}

N2
j

ã
Na

N1

R1
,

which gains a factor N−1
c upon (4.25).
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Now if 2p+ 1 ≤ a ∈ A and either b 6∈ A or 2p+ 1 ≤ b ∈ A, we may fix all

kj(j 6∈ {a, b}) and apply Lemma 4.4(2) to count the pair (k, kb) (if b 6∈ A) or

(ka, kb) (if 2p+ 1 ≤ b ∈ A). Then we get

(4.40) (#S+
1 )

p∏
i=1

N2i−1

Ri
.
Å p∏
i=1

N3
2i−1Ri

∏
2p+1≤j 6∈{a,b}

N2
j

ã
Nb,

which gains a factor N−1
b upon the stronger bound (4.26). If 2p+1 ≤ a ∈ A and

b ≤ 2p (say b = 1), we may fix all kj(j 6∈ {a, 1, 2}) and apply Lemma 4.4(2)

to count the triple (ka, k1, k2), noticing that ka belongs to a disc of radius

O(R1(N∗)
Cκ−1

) once all kj(j 6∈ {a, 1, 2}) are fixed. Then we get

(4.41) (#S+
1 )

p∏
i=1

N2i−1

Ri
.
Å p∏
i=2

N3
2i−1Ri

∏
2p+1≤j 6=a

N2
j

ã
N1R1

N1

R1
,

which gains a factor N−2
b upon the stronger bound (4.26). Finally, if a ≤ 2p

(say a = 1), then we may assume b = 2. We may fix all kj(j ≥ 3), noticing

that kc belongs to a disc of radius min(Nc, R1(N∗)
Cκ−1

) once all kj(3 ≤ j 6= c)

are fixed, and then apply Lemma 4.4(2) to count the pair (k1, k2). This gives

(4.42) (#S+
1 )

p∏
i=1

N2i−1

Ri
.
Å

min(Nc, R1)2
p∏
i=2

N3
2i−1Ri

∏
2p+1≤j 6=c

N2
j

ã
N1

N1

R1
,

which gains a factor N−1
c upon the stronger bound (4.26).

As for (4.26) and (4.27) we only need to consider a. If a 6∈ A, we may fix

all kj(c 6= j ∈ A) and apply (4.26) (if ιa = −) or (4.27) to the rest variables.

Then we get

(4.43) (#S+
1 )

p∏
i=1

N2i−1

Ri
. N−2

a

∏
j 6∈A

N2
j

p∏
i=1

N3
2i−1Ri

∏
j∈A,c6=j≥2p+1

N2
j ,

(4.44) (#S+
2 )

p∏
i=1

N2i−1

Ri
. N0N

−1
a

∏
j 6∈A

N2
j

p∏
i=1

N3
2i−1Ri

∏
j∈A,c6=j≥2p+1

N2
j ,

which gains a factor N−2
c upon (4.26) or (4.27). If a ∈ A, then (4.26) follows

from the above proof for (4.25); for (4.27), if 2p + 1 ≤ a ∈ A, we may fix all

kj(a 6= j ∈ A) and apply (4.27) to the rest variables and get

(4.45) (#S+
2 )

p∏
i=1

N2i−1

Ri
. N0

∏
j 6∈A

N2
j

p∏
i=1

N3
2i−1Ri

∏
j∈A,a6=j≥2p+1

N2
j ,

which gains a factor N−1
a upon (4.27); if a ≤ 2p (say a = 1), we may fix all

kj(2 ≤ j ∈ A), noticing that kc belongs to a ball of radius min(Nc, R1(N∗)
Cκ−1

)
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once all kj(j ∈ A\{1, 2, c}) are fixed, and apply (4.27) to the rest variables and

get

(4.46)

(#S+
2 )

p∏
i=1

N2i−1

Ri
. min(Nc, R1)2N2

1

N1

R1
N0

∏
j 6∈A

N2
j

p∏
i=2

N3
2i−1Ri

∏
j∈A,c6=j≥2p+1

N2
j ,

which gains a factor N−1
c upon (4.27).

(3) Now we consider (4.28) and its improvement. We may assume ιa = +

and N (1) � N (2) (so a ≥ 2p+ 1), since otherwise (4.28) follows from (4.26) or

(4.25) and similarly for the improvement. Now let M0 = max(|α|, (N (2))2). If

M �M0, then we have∣∣|k|2 − |ka|2∣∣ ≤ |α|+∑
j 6=a
|kj |2 +M .M ;

combining with (3.34) and Lemma 4.4(1) we conclude that the number of

choices for |ka|2, and thus ka, is O(M). We may fix ka and then count kj(j 6= a)

to get

(4.47) (#S3)

p∏
i=1

N2i−1

Ri
.M

p∏
i=1

N3
2i−1Ri

∏
2p+1≤j 6=a

N2
j ,

which proves (4.28). As for S+
3 , if a ∈ A, then the improvement of (4.28)

follows from the improvement of (4.26); if a 6∈ A, we may fix ka and count

kj(j 6∈ {a, c}) to get

(4.48) (#S+
3 )

p∏
i=1

N2i−1

Ri
.M

p∏
i=1

N3
2i−1Ri

∏
2p+1≤j 6∈{a,c}

N2
j ,

which gains a factor N−2
c upon (4.28).

Assume now M . M0. Then just like above we have
∣∣|k|2 − |ka|2∣∣ . M0,

so k has at most O(M0) choices, and similarly ka has at most O(M0) choices. If

b ≥ 2p+1, we may assume ιb = + (otherwise switch the roles of k and ka), then

fix k and kj(j 6∈ {a, b}) and apply Lemma 4.4(2) to count the pair (ka, kb) to get

(4.49) (#S3)

p∏
i=1

N2i−1

Ri
.M0

Å p∏
i=1

N3
2i−1Ri

∏
2p+1≤j 6∈{a,b}

N2
j

ã
M,

which proves (4.28); if b ≤ 2p (say b = 1), we may fix k and kj(j 6∈ {1, 2, a}) and

apply Lemma 4.4(2) to count the triple (k1, k2, ka), noticing that ka belongs to

a disc of radius O(R1(N∗)
Cκ−1

) once k and kj(j 6∈ {1, 2, a}) are fixed, and get

(4.50) (#S3)

p∏
i=1

N2i−1

Ri
.
Å
M0

p∏
i=2

N3
2i−1Ri

∏
2p+1≤j 6=a

N2
j

ã
N1R1M

N1

R1
,

which proves (4.28).
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It remains to prove the improvement of (4.28) for S+
3 . We may assume

a 6∈ A, since otherwise it follows from the improvement of (4.26). Now if b 6∈ A,

we may fix all kj(c 6= j ∈ A) and apply (4.28) to the rest variables and get

(4.51)

(#S+
3 )

p∏
i=1

N2i−1

Ri
.MM0(NaNb)

−2
∏
j 6∈A

N2
j

p∏
i=1

N3
2i−1Ri

∏
2p+1≤j 6=c, j∈A

N2
j ,

which gains a factor N−2
c upon (4.28). If b ≤ 2p, say b = 1, we may fix k and

kj(3 ≤ j 6= a), noticing that kc belongs to a disc of radius min(Nc, R1(N∗)
Cκ−1

)

once all kj(3 ≤ j 6∈ {a, c}) are fixed, and then apply Lemma 4.4(2) to count

the pair (k1, k2) and get

(4.52)

(#S+
3 )

p∏
i=1

N2i−1

Ri
.MM0

Å
min(Nc, R1)2

p∏
i=2

N3
2i−1Ri

∏
2p+1≤j 6∈{a,c}

N2
j

ã
N1

N1

R1
,

which gains a factor N−1
c upon (4.28). Finally, assume 2p+ 1 ≤ b ∈ A. Then

we will prove (4.30). Let max(2){Nj : 2p+1 ≤ j ∈ A} ∼ Nd. We may fix k and

kj(j 6∈ {a, b, d}), then apply Lemma 4.4(2) to count the pair (kb, kd) and get

(4.53) (#S+
3 )

p∏
i=1

N2i−1

Ri
.MM0

Å p∏
i=1

N3
2i−1Ri

∏
2p+1≤j 6∈{a,b,d}

N2
j

ã
Nd;

alternatively we may choose to fix kj(j 6∈ {a, b}) and then apply Lemma 4.4(2)

to count the pair (k, ka) and get

(4.54) (#S+
3 )

p∏
i=1

N2i−1

Ri
.M

Å p∏
i=1

N3
2i−1Ri

∏
2p+1≤j 6∈{a,b}

N2
j

ã
Na.

Combining (4.53) and (4.54) yields (4.30).

In the last part we will explain how to put back the powers N2γ0
2i−1. In fact,

in each estimate above we have the product
∏
i≥2N

3
2i−1Ri. As Ri . N

1−δ
2i−1 and

N2i−1 ∼ N2i, we have

N3
2i−1Ri . N

2
2i−1N

2
2i ·N

−2γ0
2i−1 ,

which allows us to incorporate the extra factor N2γ0
2i−1 for i ≥ 2. Thus we lose

at most a factor N2γ0
1 , which is acceptable as N1 . NPR. �

Corollary 4.6. Recall a0 > 1 defined in (1.35), and let all the param-

eters (d, Nj , ιj , etc.) be as in Proposition 4.5. From the sets Sj(1 ≤ j ≤ 3)

in Proposition 4.5 we may construct the quantities Ej as follows : each Ej is a

sum over a set Slin
j . This Slin

j is formed from Sj by removing from its defin-

ing properties the one that involves the quadratic algebraic sum Σ (this Σ is

ι1|k1|2 +· · ·+ιn|kn|2−|k|2 for S1 and S3, and ι1|k1|2 +· · ·+ιn|kn|2 +ι|k′|2−|k|2
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for S2), and the summand is simply 〈Σ − α〉−a0 . Similarly define E+
j by re-

placing Sj with S+
j .

Then, inequalities (4.25)–(4.30), as well as their improvements, hold with

#Sj replaced by Ej (#S+
j replaced by E+

j ), and with the factor M on the right-

hand sides of (4.28) and (4.30) removed.

Proof. This is straightforward, by applying Proposition 4.5 for each value

of Σ and summing up using a0 > 1 for (4.25)–(4.27), and by dyadically de-

composing 〈Σ − α〉 and applying Proposition 4.5 for each dyadic piece for

(4.28)–(4.30). �

5. Proof of the multilinear estimates

In this section we will prove Proposition 3.4, thus completing the local

theory. We start with an estimate for general multilinear forms without pairing.

Given d ∈ Z2 and α ∈ R, consider the following expressions:

X :=
∑

(k,k1,...,kn)
ι1k1+···+ιnkn=k+d

∫
dλdλ1 · · · dλn

× η
Å
λ, λ− |k|2 −

n∑
j=1

ιj(λj − |kj |2)− α
ã
vk(λ)

n∏
j=1

[v
(j)
kj

(λj)]
ιj ,

(5.1)

Y :=
∑

(k,k′,k1,...,kn)
ι1k1+···+ιnkn+ιk′=k+d

∫
dλdλ′dλ1 · · · dλn · η

Å
λ, λ− |k|2 − ι(λ′ − |k′|2)

−
n∑
j=1

ιj(λj − |kj |2)− α
ã
ykk′(λ, λ

′)
n∏
j=1

[v
(j)
kj

(λj)]
ιj ,

(5.2)

where d ∈ Z2 and α ∈ R are fixed and η is a function that satisfies

(5.3) |η(λ, µ)|+ |∂λ,µη(λ, µ)| . 〈µ〉−10.

