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Invariant Gibbs measures and global strong
solutions for nonlinear Schrodinger
equations in dimension two

By Yu DENG, ANDREA R. NAHMOD, and HAITIAN YUE

Dedicated to the memory of Professor Jean Bourgain

Abstract

We consider the defocusing nonlinear Schrédinger equation on T? with
Wick ordered power nonlinearity, and prove almost sure global well-posed-
ness with respect to the associated Gibbs measure. The heart of the matter
is the uniqueness of the solution as limit of solutions to canonically trun-
cated systems, and the invariance of the Gibbs measure under the global
dynamics follows as a consequence. The proof relies on the novel idea of
random averaging operators.

1. Introduction

In this paper we study the (defocusing) Wick ordered nonlinear Schro-
dinger equation on the torus T? = (R/27Z)?,

(10 + A)u = W2+l(u),

u(0) = Uip,

(1.1)

where r is a given positive integer, and W2 +! is the Wick ordered power
nonlinearity of degree 2r + 1, which will be defined below. We prove that,
almost surely with respect to the associated Gibbs measure, equation (1.1) has
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a global strong solution, which is the unique limit of solutions to the canonical
finite dimensional truncations. This solution map keeps the Gibbs measure
invariant.

For r = 1 (cubic nonlinearity), this was proved by Bourgain [11]; the re-
sults for r > 2 are new. We remark that in [69], Oh and Thomann constructed
almost sure global weak solutions to (1.1) with respect to the Gibbs measure,
such that at any time the law of these random solutions is again given by
the Gibbs measure. The main point of the current paper is the almost sure
uniqueness of the solution with respect to the Gibbs measure.

1.1. Setup and the main theorem. In this section we setup the problem
and state our main theorem. For a review of the background and previous
results, see Section 1.2.

1.1.1. Wick ordering and Gibbs measure. We will fix a probability space
(©,B,P), and a set of independent complex Gaussian random variables { gy }rez2
defined on € that are normalized, i.e., Egy = 0 and E|gx|?> = 1, such that the
law of g is rotationally symmetric.

Let V = S’(T?) be the space of distributions on T2. We define the V-valued
random variable

(1.2) f=flw):w— Z gk(t;)eik'x, we .

keZ? <k

Let dp be the Wiener measure on V, defined for Borel sets £ C V by
(1.3) p(E) =P(f1(E)),

so dp is the law of the random variable f. This measure dp is a countably
additive Gaussian measure supported in (.o H °(T?), which we henceforth
denote by H°~(T?) (similarly H*™(T?) = (.o H*°(T?)), but not in L*(T?)
(see, e.g., Bogachev [9]). Define the spectral truncation Iy by

(1.4) foNu(k) = 1(k)§N . qu(k),

where F, is the space Fourier transform, (k) := \/|k|?> + 1 and 1p denotes the
indicator function of a set or property P, and define the expectation of the
truncated mass,

1 1
(1.5) oN = WEHHNJ‘(L«))H%Q =) Tz~ log V.
(k)N
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For each IV and each p > 0, define the Wick ordered powers,

P P71
2 g p: ;
Wit =3 (7) P,

jl
7=0
(1.6) ;
W) = (-1 prL)on p| 7,
= p=3) J

and the canonical finite dimensional truncations for (1.1),

(1 7) (Zat + A)UN = HNW]%/rJrl (UN),

' un(0) = Myui,.
The following proposition ensures the convergence of the right-hand side of
(1.7) as N — oo and provides the definition of W2 1 (x) in (1.1).

PROPOSITION 1.1. Let n be a nonnegative integer. Then almost surely in
u with respect to the Wiener measure dp, the limit

lim Wy (IIyu) = lim IxWg(HIyu)
N—o0 N—oo
exists in HO~(T?). We will denote this limit by W™ (u).

For each IV, we also define the truncated potential energy

1 1
1. = 2r+2(11 .
(18) Wl = = [, W v e
By Proposition 1.1, the limit quantity
1 1
L. = 1li =— a2
(1.9) Vil = Jim Vil = =5 75 / W22 () da

is defined dp-almost surely in u. We can verify that (1.7) is a finite dimensional
Hamiltonian system with Hamiltonian

1
(1.10) Hy(u] = 2n)? /1r2 \Vul|? dz + Vi[u).
This Hy[u], as well as the mass MJu] := ﬁ Jpe |ul?dz, is conserved under

the flow (1.7).

ProrosiTION 1.2. Define the measure du by

(1.11) dp =z e VM dp, 7 = / e VI dp(u).
1%

Then dp is mutually absolutely continuous with dp, and the Radon-Nikodym
derivative Z~Ye=V belongs to L4(dp) for any 1 < q < oo. We call this dpu
the Gibbs measure for (1.1).
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Propositions 1.1 and 1.2 stem from seminal works of Nelson [66], [67] and
of Glimm-Jaffe [36] in the context of quantum field theory (see also Simon [73]
and Da Prato-Tubaro [25]). As stated, a proof of these propositions can be
found in [69].

1.1.2. The main theorem. We can now state our main theorem.

THEOREM 1.3. There exists a Borel set ¥ C V with p(V\X) = 0, such
that W2+ (u) € HY=(T?) is well defined for u € ¥. Furthermore,

(1) For each uin € ¥ and each t € R, the solution un(t) to (1.7) converges to
a unique limit

(1.12) dim uy(t) = u(t)

in HO=(T?), and u(t) € ¥ for each t € R. This u(t) solves (1.1) in the
distributional sense.

(2) The limit u(t) in (1.12) defines, for each t € R, a map from X to itself:
u(t) =: ®yuin. These maps then satisfy the usual group properties and keep
the Gibbs measure du invariant; namely,

(1.13) W(E) = ju(@4(E))
for any Borel set E C X.

Remark 1.4. In proving Theorem 1.3, we will replace H°~(T?) by H¢(T?)
where 0 < € < 1, and throughout the proof we will fix this €. (We then take
a countable intersection in ¢.)

Remark 1.5. The Wick ordering (1.6) is needed in order to have a mean-
ingful solution theory, due to the infinite mass in the support H°~(T?) of the
Gibbs measure dyu; see, e.g., [45].

Remark 1.6. (1) Since the Gibbs measure dy is mutually absolutely con-
tinuous with the Gaussian measure dp, part (1) of Theorem 1.3 can also be
viewed as an almost sure global well-posedness result with random initial data
uin = f(w) as in (1.2).

(2) The truncation frequency N in (1.7) can be any positive number. For
simplicity, in the proof below we will assume that N € 2Z. The general case
follows from placing N between N’/2 and N’, where N’ € 2%, and analyzing
the difference uys — un in the same way as uns — upr /.

(3) The solution u(t) defined in Theorem 1.3 is unique in the following
sense. Suppose we replace the truncation in (1.7) by any other canonical
truncation; say we replace IIy in (1.4) by the multiplier with symbol k +—
©((k)/N) in both (1.5) and the second line of (1.7), where ¢(2) is either 1|,1<;
or a smooth function supported in |z| < 1 and ¢(0) = 1. We may also keep the



INVARIANT GIBBS MEASURES FOR 2D NLS 5

[Ty in the first line of (1.7) unchanged, or replaced it by 1. Then in any case
Theorem 1.3 remains true; moreover, the set 3 and the limit u(¢) obtained do
not depend on . The proof is basically the same, with only minor adjustments
in a few places. We will not pursue these matters here.

Remark 1.7. (1) Theorem 1.3 is part of the program of constructing in-
variant Gibbs measures and studying their dynamics for the (renormalized)
defocusing nonlinear Schrédinger equation (1.1); see Section 1.2.1 below. With
Bourgain [10] completing all cases with d = 1 and Theorem 1.3 completing all
cases with d = 2 after Bourgain [11], the remaining cases that are expected
to be solvable! are the invariance of Gibbs measure for (d,7) = (3,1), and
invariance of white noise for (d,r) = (1,1). We expect both to be strictly
harder than Theorem 1.3 as they are critical in the probabilistic scaling; see
Section 1.3.1.

(2) The corresponding problem of constructing invariant Gibbs measures
for nonlinear wave equations is in general much easier than the Schrodinger
problem, due to the derivative gain in Duhamel’s formula. Indeed, this has
been completely solved, due to the results of Friedlander [33] (see Zhidkov [84]
under more restrictive assumptions on the nonlinearity) in dimension d = 1,
Bourgain [13] in dimension d = 2 (see also Oh-Thomann [70]), and the recent
result of the authors with Bringmann [16] for (d,r) = (3,1) proved after the
current paper was submitted.

1.2. A review of previous results. We start by reviewing previous results
and methods on PDEs in the probabilistic setting. As the literature is now ex-
tensive, we will put emphasis on the works most relevant to the current paper.

1.2.1. Invariant measures. Since the pioneering works of Lebowitz-Rose-
Speer [58] and Bourgain [10, 11], there have been numerous results regarding in-
variant measures for nonlinear dispersive equations. In general, for any Hamil-
tonian dispersive equation, we may construct the associated Gibbs measure

(1.14) dp ~ e PH Hd:c,

where 5 > 0 is a fixed parameter (which we may set to be 1) and H is the
Hamiltonian. The definition (1.14) is only formal; in some cases it can be

!Gibbs measures for (1.1) are available only for d = 1 (both focusing and defocusing),
d = 2 (defocusing only), and (d,r) = (3,1) (defocusing only). This is related to the exis-
tence/nonexistence of ¢35+ theories; see, for example, Aizenman [1], Frohlich [35], Brydges-
Slade [17], and Aizenman-Duminil Copin [2]. The white noise measure is always formally

invariant under (1.1), but is compatible with the dynamics only when (d,r) = (1, 1).
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justified by using the Gaussian measure as a reference measure and writing du
as a weighted Wiener measure. For example, the Hamiltonian for (1.1) is

1 1
H = 2 W2T+2 d
(27)2 /Tz(‘w” T () dz
and the Gibbs measure

—1 1 -1
du ~ [ W27'+2 d j| {/ 2d
P T )2 /TQ (w)de|-exp | 5s | IVl de

weight

de

z€T?

Gaussian measure

2 as in Proposition 1.2.

can be rigorously defined as a weighted Wiener measure,
Defining such Gibbs-type measures and studying their properties under various
dynamics is a major problem in constructive quantum field theory.

The Gibbs measure du for a given dispersive equation is formally invariant
due to a “formal Liouville’s Theorem” and the conservation of Hamiltonian.
It is of great interest to establish this invariance rigorously, as this would be
the first step in studying the global dynamics from the statistical ensemble
point of view. In [10], [11], Bourgain developed a systematic way of showing
the invariance of du from the invariance of finite dimensional Gibbs measures,
provided we have local well-posedness or almost sure local well-posedness with
respect to du.

Therefore, justifying the invariance of du (and other similar formally in-
variant measures) basically reduces to proving almost sure local well-posedness
on the support of du. As this support is very rough in high dimensions (namely
H'"% for (1.1) in dimension d), most known results are limited to one di-
mension, or require strong symmetry. For the Schrodinger equation (1.1) on
the torus T¢, Bourgain [10] solved the case d = 1, and he extended this to
d =2and r = 1 in [11]. These are the only results known for the nonlin-
ear Schrodinger equation prior to the current paper. More is known for wave
equations as noted in Remark 1.7(2) above; see [33], [84], [13], [70], [16].

Apart from the standard Schrodinger and wave models on tori, there
are many results, again mostly in one dimension or under radial symme-
try, where the invariance of corresponding Gibbs measures (or of associated
weighted Wiener measures) are justified for various dispersive models on var-
ious background manifolds (see, e.g., [79], [68], [80], [78], [62], [64], [75], [26],

2Strictly speaking the measure defined in Proposition 1.2 involves an additional weight
which is an exponential of the L? mass. As the mass is also conserved, this does not affect
any invariance properties.
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[27], [31], [72], [77], [76] and references therein). We also mention the com-
pactness method of Alveberio and Cruzeiro [3] that explores the tightness
of the sequence of finite dimensional measures and applies the theorems of
Prokhorov and Skorokhod to obtain existence of weak solutions (see, e.g., [18],
[63], [69], [81]). These are less related to the current paper, and we will not
elaborate further.

1.2.2. Probabilistic well-posedness theory. It has long been known that
PDEs with randomness generally behave better in terms of local well-posedness
(i.e., probabilistic well-posedness holds below the deterministic well-posedness
threshold). Progress has been made in two parallel directions: random initial
data problems and stochastically forced problems.

The first results along this line are due to the seminal works by Bourgain
[11], [12] in the random data setting and later to Da Prato-Debussche [23],
[24] in the stochastic setting. The idea in both cases is to make a linear-
nonlinear decomposition and observe the effect of probabilistic smoothing. For
example, in [11], equation (1.1) with » = 1 on T? is studied with random
initial data in H~¢ for some 0 < ¢ < 1, in which (1.1) is deterministically
ill-posed. However with randomness we may construct solutions to (1.1) that
have the form u = e®*u(0) + v, where u(0) € H~¢ is the random initial data,
and v belongs to some positive Sobolev space in which (1.1) is well posed. In
other words, the solution contains a rough random part uy, : = eitAu(O) and a
smooth remainder v. The point here is that, even though wy;,, is rough, it has an
explicit random structure that allows us to control the nonlinear interactions
between uy, and wuyy,, and between ), and v, in a more regular space.