In the summation we always assume that there is no pairing10 among the

variables k, k′ and kj .

10This requirement appears in the form of coefficients that are indicator functions of sets

of form {kj 6= kl}. Such coefficients may lead to slightly different multilinear Gaussian

expressions in the estimates below, but there will be at most (N∗)
C possibilities where N∗ is

a parameter to be defined below, and will not affect any estimates since our exceptional sets

will always have measure at most Cθe
−(N∗)

θ

.
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We assume that the input functions v(j) are as in Proposition 3.4, where

v(j) are of type (G) or (C) for 1 ≤ j ≤ n1, and of type (D) for n1 + 1 ≤ j ≤ n.

Since we are working exclusively in the λj spaces, we will abuse notation here

and write (v
(j)
kj

)(λj) instead of (ṽ(j))kj (λj).

Let the parameters Nj , Lj , N
(j) etc., and the sets G and C be as in

Proposition 3.4. We further assume that the functions vk(λ) and ykk′(λ, λ
′)

satisfy

(5.4) ‖〈λ〉bvk(λ)‖`2kL2
λ
. 1, ‖〈λ〉b〈λ′〉bykk′(λ, λ′)‖`2

k,k′L
2
λ,λ′
. 1,

and that vk(λ) is supported in {|k| . N0} and ykk′(λ, λ
′) is supported in

{|k|, |k′| . N0}.

Proposition 5.1. Recall the relevant constants defined in (1.35), and

that τ � 1. Under all the above assumptions, there exist p and q, and N2p+l &
R2p+l & L2p+l(1 ≤ l ≤ q) such that 2p + q ≤ n1, that for 1 ≤ i ≤ p we must

have N2i−1 ∼ N2i and ι2i−1 = −ι2i, and that 2i− 1 and 2i do not both belong

to G. Define Ri = max(L2i−1, L2i), and let N∗ be fixed. Then the following

estimates hold τ−1N∗-certainly. Here, as in Proposition 3.4, the exceptional

set of ω removed does not depend on the choice of the functions v(j)(j ≥ n1+1)

or v or w.

(1) Assume N∗ & max(N0, N
(1)). Then we have

(5.5) |X |2 . τ−θ(N∗)Cκ
−1E1

p∏
i=1

N1+2γ0
2i−1

Ri

n∏
j=1

N−2
j

∏
j≥n1+1

N2γ
j

∏
2p+1≤j≤n1

L−2δ0
j ,

and similarly

(5.6) |Y|2 . τ−θ(N∗)Cκ
−1E2

p∏
i=1

N1+2γ0
2i−1

Ri

n∏
j=1

N−2
j

∏
j≥n1+1

N2γ
j

∏
2p+1≤j≤n1

L−2δ0
j ,

where E1 and E2 are the quantities defined in Corollary 4.6, with a0 = 2b−10δ6,

and for some choice of the parameters in that corollary that do not appear in

the assumptions of the current proposition. Moreover, if in the sum defining

X we also assume the Γ-condition (3.34), then (5.5) holds with E1 replaced by

E3. (See that cor for the relevant definitions.)

(2) Assume N∗ & max(N0, N
(1)). Then we have

(5.7)

|X |4 . τ−θ(N∗)Cκ
−1E1E+

1

Å p∏
i=1

N1+2γ0
2i−1

Ri

ã2 n∏
j=1

N−4
j

∏
j≥n1+1

N4γ
j

∏
2p+1≤j≤n1

L40n2

j ,



INVARIANT GIBBS MEASURES FOR 2D NLS 55

and similarly

(5.8)

|Y|4 . τ−θ(N∗)Cκ
−1E2E+

2

Å p∏
i=1

N1+2γ0
2i−1

Ri

ã2 n∏
j=1

N−4
j

∏
j≥n1+1

N4γ
j

∏
2p+1≤j≤n1

L40n2

j ,

where Ej and E+
j are the quantities defined in Corollary 4.6, again for some

choice of the parameters in that corollary that do not appear in the assumptions

of the current proposition. In the set S+ in (4.23), the set A will contain

{1, 2, . . . , 2p} ∪ {n1 + 1, . . . , n}. Moreover, if in the sum defining X we also

assume the Γ-condition (3.34), then (5.7) holds with E1E+
1 replaced by E3E+

3 .

(3) Assume, in addition, that N (1) ∼ Nn and N∗ & N (2). Then (5.7) is

true, with Nn replaced by N (2) in both quantities E1 and E+
1 . Moreover, we have

|X |4 . τ−θ(N∗)Cκ
−1

(N (1))−4(1−γ)(N (2))Cγ

× ‹E1
›E+

1

Å p∏
i=1

N1+2γ0
2i−1

Ri

ã2 n−1∏
j=1

N−4
j

2p+q∏
j=2p+1

N2
j R
−2
j ,

(5.9)

where ‹E1 is the quantity defined in Corollary 4.6 for some choice of the pa-

rameters in that corollary that do not appear in the assumptions of the current

proposition, but with Nn replaced by N (2). Similarly ›E+
1 is the quantity E+

1

defined in Corollary 4.6 with A = {1, . . . , n}, but with Nn replaced by N (2) and

N2p+l replaced by R2p+l(N∗)
Cκ−1

for 1 ≤ l ≤ q. Moreover, the exceptional set

of ω removed is independent of N (1).

5.1. Proof of Proposition 5.1. We will prove Proposition 5.1 in this sec-

tion. We will only prove the bounds for X without Γ-condition; with obvious

modifications the proof also works for Y and for the version with Γ-condition.

For simplicity we will omit the ω dependence, and may ignore any factors that

are . τ−θ(N∗)Cκ
−1

.

Our proof will roughly follow an algorithm, indicated by the following steps:

(1) Distinguish between the inputs j ∈ D, where v(j) are bounded in `2L2,

with j ∈ G ∪ C.
(2) Identify the pairings among kj(j ∈ G) and k∗j (j ∈ C), and reduce the sum

of products of the h(j) functions over the paired variables to some functions

P (i) (see (5.11)) that are also bounded in `2L2.

(3) Estimate the sum in unpaired variables using Lemma 4.2. (In Section 5.1.2

we will skip step (2) and estimate the whole sum including paired and

unpaired variables using Lemma 4.1.)

(4) Apply Cauchy-Schwartz to handle all the factors in `2L2, and then reduce

to the Ej type quantities in Corollary 4.6.
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(5) When necessary, apply a T ∗T argument and repeat the previous steps for

the resulting kernel.

As the proof will be notation heavy, the reader may do a first reading

making the following simplifications without missing the core parts of the proof:

(1) omit integration in any λj and pretend λj = 0 (so v(j) is a function of kj only

and h(j) is a function of kj and k∗j only); (2) when identifying pairings, restrict

to only simple pairings where (say) k∗i = k∗j and does not equal any other k∗l .

These will make formulas like (5.12) simpler and the proofs more transparent.

Throughout the proof we will fix the sets U = {1, 2, . . . , n} and V =

{1, 2, . . . , n− 1}. We will (in this section only) introduce a shorthand notation

for vectors: for a finite set X, define k[X] to be the vector (kj : j ∈ X); similarly

define λ[X], k
∗
[X], etc., and define dλ[X] =

∏
j∈X dλj .

5.1.1. A simple bound. We first prove (5.5). By definition we expand

X =
∑

(k,k[U ]): ι1k1+···+ιnkn=k+d

∑
k∗
[U ]

∫
dλdλ[U ]

× η
Å
λ, λ− |k|2 −

n∑
j=1

ιj(λj − |kj |2)− α
ã

× vk(λ)

n1∏
j=1

g
ιj
k∗j

〈k∗j 〉
h

(j)
kjk∗j

(λj)
±

n∏
j=n1+1

[v
(j)
kj

(λj)]
ιj ;

(5.10)

recall that k[U ] means (k1, . . . , kn), etc. The sum in k∗[U ] is restricted to
Nj
2 <

〈k∗j 〉 ≤ Nj , and h
(j)
kjk∗j

(λj , ω) is defined as in (3.25) for j ∈ C and is defined to

be 1kj=k∗j χ̂(λj) for j ∈ G.

Consider now the sum in k∗[U ]. By identifying all pairings among them

(recall the definition of pairings in Definition 1.10), we may assume there are

p sets Yi(1 ≤ i ≤ p, 2p ≤ n1) and a set Z that partitions {1, . . . , n1}, such that

(i) each Yi contains a pairing;

(ii) the k∗j takes a single value for j in each Yi;

(iii) this value is different for different Yi and is different from k∗j for j ∈ Z;

and

(iv) there is no pairing in {k∗j : j ∈ Z}.
Then we manipulate this sum and rewrite it as a combination of two types of

sums, namely,

(1) where we only require11 that k∗j takes a single value for j in each Yi and

that there is no pairing in {k∗j : j ∈ Z}; and

11That is, we relax the requirement (iii) above, keeping only requirements (ii) and (iv).
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(2) where there are more pairings in addition to case (1), namely when the

value for Yi equals the value for some other Yi′ or some k∗j for j ∈ Z.

Since there are strictly more pairings in case (2) than in the sum we started

with, we may repeat this process and eventually reduce to sums of type (1)

only. The purpose of this manipulation is to ensure that the sum in k∗j (j ∈ Yi)
gives exactly

(5.11) P
(i)
k[Yi]

(λ[Yi]) =
∑
k∗

∏
j∈Yi

h
(j)
kjk∗

(λj)
±〈k∗〉−q3(gk∗)

q1(gk∗)
q2 ,

where q1 + q2 = q3 = |Yi|.
Note that Nj for j ∈ Yi are all comparable. Without loss of generality we

may assume {2i− 1, 2i} ⊂ Yi and ι2i−1 = −ι2i. As (k2i−1, k2i) is not a pairing,

2i − 1 and 2i cannot both belong to G. Now we may assume |k2i−1 − k∗| .
L2i−1(N∗)

Cκ−1
and similarly for k2i, since otherwise we gain a power (N∗)

−200n2

due to the last bound in (3.26), which cancels any summation in any (kj , k
∗
j ).

The estimate will then follow immediately.

Let Ri = max(L2i−1, L2i), say Ri = L2i−1. Then we have |k2i−1 − k2i| .
Ri(N∗)

Cκ−1
for 1 ≤ i ≤ p. For (5.11) using the first two bounds in (3.26), we

have that

‖P (i)
k[Yi]

(λ[Yi])
∏
j∈Yi

〈λj〉b‖2`2k[Yi]L
2
λ[Yi]

.
∏
j∈Yi

N−2
j · ‖〈λ2i〉bh(2i)

k2ik∗
(λ2i)‖2`2

k∗→`
2
k2i

L2
λ2i

∑
k∗

∏
2i6=j∈Yi

‖〈λj〉bh(j)
kjk∗

(λj)‖2`2kjL2
λj

. ‖〈λ2i−1〉bh(2i−1)
k2i−1k∗

(λ2i−1)‖2`2
k2i−1k

∗L2
λ2i−1

∏
j∈Yi

N−2
j

∏
j∈Yi

j 6=2i−1,2i

L−2δ0
j

. N1+2γ0
2i−1 R−1

i

∏
j∈Yi

N−2
j

∏
j∈Yi

j 6=2i−1,2i

L−2δ0
j .

(5.12)

Now we have reduced the expression for X to

X =
∑

(k,k[U ]):
ι1k1+···+ιnkn=k+d

∑
k∗
[Z]

∫
dλdλ[U ] · η

Å
λ, λ− |k|2 −

n∑
j=1

ιj(λj − |kj |2)− α
ã

× vk(λ)

p∏
i=1

P
(i)
k[Yi]

(λ[Yi])
∏
j∈Z

g
ιj
k∗j

〈k∗j 〉
h

(j)
kjk∗j

(λj)
±

n∏
j=n1+1

[v
(j)
kj

(λj)]
ιj .

(5.13)
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Compared to (5.10) it is important that there is no pairing in k∗[Z]. For sim-

plicity of notation, we will write

(5.14) X =
∑
(1)

∫
F ·G,

where the symbol
∑

(1)

∫
represents the sum in k and k[U\Z] and integration

in λ and λ[U\Z], the factor F is

(5.15) F := vk(λ)

p∏
i=1

P
(i)
k[Yi]

(λ[Yi])
n∏

j=n1+1

[v
(j)
kj

(λj)]
ιj ,

and the multilinear Gaussian G is given by

(5.16) G :=
∑
k[Z]

∑
k∗
[Z]

∫
dλ[Z] ·

∏
j∈Z

g
ιj
k∗j

〈k∗j 〉
〈λj〉bh(j)

kjk∗j
(λj)

± · A,

with coefficient A of form

(5.17) A := 1∑
j∈Z ιjkj=d0 · η

Å
λ, α0 −

∑
j∈Z

ιj(λj − |kj |2)

ã∏
j∈Z
〈λj〉−b,

where

(5.18) d0 := k+d−
∑
j 6∈Z

ιjkj ∈ Z2, α0 := λ−|k|2−α−
∑
j 6∈Z

ιj(λj−|kj |2) ∈ R.

The goal now is to estimate G. For fixed values of (k, λ, k[U\Z], λ[U\Z]), we may

apply Lemma 4.2; in order to make this uniform, we will apply the meshing

argument in Remark 4.3. This allows us to reduce to at most (N∗)
Cδ−7

choices,

so in the end, after removing a set of probability ≤ Cθe−(τ−1N∗)θ we can apply

Lemma 4.2 for all choices of (k, λ, k[U\Z], λ[U\Z]) and use the first bound in

(3.26) to get that

|G|2 .
∏
j∈Z

N−2
j

∏
j∈Z

L−2δ0
j · ‖A‖2L

.
∏
j∈Z

N−2
j

∏
j∈Z

L−2δ0
j

∑
k[Z]:

∑
j∈Z ιjkj=d0

≠
α0 +

∑
j∈Z

ιj |kj |2
∑−a0

.
(5.19)

Finally applying Cauchy-Schwartz in the variables (k, λ, k[U\Z], λ[U\Z]), we de-

duce that

|X |2 .
Å∑

(1)

∫
〈λ〉2b

∏
j∈U\Z

〈λj〉2b · |F|2
ãÅ∑

(1)

∫
〈λ〉−2b

∏
j∈U\Z

〈λj〉−2b · |G|2
ã
,

where the first parenthesis (together with some factors from the second paren-

thesis) gives the product of all factors in (5.5) except E1, by using (3.27),
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(5.4) and (5.12); the second parenthesis, after applying (5.19), integrating in

(λ, λ[U\Z]) and plugging in (5.18), reduces to

∑
(k,k[U ]):

ι1k1+···+ιnkn=k+d

〈Σ− α〉−a0 . E1,

where Σ = ι1|k1|2 + · · ·+ ιn|kn|2 − |k|2 as in Corollary 4.6. This proves (5.5).

5.1.2. A general T ∗T argument. Now we prove (5.7), starting from (5.13).

Note that due to (3.27) and (5.4), the bound for X would follow from the

`2knL
2
λn
→ `2kL

2
λ bound of the linear operator T with kernel

Tkkn(λ, λn)

=
∑

k[V ]:ι1k1+···+ιnkn=k+d

∑
k∗
[Z]

∫
dλ[V ] · η

Å
λ, λ− |k|2 −

n∑
j=1

ιj(λj − |kj |2)− α
ã

×
Å p∏
i=1

P
(i)
k[Yi]

(λ[Yi])
∏
j∈Z

g
ιj
k∗j

〈k∗j 〉
h

(j)
kjk∗j

(λj)
±

n−1∏
j=n1+1

[v
(j)
kj

(λj)]
ιj

ã
〈λ〉−b〈λn〉−b.

(5.20)

We then calculate the kernel of O = T ∗T , which (similar to (5.14)) can be

written as

(5.21) Oknk′n(λn, λ
′
n) = 〈λn〉−b〈λ′n〉−b

∑
(2)

∫
F ·G,

where the symbol
∑

(2)

∫
represents the sum in (k[V \Z], k

′
[V \Z]) and integration

in (λ[V \Z], λ
′
[V \Z]), the factor F is independent of (kn, k

′
n, λn, λ

′
n), and is now

defined as

(5.22) F :=

p∏
i=1

P
(i)
k[Yi]

(λ[Yi])P
(i)
k′
[Yi]

(λ′[Yi])
n−1∏

j=n1+1

[v
(j)
kj

(λj)]ιj [v
(j)
k′j

(λ′j)]
ιj ,

and the multilinear Gaussian G is now given by

(5.23) G :=
∑

(k∗
[Z]
,k′∗

[Z]
)

∏
j∈Z

g
−ιj
k∗j

g
ιj
k′∗j

∑
(k,k[Z],k

′
[Z]):∑

j∈Z ιjkj=k+d0∑
j∈Z ιjk

′
j=k+d′0

C,
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with coefficient C of form

C :=

∫
dλdλ[Z]dλ

′
[Z] · 〈λ〉

−2bη

Å
λ, λ− |k|2 −

∑
j∈Z

ιj(λj − |kj |2)− α0

ã
× η
Å
λ, λ− |k|2 −

∑
j∈Z

ιj(λ
′
j − |k′j |2)− α′0

ã∏
j∈Z

1

〈k∗j 〉
h

(j)
kjk∗j

(λj)±
1

〈k′∗j 〉
h

(j)
k′jk
′∗
j

(λ′j)
±,

(5.24)

where we now have

d0 := d−
∑
j 6∈Z

ιjkj , d
′
0 := d−

∑
j 6∈Z

ιjk
′
j ,

α0 := α+
∑
j 6∈Z

ιj(λj − |kj |2), α′0 := α+
∑
j 6∈Z

ιj(λ
′
j − |k′j |2).

(5.25)

As in Section 5.1.1 we may assume |k2i−1 − k2i| . Ri(N∗)
Cκ−1

for 1 ≤ i ≤ p

and similarly for k′2i−1 and k′2i. The goal now is to estimate G in (5.23).

Let L+ = max{Lj : j ∈ Z}. In view of the power (L+)40n2
on the right-

hand side of (5.7), we may assume Nj � (L+)2 for each j ∈ Z; otherwise we

simply sum over (kj , k
∗
j ) and (k′j , k

′∗
j ) and get rid of these variables. By the

meshing argument in Remark 4.3, we may reduce to . (N∗)
Cδ−7

choices for

(k[U\Z], k
′
[U\Z], λ[U\Z], λ

′
[U\Z]); for each single choice, as C is B+

≤L+
measurable

and there is no pairing in k∗[Z] or k′∗[Z], we may apply Lemma 4.1 and get

(5.26) |G|2 .
∑

(k∗
[Z\W ]

,k′∗
[Z\W ′])

Å ∑
k∗al

=k′∗bl
(1≤l≤s)

∑
(k,k[Z],k

′
[Z]):∑

j∈Z ιjkj=k+d0∑
j∈Z ιjk

′
j=k+d′0

|C|
ã2

,

where W = {a1, . . . , as} and W ′ = {b1, . . . , bs} are subsets of Z, and we

have Nal ∼ Nbl and ιal = ιbl for 1 ≤ l ≤ s. As before we may assume

|kj − k∗j | . L+(N∗)
Cκ−1

and similarly for k′j − k′∗j , and due to the (L+)40n2

factor we may then fix the values of kj − k∗j = ej and k′j − k′∗j = e′j . Therefore

k′bl − kal = e′bl − eal := fl is also fixed.

Now the outer sum in (5.26) can be viewed as a sum over k[Z\W ] and

k′[Z\W ′], and the inner sums can be viewed as a sum over (k, kal , k
′
bl

: 1 ≤ l ≤ s)
that satisfies k′bl − kal = fl. When all these k-variables are fixed, we have

sup
kj ,k∗j

‖〈λj〉bh(j)
kjk∗j

(λj)‖L2
λj
. 1, sup

k′j ,k
′∗
j

‖〈λ′j〉bh
(j)
k′jk
′∗
j

(λ′j)‖L2
λ′j
. 1,
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due to the first bound in (3.26). Using the algebra property of the norm

‖〈λ〉bh(λ)‖L2 under convolution, we have

|C| .
∏
j∈Z

N−2
j

∫
dλ · 〈λ〉−2b

×
≠
λ− |k|2 +

∑
j∈Z

ιj |kj |2 − α0

∑−b≠
λ− |k|2 +

∑
j∈Z

ιj |k′j |2 − α′0
∑−b

.
∏
j∈Z

N−2
j ·
≠
|k|2 −

∑
j∈Z

ιj |kj |2 + α0

∑−b≠
|k|2 −

∑
j∈Z

ιj |k′j |2 + α′0

∑−b
.

(5.27)

With (5.27) we can now bound G by

|G|2 . (L+)40n2
∏
j∈Z

N−4
j

×
∑

(k[Z\W ],k
′
[Z\W ′])

Å ∑
(k,kal ,k

′
bl

:1≤l≤s)

≠
|k|2−

∑
j∈Z\W

ιj |kj |2−
s∑
l=1

ιal |kal |
2 + α0

∑−b
×
≠
|k|2 −

∑
j∈Z\W ′

ιj |k′j |2 −
s∑
l=1

ιbl |k
′
bl
|2 + α′0

∑−bã2

.

(5.28)

Multiplying out the square we get
(5.29)

|G|2 . (L+)40n2
∏
j∈Z

N−4
j

∑
(k[Z\W ],k

′
[Z\W ′])

∑
(k,kal ,k

′
bl

:1≤l≤s)

(
◦
k,
◦
kal ,

◦
k′bl

:1≤l≤s)

〈Υ〉−b·〈
◦
Υ〉−b·〈Υ′〉−b·〈

◦
Υ′〉−b,

where

Υ = |k|2 −
∑

j∈Z\W

ιj |kj |2 −
s∑
l=1

ιal |kal |
2 + α0,

◦
Υ = |

◦
k|2 −

∑
j∈Z\W

ιj |kj |2 −
s∑
l=1

ιal |
◦
kal |

2 + α0,

Υ′ = |k|2 −
∑

j∈Z\W ′
ιj |k′j |2 −

s∑
l=1

ιbl |k
′
bl
|2 + α′0,

◦
Υ′ = |

◦
k|2 −

∑
j∈Z\W ′

ιj |k′j |2 −
s∑
l=1

ιbl |
◦
k′bl |

2 + α′0,

with ιal = ιbl , α0 and α′0 as in (5.25). The variables in the summation (5.29)

verify the following linear equations:
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(5.30)

∑
j∈Z\W

ιjkj +
s∑
l=1

ιalkal − k =
∑

j∈Z\W

ιjkj +
s∑
l=1

ιal
◦
kal −

◦
k = d0,

∑
j∈Z\W ′

ιjk
′
j +

s∑
l=1

ιblk
′
bl
− k =

∑
j∈Z\W ′

ιjk
′
j +

s∑
l=1

ιbl
◦
k′bl −

◦
k = d′0,

with d0 and d′0 as in (5.25), as well as k′bl − kal =
◦
k′bl −

◦
kal = fl.