Until recently the method of Bourgain, as well as its higher order vari-
ants that include some nonlinear interactions of uy, with itself into the rough
random part,> has been the dominant strategy of exploiting randomness in
the local well-posedness theory for dispersive and wave equations with random
data. After Bourgain’s pioneering work, there has been substantial success us-
ing this method. (For a sample of works, we refer the readers to [11], [19], [22],
[26], [14], [65], [82], [15], [55], [8], [32], [54] and references therein.) However
this method by itself has its limitations and does not lead to optimal results
in most cases.

A few years ago, a series of important works emerged, which revolutionized
the study of local well-posedness for stochastically forced PDEs, in fact reach-
ing the optimal exponents in the parabolic case. These include the theory

3This usually results in a finite or infinite tree expansion.
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of reqularity structures of Hairer [46], [48], [47], [49] and the para-controlled
calculus of Gubinelli-Imkeller-Perkowski [37], [38]. A third method based
on Wilsonian renormalization group analysis was independently proposed by
Kupiainen in [57].

The theory of regularity structures is based on the local-in-space properties
of solutions at fine scales (so it is particularly suitable for parabolic equations);
it builds a general theory of distributions that includes the profiles coming from
the noise, and allows for multiplications and analysis of the nonlinearity. Since
its success with the KPZ equation [46] and the ®4 model [48], this theory
has been further developed by Hairer and collaborators and is now powerful
enough to solve a wide range of problems that are subcritical according to a
suitable parabolic scaling. We will not get into the details, but we refer the
reader to [34], [49], [50], [51], [52], [21], [61], [60] and references therein for nice
expositions of these ideas.

The theory of para-controlled calculus, which is in spirit the point of
departure of the present paper, takes a different approach and is based on
the following idea. In the approach of Bourgain and of Da Prato-Debussche
mentioned above, some nonlinear interactions between wy, and v may not
have enough regularity despite v being more regular than wuy,. However, a
key observation is that the only bad terms here are the high-low interactions
where the high frequencies come from w;, and the low frequencies come from v,
and such terms can be para-controlled by the high-frequency inputs (which are
nonlinear interactions of wy, with itself). Here f being para-controlled by g
simply means that f equals the high-low paraproduct of g with some other
function h, up to a smoother remainder. With such structure, these para-
controlled terms can be shown to have similar randomness structures as the
nonlinear interactions of uy, with itself, and thus can be handled similarly as
in Bourgain’s or Da Prato-Debussche’s approach, leaving an even smoother
remainder. The para-controlled calculus also has a higher order variant; see
[5], [6]. We refer the reader to [20], [41], [42], [43], [44], [60], [71], [5], [4],
[6] and references therein for expositions of these ideas and some other recent
developments on this method.

Finally, we would like to mention two recent results of Gubinelli-Koch-
Oh [39] and Bringmann [15]. In [39] the authors applied a version of para-
controlled calculus to the stochastic wave equation setting, and they obtained
almost sure local well-posedness for a quadratic wave equation with additive
white noise on T3. This relied on several new ingredients, including the analysis
of a random operator (which is different from and unrelated to the random
averaging operator introduced in the current paper).
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In [15] the author studied the nonlinear wave equation with quadratic
derivative nonlinearity on R? and improved the known well-posedness thresh-
old with random initial data, again by analyzing high-low interactions. This
work introduced an improved para-controlled scheme that accounts for all the
bad terms in the absence of linear smoothing effects, and also made the very
important observation that the high-frequency and low-frequency parts can in
fact be made independent. See Section 1.3.2 for more detailed discussions.

Remark 1.8. We note from previous discussions that, in the same dimen-
sion and for the same nonlinearity, the probabilistic improvement (defined as
the difference between exponents of the deterministic H* well-posedness thresh-
old and the obtained probabilistic H* well-posedness threshold) is always much
smaller for Schridinger equations compared to wave and heat equations.

There are two reasons for this. First, heat equations are compatible with
Holder spaces C?, which scale much higher than H?, but a function with in-
dependent Gaussian Fourier coefficients that belongs to H® will automatically
belong to C*~ due to Khintchine’s inequality. This allows for a scaling at a
higher regularity, and hence we will be in a better situation when studying heat
equations. Such an advantage cannot be exploited for Schrédinger and wave
equations, since C*® spaces are not compatible even with their linear evolutioin
and cannot be used in any well-posedness theory.

Second, the Duhamel evolution for the heat equation gains two derivatives,
and for the wave equation gains one.* This allows for room to apply Sobolev
embedding, and also reduces the task of controlling the nonlinearity to the task
of making sense of products, which is still hard but at least more manageable.
In comparison, the Duhamel evolution for Schrodinger has no smoothing effect,
and it can be challenging to close the estimates even when the relevant products
are well defined.

1.3. Difficulties and the strategy. We now turn to the proof of Theo-
rem 1.3. This proof consists of two parts: (a) proving almost sure local well-
posedness for (1.1) on the support of the Gibbs measure, and (b) applying
formal invariance to extend local solutions to global ones. Since part (b) is
essentially an adaptation of Bourgain’s classical proof [11], we shall focus on
the local theory in part (a). For exposition simplicity, we will also replace
W?2r+1(u) by the pure power |u|?"u in the discussion below.

4Note that the derivative wave equation studied in [15] behaves similarly to Schrodinger as
the one derivative gain is cancelled by the derivative nonlinearity. Therefore the probabilistic
improvement obtained in [15] is also a tiny amount compared to other results for wave
equations.
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The obvious difficulty here is that the Gibbs measure dyu is supported in
H°~, while the (deterministic) scaling threshold, below which (1.1) is ill-posed,
iss.=1 —% — 1 as r — co. In the language of Remark 1.8, we need to obtain
a probabilistic improvement = 1. Therefore, it is important to understand
exactly how randomness allows us to beat scaling. This is contained in the
notion of probabilistic scaling, which we discuss below.

1.3.1. The probabilistic scaling. Consider the nonlinear Schrodinger equa-

tion
(1.15) (10 + A)u = |[u|*"u, u(0) = uin
on T9. The scaling critical threshold for (1.15) is
d 1
1.16 =22
( ) ° 2 r

and (1.15) is expected to be locally well-posed in H® only if s > s.. This
can be demonstrated in multiple ways, but the one most relevant to us is as
follows. Suppose the initial data i, has Fourier transform F,u;, (k) supported
in |k| ~ N with |Fruin(k)| ~ N7 with o = s + %l; then ||uin| gs ~ 1. If local
well-posedness holds, then we should expect that the second iteration (say at
time t = 1),

1
. / ) sS4/
u(l) — / ez(lft )A(|€zt Auin‘Qrezt Auin) dt/,
0

satisfies |[uM||zrs < 1. By performing Fourier expansions, we essentially get
(1.17)

2r+1
1 _—
Foull (k) ~ > @Humw), S =k = [k + = ko)
k1—-+kory1=k Jj=1
|kj| SN

where complex conjugates are omitted. In the worst scenario this gives, up to
logarithmic factors,

| FpuM (k)| < N~CrtDegup #3,
meZ

where S,, = {(k‘l, ce 7k21“+1) tky— o+ ko1 = K, ‘k‘J| 5 N, ¥ = m} By di-
mension counting, we expect that #S,, < N2"?=2 5o in order for ||u(M||gs <1
we need —(2r + 1)a + 2rd — 2 < —a, or equivalently s > s.

Now, in the random data setting, suppose the Fourier coefficients of initial
data {ui,(k)} are independent Gaussians of size N=®. The sum (1.17) will
then be a sum of products of independent Gaussian random variables, which is
reminiscent of the classical Central Limit Theorem. Recall that in the latter we
have a sum of M independent random objects of unit size, and under certain
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general conditions, this sum scales only like v/ M as opposed to M if without
randomness. In the same way, we would expect essentially a “square root gain”
here, that is,

\fxu(l)(kﬂ S N7(2r+1)a sup (#Sm)% < N7(2r+1)o¢+rd71,
mEZL ~
so in order for ||[u™M||gs < 1, it suffices to have —(2r + 1)a+rd — 1 < —a, or
equivalently

1

1.18 > 5y i= ——.
( ) s Sp 2

Note that s, is independent of the dimension and that we always have s, < s.

We will call this s, the critical threshold for probabilistic scaling.” We refer the

reader to [30] for further discussions about the probabilistic scaling paradigm.

Remark 1.9. With the above heuristics, it is natural to expect that (1.1)
will be almost surely locally well-posed with random initial data in H*~(T4);
that is,

Uiy = Z (Ig];aeik'x, a=s+ g,
kezd
in any probabilistically subcritical space with s > sp,.

Indeed, after the current paper was submitted, the authors completed the
paper [29], which establishes this result. The proof in [29] is based on the theory
of random tensors, which is the natural extension of the main technique of the
current paper, i.e., the method of random averaging operators introduced in
Section 1.3.3 below.

1.3.2. Discussions of earlier methods. With the scaling heuristics in Sec-
tion 1.3.1, note that the support of the Gibbs measure dju, which is H°~, is

above the probabilistic critical space H*»~, where s, = — Therefore it is

1
reasonable to believe that almost sure local well-posedness 02fT(1.1) should hold
in the support of du. However, the justification of such heuristics is far from
trivial, due to the intrinsic difficulties associated with the Schrédinger equation
explained in Remark 1.8.

To motivate the method of random averaging operators introduced in this

paper, we first discuss the possibility of applying existing methods® to the

>This is associated with Gaussian random variables, but by the Central Limit Theorem,
the scaling is the same for more general types of random variables.

5We will not discuss the regularity structure theory [48], as it relies on local expansions
in physical space and is thus not compatible with Schrédinger or wave equations.



12 YU DENG, ANDREA R. NAHMOD, and HAITIAN YUE

setting of (1.1), the ideas behind these other methods, and why these ideas do
not work here. Below we set uj, = f(w) in (1.1).

Method 1: Bourgain-Da Prato-Debussche. We start with the classical
idea of Bourgain [11] and Da Prato-Debussche [23], [24]. As discussed in

Section 1.2.2, this idea is based on the following observation:

e Observation 1: Nonlinear components of random data solutions always have
higher regularity than linear ones.

Now, suppose we apply this idea to (1.1), which leads to the ansatz
u(t) = ™A f(w) + w, where w belongs to CYHS, or more precisely Xzt
(see Section 2.3 for relevant definitions) for some positive s. In particular, this
w will contain components of form

(1.19)  uM(t) = I(|e™® f(w)[Pe® f(w)), TF(t):= /Otei(tt/)AF(t/)dt’.

However, it is shown in [11] that even when r = 1 (and obviously also for
larger r), the u(!) defined in (1.19) belongs to Xsat only for s < % As
the space X 273 s still supercritical with respect to deterministic scaling
for d = 2 and r > 2, there will be no hope of solving (1.1) using the above
ansatz. We may perform higher order Picard iterations, but it turns out that
regardless of the order, there is always some contribution in the remainder that

has regularity X %_’%Jr, and the problem persists.

Method 2: Para-controlled calculus. Next we may try the idea of para-
controlled calculus of Gubinelli-Imkeller-Perkowski [37] (and Gubinelli-Koch-
Oh [39] for wave). This is based on the following observation, in addition to
Observation 1 above:

e Observation 2: In probabilistically subcritical settings, the bad regularity of
the nonlinear (and subsequent non-explicit) terms only come from high-low
interactions.

Now, applying this idea to (1.1) would lead to the ansatz

(1.20) u=uin +X+Y,

where

(1.21) uin = e flw), X = ZI(PNUIin | Penul®),
N

I is as in (1.19), and Py are the standard Littlewood-Paley projections. The
term X para-controlled by uy, will be constructed in some less regular space
(say X %_’%+), which allows the remainder Y to be constructed in a more
regular space (say Xl_’%Jr).
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However, since the Duhamel operator I gains no derivative, the term Y
will contain contributions of form

(1.22) Z =Y I(PxX - |Penul*),
N

which in fact also has regularity X 372 This shows that the ansatz (1.20) is
still not sufficient for (1.1).

Method 3: Bringmann’s method. Bringmann’s paper [15] introduced a

refinement to the para-controlled ansatz in [37], [39] designed for derivative
wave equations (where the Duhamel evolution gains no derivative), based on
the following observation in addition to Observations 1 and 2 above:

e Observation 3: The subsequent expansion terms of the form Z that are
similar to (1.22) can be packed in a para-linearized solution, and moreover
the high and low frequency inputs are independent.

More precisely, [15] suggests modification of the ansatz to
(123) u=uj, +X +Y,

where X is the solution to the para-linearized equation

(1.24) X =) I(Py(uin + X) - | Penaul*),
N
for some a € (0,1), which is constructed in the less regular space X %_’%Jr, and

the remainder Y is constructed in the more regular space X 15+, Moreover,
the low frequency input P¢ yeu is essentially independent with Pnuyy,, which
is a crucial observation first made in [15]. This allows for an inductive con-
struction, and also allows the use of more powerful probabilistic tools such as
multilinear Wiener chaos estimates.