By Cauchy-Schwartz, we may replace the summand on the right-hand side

of (5.29) by 〈Υ〉−2b · 〈
◦

Υ′〉−2b (or by 〈
◦
Υ〉−2b · 〈Υ′〉−2b, which is treated similarly

by symmetry). Now going back to (5.21) and applying Cauchy-Schwartz in

the variables (k[V \Z], k
′
[V \Z], λ[V \Z], λ

′
[V \Z]), we get

|X |4 . N−4(1−γ)
n

∑
kn,k′n

∫
dλndλ′n|Oknk′n(λn, λ

′
n)|2

. N−4(1−γ)
n

Å∑
(2)

∫ ∏
j∈V \Z

〈λj〉2b〈λ′j〉2b · |F|2
ã

×
Å∑
kn,k′n

∫
dλndλ′n · 〈λn〉−2b〈λ′n〉−2b

∑
(2)

∫ ∏
j∈V \Z

〈λj〉−2b〈λ′j〉−2b · |G|2
ã
.

The first parenthesis (together with some factors from the second parenthesis)

give the product of all factors in (5.7) except E1E+
1 , by using (3.27) and (5.12).

The second parenthesis, after applying (5.29) with the summand 〈Υ〉−b ·〈
◦
Υ〉−b ·

〈Υ′〉−b · 〈
◦

Υ′〉−b replaced by 〈Υ〉−2b〈
◦

Υ′〉−2b, integrating in λ[U\Z] and λ′[U\Z], and

plugging in (5.25), reduces to

(5.31)
∑

(k[U\W ],k
′
[U\W ′])

∑
(k,kal ,k

′
bl

:1≤l≤s)

(
◦
k,
◦
kal ,

◦
k′bl

:1≤l≤s)

〈Σ− α〉−2b〈
◦

Σ′ − α〉−2b,

where Σ and
◦

Σ′ are respectively

(5.32)

Σ =
∑
j 6∈W

ιj |kj |2 +
s∑
l=1

ιal |kal |
2 − |k|2,

◦
Σ′ =

∑
j 6∈W ′

ιj |k′j |2 +
s∑
l=1

ιbl |
◦
k′bl |

2 − |
◦
k|2,

and the variables in the summation satisfy

(5.33)

∑
j 6∈W

ιjkj +
s∑
l=1

ιalkal − k =
∑
j 6∈W

ιjkj +
s∑
l=1

ιal
◦
kal −

◦
k = d,

∑
j 6∈W ′

ιjk
′
j +

s∑
l=1

ιblk
′
bl
− k =

∑
j 6∈W ′

ιjk
′
j +

s∑
l=1

ιbl
◦
k′bl −

◦
k = d,
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as well as k′bl − kal =
◦
k′bl −

◦
kal = fl. Now, when k[U\W ] and (k, kal : 1 ≤ l ≤ s)

are fixed, the sum of 〈
◦

Σ′ − α〉−2b over k′[U\W ′] and (
◦
k,

◦
k′bl : 1 ≤ l ≤ s) can be

bounded by E+
1 with A = U\W ′ in (4.23) due to (5.33); on the other hand, the

sum of 〈Σ− α〉−2b over k[U\W ] and (k, kal : 1 ≤ l ≤ s) can be bounded by E1.

This bounds the sum (5.31) by E1E+
1 and proves (5.7).

5.1.3. A special T ∗T argument. Assume now Nn = N (1) and N∗ & N (2).

Again we only need to study the operator T given by the kernel (5.20); note

that Tkkn(λ, λn) is supported in the set {(k, kn) : |k−ιnkn+d| . N (2)}. By the

standard orthogonality argument it suffices to prove the same operator bound

for ‹T which is T restricted to the set {k : |k−f | ≤ N (2)}, uniformly in f ∈ Z2.

Below we will fix an f and denote ‹T still by T , so that in any summations

below we may assume |k − f | . N (2) and |kn − ιn(f + d)| . N (2) (same for

k′n). At this point the parameter N (1) or Nn no longer explicitly appears in

the estimate, so the set of ω we remove will be independent of it. Also we

can prove (5.7), with Nn replaced by N (2) in both E1 and Eex
1 , by essentially

repeating the proof in Section 5.1.2 above (and making the bound uniform in

f in exactly the same way as below); it remains to prove (5.9).

We start with (5.21) and now look for further pairings in (k∗[Z], k
′∗
[Z]) in the

expression G given by (5.23). By repeating the same reduction step in Sec-

tion 5.1.1, we can find two partitions (X1, . . . , Xq,W ) and (X ′1, . . . , X
′
q,W

′)12

of the set Z, where 2p+ q ≤ n1, such that Nj are all comparable for j in each

Xl ∪X ′l , and further reduce (5.21) to a sum

(5.34) Oknk′n(λn, λ
′
n) = 〈λn〉−b〈λ′n〉−b

∑
(3)

∫
F+ ·G+,

where the symbol
∑

(3)

∫
represents the sum in k[V \W ] and k′[V \W ′] and inte-

gration in λ[V \W ] and λ′[V \W ′], the factor F+ is independent of (kn, k
′
n, λn, λ

′
n),

F+ =

p∏
i=1

P
(i)
k[Yi]

(λ[Yi])P
(i)
(k′

[Yi]
)
(λ′[Yi])

×
n−1∏

j=n1+1

[v
(j)
kj

(λj)]ιj [v
(j)
k′j

(λ′j)]
ιj

q∏
l=1

Q
(l)
k[Xl],k

′
[X′
l
]

(λ[Xl], λ
′
[X′l ]

),

(5.35)

Q
(l)
k[Xl],k

′
[X′
l
]

(λ[Xl], λ
′
[X′l ]

)

:=
∑
k∗

∏
j∈Xl

h
(j)
kjk∗

(λj)
±
∏
j∈X′l

h
(j)
k′jk
∗(λ
′
j)
±〈k∗〉−q3(gk∗)

q1(gk∗)
q2 ,

(5.36)

12This W and W ′ are different from the W and W ′ of Section 5.1.2.
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where q1 + q2 = q3 = |Xl| + |X ′l |, and the P factors are defined as in (5.11).

We may also fix al ∈ Xl and bl ∈ X ′l such that ιal = ιbl ; without loss of

generality, assume bl = 2p+ l for 1 ≤ l ≤ q. We can bound (5.36) just like we

bound (5.11) in (5.12), except that now it is possible to have Xl ∪X ′l ⊂ G. Let

R2p+l = max{Lj : j ∈ Xl ∪X ′l} & L2p+l. Then the same argument as in (5.12)

gives

‖Q(l)
k[Xl],k

′
[X′
l
]

(λ[Xl], λ
′
[X′l ]

)
∏
j∈Xl

〈λj〉b
∏
j∈X′l

〈λ′j〉b‖2`2
k[Xl]

,k′
[X′
l
]

L2
λ[Xl]

,λ′
[X′
l
]

.
∏
j∈Xl

N−2
j

∏
j∈X′l

N−2
j ·N

2+2γ0
2p+l R

−2
2p+l.

(5.37)

Finally, the multilinear Gaussian G+ is given by

G+ =
∑

(k[W ],k
′
[W ′])

∑
(k∗

[W ]
,k′∗

[W ′])

∫
dλ[W ]dλ

′
[W ′]

×
∏
j∈W

g
ιj
k∗j

〈k∗j 〉
〈λj〉bh(j)

kjk∗j
(λj)±

∏
j∈W ′

g
ιj
k′∗j

〈k′∗j 〉
〈λ′j〉bh

(j)
k′jk
′∗
j

(λ′j)
± · A+,

(5.38)

where there is no pairing among (k∗[W ], k
′∗
[W ′]), and coefficient A+ of form

A+ =
∑

k:ι1k1+···+ιnkn=k+d
ι1k′1+···+ιnk′n=k+d

∫
dλ · η

Å
λ, λ− |k|2 −

n∑
j=1

ιj(λj − |kj |2)− α
ã

× 〈λ〉−2bη

Å
λ, λ− |k|2 −

n∑
j=1

ιj(λ
′
j − |k′j |2)− α

ã ∏
j∈W
〈λj〉−b

∏
j∈W ′
〈λ′j〉−b,

(5.39)

where the sum is over a single variable k. As before we may also assume

|kj − k∗| . R2p+l(N∗)
Cκ−1

for j ∈ Xl in (5.36) and similarly for k′j and j ∈ X ′l
so, in particular, |kal − k′2p+l| . R2p+l(N∗)

Cκ−1
.

The goal now is to estimate G+. As before, we need to reduce to (N∗)
Cδ−7

choices for (k[U\W ], λ[U\W ]) and (k′[U\W ], λ
′
[U\W ]), and f . By the meshing ar-

gument (Remark 4.3), we may assume |λ| . (N∗)
δ−7

and |λj | . (N∗)
δ−7

for

j 6∈ W (similarly for λ′j) and get rid of these parameters; in the same way we

may also fix k[V \W ] and k′[V \W ′], as well as f + d − ιnkn and f + d − ιnk′n.
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Letting k = f + g, we can rewrite

A+ =
∑

|g|≤N(2)

1∑
j∈W ιjkj=g+d0∑
j∈W ′ ιjk

′
j=g+d

′
0

×
∫

dλ · η
Å
λ, λ− 2f · g − |g|2 −

∑
j∈V

ιj(λj − |kj |2) + β(f) + γ

ã
× 〈λ〉−2bη

Å
λ, λ− 2f · g − |g|2 −

∑
j∈V

ιj(λ
′
j − |k′j |2) + β′(f) + γ′

ã
×
∏
j∈W
〈λj〉−b

∏
j∈W ′
〈λ′j〉−b,

(5.40)

where γ, γ′ ∈ [0, 1) are fixed, d0, d
′
0 ∈ Z2, and β(f), β′(f) are fixed integer-

valued functions of f . We may assume |d0|, |d′0| . N (2) since otherwise A+ ≡ 0.

Then we may fix them and see that f enters the whole expression only through

the function −2f · g + β(f); moreover we may restrict g to the set where

| − 2f · g + β(f)| ≤ (N∗)
δ−7

since otherwise either λ or one λj must be large

and we close as before. The reduction to finitely many cases can then be done

by invoking the following claim, which will be proved at the end of this section.

Claim 5.2. Let the function Ff,β(g) := −2f · g + β, with the particular

domain Dom(Ff,β) = {|g| ≤ N (2) : | − 2f · g + β| ≤ (N∗)
δ−7}. Then when

f ∈ Z2 and β ∈ Z varies, the function Ff,β (together with its domain ) has

finitely many, and in fact . (N∗)
Cδ−7

, possibilities.

From now on we may fix the value of f . By removing a set of probability

≤ Cθe
−(τ−1N∗)θ , we can apply Lemma 4.2 and (recalling that a0 = 2b− 10δ6)

conclude that

|G+|2 .
∏
j∈W

N−2
j

∏
j∈W ′

N−2
j

∑
(k[W ],k

′
[W ′])

∫
dλ[W ]dλ

′
[W ′]

×
∏
j∈W
〈λj〉−a0

∏
j∈W ′
〈λ′j〉−a0

ï ∑
k:ι1k1+···+ιnkn=k+d
ι1k′1+···+ιnk′n=k+d

∫
dλ

× 〈λ〉−2bη

Å
λ, λ− |k|2 −

n∑
j=1

ιj(λj − |kj |2)− α
ã

× η
Å
λ, λ− |k|2 −

n∑
j=1

ιj(λ
′
j − |k′j |2)− α

ãò2
.