However, the above ansatz is still not sufficient to control both X and Y
in the desired regularities, due to the following reason. Since Y contains high-
high interactions, where by “high” we mean frequencies 2 N it is easy to see
that o has to be chosen close to 1 for large 7, in order for Y to be bounded
in X 17%*; in fact a calculation similar to those in Section 1.3.1 shows that
a>1—2/r. But when « is close to 1, the expression of X will involve terms

> I(Pyun - [Pena X[T).
N

To control this contribution, even with independence between Pyuj, and
PoneX, we would still need to bound the power |PeyeX|?" in a suitable
space; however in the ansatz of [15] we only know that X is a function in
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X %7’%+, which does not imply any useful control for | P« ya X|?" due to super-
criticality of this space. Of course we may also exploit equation (1.24) satisfied
by X, but each iteration of this equation produces higher powers of X, which
again cannot be bounded using the ansatz of [15].

Note that when r = 2, it might be possible to carry out the scheme of [15]
with a small a by doing some refined analysis (which is by no means immediate
in view of all the difficulties for the Schrédinger equation in Remark 1.8). Our
approach, which is described below, allows instead for a unified treatment for
all values of r by synthesizing the main underlying ideas and crucially capturing

the true randomness structure of the solution.

1.3.3. Random averaging operators. It is now clear that, to solve (1.1), it
is necessary to exploit all three observations in Section 1.3.2 (in particular, it
is very important to exploit the independence between high and low frequency
inputs as first done by Bringmann in [15]), but this is still not enough. In fact,
the missing piece is the following observation, in addition to Observations 1-3
in Section 1.3.2:

e Observation 4: The input P« yew in (1.24) is not an arbitrary function in
X %_’%’L; it has its own randomness structure, which must be captured in
order for the ansatz to be complete.

This randomness property of P« you cannot be captured by any norm of
the para-controlled term X defined in (1.24). Indeed, to see and exploit this
randomness property, we need to perform a shift of paradigm, by turning
the focus from the para-controlled term X to the linear operator defined by

(1.25) Q:y— 2z, where z= ZI(PN(y + 2) - |Penou)®);
N

note that by this definition we have X = Q(uy,). In practice it is more
convenient to consider the simpler operator

(1.26) Py I(Pry-|Penoul®),
N

which obeys the same estimates; in fact from (1.25) and (1.26) it is easy to see
that @ = P(1 — P)~!. Now we shall extract all the randomness properties of
P nou, as well as properties of the multilinear expression | - |*" when applied
to these random objects, and turn them into two particular norm bounds for
the operator P defined in (1.26) (or Q in (1.25)).

This is the key idea behind our method of random averaging opera-
tors. The norms we choose are the operator norm || - ||op and the Hilbert-

Schmidt norm || - ||gs with P (or Q) viewed as a linear operator from the space
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X3 to itself; this does not depend on s so we may in fact choose s = 0.
When the input y in (1.26) is a linear Schrédinger flow, we get an operator
from H® to X S’%Jr, and we will also measure the corresponding operator and
Hilbert-Schmidt norms. Suppose the maximum frequency of Pepyou in (1.26)
is L « N®. Then roughly speaking, these norm bounds will look like

(1.27) IPllor S L%, [Pllus S N2T1L73,

where §; < §p < 1. Note that these bounds are obviously false for arbitrary

functions Peyeu € X %_’%“‘, so they indeed encode the (implicit) randomness

structure of Pg yau, which is reflected via the multilinear expression | - |*".
We also remark that the choices of the operator and Hilbert-Schmidt
norms and the bounds in (1.27) are natural in the following sense: the operator
norm bound in (1.27) is what guarantees the solvability of the para-linearized
equation (1.24), and the Hilbert-Schmidt norm bound in (1.27) is what guar-
antees that the term X defined in (1.24) belongs to X 27T, Moreover, the
estimate (1.27) is preserved under multiplication (which is important in the

proof), due to the simple inequalities
[P1P2llop < [[P1llop[P2llop,
[P1P2|[us < min([|P1|us|P2llop, [[Pillop || P2||us)-

See Proposition 3.2 for details.

These operators P and Q, which will be of central importance in our
proof, depend on the object P« nou that has an implicit randomness structure.
Moreover, in the Fourier variables, this operator can be viewed as a weighted
average taken over smaller scales L < N®. We thus call it a random averaging
operator, which explains the name of our method.

1.3.4. The full ansatz. We can now describe the full ansatz of the solution
u to (1.1), with random averaging operators. On the surface we consider the
same framework as in [15], namely u = uj, + X + Y, where X is defined as
in (1.24) and Y € X 1=3% is a smooth remainder. However, in our ansatz,
instead of merely estimating X in X %7’%+, we exploit the fact that X equals
a random averaging operator applied to wuy,, where this random averaging
operator satisfies a bound of form (1.27). To be precise, choosing o < 1 close

to 1, we further write that
(1.28) X = Q(uyn),
so we have the ansatz

(129) U = Ulin + Q(ulin) +Y.
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Here the random averaging operator Q is P(1 — P)~!, and P has the form

P=> Y P

N LN«
where Py has the form (1.26) with the maximum frequency of P¢pyou in
(1.26) being L. This Py, is a Borel function of (gx(w))k)<r, which is inde-
pendent with e®? Py f(w), and satisfies (1.27); the operator Q has a similar
decomposition into Q7 that satisfies the same bounds (1.27). See Section 3.1
for the precise formulas.

With the ansatz (1.29), the proof of local well-posedness then proceeds
by inducting on frequencies to show (1.27) and to bound Y in X 1-3+ In
fact, suppose these are true for components of frequency <« N®. Then the
bounds (1.27) and high-low frequency independence imply that the part of
P« nou involving the random averaging operators really behaves like a linear
Schrodinger flow, so in Py, (see (1.26)), we can effectively assume that P you
is replaced by either a linear flow or a smooth function in X 13+, Hence
(1.27) follows from large deviation estimates for multilinear Gaussians and a
T*T (random matrix) argument like the one of Bourgain [11], and the estimate
for Y follows from standard contraction mapping arguments. See Sections 3
and 5 for details.

1.4. Further discussions. The notion of probabilistic scaling introduced in
Section 1.3.1 is a general philosophy and is not specific to (1.1); in fact it can
be extended to more general situations. These include, but are not limited to,
the following ones.

1.4.1. Wave equations. For the wave equation (say with a power non-
linearity as in (1.15)), we can apply the same heuristics as in Section 1.3.1.
However, due to the gain of one derivative in the Duhamel fomrmula, instead
of (1.17) we essentially have that

(1.30)
1 1 2r+1
Fal®) s X gy [Tk, S =M=l 4 = ol
ki—-tkorp1=k J=1
|kjISN

Now assume |k| ~ N. Then compared to (1.17) we gain an extra fac-
tor N~! due to the antiderivative, while in the dimension counting argu-
ment we gain one less power of N as Y is now linear instead of quadratic.
In the deterministic setting this leads to the same scaling condition as the
Schrodinger equation, but in the probabilistic setting this trade-off leads to a
better bound than in the Schrodinger case as the one-dimension disadvantage
gets “square-rooted” by exploiting randomness as explained above. This then
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gives
!]—"xu@)(k)\ < N—(2T+1)a—1Nrd_%,
wave __ 3

which leads to a lower probabilistic scaling threshold, namely ;"¢ = — 7.
However, unlike Schrodinger, there is also a “high-high to low” interaction,
namely |k| ~ 1 in (1.30), that needs to be addressed. A similar calculation

using randomness and counting bounds yields heuristically that

|J,—_~xu(2) (k)| 5} ]\]7(27"+1)oz]\77"df%7

which leads to the restriction s > s; = %. Thus it is reasonable to

conjecture that the wave equation is almost surely locally well-posed in H® x
Hs~! for

3_d+1>
dr’ dr42/)°

In particular, when (d,r) = (3,1), the conjectured threshold is H_g, which is
below H™ 2~ where the Gibbs measure is supported, consistent with the recent

wave _/\ __
s > max(sy,™, s,) = max (—

positive result [16].

1.4.2. Other dispersion relations and /or nonlinearities. For more general
dispersion relations on T%, say A = A(k), the only thing above that changes is
the counting bound for the set

Sm = {(kl,...,kgr_,_l) cky— o+ kopyr =k,
= A(k‘) — A(k‘l) 4= A(erJrl) c [m,m_|- 1]}

In contrast to parabolic equations (see [48]) where the exact form of the elliptic
operator is irrelevant once the order is fixed, here the properties of .S, depend
crucially on the choice of A, and they have to be analyzed on a case by case
basis. For simple dispersion relations like Schrédinger, wave or gravity water
wave (where A(k) = \/W) this is doable, but when A gets more complicated
(say a high degree polynomial), determining the optimal local well-posedness
threshold requires getting sharp bounds for #.5,,,, which in itself may be a hard
problem in analytic number theory.

For derivative nonlinearities, the scaling heuristics can still be carried
out and the value of s, can be calculated in the same way as before (since
such heuristics essentially take into account only the high-high interactions).
However the actual almost sure well-posedness threshold may be strictly higher
than s, due to high-low interactions and derivative loss (in the same way that
the deterministic theory for quasilinear equations does not quite reach scaling
— see, e.g., [56], [74]), which may be worth looking at first in some simple
models. There is also the possibility of exponential nonlinearities but they are
more of an “endpoint” nature and will not be discussed here.
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1.4.3. Stochastic equations. We may also consider wave and heat equa-
tions with additive noise (Schrédinger is also possible but has worse behavior),
say of form

(1.31) 07 = Au=[uu+¢, or (O —Au=uu+,

where ( is the spacetime white noise that is essentially (after discretizing the

¢ = ng7§ei(k~x+§t)7
kg
where gy, ¢ are independent normalized Gaussians.
The heat case of (1.31) has been studied extensively; see [53] and the ref-
erences in Section 1.2.2. In this case we can confirm that the scaling heuristics

of Section 1.3.1 are consistent with that of [48]. Indeed, note that for (1.31),
itA

time Fourier variable)

the linear evolution e"“u;, in Section 1.3.1 is replaced by the linear noise term

t
_ / k& i(k-a+et)
wt _/ (t t AC dt/ ’
W=, V2T

which belongs to CPHS™ for s = —¢ + 1. The goal would then be to guarantee
that the second iteration

uV(t) = / 0 () Prop(t')) dt

belongs to the same space. By similar arguments, this time also taking into
account the time Fourier variable, we can show that this leads to the restriction
r(d — 2) < 2, which coincides with the subcriticality condition introduced in
[48] in the case of (1.31).

For the wave case of (1.31), similar calculations lead to the subcriticality
condition r(d—2) < 3, which is consistent with the results in [39], [40]. In both
cases, due to the particular choice of white noise, the high-to-low interactions
studied in (1) above give the same condition on (d, 7).

1.4.4. Other geometries. Considering more general geometries in addition
to T will lead to different scenarios. For compact manifold, the canonical
randomization would be based on the spectral expansion of the Laplacian,
in which case the probabilistic scaling depends on the global geometry of the
underlying manifold. This is because the randomized data is mot localized
and has the same amplitude at each point of the domain. In comparison, the
deterministic scaling threshold does not depend on the geometry because it
corresponds to the data zoomed out at a point, which is localized.

For non-compact manifolds (say RY), the canonical randomization based
on Laplacian eigenfunctions (i.e., €®*) would lead to initial data with infinite
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L? mass, which is not compatible” with the Schrodinger equation (1.1). There
is another kind of “Wiener randomization” based on dividing the Fourier space
into unit boxes and randomizing on each box (see, e.g., [83], [59], [7]), which
produces localized initial data (which is not preserved by the linear flow). In
the R? case, this leads to the the critical threshold s, = —3/(4r) that is lower
than T<.

1.5. Notation and choice of parameters. In this section we collect some of
the notation and conventions that will be used in the proof. Throughout the
paper, the space and time Fourier transforms will be respectively fixed as

! e~ f(2) da U _ 1 e
(27)? /T fx)dz,  (Fru)(€) /R f(z)dt.

o

(1.32) (Fpu)(k) =

We will be working in (k,t) or (k,&) variables, instead of the x variable; so
we will abbreviate (F,u)(k) simply as uj and will abuse notation and write
u = ug(t). The symbol u will always represent time Fourier transform (or, for
the second formula in (1.34) below, the corresponding two-dimensional time
Fourier transform), so (F; zu)(k,§) = ux(§).

Let the space mean A be defined by Au = (Fyu)(0) = up. (This may
depend on time t if u does.) Define the twisted spacetime Fourier transform

(1.33) T (\) = ik, A) = TR\ — [k]2).

We also need to study functions Ay (t) of variables k, k* € Z? and t € R, and
i (t, ') of variables k, k' € Z? and t,t' € R; for these we will define

(1.34) Tyer(A) = hyger A—E|2)  and B (A, ) = 27 b (A— &2, [K/]2 =),

where A and )\ are Fourier variables corresponding to ¢ and ¢’ respectively.

Recall that (k) = \/|k|? + 1, and 1p is the indicator function. The car-
dinality of a finite set E will be denoted by |F| or by #E. We will be using
smooth cutoff functions x = x(z) that equal 1 for |z| < 1 and equal 0 for
|z| > 2. For any Schwartz function ¢ and any 0 < 7 < 1, we will define
pr(t) = p(r71t).