(5.41)
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The integral over λ gives a factor≠
Σ−

n∑
j=1

ιjλj − α
∑−b≠

Σ′ −
n∑
j=1

ιjλ
′
j − α

∑−b
,

where Σ and Σ′ are defined as

Σ =
n∑
j=1

ιj |kj |2 − |k|2, Σ′ =
n∑
j=1

ιj |k′j |2 − |k|2.

Since there is only one value of k in the summation, we can reduce

|G+|2 .
∑
k

∑
(k[W ],k

′
[W ′])

∫
dλ[W ]dλ

′
[W ′]

∏
j∈W
〈λj〉−a0

∏
j∈W ′
〈λ′j〉−a0

×
∏
j∈W

N−2
j

∏
j∈W ′

N−2
j

≠
Σ−

n∑
j=1

ιjλj − α
∑−2b≠

Σ′ −
n∑
j=1

ιjλ
′
j − α

∑−2b

.
∏
j∈W

N−2
j

∏
j∈W ′

N−2
j

×
∑
k

∑
(k[W ],k

′
[W ′])

≠
Σ−

∑
j 6∈W

ιjλj − α
∑−a0≠

Σ′ −
∑
j 6∈W ′

ιjλ
′
j − α

∑−a0
,

(5.42)

where in the summation over k and (k[W ], k
′
[W ′]) we assume that ι1k1 + · · · +

ιnkn = ι1k
′
1 + · · · + ιnk

′
n = k + d. Returning to (5.34), by applying Cauchy-

Schwartz in the variables (k[V \W ], λ[V \W ]) and (k′[V \W ′], λ
′
[V \W ′]) we conclude

as before that

|X |4 . (N (1))−4(1−γ)

Å∑
(3)

∫ ∏
j∈V \W

〈λj〉2b
∏

j∈V \W ′
〈λ′j〉2b · |F|2

ã
×
Å∑
kn,k′n

∫
dλndλ′n·〈λn〉−2b〈λ′n〉−2b

∑
(3)

∫ ∏
j∈V \W

〈λj〉−2b
∏

j∈V \W ′
〈λ′j〉−2b·|G|2

ã
.

The first parenthesis (together with some factors from the second parenthesis)

gives the product of all factors in (5.9) except ‹E1
›E+

1 , by using (3.27), (5.12)

and (5.37). The second parenthesis, after applying (5.42) and integrating in

λ[U\W ] and λ′[U\W ′], reduces to

(5.43)
∑
k

∑
k[U ]:ι1k1+···+ιnkn=k+d

∑
k′
[U ]

:ι1k′1+···+ιnk′n=k+d

〈Σ− α〉−a0〈Σ′ − α〉−a0 .

Now when (k, k[U ]) are fixed, the sum of 〈Σ′−α〉−a0 over k′[U ] can be bounded by›E+
1 with A = {1, . . . , n} in (4.23), due to the linear equation ι1k

′
1 + · · ·+ ιnk

′
n =
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k+d, the fact that k′2p+l belongs to a disc of radius O(R2p+l(N∗)
Cκ−1

) once kal
is fixed, and the fact that |ιnk′n−f−d| . N (2). Moreover, the sum of 〈Σ−α〉−a0
over (k, k[U ]) can be bounded by ‹E1, due to the fact that |ιnkn− f −d| . N (2).

This then bounds (5.43) by ‹E1
›E+

1 and proves (5.9).

Proof of Claim 5.2. Let D = Dom(Ff,β). If D contains three points

g1, g2, g3 that are not collinear, then we have |f · (g1 − g2)| . (N∗)
δ−7

, |f ·
(g1 − g3)| . (N∗)

δ−7
, and that g1 − g2 and g1 − g3 are linearly independent.

This implies that |f | . (N∗)
2δ−7

and hence |β| . (N∗)
3δ−7

so the result is triv-

ial. Now let us assume D is contained in a line `; we may assume ` contains at

least two points in the set {g : |g| ≤ N (2)}, otherwise D is at most a singleton

and the result is also trivial. Then the integer points in ` can be written as

p+ qσ, where (p, q) ∈ (Z2)2 has at most (N (2))10 choices (so we may fix them),

and hence D = {p+qσ : |p+qσ| ≤ N (2), |aσ+b| ≤ (N∗)
δ−7}, where a and b are

integers. Again, as |D| ≥ 2, we know that |a| . (N∗)
2δ−7

and |b| . (N∗)
3δ−7

,

so Ff,β indeed has . (N∗)
Cδ−7

possibilities, as claimed. �

Remark 5.3. For later use, we will also consider the following variant of

X (same for Y):

(5.44) X+ :=
∑

(k,k1,...,kn)
ι1k1+···+ιnkn=k+d

∫
dλdλ1 · · · dλndµ1 · · · dµs

×η
Å
λ, λ−|k|2−

n∑
j=1

ιj(λj−|kj |2)−
s∑
j=1

µj−α
ã
vk(λ)

n∏
j=1

[v
(j)
kj

(λj)]
ιj

s∏
j=1

wj(µj),

where each wj satisfies

‖〈µj〉bwj(µj)‖L2
µj
. 1.

Then X+ will satisfy exactly the same estimates as X (same for Y). In fact we

can introduce a “virtual” variable lj that takes a single value and view wj(µj)

as a function of lj and µj that has type (D), and repeat all the above proofs

with these new variables.

5.2. Proof of Proposition 3.4. Armed with Corollary 4.6 and Proposi-

tion 5.1, we can now prove Proposition 3.4. Recall that we will abuse notation

and write (v
(j)
kj

)(λj) instead of (ṽ(j))kj (λj). We will proceed in three steps; note

that as before, in the proof below we will ignore any factor . τ−θ(N∗)Cκ
−1

.

Step 1: Reduction to estimating X and Y. First notice that, when the set

of pairings among the variables involved in Nn is fixed, the coefficient in Nn
will be a constant (see Remark 2.3). By Lemma 2.6, we may replace I by J in
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all estimates. Now by definition of the relevant norms, the kernel bound (2.30)

and duality, we can reduce the desired estimates to the estimates of quantities

of form X (for parts (1) and (2)) and Y (for part (3)) defined in (5.1) and (5.2)

with d = α = 0. The only exceptions are that the functions v and y introduced

by duality only satisfy weaker bounds

(5.45) ‖〈λ〉1−b1vk(λ)‖`2kL2
λ
. 1, ‖〈λ〉1−b1〈λ′〉bykk′(λ, λ′)‖`2

k,k′L
2
λ,λ′
. 1,

instead of (5.4), and that there may be pairings in X and Y (but they will

always be over-paired). Now if |λ| ≤ (N∗)
C0 , where C0 is a large constant

depending only on n, then since b1 − b ∼ 2b − 1 ∼ κ−1 ∼ δ4, we can replace

the power 〈λ〉1−b1 by 〈λ〉b in (5.45) to match (5.4), at a price of losing a factor

(N∗)
Cκ−1

which is acceptable. Now we will assume |λ| ≥ (N∗)
C0 ; below we will

only consider part (1) of Proposition 3.4, since we have N∗ & N (1) in part (2)

and N∗ & N0 in part (3). The proof will be similar and much easier.

Here the point is to use the weight 〈λ〉1−b1 in (5.45) to gain a power

≥ (N∗)
−C0

3 , after which we still can assume ‖vk(λ)‖`2kL2
λ
. 1. In view of this

gain and the assumption N∗ & N (2), we may fix the values of kj and/or k∗j for

each 1 ≤ j ≤ n−1. Moreover, when kj and k∗j are fixed, the resulting function

in λj (we will call them wj(λj)) satisfies ‖〈λj〉bwj(λj)‖L2
λj
. 1, which implies

the corresponding L1
λj

bound, so we may fix λj(1 ≤ j ≤ n− 1) also. Finally as∫
〈λn〉2b‖v(n)

kn
(λn)‖2`2kn

dλn = ‖〈λn〉bv(n)
kn

(λn)‖2`2knL2
λn

. (N (1))−2(1−γ),

we may also fix the value of λn, and reduce to

X =
∑
k

∫
vk(λ)dλ · η(λ, λ− F (k))Gk−d′ ,

where ‖G‖`2 ∼ (N (1))−1+γ and F (k) is a function of k which, as well as d′,

depends on the choice of the other fixed variables. By first integrating in λ

using Cauchy-Schwartz and (5.3), then summing in k using Cauchy-Schwartz

again, we deduce that

|X | . ‖vk(λ)‖`2kL2
λ
· ‖G‖`2 . (N (1))−1+γ ,

which suffices in view of the gain (N∗)
−C0/3.

Step 2: The no-pairing case. We have now reduced Proposition 3.4 to the

estimates for the quantities X and Y. If we assume there is no pairing, then we

can apply Proposition 5.1 and then Corollary 4.6. Recall the new parameters

such as p, q andRj defined in Proposition 5.1; denote L+ = max(L2p+1, · · ·Ln1)
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and N+ = max(Nn1+1, · · ·Nn). Also when we talk about an estimate in Propo-

sition 4.5 we are actually talking about its counterpart in Corollary 4.6.

In part (1), by combining (5.7), (4.25) and (4.25) with the improvement

factor (4.29), with Nn replaced by N (2) in both places, we obtain that

|X | . (N (1))−1+γ(N (2))Cγ(L+)40n3
(N (2))−

1
4 ;

on the other hand, by combining (5.9), (4.25) and (4.25) with the improvement

factor (4.29), with the changes adapted to ‹E1 and ›Eex
1 indicated in Proposi-

tion 5.1, we obtain that

|X | . (N (1))−1+γ(N (2))Cγ(L+)−
1
4 ,

noticing that R2p+l & L2p+l for 1 ≤ l ≤ q and Nj & Lj for 2p+ q+ 1 ≤ j ≤ n1.

Interpolating the above two bounds then gives (3.28).

In parts (2) and (3), we have N (1) ∼ Na and a ∈ G ∪ C; in particular,

the extra factor (4.29) is bounded by (N+)−1. Note that in case (3) we may

have a ∈ D but in this case the extra factor will be replaced by (N (1))−1. By

combining (5.5) and (4.25) we obtain (noticing that NPR . N (2))

|X | . (N (1)N (2))−
1
2 (N (2))γ0(N+)Cγ(L+)−δ0 ,

and by combining (5.7) and (4.25) together with the improvement factor (4.29)

we obtain that

|X | . (N (1)N (2))−
1
2 (N (2))γ0(N+)Cγ(L+)40n3

(N+)−
1
4 ,

and interpolating the above two bounds gives (3.29). In the same way (3.30)

follows from (5.5), (5.7), (4.26) and (4.26) with the improvement factor (4.29),

and (3.33) follows from (5.6), (5.8), (4.27) and (4.27) with the suitable im-

provement factor.

Finally consider (3.31); here we will define N ′ = max(2)(Nn1+1, . . . , Nn).

Note that α = 0, so by combining (5.5) and (4.28) we get

(5.46) |X | . (N (1))−1+γ0(N+)γ(N ′)Cγ(L+)−δ0 ;

on the other hand, by combining (5.7) and either (4.28) with the improvement

factor (4.29) or (4.30), we get that either

(5.47) |X | . (N (1))−1+γ0(N+)γ(N ′)Cγ(L+)40n3
(N+)−

1
4 ,

or

(5.48)

|X | . (N (1))−1+γ0(N+)γ(N ′)Cγ(L+)40n3
min

(
(N ′)−

1
4 , (N (1))

1
4 (N+)−

1
2
)
.

Clearly interpolating (5.46) and (5.47) gives (3.31); suppose instead we have

(5.46) and (5.48). Now if N+ ≥ (N (1))
2
3 and L+ ≥ (N+)

1
(40n)4 , then (5.46)
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implies (3.31); if N+ ≥ (N (1))
2
3 and L+ ≤ (N+)

1
(40n)4 , then (5.48) implies

|X | . (N (1))−1.01, which implies (3.31); if N+ ≤ (N (1))
2
3 , then interpolating

(5.46) and (5.48) implies

|X | . (N (1))−1+γ0(N+)γ . (N (1))−1+γ0+ 2γ
3 ,

which implies (3.31).

Note also that for general α, due to the factor max((N (2))2,|α|)
(N(2))2

on the right-

hand side of (4.28), the above argument gives the bound

(5.49) |X | . (N (1))−1+ 4γ
5 max

Å
1,
|α|

1
2

N (2)

ã
.

Step 3: The over-pairings. We will only consider X ; Y is similar and

easier since there cannot be any pairing between {k, k′} and any kj due to

N (1) . N1−δ
0 and the restrictions |k|, |k′| ≥ N0

4 in (3.33). Now due to simplicity,

any pairing in X must be an over-pairing; by collecting all these pairings we can

find a partition (A1, . . . , Ap, B) of {1, . . . , n} such that |Ai| ≥ 3 and kj takes

a single value for j in each Ai, such that this value is different for different

1 ≤ i ≤ p, and there is no over-pairing among {kj : j ∈ B}. Then we can

check that either there is no pairing among {k, kj : j ∈ B}, or there is a unique

over-pairing k = kj1 = kj2 with j1, j2 ∈ B and (ιj1 , ιj2) 6= (−,−). In the latter

case denote {j1, j2} = A0 and replace B by B\A0, so that there is no pairing

among {k, kj : j ∈ B}. Below we will focus on the first case, and leave the

necessary changes caused by A0 to the end.

Now X is reduced to

(5.50) X =
∑
l1,...,lp

∫ p∏
i=1

∏
j∈Ai

(v
(j)
li

(λj))
±dλj · X ′,

where li is the common value of kj for j ∈ Ai (so that |li| . N (2)), and where

X ′ is an expression of the same form as X , but only involves the variables

(k, kj) and (λ, λj) for j ∈ B, with d being a fixed linear combination of li, and

α being a fixed linear combination of |li|2. This gives

|X | .
∑
l1,...,lp

p∏
i=1

M
(i)
li
· sup
l1,...,lp

∣∣∣∣ ∫ p∏
i=1

1

M
(i)
li

∏
j∈Ai

(v
(j)
li

(λj))
±dλj · X ′

∣∣∣∣,
M

(i)
li

:=
∏
j∈Ai

‖〈λj〉b2v(j)
li

(λj)‖L2
λj
,
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where we recall that b2 = b − δ6. When each li is fixed, by Remark 5.3, the

expression ∫ p∏
i=1

1

M
(i)
li

∏
j∈Ai

(v
(j)
li

(λj))
±dλj · X ′

can be estimated in the same way as X ′ (replacing b by b2 will not change the

proof), which is done in Step 2 above. We then only need to bound∑
l1,...,lp

p∏
i=1

M
(i)
li

=

p∏
i=1

∑
li

M
(i)
li
,

which we establish in the following claim.

Claim 5.4. Let Ki = max(Nj : j ∈ Ai) and K ′i = max(2)(Nj : j ∈ Ai).
Then τ−1N∗-certainly we have that

(5.51)
∑
li

M
(i)
li
.

{
K−1+γ
i (K ′i)

− 1
3 ,Ki ∼ Nj , j ∈ D,

K−1+θ
i ,Ki ∼ Nj , j ∈ G ∪ C.

Proof of Claim 5.4. Let R
(j)
li

=‖〈λj〉b2v(j)
li

(λj)‖L2
λj

. Then we have ‖R(j)‖`∞li
. ‖R(j)‖`2li . N−1+γ

j if j ∈ D, ‖R(j)‖`∞li . N−1+θ
j and ‖R(j)‖`2li . N θ

j if

j ∈ G. If j ∈ C, we will apply Lemma 4.1 and again reduce to finitely many

λj by restricting the size of λj and dividing into small intervals, and using

the differentiability in λj of h
(j)
kjk∗j

(λj), which is assumed in the statement of

Proposition 3.4. In the same way as before, by removing a set of probability

≤ Cθe−(τ−1N∗)θ and omitting any τ−θ(N∗)
Cκ−1

factors, we conclude that

‖R(j)‖`∞li . ‖R
(j)‖`2li . N

−1
j ‖〈λj〉

bh
(j)
kjk∗j

(λj)‖`2
kj,k
∗
j
L2
λj
. N

− 1
2

+γ0
j L

− 1
2

j ,

as well as

‖R(j)‖`∞li . N
−1
j L2

j sup
kj ,k∗j

‖〈λj〉bh(j)
kjk∗j

(λj)‖L2
λj
. N−1

j L2
j ,

which also implies ‖R(j)‖`∞li . N−0.55
j . Now let Ki ∼ Nj and K ′i ∼ Ns. Then

if j ∈ D, (5.51) follows from applying Hölder and measuring R(j) and another

factor other than R(j) or R(s) in `2li , and all other factors in `∞li . If j ∈ G ∪ C,
then we may assume |li| ∼ Ki (otherwise (5.51) follows trivially from the third

inequality in (3.26)), so the Nj for j ∈ Ai must all be comparable. We may then

assume j ∈ G ∪ C for each j ∈ Ai. Then (5.51) follows from applying Hölder

and measuring two factors in `2li and the rest in `∞li , such that at least one R(j)

with j ∈ G is measured in `∞li if there is any. This completes the proof. �
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The general case of Proposition 3.4 then follows from the X ′ estimate,

namely the no-pairing case in Step 2, combined with Claim 5.4. More precisely,

suppose N (1) = Na with a ∈ Ai for some i. Then if a ∈ D, the bound (5.51)

gives the power (N (1))−1+γ , while the power (K ′i)
− 1

3 in (5.51), as well as the

no-pairing case of the bounds (3.28) and (3.29), give the power (N (2))−
1
4 .

If a ∈ G ∪ C, then the power (N (1))−1+θ from (5.51) is already enough. If

N (1) = Na with a ∈ B, then we simply apply the no-pairing case and use

(5.51) to gain decay in N (2) when N (2) = Nj and j 6∈ B. The only nontrivial

case is (3.31), where there is no need to gain decay in N (2), but we have an

extra factor . max(1, |α|
1
2 ) from (5.49), where α is a linear combination of

|li|2. By Claim 5.4 we have

〈α〉
1
2 . max

1≤i≤p
min
j∈Ai

Nj ,

p∏
i=1

∑
li

M
(i)
li
. (N∗)

θ〈α〉−
1
2 ,

which cancels this extra factor and proves (3.31).

Finally we consider the case with A0, say k = kj1 = kj2 and Nj1 ≥ Nj2 .

Here we can check that X still has the form (5.50), except that in X ′ the input

vk(λ) is replaced by (essentially)13

ṽk(λ) =

∫
±λ0±λ1±λ2=λ

vk(λ0)± · v(j1)
k (λ1)± · v(j2)

k (λ2)± dλ1dλ2,

which due to the same proof as in Claim 5.4, satisfies

‖〈λ〉b2 ṽk(λ)‖`2kL2
λ

. ‖〈λ0〉b2vk(λ0)‖`2kL2
λ0
‖〈λ1〉b2v(j1)

k (λ1)‖`∞k L2
λ1
‖〈λ2〉b2v(j2)

k (λ2)‖`∞k L2
λ2

.

N−1+γ
j1

N
− 1

3
j2

, j1 ∈ D,
N−1+θ
j1

, j1 ∈ G ∪ C.

(5.52)

The rest of proof now goes exactly as above using the additional bound (5.52),

which has exactly the same gain as in Claim 5.4, and the set A0 is treated

together with the other sets Ai. This completes the proof of Proposition 3.4.

5.3. Stability and convergence. Recall that vN is the solution to (2.5).

Proposition 3.2 already implies the convergence of vN on the short time inter-

val [−τ, τ ]. For the purpose of proving global well-posedness, we need some

additional results, namely a commutator estimate, a stability estimate and

13To deal with the η factor in the expression of X (see (5.1)), we only need to assume

η(λ, µ) = η1(λ)η2(µ) has factorized form. In general it is easy to write η as a linear combina-

tion of functions of such a form with summable coefficients, by invoking the explicit formula

for η, which can be deduced from the calculations in the proof of Lemma 2.6.
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two convergence results laid out in Propositions 5.5 and 5.6 below. For the

notation involved in the proof, see Sections 3.1 and 3.2.

Proposition 5.5. Recall the relevant constants defined in (1.35), and

that τ � 1, J = [−τ, τ ]. The following two statements hold τ−1-certainly :

(1) (Commutator estimate). For any N ≤ N ′, we have

(5.53) ‖vN −ΠNvN ′‖Xb(J) ≤ N−1+γ .

(2) (Stability). Let w = ΠNw be a solution to (2.5) on J , but with data w(t0)

assigned at some t0 ∈ J such that ‖w(t0)− vN (t0)‖L2 ≤ AN−1+γ(logN)α,

where α ≥ 0 is an integer. Then we have

(5.54) ‖w − vN‖Xb(J) ≤ BN−1+γ(logN)α+1,

where B depends only on A and α.

Proof. (1) It suffices to prove ‖ΠNv
†
N ′ − v

†
N‖Xb ≤ N−1+γ . We write

ΠNv
†
N ′ − v

†
N =

∑
N<M≤N ′

ΠNy
†
M =

∑
N<M≤N ′

(ΠNψ
†
M,L0(M) + ΠNz

†
M ),

where L0(M) is the largest L satisfying (M,L) ∈ K. The bound for ΠNz
†
M

follows from Proposition 3.3, so it suffices to bound ΠNψ
†
M,L0

, where L0 =

L0(M). Let ψ = ψ†M,L0
. Then we have

ψ(t) = χ(t)eit∆(∆Mf(ω))− iχτ (t)

×
r∑
l=0

(l + 1)crl(m
∗
M )r−l · IΠMN2l+1

(
ψ, v†L0

, . . . , v†L0

)
.

(5.55)

Since N ≤ M
2 , ΠNψ solves the equation

ΠNψ(t) = −iχτ (t)
r∑
l=0

(l + 1)crl(m
∗
M )r−l · IΠNN2l+1

(
ΠNψ, v

†
L0
, . . . , v†L0

)
− iχτ (t)

r∑
l=0

(l + 1)crl(m
∗
M )r−l · IΠNN2l+1

(
Π⊥Nψ, v

†
L0
, . . . , v†L0

)
.

(5.56)

Now τ−1-certainly we may assume (3.21) and the variant of (3.31) described

in Remark 3.5. Note that (3.21) allows us to control the first line of (5.56); the

second line of (5.56) is controlled by using (2.31) and the variant of (3.31). In

the end we get that

‖ΠNψ‖Xb . τ θ‖ΠNψ‖Xb + τ θM−1+ 4γ
5 ,

which proves (5.53).
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(2) If N ≤ OA,α(1), there is nothing to prove, so we may assume N is

large depending on (A,α). Let σ = A|w|2 −A|vN |2 (this is conserved). Then

we have

|σ| . (‖vN (t0)‖L2 + ‖w(t0)‖L2)‖w(t0)− vN (t0)‖L2 . τ−θAN−1+γ(logN)α+1.