For a complex number z, define 27 := 2z and 2~ := Z; we will also use the
notation z', where ¢ will always be +. In the proof we will encounter tuples
(k1,...,kn), or maybe (kj,..., k"), with associated signs 1, ...,t, € {£}; they
are usually linked by some equation t1ky + -+ + 1k, = d or 1]k |? + -+ +
tn|kn|? = a, where d and « are given, or by some expression g,?l g;’i

It is, however, compatible with the wave equation due to finite speed of propagation; in
particular, the result of [16] is expected to be true also for the Gibbs measure on R3. We will
not discuss this here, but see [16].
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Definition 1.10. In the above context we say that (k;, k;) is a pairing in
{k1,...,kn} if k; = kj and ¢; = —;. We say a pairing is over-paired if k; =
k; = kg for some ¢ ¢ {i,j}. Pairings and over-pairings in {k},...,k}} are
defined similarly.

For example, suppose k = k1 — ko + ks + d. If k1 = ko, then (ki, ko) is
a pairing in {ki, ko, ks}; if & = kq, then (k, k1) is a pairing in {k, k1, ko, k3}.
If K = k1 = ko # ks, then (k1, k) is over-paired if considered as a pairing in
{k, k1, k2, k3}, but not if considered a pairing in {k1, ko, k3}.

Recall Remark 1.6(2) that for the truncation IIy defined in (1.4), N will
be a power of two that is also = 1. The same applies to other capital letters
like M, L, R, etc. Define also Hﬁ =Id—IIy and Ay =1IIy — H%, so that

(ANu)k = 1n/2<(ky<N - Uk-

Let Vn and V]# be the ranges of IIy and Hﬁ. For Ny,...,N,, we will define
max(j)(Nl, ..., Nyp) to be the j-th maximal element among them; we denote it

by N,

Definition 1.11. For any N as above, we denote by B<y the o-algebra
generated by the random variables gj for (k) < N, and by B;N the smallest

o-algebra containing both B<y and the o-algebra generated by the random
variables |gx|? for k € Z2.

Recall that ¢ is fixed by Remark 1.4. Let 1 > §y > § be two fixed small
positive constants depending on 7 and & (think of §y = 51/ 50), Define the
parameters

y=01, q=01, m=07"
(1.35) 1

b=g+0% bi=b+0" by=b-0% ap=2b-10"

Then we have the following hierarchy:
1
(1.36) 5>>50>>V>>5>>’yo>>6'yo>>b—§:b1—b=/~fl>>56.

Denote by 6 any positive quantity that is small enough depending on ¢ (for
example § < 6°°). This § may take different values at different places. Let C
be any large absolute constant depending only on r, and let Cy be any constant
depending on 6. Unless otherwise stated, the constants in the <, < and O(-)
symbols will depend on Cy. Finally, if some statement S about a random
variable holds with probability P(S) > 1 — Cge_Ae for some quantity A > 0
and with given 0 and Cy independent of A, we will say this S is A-certain.
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The rest of the paper is organized as follows. In Section 2 we introduce
the gauge transform and reduce to a favorable nonlinearity, and we define
the norms that will be used in the proof below. In Section 3 we identify
the precise structure of the solution according to the ideas of Section 1.3,
and reduce the local well-posedness to some multilinear estimates, namely
Proposition 3.4. In Section 4 we then set up the necessary tools (large deviation
and counting estimates) needed in the proof of Proposition 3.4, and Section 5
contains the proof itself. Finally in Section 6 we apply an adapted version of
Bourgain’s argument to extend local solutions to global ones and finish the
proof of Theorem 1.3.

1.6. Acknowledgment. The second author thanks Hendrik Weber for help-
ful comments regarding references on the ¢* model.

2. Equations, measures and norms

In this section we make some preparations for the proof of Theorem 1.3.
These include definitions of Wick ordering and gauge transform, properties of
Gibbs and Gaussian measures and their finite dimensional truncations, and
choices of function and operator norms and linear estimates.

2.1. Wick ordering and a gauge transform. We start by defining the Wick
ordering and the gauge transform. Consider a general polynomial M, (u) or

H,(u) of degree n, defined by

(2.1) My, (W) = > ey ey U+ - U
t1k1+-Finkn=Fk
(2.2) (M ()] err = > Aok by e Uy U

tiki+-Finknt+ik’'=k

where agg, ..k, and agk/k, ...k, are constants. Recall the definition of pairings in
Definition 1.10.

Definition 2.1. We say that the polynomial in (2.1) is input-simple if
Akky -k, = 0, unless each pairing in {ki,...,k,} is over-paired. Similarly we
say it is simple if agg,..k,, = 0 unless each pairing in {k, ki,...,k,} is over-
paired, and we say the polynomial in (2.2) is simple if agp/g,...k, = 0 unless
each pairing in {k, k", k1,...,k,} is over-paired. These notions also apply to
multilinear forms.

For m := A|u|?, define the following polynomials of degree n € {2p, 2p+1}
(this u may also be replaced by v):
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2 - (PP Pl o
Jul: = (=17 ) i

j=0
(2.3) " -
fufrus = S0 (08 ) P
T 4 p—j) J |

We will see in the proof of Proposition 2.2 that each of these is input-simple.
Define a gauge transform vy = Gyuy associated with (1.7) by

(2.4) un(t) = un(t) - exp ((r + 1)@'/0 AWE (un)] dt’).

Then uy solves (1.7) if and only if vy solves the gauged equation

25) {(iat + Aoy =Ty On (vn),
N (0) = I Nuin,
where
(2.6) An(v) = WY () — (r + D)AWL (v)]v.

Since the gauge transform does not change the t = 0 data, we will write
Vin = Uin. The inverse of Gy is given by

(2.7) un(t) = vn(t) - exp ( —(r+ 1)2'/0 A[WE (vy)] dt'),

since by (1.6), if v = €'y where a € R, then W"(u) = W"(v) for even n and
W™ (u) = e “W"(v) for odd n. Now assume vy is a solution to (2.5). Let my
be the truncated mass, which is conserved under (2.5),

(2.8) my = Aloy? = > [l
(K)<N

and let m}; := my — oy, where oy is as in (1.5). Note that my and m}, are
random terms if ui, = f(w) as in (1.2). The following proposition give us a
useful formula for Qp.

PROPOSITION 2.2. We have

T * \r—I
(2.9) On(vy) = Z (r + 1) WNQZ—H(UN),

—\" - l
where
(2.10) Nopp1(v) =:|v[Hv: —(1 + 1)(A :|v|*:)v.

Here Ny is a simple polynomial of degree 21+ 1. By standard procedure, we
can define a (21 + 1)-multilinear form, which we still denote by Noji1, such
that it reduces to Nojy1(v) when all inputs equal to v.
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Proof. First we prove (2.9). By the definition of Qx(v) (see (2.6)), it will
suffice to obtain that

, " fr+ 1\ (mE) !
(2.11) W+ (o) = ( " l)(Nl), Jow oy
1=0 )
and
” " (r+1 (m )’"_lr!
(2.12) (r+1)W¥ (vN)_Z(r_l)Nl‘(l—i—l) Jon] 2
1=0 ’

By the definition of :|v|?v: (see (2.3)), and combinatorial identities, we
have that
the right-hand side of (2.11)

r l I—k
r+1 * \r—1 k(L 1\my 2k
= Tl E -1
(2.13) (7“ — l) (mN) " k:O( ) l—k k! |UN| UN

=0

. T+ 1\7! “(r—k _ .
=3 (_k)k \vNP’“vNZ(l_k)mév’“(—mN) !
k=0 ' =k

which implies (2.11) due to binomial expansion.

Similarly we can calculate

the right-hand side of (2.12)

_i<r+1>( }kv)r—lr! (l+1) i( 1)l—k<l)ml]\7k |U ’214?
(2.14) ~\r—l P k] k!
=(r+1) Z(—l)“’“(i); lon > (; :) N =my)
k=0 =k

which implies (2.12).
Next we prove that :|v|?P: and :|v|?Pv: are input-simple. Working in Fourier

space, for any monomial

X o= ()™ ()" - (0,) ™" (O,)""

where the k;’s are different and a; and b; are nonnegative integers, we will
calculate the coefficient of X in the polynomial :|v|?’: and :|v|?Pv:, and we will

prove that this coefficient is zero provided a; = b1 = 1. Now clearly the
coefficient of X in |v|? and |v|?Pv, denoted by [X](|v|?’) and [X](|v|?Pv), are
12 pl(p+1)!
X 2py (p x 2p _
XIl™) = o ) = o

under the assumptions by +---+b, =pand a;+---+a, =p (oray+---+a, =
p+1).
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Recalling that m = A|v|?, we can calculate that

(2.15)

p
x)(:Jv] %) Z 1)P~ i ( )(p—l)!(“)2 Z Hcs s —Cs)!(bs— cs)!

=0 c1+-+ep=p—1 s=1
P
l
DS DI | s et
1=0 c1+-+ep=p—I s=1 stas ) s

Now suppose that a; = by = 1; then ¢; € {0,1}. Clearly the terms for [ and
with ¢; = 0 exactly cancel the terms for [+1 and with ¢; = 1, so [X](:|v|?:) = 0.
Similarly we can prove [X](:|v]|?Pv:) = 0.

Finally, we prove that Naopi1(v) =:|v[?Pv: —(p + 1)(A :|v|*:)v is simple.
By definition it suffices to prove that

ANap11(v)T) = A(® :Jv[*Pv:) — (p+ D)m A :|v|*:

2p+2,

is input-simple. We will actually show that this equals A :|v| : whence the

result will follow. In fact, by (2.3) we have

p+1

- p+1\(@+1)!

Ao =) (—1)P l+1( z )( T R o=t1 o2,
1=0 '

p+1 p+1 p'
A(T :|v|?Pv:) = Z(—l)p_l“( z )(z - 1)‘7711!’—l+1A|z)|21,
=1 ’

P
~(p+ Dm AP = (~1)PH (p + 1) (?) Zz)' mP L Alw 2
1=0
so the first line equals the sum of the second and third lines by direct calcula-
tion. ([

Remark 2.3. Later on we will consider general multilinear forms A/, which
are simple and can be written as

(2.16) WNn (@, o™, = Z akkl...kn(v,&)) (v,(cz))
tik1+-Finkn=k
We may assume that the coefficient ayy, ..., is symmetric in the k;’s for which
tj = +, and also symmetric in the k;’s for which ¢; = —. Moreover, we assume
that this coefficient only depends on the set of pairings among {k, ki, ..., ky}.
The multilinear form Ny 1 corresponding to (2.10) satisfies the above
properties, and we will assume without any loss of generality that t;=+ (i.e.,
Nai41 is linear in v0)) for j odd, and vj = — (i.e., Ny is conjugate linear
in v0)) for j even.
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2.2. Finite and infinite dimensional measures. We now summarize some
properties of the infinite dimensional and finite dimensional (or truncated)
Gaussian and Gibbs measures, which willl be used later in the proof.

Recall that Vy and VJ%, are respectively the ranges of the projections Il
and Hﬁ We will identify V with Vy X VJ%,. Let dpy and dpﬁ be the Gaussian
measures defined on Vy and V]%, respectively, such that dp = dpny X dpﬁ
Define the measures duy on Vi and duy on V by
(2.17)

dufy = Zy'e” " dpy,  duy = Zyte WM dp; Zy = /v eV dpn (u).
N

Then we have that duy = duf X dpﬁ. Recall also the measure du defined in
Proposition 1.2; all these are probability measures.

ProrosITION 2.4. When N — oo, we have Zny — Z, with 0 < Z < 0.

YNl converges to Z7e VI almost surely, and also in

The sequence Z;,le
Li(dp) for any 1 < q < co. The measure duy converges to du in the sense
that the total variation of un — pu converges to 0. Finally, the measure duy; is

invariant under the flows of (1.7) and (2.5).

Proof. The convergence results are proved in [69]. The measure du$; is
invariant under (1.7), because the latter is a finite dimensional Hamiltonian
system, and

1
dpSy (un) = EiNe*HN[“NFM[“N} ALy (uy)

is its Gibbs measure (weighted by another conserved quantity), where Ey is
some positive constant, Hy and M are as in (1.10), and dLy is the Lebesgue
measure on the finite dimensional space Vy.

To prove that duR, is invariant under (2.5), it suffices to show that it
is preserved® by the gauge transform Gy. In fact, by (1.6) and (1.10) we
know Hy[un| = Hn[vn] and Mlun] = M[vy], so it suffices to prove that Gy
preserves the Lebesgue measure d£ . Working in the coordinates (7, Hk)<k)§ N
i0}

and (7, 07) (ky<n» which are defined by (uy)y, = rre® and (vy)p = rie'e, we

can write the measure dLy as
(2.18) dly = H redrdfy,.
(k)<N

If vy = Gyuy, then we have rj = i and 0f = 0y, + F((r;,0;)(jy<n), where F'
may also depend on ¢, but does not depend on k. Moreover, by (1.6) and (2.4)

8For fixed time t, we can view Gy as a mapping from Vy to itself, by requiring uy to
solve (1.7).
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we know that F' actually depends only on r; and on the differences 6; — 6y,
which are invariant under the mapping 6 — 6;. It then follows that the
transformation (ry,0) — (r},0;) preserves the measure (2.18), by a simple
calculation of its Jacobian. (]

2.3. Function spaces and linear estimates. From now on we will work with
equation (2.5) with the nonlinearity defined by (2.9) and (2.10), which has the
form (2.16). Recall the well-known X*® spaces (where b may be replaced by
bl or bg)

(2.19) lull e = [1€K)* (N @Ml 2 2.

We will mostly consider s = 0 and will denote X%* = X°. In addition we intro-
duce matrix norms that measure the functions h = hyg+(t) and b = bhrp (¢, s),

namely,
(2.20)
2llye = 160" i Mz, 522z 1Bllye =[N ™ Bawe (A, Nlle2, 12,2 12,
(2.21) )

hllz0 = IO o Wl 20 10020 = D) B O N gz sz
where b € {b, b1}, |- Hfﬁ*—wﬁf:i and |- Hei/L'f—WiLi represent the operator norms
of linear operators with the given kernels; for example,
(2.22)
ol =sup | S s 0 B AN )| W)l 2, =1}

ZZL%\ kTN

By definition we can verify that

(2.23) 1bllyse = sup
y ‘Xb =1

Z/dt bk (£, 8 )y (')

For any of the above spaces, we can localize them in the standard way to a
time interval J,

(2.24) |ullz(ry = nf{[[v]z : v =u on J}.

Xb

We will need the following simple estimates.

PROPOSITION 2.5. The norms ||h||ys and ||b]lyss do not increase when h
OT‘H is multiplied by a function of (k,\), or a function of k* (or (K, X') for H),
which is at most 1 in the [°°L*> or [*° norms.

Next, if H is defined by

(2.25) Hye(\) =Y / AN - Brgr (A, A) By (X)),
"
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where Hk‘k”()‘a ') is supported in |k — K'| < L, then for any o > 0, we have

k— Kk N\ -k \®
(2.26) (1+ H) H| < [|bllyss - (1 + H) h
L b L

Proof. The first statement follows directly from definition (2.22). Now let
us prove (2.26). We may fix k*, and by translation invariance, we may assume
k* = 0. Relabeling Hyo(\) =: Hi(A\) and hgo(A) =: hgr(A), we may decompose

Lyorr Hi(N), M > L,
1|k|§LHk(>‘)7 M = L7

Z Zb

He(N) = > (HM) (A (HM)p(N) =
M>L

and similarly for 71, so that we have

2
~ 3 LRI g

(2.27) H<>‘>b<1+’§|>aﬁk(>\) GL3 s

and similarly for h. Since b is supported in |k — K'| < L, we have

EROI < 3 |3 [ e X)E e ()
M'~M"' K

)

therefore
N M)k 2

5H<)\>b<)\,>_b6kk/(>\a)\/)H?i,Li,_,giLg Z ||<>\/>b(ﬁM’)k'(>\/)H?i,yf,
M/~M

which, combined with (2.27), implies (2.26). O

Let x be a smooth cutoff as in Section 1.5, and define the time truncated
Duhamel operator

(2.28) TF(t) == x(t) /0 t AP dt .

LEMMA 2.6. We have 2ZF(t) = JF(t) — x(t)e®®JF(0), where J is
defined by

(2.29) TF(l) = X(t)( / ; _ /t b )ei(t_t')AX(t’)F(t’) ar.

Moreover, we have the formula
_
A=A ()

For the proof of Lemma 2.6, see the calculations in [28, Lemma 3.1].

(230) TF(k,A) = /R T E k) dps, 108,700 )] Son
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PROPOSITION 2.7. Let ¢ be any Schwartz function, and recall that ¢ (t) =
o(t71) for any 0 < 7 < 1. Then for any u = uk(t) and b = by (t, 1), we
have
(231)  lor-ullxse ST P ullxanns  lon(®) - bllizee S 700 2000
provided that ug(0) = bhre (0,¢") = 0.

Proof. Using the definition of the 7% norms and fixing the (k’, \') vari-

ables, we can reduce the second inequality in (2.31) to the first, and by fixing
k and conjugating by the linear Schrodinger flow, we can reduce the first to

K& @ * D))l 2 S 7 IKm) ™ D) 2

for v satisfying v(0) = 0. Let v = g1 + g2, where

91(&) = Lig>-1(§V(E),  92(8) = Ligj<r1(§)V(E).
We will prove that

(2.32) K6 (@7 % 9)(E)llz2 < 7= m) " D) .2

for j € {1,2}. To prove (2.32) for j = 1, we can reduce it to the L? — L?
bound for the operator

(&)°
(m)br”

o) > /R REmg(m dn,  R(En) = 1yt - 73(r(€ )

Since

b (T b B
1n|z~-<<f>>b1 s "fﬂffblsfbl (r(e — )",

it follows from Schur’s estimate that this L2 — L? bound is at most
bi—bj -~ b bi1—b
B () gy < 7

which proves (2.32) for j = 1.
To prove (2.32) for j=2, note that since v(0) =0, we have [, 9(n)dn=0, so

(@ % 92)(©)] = ] —rpre) [y
n

271

_ /| o T0(n) [B(€) — B(r (£ —n))] dn

< rirg) / min(1, |r)[(n)] dn,

and by Holder’s inequality we have

/ min(1, |rn|)[0(n)| dy
R

~ . — _1 ~
S IKm**8(n)ll 2 - | min(L, [7nl) ) ="l e S 7072 (m)* D)l 2.
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Using also the elementary bound

(&)~ )l 2 S 777,

we deduce (2.32) for j = 2, and hence (2.31). O

3. Structure of the solution: random averaging operators

We now fix a short time 0 < 7 < 1, and focus on the local theory for
(2.5), with initial data distributed according to the Gaussian measure dpy, on
J := [—7,7]. By definition, this is equivalent to considering (2.5) with random
initial data wi, = viy = f(w), which we will assume from now on, until the
end of Section 5. Most functions that appear in the proof will be random (i.e.,
depend on w), whether or not we explicitly write w in their expressions.

3.1. The decomposition. We start by writing down the ansatz of the so-
lution to (2.5). Recall that the truncated mass my defined in (2.8) and the
corresponding m}; are random variables given by

|9 ‘ lg|* — 1
(ky<N (k)<N

Note that they are Borel functions of |gi|? for (k) < N. Let vy := m} —m’y.
2

By standard large deviation estimates, we have
(3.2) P(jvy| > AN"Y) < Ce @A

for any A > 0, where C is an absolute constant. In particular, by removing a

=0

set of measure < Cye~" ~ (which will be done before proving any estimates) we

may assume the following bounds, which are used below without any further
mentioning:

(3-3) gkl S 70K, Imi | S 70w S TTONTH

Our goal here is to obtain a quantitative estimate for the difference yy :=
vy —un. By (2.5), this yn satisfies the equation
2

(10 + A)yyny = UNOn(yn + v%) —IIx Q%(U%),

(3.4)
yN(O) = ANf(w).
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By (2.9) we can rewrite the above equation as

;

(10,-+ Ay = D et ()~ { T [Nove (v + v)
=0

— ./\/-21+1 (v%)] + ANN2Z+1 (U% )}

T
+ z;) Crl [(m*% +uy) = (m*%)r_l] -H%Nmﬂ(vg),
]:

yn(0) = Ay f(w),

where ¢,; are constants that will not be important in the proof.
Define the set

(3.6) K:={(N,L)e (2%)?: 271 < L < N'7%}.

For each (N, L) € K, we define the function ¢y 1, as the solution to the (linear)
equation
(3.7)

{(iat + AN = 3i_o(l+ 1) e (miy)" " INNoyp1 (YN, L, 0L, - - - vr),
YN, (0) = Ay f(w).

It is important to place ¥ 1 in the first position of Noyq in (3.7); see Re-
mark 3.5. By linearity, we have

(3.9) (1) = Z H;i\/iL G (w)
=

(k*)
where for & < (k*) < N and (k) < N, Hli\,iL = ¢y is the k-th mode of the

solution ¢ to the equation

(3 9) (Zat + A)SD = Z;:U(l + 1)Crl(m7\/)r_l HNN?H—l(SO) ULy .- >UL)>
Ve =,
* 272 N,L " N,L
and for other (k,k*) € (Z%)*, define H,;." = 0. By definition these H,}.", as

well as the hZC*L defined below, are B<y measurable and B;L measurable in
the sense of Definition 1.11.

For any N, let Ly be the largest L satisfying (V,L) € K. We further
define

L
(310) CN,L = ¢N7L—1/}N’%, hN’L = HN’L—HN’f; ZN = yN—wN,LO'

. N,i . ; .
Note that ¢ 1 = e (Ayf(w)), and that H, 2 is e~ IRty restricted
2

to the frequency band % < (k) < N. Moreover, zy is B<y measurable,
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zn(0) = 0, and satisfies the equation

(3.11)

(10 + N)zy =Y eu(my)™!
=0

Iy [Narg1(2v + ¥, Lo + un) = N21+1(v%) + ANNQZJA(U%)]

= en(miy) TN (04 DNopea (¥8,Lo» VEgs - - -5 VL)
1=0

T
* —1 * —1
+ gcrl [(m% +un) T — (m%)r ] . H%NQZ_H(U%).
Remark 3.1. With the above construction, if we let v = limy_,o vy be
the gauged version of the solution u to (1.1), we then have

(3.12) v =" f(w) + Z (N, +2, where Z:ZZN-
(N,L)eK N

This is the ansatz (1.29) in Section 1.3.4, where (7, can be viewed as a random
averaging operator Py, whose kernel is essentially given by h™>l, applied to
the Gaussian free field e f(w). There are, however, two differences: (1) our
Pn1 is not exactly the one in (1.26), but an infinite iteration of the latter,
because (1.26) has no smoothing effect; and (2) our Py, is not exactly a Borel
function of (gr) )<z, as it also depends on m}, but as it turns out this does

not affect any probabilistic estimates; see Lemma 4.1.

3.2. The a priori bounds. We now state the local well-posedness result for
(2.5). Its proof will occupy the rest of this section and Sections 4 and 5.

PROPOSITION 3.2. Recall the relevant constants defined in (1.35), and
that 7 < 1, J = [—7,7]. Then, 7~ '-certainly, i.e., with probability bigger than
or equal to 1 — Cae™™ ", the following estimates hold for all (N,L) e K:
(3.13)

_ 1,55 1 _
HhN’LHyb(J) < L%, ||hN’LHZb(J) < Nati 3 HZNHXZ’(J) <NTH

3.2.1. The extensions. In proving Proposition 3.2 we will restrict zy and
hNE to J and construct extensions of these restrictions that are defined for all
time. This has to be done carefully so as to maintain the correct independence
properties. We define these extensions inductively, as follows.

First, let zir(t) = z1(t)x,(t) and ¢;fv (1) == x(t)e"® (Ay f(w)), and define

]

gV accordingly. Suppose M > 1 is a dyadic number and that we have
defined Z}L\, for all N < M and h™V"Iof for all (N, L) € K and L < M. Then for
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L < M, we may define

vL = Z Y,  Where y} = zz + x(t)e A (Apf(w Z (LR,
L'<L (L,R)EK

which is acceptable since for (L, R) € K we must have R < L'° < M, so
BT and HERY are well defined, hence (LR and wLR can be defined by (3.8)
and (3.10).

Next, for (N,L) € K and L = M, We can define HVMT such that for
YN < (k*) < N and (k) <N, H,?,QMT = gpk is the k-th mode of the solution ¢
to the equation

T

T — eitA eik*-x — Xy I cr m* r—I
(3.14) () = x(t)e" (™ ) X(t)g( +1) e (my)

X IHNN21+1 (QOT, U}Lw, ce ,’U}L\/[)7
provided this solution exists and is unique; otherwise simply define HNV-M1 =
HNM .y (t). This defines HV-M-T and hence also hV1, ¢}L\,M and (;VM.
Finally we will define z9p7. As ¢£ M.L, 18 already defined, where Lo < M

is the largest L such that (2M, L) € K, we can define zg y to be the unique
fixed point of the mapping

(3.15)
z = —ix.(t) i et (M)t Ty, {N2l+1 (Z+¢$M,LO+U}L\/[) — Noi1 (U;r\/f)}
1=0
+ ixr(t) zr:(l + Den (miy) ™" - THanrNarpa (w;M,L()’ ”zov aE ’”Eo)
1=0
—ixe(8) Y ent [(miny + voan)™™" = (mia)" '] - TNy (v],)
1=0
—ix-(t) Zr: et (Mip)" ™ TAonNaji1 (vh)
1=0

on the set Z = {z : ||z]|x» < (2M)~1*7}, provided that this mapping is a
contraction mapping from Z to itself. If it is not a contraction mapping, then
simply define zg v = Z2m - X+(t). This completes the inductive construction.
We may then easily verify the following:

e The z;[\, and VDT we constructed indeed coincide with zy and AN"Y on J.
e The zj\, is supported in (k) < N, and h]k\gf’T is supported in (k) < N and

N<(k*)<N
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e The random variable hV-LT is BE, measurable, and z;rv and hN-5T are B<y
measurable.
e All the above are smooth and compactly supported in time ¢ € [-2, 2].