Note the log loss due to the fact that ‖vN‖2L2 . τ−θ logN . Recall that vN and

w satisfy the equations

(5.57)

{
(i∂t + ∆)vN =

∑r
l=0 crl(m

∗
N )r−lΠNN2l+1(vN , . . . , vN ),

(i∂t + ∆)w =
∑r

l=0 crl(m
∗
N + σ)r−lΠNN2l+1(w, . . . , w)

on J , so z = w − vN satisfies the equation

(5.58) (i∂t + ∆)z =
r∑
l=0

crl[(m
∗
N + σ)r−l − (m∗N )r−l]ΠNN2l+1(vN , . . . , vN )

+
r∑
l=0

crl(m
∗
N + σ)r−lΠN [N2l+1(z + vN , . . . , z + vN )−N2l+1(vN , . . . , vN )]

on J , and z0 = z(t0) satisfies ‖z0‖L2 ≤ AN−1+γ(logN)α. In order to bound

‖z‖Xb(J), it will suffice to prove that given z0 and σ, the mapping

z† 7→ χ(t− t0)ei(t−t0)∆z0

− iχ2τ (t− t0)
r∑
l=0

crl[(m
∗
N + σ)r−l − (m∗N )r−l]It0ΠNN2l+1(v†N , . . . , v

†
N )

− iχ2τ (t− t0)
r∑
l=0

crl(m
∗
N + σ)r−lIt0ΠN [N2l+1(z† + v†N , . . . , z

† + v†N )

−N2l+1(v†N , . . . , v
†
N )]

(5.59)

is a contraction mapping from the set {z† : ‖z†‖Xb ≤ AN−1+γ(logN)α+1} to

itself, where

It0F (t) = IF (t)− χ(t)ei(t−t0)∆IF (t0),

It0F (t) = χ(t)

∫ t

t0

χ(t′)ei(t−t
′)∆F (t′) dt′.

To this end we will decompose v†N =
∑

N ′≤N y
†
N ′ and (τ−1-certainly) apply the

estimates (3.21) and (3.28), in the same way as in the proof of (3.23). More

precisely, we may use (3.21) to control the terms in (5.59) that contain only

one factor z† (where we use the τ θ gain to ensure smallness), and use (3.28) to

control the terms in (5.59) that contain at least two factors z† (where we use
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the gain of powers of N to ensure smallness, noticing that N is large enough

compared to A). Note that in applying these estimates we need to replace

I by It0 and χτ (t) by χ2τ (t − t0). This can be done because in Section 3.3

all estimates for χτ (t) · I[· · · ] are deduced from (2.31) and the corresponding

estimates for I[· · · ]; here by definition we have ‖It0F‖X b̃ . ‖IF‖X b̃ for b̃ ∈
{b, b1}, which allows us to replace I by It0 , and we have that It0F (t0) = 0 so

(2.31) is still applicable with I replaced by It0 and χτ (t) replaced by χ2τ (t−t0).

The rest of the proof will be the same. �

Proposition 5.6 (Convergence). Recall the relevant constants defined in

(1.35), the ε fixed as in Remark 1.4, and that τ � 1 and J = [−τ, τ ]. Then

the following hold τ−1-certainly :

(1) For any N ≤ N ′, we have

‖vN − vN ′‖X−θ,b2 (J) ≤ τ
−θN−

θ
2 ,(5.60)

‖(vN − eit∆vN (0))− (vN ′ − eit∆vN ′(0))‖
X

1
2−γ0−θ,b2 (J)

≤ N−
θ
2 .(5.61)

Note that the Xs,b(J) bounds also imply the corresponding C0
tH

s
x(J) bounds.

(2) Let Nn(v) be a polynomial that is also viewed as a multilinear form

Nn(v(1), . . . , v(n)), as in (2.16), but it is only assumed to be input-simple (in-

stead of simple). Then for any N ≤ N ′, the distance in C0
tH
−ε
x (J) between

any two of the following expressions,

(5.62) Nn(v), ΠNNn(v), ΠN ′Nn(v) : v ∈ {vN , vN ′ ,ΠNvN ′},

is bounded by τ−θN−γ . The same conclusion holds if Nn is replaced by Wn
N or

Wn
N ′ , or if v is perturbed by any wN satisfying ‖wN‖Xb(J) ≤ AN−1+γ(logN)α.

In the latter case the bound will be OA,τ,α(1)N−γ .

Proof. (1) We only need to prove (5.61). By taking a summation we may

assume N ′ = 2N , and it suffices to prove that ‖yN ′ − eit∆(∆N ′f(ω))‖Xb2 (J) ≤
(N ′)−

1
2

+γ0+ θ
2 . Now an extension of this function is given by

y† =
∑
L

ζ†N ′,L + z†N ′

(see Sections 3.1 and 3.2), where ζ†N ′,L is defined from hN
′,L,† by (3.8) and

(3.10), and hN
′,L,† and z†N ′ satisfy (3.17) and (3.23). This controls the sec-

ond term; to bound the first term, we use the B+
≤L measurability of hN

′,L,†

and Lemma 4.1, and perform the same reduction step as in the proof of

Claim 5.4 using differentiability in λ of h̃kk∗(λ) with h = hN
′,L,†, to bound
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τ−1N ′-certainly that

(5.63)
∑
L

‖ζ†N,L‖Xb2 .
∑
L

(N ′)−1‖hN ′,L,†‖Zb . (N ′)−
1
2

+γ0+ θ
2 .

The right-hand side of (5.63) may involve a τ−θ factor, but this loss can always

by recovered by attaching χτ since y†(0) = 0.

(2) The bounds for Wn follows from the bounds for Nn and the formulas

(2.11) and (2.12), noticing that :|v|2rv: and :|v|2r: are input-simple. As for Nn,

by decomposing

v†N =
∑
N ′≤N

y†N ′ , y†N ′ = χ(t)eit∆(∆N ′f(ω)) +
∑
L

ζ†N ′,L + z†N ′ ,

it suffices to bound Nn(v(1), · · · , v(n)), τ−1N (1)-certainly, by τ−θ(N (1))−γ in

the space C0
tH
−ε
x (J) for v(j) as in the assumptions of Proposition 3.4. The

proof is a much easier variant of the arguments in Section 5.1.1, so we will

only sketch the most important points.

First, since the ∂t derivative of all the v(j)’s are bounded by (N (1))C (by

restricting the size of λj variables as we did in Section 5.1.1), by dividing J into

(N (1))δ
−1

intervals we may reduce to (N (1))Cδ
−1

exceptional sets and thus fix a

time t ∈ J . This gets rid of all the λj variables (so we are considering v
(j)
kj

and

h
(j)
kjk∗j

), and by a simple H
1
2

+
t ↪→ C0

t argument, the estimates (3.26) and (3.27)

remain true with the obvious changes. Now by repeating the arguments in

Section 5.1.1 (in a simplified situation without λj integrations) and Section 5.2

(which deals with over-pairings) we get that

‖∆N0Nn(v(1), . . . , v(n))‖2L2 . τ−θ(N (1))Cκ
−1

(N (1))Cγ · (#S)
n∏
j=1

N−2
j

p∏
i=1

N2i−1

Ri
,

where N2i−1 ∼ N2i & Ri and

S =

ß
(k, k1, . . . , kn) ∈ (Z2)n+1 :

n∑
j=1

ιjkj = k, |k| . N0,

|kj | . Nj (1 ≤ j ≤ n), |k2i−1 − k2i| . Ri(N (1))Cκ
−1

(1 ≤ i ≤ p)
™
.

A simple counting estimate yields

‖∆N0Nn(v(1), . . . , v(n))‖2L2 . τ−θ(N (1))Cγ min(1, (N (1))−1N0)

. τ−θN ε
0 (N (1))−γ
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as by our choice γ � ε, which concludes the proof. With the wN perturbations

the proof works the same way, except that the constants may depend also on

A and α. �

Before ending this section, we would like to shift the point of view from the

probability space (Ω,B,P) to the spaces V and VN . Given 0 < τ � 1, all of the

above proofs allow us to identify a Borel set Eτ of V with ρ(Eτ ) ≥ 1−Cθe−τ
−θ

,

such that when uin = vin ∈ Eτ , all the results in Sections 3 and 5, including

Propositions 3.2, 3.3 and 5.5, are true.

In reality we will be using finite dimensional truncations of Eτ , namely

ENτ = ΠNEτ . Clearly when ΠNuin ∈ ENτ , all the quantitative estimates proved

before will remain true if all the frequencies N,N ′, L, etc., are ≤ N . Moreover,

we know that ρN (EN
τ ) ≥ ρ(Eτ ) ≥ 1 − Cθe

−τ−θ ; since the Radon-Nikodym

derivative
dµ◦

N
dρN

is uniformly bounded in L2(dρN ), we have that

(5.64) µ◦
N

(EN
τ ) ≥ 1− C

»
ρN (VN\ENτ ) ≥ 1− Cθe−τ

−θ
.

Finally, due to the gauge symmetry of (1.7) and (2.5), we may assume that Eτ
(and ENτ ) is rotation invariant, i.e., eiαEτ = Eτ for α ∈ R.

6. Global well-posedness and measure invariance

In this section we will prove Theorem 1.3. Recall the sets ENτ defined

at the end of Section 5.3. Denote the solution flow of (1.7) by ΦN
t and the

solution flow of (2.5) by ΨN
t , which are mappings from VN to itself. Define

successively the sets

FNT,K =
⋂
|j|≤K

(ΨN
jT
K

)−1ENT
K

,(6.1)

GN,αT,K,A,D =

ß
v ∈ VN : ∃t ∈ [−D,D] s.t. ΨN

t v = v′ + v′′,

v′ ∈ FNT,K , ‖v′′‖L2 ≤ AN−1+γ
(logN)α

™
,

(6.2)

Σ =
⋃
D≥1

⋂
T≥210D

⋃
K�T ;A,α≥1

lim sup
N→∞

Π−1
N
GN,αT,K,A,D.(6.3)

Here Π−1
N
G = G×V⊥

N
is the cylindrical set. We understand that T,K,A,D all

belong to some given countable set (say powers of two), and α is an integer.

All these sets are Borel, since in (6.2) we may replace the ≤ sign by the < sign,

and then restrict to rational t by continuity. We will start by proving global

well-posedness and then measure invariance.
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Proposition 6.1. The set Σ satisfies µ(V\Σ) = 0, and W 2r+1(u) ∈ H−ε
is well defined for u ∈ Σ. For any uin ∈ Σ, the solutions uN (t) = ΦN

t ΠNuin to

(1.7) converge to some u(t) = Φtuin in C0
tH
−ε
x ([−T, T ]) for any T > 0. This

u is a distributional solution to (1.1), and u(t) ∈ Σ for each t. The mappings

Φt : Σ→ Σ satisfy Φ0 = Id and Φt+t′ = ΦtΦt′ .

Proof. We first prove µ(V\Σ) = 0. By definition we have

(6.4) Σ ⊃
⋂

T≥210

⋃
K�T

lim sup
N→∞

Π−1
N
FNT,K ,

so it suffices to prove for any fixed T ≥ 210 that

sup
K�T

µ

Å
lim sup
N→∞

Π−1
N
FNT,K

ã
= 1.