We will prove Proposition 3.2 by induction in M, but in the process we will
need some auxiliary estimates. More precisely, we will prove the following
result, which contains Proposition 3.2.

PROPOSITION 3.3. Recall the relevant constants defined in (1.35), and
that T < 1. Consider the following statement, which we call Loc(M) for
M > 1: for any (N,L) € K with L < M, we have

(3.16) ANy < L%,
(3.17) |RNEH|| < N2P0OL 72,
k—k*\"
(3.18) H(l n - ‘) ht Tl <.
Zb
Define the operators’ (where 0 <1 <)
(3.19)

PH(w) := x,(t) - Iy [N2[+1('LU,U2, . ,’UTL) —NQH»l('LU,’UT%, o v%)],
(3.20)

P~ (w) := x,(t) - Iy [N2[+1(’UTL, w, vz, . Uz) — Nzlﬂ(v%,w,v%, ... ,v%)].
Then for any (N, L) € K as defined in (3.6) with L < M, we have

1
(3.21) 1PE|| oy x0 < TOL7% .
Let the kernel of PT be hka’,L(t,t’). Then for any (N,L) € K with L < M, we
have
L E}
Finally for any N < M, we have
(3.23) 2k |l xe < N71H.

Now suppose that the statement Loc(M) is true for w € E, where E is a
set. Then the statement Loc(2M) is true for w € E where E' is another set
such that P(E\Z') < Cope~ "M’ In particular, apart from a set of w with
probability < Coe™™ ", the statement Loc(M) is true for all M.

9In fact we will prove stronger bounds where the low frequency inputs in (3.19) are replaced

by vzl,l.wvzh with max(L;) = L, and similarly for (3.20). But for simplicity we will just

write (3.19) and (3.20).
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3.3. The proof of Proposition 3.3: reduction to multilinear estimates. The
heart of the proof of Proposition 3.3 is a collection of (probabilistic) multilinear
estimates for No; 1. We will state them in Proposition 3.4 below and show that
they imply Proposition 3.3. We leave the proof of Proposition 3.4 to Section 5.

PROPOSITION 3.4. Recall the relevant constants defined in (1.35), and
that 7 < 1. Let the multilinear form N, be as in (2.16), where 1 <n < 2r+1.
We will also consider Ny11, in which we assume 11 = +. For each 1 < j <n,
the input function v satisfies one of the following:

(i) Type (G), where we define L; =1, and

N' i; (W)
(3.24) (0D)k, (A7) = 1N, jo<iiy) <N,

(ii) Type (C), where

(3.25) ()i, (Ay) = A (s w)
N; /2<(k})<N;
with h,(cj)k* (Aj,w) supported in the set {(k;) < N; < (k) < N;},

B<n; measumble and B <L, measurable for some L; < N1 S and satis-

’ 7

fying the bounds

(3.26)
.y 1y, -2
[1{A >b k; k*( j)”éi;—wijLij S L; A >bhk k*(/\ )Hﬁij,k;l’i- S sz OLj 2
1k — k7N G
Jowr (14 2250 0o <N
J Zi. k%Liv
AN J

(iii) Type (D), where (1/1(7));%()\]) is supported in {|k;| S N;}, and satisfies

(3.27) I @), M)l 23 < N0,

In each case, we will assume that derivatives in \; of these functions satisfy
the same bounds. This can always be guaranteed, since in practice everything
will be compactly supported in time.

Assume for ny < n that v9) are of type (D) for ny +1 < j < n, and of
type (G) or (C) for 1 < j < ny. Let G and C be the sets of j such that v()
are of type (G) and (C) respectively, similarly denote by D :={ni; +1,...,n}.
Let NU) = max(j)(Nl,...,Nn) as before, and let 1 < a < n be such that
NW ~ N,. Giwen N, > 1, the following hold 7~ N,-certainly. We emphasize
that the exceptional set of w removed does not depend on the choice of the
functions vj(j > n1 + 1).
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(1) Ifa > ny +1 (say a = n) and N, = N®, then we have (recall
by = b+ %)
1
0

(3.28) IZNG (0D, 0 [ o < 770 (VL) (N1 (N @) =08

Here the exceptional set does not depend on N,

(2) If a < ny and N, > N then we have

(3.29) IZN, (0D, ™) g0, S 7 8(N)CF T (NON@)) =2 (1-0),
Moreover, if 1, = —, then we have the stronger bound
(3.30) IZN, (0D, ™) | o < 770N,)CR T (ND)=(1=0),

Moreover, if 1, = + and N® < (N(l))lfa, then we have stronger bound for
the projected term

- 4
(3.31) T 0 N (0, ™) oy S 770 (V) (N D) =0=50,

~

(3) Now consider the operator
(3.32) Ot (w) 1= Iy Nps 1 (w, oM .. 0™,

and let its kernel be by (t,t'). If NO < N01_5 and N, 2 Ny, then we have

~

- -1..3 _1
(3'33) ||1|k|,\k’|2N% : hkk’(tvt,)”zblvb 5 T G(N*)CH N02 (N(l)) 2,

Remark 3.5. The improvement (3.31) is due to the exact projection HJLV(U.

In fact this implies that in the expression (2.16) there exist some 1 < a < n
and some I', namely I' = (N1)2 — 1, such that

(3.34) k> >T > |ka)® or [k[><T <lk? and NU ~ N,

We call (3.34) the I'-condition. If we put some other projections in N, that
also guarantee (3.34), for example Ty N, (- ,Hﬁv(“), --+) where N ~ N,
then the same improvement (3.31) will remain true.

In the proof below we will see that the I' condition provides the needed
improvements in the case N O ~ N, and ¢, = 4. This is the reason why
we place ¢ 1, in the first position of Ny in (3.7). On the other hand, the
term where 9y 1, is placed in the second position can be handled using the
improvement (3.30).

Proof of Proposition 3.3 assuming Proposition 3.4. To prove the statement
Loc(2M) we start with (3.21) and (3.22), and we may assume L = M. The
proof for P~ in (3.21) is similar, so let us consider P*. Since v}f\/l = r<m yTL,,

by definition we can write P+ as a superposition of forms

w — XT(t) : IHNNQl-‘rl(w’ y;rVQ’ to ’y;rv2l+1)’
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where max(Na, ..., Nojy1) = M. As we have the decomposition
itA
(3.35) uh, = x(Oe" AN f@) + > o, + 2k

Lj:(NﬁLj)EK,

by Loc(M) we know that each y}vj can be decomposed into terms of type (G),
type (C) (corresponding to some L; < le_‘;), and type (D). The bound (3.21)
is then a consequence of (2.31) and (3.28), after removing a set of w with
measure < Cpe~ (T M)" that is independent of N. Note that by (2.23), the
L = M case of (3.21) is equivalent to

(3.36) 155y < 7OM
Similarly (3.22) follows from (2.31) and (3.33), because we have
b O NORT NS M« N 02 s

using the fact that M < N'=°. The set of w removed here will depend on N,
but it will have measure < Cye~ (7 ' N )G, so summing in N > M we still get a

set of measure < Cye—(7'M)"

Next we prove (3.16)-(3.18), again assuming L = M. By (3.21) and
Loc(M) we already know that the right-hand side of (3.14) gives a contraction
mapping in X°, so (3.14) does have a unique solution. Subtracting equa-
tion (3.14) with M and with & instead of M, we deduce that

(3.37)
LM K
1
Y / at -0 (6 O @) + [ ot g (t,t’>HéY’,3:*<t’>},

L<M K

where b kkﬁ, (t,t') is the kernel corresponding to P in the (k, k', t,t) variables.
Recall that we are already in a set where (3.3) is true, which allows us to control
m%. Now by the definition of Y* and Y*" norms, the statement Loc(M) and
(3.36), we conclude that

By £ 3 0™y - Iy M s (37 15y 41)
L<M L<M

1
S L D DR A
L<M

1
+ > ML
L<M

0579
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which implies (3.16) as desired. In the same way we can prove (3.18) by using
(2.26), noting that h™N.L is supported in |k — k| < L.
As for (3.17), recall that for

Hig(A) = Z/dX “bgr (A, X)) g (X)
k/

we have, by definition of the relevant norms, that

1 1]z2

k’k*Li < min(”h”li’k,lﬁ HhHZi*H@i/Li,a HhHli‘k,ﬁLQ ||h||e2 L? )

AN AN k! k* N

Now in (3.37) we may assume |k—k*| < 279N and |k’ —k*| < 279N (otherwise
the bound follows trivially from (3.18) which we just proved) so, in particular,
k|, |K'| > & as |k*| > &. Using the statement Loc(M) and (3.22) we get

[l P S [ R M 1 P

L<M
N,M N
s OOl (3 1l +1)
L<M
1
S RN 5 - Z r9L7% Z 20 N 3 +10=8% 3 r—3 1%
L=M L<M

ST BNy 4 N30,

which proves (3.17).

Finally we prove (3.23) with L = 2M, by showing that the mapping
defined in (3.15) is indeed a contraction mapping from the given set Z = {z :
lz|lxe < (2M)~17} to itself. Actually we will only prove that this mapping
sends Z to Z, as the difference estimate is done in the same way.

We will separate the right-hand side of (3.15) into six groups, each of
which has the form

Xr(t) - (m;M)T_lIH2MN21+1(U(1)7 o 72}(2l+1))’
where
(a) at least two of the v are equal to z + w;M Lo’ and others are either

z+ w;M,Lo or U}r\/[;
(b) we have v@ = dgM,Lg? and all others equal v}L\/[;

T
(c) one of v or v@ equals z, and all others equal Vs

(d) we have o) = ¢$ M.Lo® another v() equals UJTV[ - UEO, and all others equal

: T T
either v,, or Vo

(e) the factor (m3,,)" " is replaced by (m%, 4+ vops)" = — (m%,)" " and all v
equal fu]TV[;

(f) same as (a), but with Agy, instead of Ilyys, and all v0) equal UJTV[.
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By (2.31), it suffices to prove that each of these terms in (a) through (f),
but without the y,(t) factor, is bounded in X® by 7=¢(2M)~1+7. Let one
such term be denoted by M, and notice that we can decompose

U}L\/[ = Z yz, 'UEO = Z yzv UM — ULy = Z yL

L<M L<Lg Lo<L<M

Uharre = XOE A (Do f@) + Y Conrie
L<Lg

Moreover, by what we have proved so far, we know that yTL for L < M can be
decomposed into terms of types (G), (C) and (D), and that x()e™ (Agprf(w))
is of type (G), Canr 1 is of type (C), and z is of type (D). By such decomposition
we can reduce M to the terms studied in Proposition 3.4, with various choices
of N; and L;. We now proceed case by case.

Case (a): Here we have at least two inputs v¥) with N; = 2M, so by
either (3.28) or (3.29) we can bound

M|l S 770(2M) 7 HF0HCR

_1M)

. 0 .
by removing a set of measure < Cype (" , which suffices.

Case (b): Here we have v®) = N = 20, while 15 = —. By (3.30) we
have the same bound as above.

Case (c): This term, with the x,(t) factor, can be written as

> Pil),

L<M
where P; are defined as in (3.19) and (3.20). (Such expressions can be defined
even if (2M,L) ¢ K, and we use subscript L to indicate L dependence.) If
L < Ly, then by (3.21) we can bound

1
e (8) - Ml xo < @M)7H7 3 L7 < 70 (2M) 71,
L<Lo
which suffices. Note that here no further set of w needs to be removed. If
L > Ly, then this term can be bounded in the same way as in case (d) below,

. - 6
by removing a set of measure < Cpe (" M)°

Case (d): Here we have, due to the factor U]TVI - vzo, that N = 2M and
N® > M9 s0 by either (3.28) or (3.29), we can bound

| Ml S 700 HE e

~

,1M)

. _ 0 .
by removing a set of measure < Cye (7 , which suffices.
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Case (e): The bound for this term follows from the bound for ve), and
the trivial bound (say (3.28) or (3.29)) for the N4 term.

Case (f): We may assume N = N, ~ M. If either v(®) is of type (D) or
N®) > M9 or 1, = —, we can reduce to one of the previous cases (namely
(c) or (d) or (b)) and close as before; if v(®) is of type (G) or (C), g = + and
N®@ « M9 then the Agy; projection allows us to apply the improvement
(3.31), which leads to

~

IM]lx0, S 770M1H57HOR
by removing a set of measure < Coe= (7'M )9, which suffices. This completes
the proof. O

4. Large deviation and counting estimates

Proposition 3.4 will be proved in Section 5. In this section we make some
preparations for the proof, namely we introduce two large deviation estimates
and some counting estimates for integer lattice points.

4.1. Large deviation estimates. We first prove the following large devia-
tion estimate for multilinear Gaussians, which as far as we know is new.

LEMMA 4.1. Let E C Z? be a finite subset, and let B be the o-algebra
generated by {gi : k € E}. Let C be a o-algebra independent with B, and let
C* be the smallest o-algebra containing both C and the o-algebra generated by
{lgr|? : k € E}. Consider the expression

(4.1) F)= > akyk, @) [] s, (@)%,
(kyenrkin ) EE™ j=1

where n < 2r 4+ 1, ¢; € {£} and the coefficients ax, ..., (w) are Ct measurable.
Let A > #FE. Then A-certainly we have

(4.2) IF(w)] < A°M(w)2,
where
2
@y M@= ¥ (T lwmes@l).
(X,Y) (km):mgXUY  pairing (ki ,kj,):1<s<p

In the summation (4.3) we require that all kj € E, and that X = {i1,...,ip}
and Y = {j1,...,jp} are two disjoint subsets of {1,2,...,n}. Recall also the
definition of pairing in Definition 1.10.
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Proof. Write in polar coordinates gx(w) = pi(w)nr(w) where pi, = |gi| and
N = ,0,;1 gr- Then all the p; and 7, are independent, and each 7 is uniformly
distributed on the unit circle of C. We may write
(4.4)

Flw)= > bk, @) [Tty @), bryory (@) 2= gy, (@) [ ow, (@
i=1 =1

(K1,....kn)EE™

Since ag, ...k, (w) are Ct measurable, we know that the collection {b,..r,} is
independent with the collection {ny : k € E}. The goal is to prove that

(4.5) P(|F(w)| > BM;(w)2) < Ce 8",

where C' is an absolute constant, and M (w) is the same as M (w) but with the
coefficients a replaced by the coefficients b. In fact, as A > #FE, we have
A-certainly that |by, ..k, (w)| < A%|ag, ..k, (w)|, so (4.5) implies the desired bound.

We now prove (4.5). By independence, we may condition on the o-algebra
generated by {bg, ...k, } and prove (4.5) for the conditional probability, and then
take another expectation; therefore we may assume that by, ..., are constants
(so My(w) = Mj is a constant). Now let {hy : k& € E} be another set of
independent and identically distributed normalized complex Gaussian random
variables, and define

(4.6) G= Y (eend [0
(k1ye...kn)EE™ j=1

We want to compare F and G and show E|F|?? < E|G|?*? for any positive
integer d. In fact,

d
47 E(FP) = > T 0k ks by E <H 11 ”kl”ﬂ)

(IcZ z% 1<i§d,1gj§n)i=1 i=1j=1
(48)  E(ePY= Y H\bkz w b |E(HHh;ah;z).
(K, £5:1<i<d,1<j<n) 1=1 i=1j=1

The point is that we always have

d n
L (Hmw)]SReE(HHh;ah;z).
i=1j=1
In fact, by collecting all different factors we can write the expectations as

B( [Tone ) and E( [L(hyio)™ (o))
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where the k(@) are pairwise distinct. If 2, # y, for some a, both expectations
will be 0; if x4 = y, for each «, then the first expectation will be 1 and the
second expectation will be [], zo! > 1.

Now, since G is an exact multilinear Gaussian expression, by the standard
hypercontractivity estimate (see [69]), we have

E|F[* <E|GP* < (24 - 1)"(E|G*)",

so for any D > 0 by using Chebyshev’s inequality and optimizing in d, we have

o> oo - (B2} < com {51 (525)')

with some constant C' depending only on n. It then suffices to prove E|G|? <

M7 with constants depending only on n.
By dividing the sum (4.6) into finitely many terms and rearranging the
subscripts, we may assume

kl:...:k‘]i? kjl“l‘l:..':kj27"'7kj7‘71+1:.'.:kjr7 1SJ1<"<jT:n7

and the k;, are different for 1 < s <. Such a monomial that appears in (4.6)
has the form

H hfjs (st)%a Bs + v = js - js—l (]0 = 0)7
s=1

where the factors for different s are independent. We may also assume S5 = s
for 1 <s < gqand B # 7, for ¢+ 1 < s <r, and that ¢; has the same sign as
(—1)7 for 1 < j < j,. Then we can further rewrite this monomial as a linear
combination of

p q T
2 s BS . \7s
(1o TT (e, - ) T o8, Gy
s=1 s=p+1 s=q+1

for 1 < p < ¢. Thus, G is a finite linear combination of expressions of the form
q

p T
Z |bk;j17"'7kj17"'7k:jr7'”k]'7»‘ H Bs! H (|hkjs |25s —7s!) H h'gjs (hkjs )7s.
s=1

kjyseeskgy = s=p+1 s=q+1

Due to independence and the fact that E(|h|?# — 8!) = E(h?(h)?) = 0 for a
normalized Gaussian h and  # ~, we conclude that

2

2
SIS DI (I DRSS B
Kjpro
which is bounded by M; choosing X = {1,3,...,j,—1}and Y ={2,4,...,4,},
since by our assumptions (kg;j_1, k2;) is a pairing for 2¢ < j,. This completes
the proof. 0

ki kjyseokip
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For the purpose of Section 5 we will also need the following lemma, which
is a more general large deviation-type estimate restricted to the no-pairing case.

LEMMA 4.2. Let 6 be as in Section 1.5, let n < 2r + 1, and consider the
following expression:

Z Z /d)\l d)\” Ak, .- kn()‘la---v)‘ )

(klv 7kn) (k17 7

(4.9)
Hgk* L‘j hk‘ ]{3* ()\]7w)i
where ag, ...k, (A1, ..., An) is a given (deterministic) function of (k1,...,kyn) and
(A1, ., An). Moreover, in the summation we assume that there are no pairings
among {ki,...,k;}, that (k;j) <N; and % <(k}) <Nj, and that h%)k*()\j,w),
J
as a random variable, is B:Nl—é measurable. Let N, >max(Ny,...,Ny,). Then
Ny-certainly (the exceptional set removed will depend on the coefficients a) we
have
(4.10)  [M(w 9H Hhk ks (A w) HZQ g 13 ke, (A An) s
where L is an auziliary norm defined (where 0y = (Ox,,...,0x,)) by
(4.11)
2 8 12 2
sk Ay A2 = Y /d>\1 e d ((max (4))" (Jaf? +[0ral’).

ki, kn

Proof. Consider the big box {|\;| < (N,)°~ } and divide it mto small
boxes of size (N,)™® . By exploiting the weight (maxlgjgn()\]>) n (4.11)
and using Poincaré’s inequality, we can find a function b that is Supported in
the big box and is constant on each small box, such that

(4.12) sup fla = dllz S (N9~ ale.

~
,,,,, An

—51

Exploiting this (N,) gain, summing over |k;|, [k}| < N and using the

simple bound

sup /d)\l A - @yt (AL - An Hhk .
kj ke

S Sup HaHL2 H SUP Hhk k* ')HLg,

o ST ;

suffices to bound the contribution with a replaced by a — b; thus we may now
replace a by b (or equivalently, assume a is supported in the big box and is
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constant on each small box) and will prove (4.10) N,-certainly, with the £
norm replaced by the {>L? norm, by induction.

By symmetry we may assume Nj > --- > N,. Choose the smallest ¢ such
that N, > 210Nq+1. Then N1 ~ N, with constant depending only on n. Unless
N; < C, in which case (4.10) is trivial, we can conclude that

hgj)k; ()\j,w)i, 1<j<n,are B;N}—*; measurable; N11_5 < 2_10Nq,

gkj*.( w)E, ¢+ 1<j <n,are By ,+1 measurable; Ny 1 <27 ON,.

Note that in this case, there is no pairing among {k7,...,k}} if and only if
there is no pairing among {k7,...,k;} and no pairing among {ky ..., k;}.
We can then write M (w) as

(4.13) Mw)= > bpros(w) - Hgk; (W)™,

where
(4.14)

D s ( Z /d)\l quHhk ke (A, w)*

x oy > /d)\q+1---d)\n-akl..,kn(/\l,...,An)

(kq+11"'kn) (k;+17"'7k*)
+
x H 9k (W) h kk*()‘ww)
Jj=q+1

are B measurable. We then apply Lemma 4.1 and conclude that, after

<2-10N,
removing a set of w with probability < Che~(V *)6, we have

(4.15) IM@)IPS (N Y by (@)

ki ks
Now by (4.14) we have

D |2<H|rhk Y L

«
k3,

(4.16) x' > > /qu+1 D VTR O VIRURD W

(kq-&-lv kn) (kq+17 ok

X H gk* Ljhk,])k*()\j,w)i
Jj=q+1

2

?
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by induction hypothesis, we get that

Z Z /d>‘q+1 cdAnagy ok, (A1, -y An)

(kg+1,-kn) (kq+17 -k

(4.17) Jad
s’ 1] th)k;()‘j?w)nzi*—%i,Li,
J=q+1 o

X Z /d)‘q+ld)\n ‘ak1-~~kn()\17~--7)\n)’27
Kotk

up to a set of w with probability < Cge_(N*)G, for any fized (k;, \;) for 1 <
j < q. By our assumption on the coefficients a, the function

(kq+1> ceey ki, )\q+1, ey )\n) — akl..lkn()\l, ey )\n),

which depends on the parameters (k;, \;) for 1 < j < g, has only (]\7*)05_7
different possibilities, so by removing a set of w with probability < Cye~ (N *)9,
we may assume (4.17) holds for all (k;,A;), 1 < j < ¢. Thus we can sum (4.17)
over k; and integrate over \;, and combine with (4.15) and (4.16) to get that

| M (w) 9 H Hhk k* HF aﬂ L2

X Z /d)\l Ay @y, (A - An) |2

k17 7

(4.18)

This completes the proof. O

Remark 4.3. In the proof of Lemma 4.2 above, the first step involves ap-
proximating the function a by another function b that is supported in a big box

of size (N,)° " and is constant in each small box of size (N, )™ . This reduces
the infinitely many choices for the \; variables to essentially at most (N7
choices, which allows us to bound the probability of the tail event in question
by Cge_(N*)G. This trick, which we refer to as the meshing argument, will be

used frequently below (especially in Section 5) without further explanation.

4.2. Counting estimates for lattice points. We start with a simple lemma
and then state the main integer lattice point counting bounds that will be used
in the proof below.
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LEMMA 4.4. (1) Let R = Z or Z[i]. Then, given 0 # m € R, and
ao, by € C, the number of choices for (a,b) € R? that satisfy

(4.19) m =ab, |a—ag| < M, |b—by| <N

is O(MYN®) with constant depending only on 6 > 0.
(2) Given dyadic numbers N1 2 No 2 N3, consider the set

(4.20)
S = {(377%2) € (2 : w4+ 1oy + 132 = d, u|z’ + walyl® + 3]z = o,
|z —a| S N1,y —b| < Naylz — ] S N3}

Assume also there is no pairing in S. Then, uniformly in (a,b,c,d) € (Z?)*
and o € Z, we have #S < N21+9N3. Moreover, if 11 = 12, then we have the
stronger bound #S < N29N32.

Proof. (1) This strengthened divisor estimate is essentially proved in [28,
Lemma 3.4]. We know that R has unique factorization and satisfies the stan-
dard divisor estimate, namely the number of divisors of 0 # m € R is O(|m/|?).
Now suppose max(|ag|, M) > max(|bg|, N); then |m| < max(|ag|, M)?. We
may assume Mj ~ |ag| > M*, and hence |m| < M?3.

We then claim that the number of divisors a of m that satisfies |[a—ag| < M
is at most two. In fact, suppose a, b, ¢ are different divisors of m that belong
to the ball |x —ag| < M. Then by unique factorization, we have lem(a, b, ¢)|m,

hence
abc

ged(a, b) ged(b, ¢) ged(c, a)
divides m. As |a|] ~ M; etc., and | ged(a,b)| < |a — b < M etc., we conclude
that

abc
ged(a, b) ged(b, ¢) ged(e, a)
contradicting the assumption M; > M*?,
(2) Let @ = (w1,22), ete. If 11 = 19, then with fixed z (which has O(N3)
choices), x + y will be constant. Let x —y = w. Then

M} 2 |m| > > MM,

(wr + dwa)(wy — iwz) = |wf? = 2(jz* + |y|*) — |« + y|”

is constant. As w belongs to a ball of radius O(Nz) in R?, by (1) we know that
the number of choices for w is O(NJ), hence #S = O(NYN2). Below we will
assume that ¢; = + and 9 = —.

(a) Suppose t3 = +. Then we have that
_Jd?—a
2

(di —21)(21 —y1) + (d2 — 22) (22 —y2) = (d — 2) - (2 — ¥)
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is constant. If (dq — 21)(z1 — y1) # 0 (or similarly if (d2 — 22)(22 — y2) # 0),
then with fixed (y2,22) (which has O(N2N3) choices), (di — z1)(z1 — y1) will
be constant. As d; — 21 belongs to an interval of size O(N3) in R, and 21 — y;
belongs to an interval of size O(N2) in R, by (1) we know that the number of
choices for (y1, 21) is O(NY), so #S < NYNyN3.

If (di —2z1)(2z1 —y1) = 0 and (d2 — 22)(22 — y2) = 0, as there is no pairing,
we may assume that di = z; and 29 = y2 (or z; = y; and dy = 22, which is
treated similarly), so z; = d; and xy = dp are fixed, z3 has O(N3) choices and
x1 = y1 has O(N2) choices, which implies #S5 < Ny Ns.

(b) Suppose t3 = —. Then similarly we have that

B |d|? 4+ «

(di +21)(dr +y1) + (d2 + 22)(d2 + y2) = (d+ 2) - (d + ) 5

is constant. If (di + z1)(d1 + y1) # 0 (or similarly if (do + 22)(d2 + y2) # 0),
then with fixed (y2, 22) (which has O(N2N3) choices), (dy + z1)(d1 + y1) will
be constant. As dj + 2z belongs to an interval of size O(N3) in R, and d; + 11
belongs to an interval of size O(N3) in R, by (1) we know that the number of
choices for (y1, 21) is O(NY), so #5 < NYNyN3.