Now by Fatou’s lemma and the fact that the total variation of µ−µN converges

to 0, we have

µ

Å
lim sup
N→∞

Π−1
N
FNT,K

ã
≥ lim sup

N→∞
µN
(
Π−1
N
FNT,K

)
= lim sup

N→∞
µ◦
N

(
FNT,K

)
.

By invariance of dµ◦
N

under the flow ΨN
t (Proposition 2.4) we know that

µ◦
N

(
FNT,K

)
≥ 1− (2K + 1)µ◦

N

(
VN\E

N
T
K

)
≥ 1− CθKe−(KT−1)θ

uniformly in N, and the right-hand side converges to 1 as K→∞, so µ(V\Σ)=0.

Now suppose uin ∈ Σ. By definition we may choose some D. Then

for any T ≥ 210D, we can find (K,A, α) such that ΠNuin ∈ GN,αT,K,A,D for

infinitely many N . We may fix this T (hence also (K,A, α)) and this N ,

so that ‖ΨN
t0ΠNuin − v′‖L2 ≤ AN

−1+γ
(logN)α for some t0 ∈ [−D,D] and

v′ ∈ FNT,K . We proceed in three steps.

Step 1: Analyzing v′. We first prove that, for any N ≤ N and |j| ≤ K,

there holds that

(6.5) ‖ΠNΨN
jT
K

v′ −ΨN
jT
K

ΠNv
′‖L2 ≤ BN−1+γ(logN)|j|

for some B depending only on (T,K). This is obviously true for j = 0; suppose

this is true for j, since ΨN
jT
K

v′ ∈ ENT
K

. By Proposition 5.5(1) we have

‖ΠNΨN
(j±1)T
K

v′ −ΨN
±T
K

ΠNΨN
jT
K

v′‖L2 ≤ N−1+γ

(note that as K � T the local theory is applicable on intervals of length T
K ),

and

‖ΨN
±T
K

ΠNΨN
jT
K

v′ −ΨN
(j±1)T
K

ΠNv
′‖L2 ≤ B′N−1+γ(logN)|j|+1
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by Proposition 5.5(2) and (6.5), where B′ depends only on B and (T,K),

so (6.5) holds also for j ± 1, which concludes the inductive proof. By the

same argument, we can show that (6.5) remains true with jT
K replaced by any

t ∈ [−T, T ] and |j| replaced by K.

Similarly, since ΨN
jT
K

v′ ∈ ENT
K

for each |j| ≤ K, by combining Proposi-

tions 5.5 and 5.6, we conclude that for any N ≤ N ′ ≤ N ,

sup
t∈[−T,T ]

‖ΨN
t ΠNv

′ −ΨN ′
t ΠN ′v

′‖H−θ ≤ OT,K(1)N−
θ
2 ,(6.6)

sup
t∈[−T,T ]

‖Wn
N (ΨN

t ΠNv
′)−Wn

N ′(Ψ
N ′
t ΠN ′v

′)‖H−ε ≤ OT,K(1)N−γ ,(6.7)

and the same is true if Wn
N andWn

N ′ in (6.7) is replaced by ΠNW
n
N and ΠN ′W

n
N ′ .

Step 2: Linking uin to v′. Recall that

‖ΨN
t0ΠNuin − v′‖L2 ≤ AN−1+γ

(logN)α.

Since |t0| ≤ D � T , by iterating Proposition 5.5(2) we deduce that

‖ΠNuin −ΨN
−t0v

′‖L2 ≤ A′N−1+γ
(logN)α+K ,

where A′ depends only on (T,K,A, α). Writing −t0 = jT
K + t′ with |j| ≤ 2−8K

and |t′| ≤ T
K , we may apply Proposition 5.5(2) again and combine this with

(6.5) and similar estimates to deduce for any N ≤ N that

(6.8) sup
t∈[−T

2
,T
2

]

‖ΨN
t ΠNuin −ΨN

t−t0ΠNv
′‖L2 ≤ BN−1+γ(logN)α+2K

with B depending only on (T,K,A, α). By (6.6), (6.7), (6.8) and Proposi-

tion 5.6, we conclude for all N ≤ N ′ ≤ N that

sup
t∈[−T

2
,T
2

]

‖ΨN
t ΠNuin −ΨN ′

t ΠN ′uin‖H−θ ≤ OT,K,A,α(1)N−
θ
2 ,(6.9)

sup
t∈[−T

2
,T
2

]

‖Wn
N (ΨN

t ΠNuin)−Wn
N ′(Ψ

N ′
t ΠN ′uin)‖H−ε ≤ OT,K,A,α(1)N−γ ,

(6.10)

and the same is true for projections of Wn
N .

Step 3: Completing the proof. Now, for fixed (D,T,K,A, α) we know

that there exists infinitely many N such that (6.9) and (6.10) are true for

all N ≤ N ′ ≤ N , so (6.9) and (6.10) are simply true for all N ≤ N ′. This

implies the convergence of ΨN
t ΠNuin in C0

tH
−ε
x ([−T

2 ,
T
2 ]), and we will define

Ψt = limN→∞ΨN
t ΠN . Since by the definition of gauge transform we have

(6.11)

ΦN
t ΠNuin = ΨN

t ΠNuin · e−iBN (t), BN (t) = (r + 1)

∫ t

0

A[W 2r
N (ΨN

t ΠNuin)] dt′,
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(6.9) and (6.10) also imply the convergence of ΦN
t ΠNuin in C0

tH
−ε
x ([−T

2 ,
T
2 ]),

as well as the convergence of ΠNW
2r+1
N (ΦN

t ΠNuin) in the same space. As uN =

ΦN
t ΠNuin solves equation (1.7) with the right-hand side being ΠNW

2r+1
N (uN ),

we know that the limit u = limN→∞ uN solves (1.1) in the distributional sense.

Let u(t) = Φtu. The group properties of Φt follow from the group properties

of ΨN
t and limiting arguments similar to the above.

Finally we prove that Φt1uin ∈ Σ for uin ∈ Σ and any t1. Let D be

associated with the assumption uin ∈ Σ, and fix D1 � D + |t1|. For any T ≥
210D1, there exists (K,A, α) such that ΠNuin ∈ GN,αT,K,A,D for infinitely many N .

It suffices to show that for such N , we must have ΠNΦt1uin ∈ GN,α+3K
T,K,B,D1

with

B depending only on (T,K,A, α). Since ΠNΦt1uin and ΠNΨt1uin only differ

by a rotation and the sets we constructed are rotation invariant, we only need

to prove the same thing for ΠNΨt1uin.

Now, on the one hand we know for some |t0| ≤ D that ‖ΠNuin−ΨN
−t0v

′‖L2

≤ A′N
−1+γ

(logN)α+K for some A′ depending only on (T,K,A, α) (see Step

2) and similarly ‖ΨN
t1ΠNuin − ΨN

t1−t0v
′‖L2 ≤ A′N

−1+γ
(logN)α+2K . On the

other hand, by taking limits in (6.5) and (6.8) we also get ‖ΠNΨt1uin −
ΨN
t1ΠNuin‖L2 ≤ A′N−1+γ

(logN)α+2K , and hence

‖ΠNΨt1uin −ΨN
t1−t0v

′‖L2 ≤ A′N−1+γ
(logN)α+2K .

Applying Proposition 5.5(2) again we get that ‖ΨN
t0−t1ΠNΨt1uin − v′‖L2 ≤

BN
−1+γ

(logN)α+3K with |t0 − t1| ≤ D1 and B ≤ B(T,K,A, α), thus by

definition ΠNΨt1uin ∈ GN,α+3K
T,K,B,D1

. This completes the proof. �

Proposition 6.2. For any Borel subset E ⊂ Σ and any t0 ∈ R, we have

µ(E) = µ(Φt0E).

Proof. The map Φt is a limit of continuous mappings, so it is Borel measur-

able. By taking limits, we may assume the set E is compact in H−ε topology.

We may also assume that |t0| ≤ 1, and that for some fixed (T,K,A, α,D)

with K � T ≥ 210D, we have E ⊂ lim supN→∞G
N,α
T,K,A,D. By the proof of

Proposition 6.1 we can deduce that for u ∈ E and |t| ≤ 2,

(6.12) ‖ΨN
t ΠNu−ΠNΨtu‖L2 . N−1+γ(logN)α+3K

with constants depending on (T,K,A, α) (same below). Moreover, concerning

the phase BN (t) involved in the gauge transform, namely

BN (t) = (r + 1)

∫ t

0

A[W 2r
N (ΨN

t ΠNu)] dt′,

we can show that as N → ∞, BN (t) converges to its limit B(t) at a rate

‖BN (t)−B(t)‖C0
t ([−2,2]) . N−1+γ(logN)α+4K . In fact we may first reduce to
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short time intervals where local theory is applicable. Then notice that∫ t

0

A[W 2r
N (ΨN

t ΠNu)] dt′ = AI[W 2r
N (ΨN

t ΠNu)]

for |t| � 1, and apply Proposition 3.4, more precisely (3.29), with the ob-

servation that the mean A restricts the two highest input frequencies in any

multilinear expressionNn occurring in W 2r
N to be comparable, i.e., N (1) ∼ N (2).

We omit the details.

With the explicit convergence rate of BN (t), we see that (6.12) holds with

ΨN
t and Ψt replaced by ΦN

t and Φt, and with 3K replaced by 4K. For |t| ≤ 1,

this gives that

ΠNΦtE ⊂ ΦN
t ΠNE + BL2(A1N

−1+γ(logN)α+4K)

⊂ ΦN
t (ΠNE + BL2(A2N

−1+γ(logN)α+5K)),

where A1,2 are constants depending only on (T,K,A, α), and BL2(R) is the

ball of radius R in L2 centered at the origin; note that the second subset

relation follows from long-time stability, which is also a consequence of the

proof of Proposition 6.1. By invariance of dµ◦N under ΦN
t we have that

µN (Φt0E) ≤ µ◦N (ΠNΦt0E) ≤ µ◦NΦN
t0 (ΠNE + BL2(A2N

−1+γ(logN)α+5K))

= µ◦N (ΠNE + BL2(A2N
−1+γ(logN)α+5K)).

(6.13)

It then suffices to prove that

(6.14) lim sup
N→∞

Π−1
N (ΠNE + BL2(A2N

−1+γ(logN)α+5K)) ⊂ E,

which would imply µ(Φt0E) ≤ µ(E), and conclude the proof by time re-

versibility.14 To prove (6.14), suppose u is such that ‖ΠN (u − uN )‖L2 ≤
A2N

−1+γ(logN)α+5K with uN ∈ E for infinitely many N . Then by com-

pactness we may assume uN → v ∈ E in H−ε, so uN → u coordinate-wise and

uN → v coordinate-wise, hence u = v ∈ E and the proof is complete. �

Remark 6.3. With a little more effort, we can show that the structural in-

formation for the short time solution, i.e., (3.12), is propagated for arbitrarily

long time. This follows by iterating short time intervals using measure invari-

ance, and applying (5.53) and (5.54) in Proposition 5.5, in the same way as in

the proof of global well-posedness (Proposition 6.1) above. We omit the details.

14By repeating the proof of Proposition 6.1 we can show that ΦNt ΠNu → Φtu in H−ε

uniformly for u ∈ E and |t| ≤ 2, so Φt0E is also compact in H−ε and satisfies similar

properties as E.
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