If (di + 2z1)(d1 +y1) = 0 and (da + 22)(d2 4+ y2) = 0, as there is no pairing,
we may assume that d; + 21 = 0 and dy + y2 = 0 (or da + 22 and dy + y; = 0,
which is treated similarly), so z; = —d; and y2 = —dz are fixed, z3 has O(N3)
choices and y; has O(N3) choices, which implies #S < NoNj. O

PROPOSITION 4.5. Recall the relevant constants defined in (1.35). The
following bounds are uniform in all parameters. Given d,d’, k" € Z? and k? €
7% with 1 < j <mn, let ,T € R,1,15 € {+1,—1} for 1 < j < n, and 2p < n.
Also, let dyadic numbers M, N; (for 0 < j <n) and R; (for 1 <i <p) be such
that for 1 < i < p, we have

1-5
Noj—1 ~ Noj, toj—1 = —t25, and R; S Ny, 9.

Let NU = max(j)(Nl,...,Nn), Npr = max(Ny,...,Nopy) and N, 2
max(No, N).  Also fir a subset A of {1,...,n} that contains {1,...,2p},
and recall the definition of the I'-condition (3.34). Consider the sets

(4.21)

n n

Sl = {(k‘,k‘l, .. .,]Cn) € (Z2)n+1 : ZL]]{?] =k +d, ZLJUCJ‘Z = |]€|2 + «a,
j=1 i=1

by — kK SN; (1 <G <n), kit — kol S Ri(N)T (1 <i < p)},
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(4.22)

S2 = {(k7k/7k17 s 7kn) S (Z2)n+2 : Lk/ + ZLJI{?J - k +d,
j=1

n
UK P4 gl P =k + o, |k] K S No, [k — E) SN; (1< 5 <),
j=1

ki1 — kasl S Ri(N)C" (1 <i < p)}7
(4.23)
St = {(kﬁ,kﬁl, ces ,kn) S (Z2)n+1 and
(koK s k) € (22203 0k = d’},

JEA
(4.24)

53 = {(k,k‘l,... ,k’n) S (ZQ)n-f—l . ijk-] — k+d’
j=1

\\k!?—ZLj\ker—a

J=1

S M,  [k] S No, ’k]‘SNj(lgjgn)’

ki1 — koi| S Ri(N.)°" (1 <i<p), and (3.34) holds}.

Assume that there is no pairing among the variables k, k' and k; in the
sets above. Let S;f =S5, NS*. Then for S1, we have

p 1'+2'yo B n
(4.25) (#51) - H% < (NPR)?YO(NQCK I(N(l)N(2))—1 HNJZ
i=1 ¢ j=1
If N@) ~ N, and 1, = —, then we have
D 21'4-2170 » n
(4.26) #51) - [] % < (Npr)?P (N (N2 T N7
i=1 v j=1

For Sy and S5, we have

P lei-2’yo . n
(421 @#S) - ][ =5 S Wer)™ (N)T No(NO) ™ [T N7,
i=1 v j=1
(4.28)
D 14279 (2))2 n
2i—1 o1y, max((V)% |al) 1)y—2 2
(#5s) - ] == S Ner)™ (V) M—— - (W) T A7,

i=1
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Finally, suppose we replace any of these S; by the set Sj. Then (4.25)—

(4.27) hold with the right-hand side multiplied by an extra factor
i (2) At

(4.29) [min (N ’jeAl,leg}Q{p—s—l N;)]
If NO ~ N, and a € A, then the stronger bound (4.26) holds for St with
the right-hand side multiplied by an extra factor (4.29), regardless of whether
o =— ornot. If NO ~ N, and 2p+1 < a € A, then (4.27) holds for S5 with
the right-hand side multiplied by an extra factor (N(l))_l. As for S;, either
it satisfies (4.28) with the same extra factor (4.29), or it satisfies

P 1+270

4 (2))2
+y . 2i—-1 -~ Cr~1 290 13 (max((N ) 7‘0“)
(4.30) (#S7) ||1 —5 S (N M(Npr)*° min NN
X (Ié?x{Nj 2p+1<jeA}) (N ) | | NZ.

Proof. Let a,b,c be such that NO ~ N,, N@ ~ N, and max({N; :
2p+1 < j € A}) ~ N.. In the proof below any factor that is < (N*)C”’”_1
will be negligible, so we will pretend they are 1. For simplicity, let us first also
ignore all NQQQ_OI factors; at the end of the proof we will explain how to put
them back.

(1) We start with (4.25). If a,b > 2p + 1, we may fix all k;(j & {a,b}),
and then apply Lemma 4.4(2) to count the triple (k, kq, kp). This gives

Noi
(4.31) (#51) H ; L < (HNzZ ol N})NaNb,
=1 " 2p+1<j¢{a,b}
which proves (4.25) as R; S N21] O Ifa>2p+1and b < 2p (say b=1), we
may fix all k; (j & {1,a}), and then apply Lemma 4.4(2) to count the triple
(k, k1, ka), noticing that k; belongs to a disc of radius O(Rl(N*)C””_l) once ko
is fixed. This gives

4.32 STt < <N2 N3_|R; N~2>N Ry

w el Nt (wIvn T v
which proves (4.25). Finally, if a < 2p (say a = 1), then we may assume b = 2.
We may fix all k;(j > 3), and then apply Lemma 4.4(2) to count the triple
(k, k1, ks), noticing that k belongs to a disc of radius O(Ry(N,)°* ') once all
kj(j > 3) are fixed. This gives

(4.33) (#Sl)HNZ L < (HNQZ R T NQ)NlRlR

=1 7>2p+1
which proves (4.25).
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As for (4.26) and (4.27) we only need to consider a. If a > 2p+ 1, we may
fix all k;(j # a), and then apply Lemma 4.4(2) to count the pair (k,k,) for
(4.26) (using the fact ¢, = —) and the triple (k, &, k,) for (4.27). Then we get

(4.34) (#51) NQ% = (HNm R[] NJ’2>’

=1 2p+1<j#a

p .
(435) <#SQ>HN§;?1s(HN2z e T1 N2) NN,

=1 2p+1<j#a

which proves (4.26) and (4.27). If a < 2p (say a = 1), we may assume b = 2 —
in particular, N(V ~ N®) and (4.26) follows from (4.25); for (4.27), we may
fix all kj(j > 2) and then apply Lemma 4.4(2) to count the triple (k, k', k1),
noticing that k; belongs to a disc of radius O(R;(N,)C" ") once ks is fixed.
Then we get

p

No;
(4.36) (#85) 2 L < ( HNQZ BT NZ)NORlR
i=1 v j>2p+1

which proves (4.27).

(2) Next we prove the improvements to (4.25)—-(4.27) for S;f. We start
with (4.25). If a,b ¢ A, we may fix all kj(c # j € A) and apply (4.25) to the
rest variables and get

p p
Noi 1 _
@37) @O = < W) [T NP IING-Re JT A7
i=1 v jEZA i=1 JEA,c£5>2p+1

which gains a factor N2 upon (4.25). If a ¢ A and 2p +1 < b € A, we may
fix all kj(b # j € A) and apply (4.25) to the rest variables and get

(4.38) <#Sr>HNj;1 NOTIN MmN

1=1 JZA =1 JEAbF£j>2p+1

which gains a factor N, ' upon (4.25). If a ¢ A and b < 2p (say b = 1),
we may fix all k;(2 < j # a), noticing that k. belongs to a ball of radius
min(Ne, R1(N,)S" ") once all k;(3 < j & {a,c}) are fixed. We then apply
Lemma 4.4(2) to count the pair (k,k,). Then we get

(4.39)
P Noiq
(#5) é < (Nl min(N2, R?) HNQl R ] N-2>Na
i=1 v 2p+1<j¢{a,c}

which gains a factor N upon (4.25).
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Now if 2p+1<a € A and either b & Aor 2p+1 < b € A, we may fix all
k;j(j & {a,b}) and apply Lemma 4.4(2) to count the pair (k, k) (if b ¢ A) or
(ka, k) (if 2p+1 <be A). Then we get

) sh[ Y < (HNQI e I N

i=1 2p+1<j¢{a,b}
which gains a factor Nb_1 upon the stronger bound (4.26). If 2p4+1 < a € A and
b < 2p (say b = 1), we may fix all k;(j € {a,1,2}) and apply Lemma 4.4(2)
to count the triple (kg, k1, k2), noticing that k, belongs to a disc of radius
O(R1(N,)°*") once all ki(j & {a,1,2}) are fixed. Then we get

N2’L 1 Ny
(4.41) (#57) S (HNm 1R H NJ'2>N1R1Rl7

=1 2p+1<j#a

which gains a factor IV, 2 upon the stronger bound (4.26). Finally, if a < 2p

(say a = 1), then we may assume b = 2. We may fix all k;(j > 3), noticing

that k. belongs to a disc of radius min(N,, R1(N,)“* ') once all ki(3<j+#c)

are fixed, and then apply Lemma 4.4(2) to count the pair (k1,ke). This gives
P Ny N

(4.42)  (#5;) 271 < (mm(Nc,Rl ZHNQz R ] NQ)Nl !
, R; Ry’
i=1 2p+1<j#c

which gains a factor N1 upon the stronger bound (4.26).

As for (4.26) and (4.27) we only need to consider a. If a ¢ A, we may fix
all kj(c # j € A) and apply (4.26) (if 1o = —) or (4.27) to the rest variables.
Then we get

(4.43) (#57) ﬁNm L< N 2HNJ21£[N§’Z~_1RZ- ||

=1 i jgA  i=1 JEAc£>2p+1

p p
(1a0)  #SH]] Nj{l SN TN TNk I M2

i=1 jgA =1 JEAC£G>2pH1

which gains a factor N2 upon (4.26) or (4.27). If a € A, then (4.26) follows
from the above proof for (4.25); for (4.27), if 2p+1 < a € A, we may fix all
kj(a # j € A) and apply (4.27) to the rest variables and get

P p
Noi—q
wie) @It m Mo T
i=1 * jZA i=1 JEAa#j>2p+1

which gains a factor N, ! upon (4.27); if a < 2p (say a = 1), we may fix all
k;j(2 < j € A), noticing that k. belongs to a ball of radius min(N,, R; (N,)C" )



INVARIANT GIBBS MEASURES FOR 2D NLS 51

once all k;(j € A\{1,2, c}) are fixed, and apply (4.27) to the rest variables and
get
(4.46)

#SH]]

=1

No;_1

7

< min(N,, Ry 2N1 N 11~ HNQZ v |
JE¢A =2 JEA,c#j>2p+1
which gains a factor N upon (4.27).

(3) Now we consider (4.28) and its improvement. We may assume ¢, = +
and N > N®) (so a > 2p+1), since otherwise (4.28) follows from (4.26) or
(4.25) and similarly for the improvement. Now let My = max(|a|, (N?)?). If
M > My, then we have

1K = [kal?| < el + D 1Ky * + M S M;
j#a
combining with (3.34) and Lemma 4.4(1) we conclude that the number of
choices for |kq|?, and thus kg, is O(M). We may fix k, and then count k;(j # a)
to get

P p
No;_
(4.47) #ss) [[ 5~ <M[[Niar I N
i=1 v i=1 2p+1<j#a

which proves (4.28). As for Sf, if a € A, then the improvement of (4.28)
follows from the improvement of (4.26); if a ¢ A, we may fix k, and count

k;j(j & {a,c}) to get

p
(4.48) (#55) H Nai-t <MHN23i_1Ri I »
=1

2p+1<j#{a,c}

which gains a factor Nc_2 upon (4.28).

Assume now M < My. Then just like above we have ||k[* — |kq|?| < Mo,
so k has at most O(My) choices, and similarly k, has at most O(M)) choices. If
b > 2p+1, we may assume ¢, = + (otherwise switch the roles of k and k), then
fix k and k;(j & {a, b}) and apply Lemma 4.4(2) to count the pair (k,, kp) to get

P
(4.49) (#953) H Noio1 < My <HN§i_1Ri 11 NJ?)M,

i=1 2p+1<j¢{a,b}
which proves (4.28); if b < 2p (say b = 1), we may fix k and k;(j & {1,2,a}) and
apply Lemma 4.4(2) to count the triple (kj, k2, kq), noticing that k, belongs to
a disc of radius O(R;(N,)®* ") once k and k;i(j ¢ {1,2,a}) are fixed, and get

(4.50) (#Sg)HNZ L < (MOHNQz ol N2)N1R1M]}\;

=1 =2 2p+1<j#a
which proves (4.28).
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It remains to prove the improvement of (4.28) for S5 . We may assume
a ¢ A, since otherwise it follows from the improvement of (4.26). Now if b € A,
we may fix all k;(c # j € A) and apply (4.28) to the rest variables and get
(4.51)

(#S9) H Naizt < MMy(N,Ny) QHNZHNQZ \Ri ||
igA =1 2pt+1<jFe, jEA

which gains a factor N2 upon (4.28). If b < 2p, say b = 1, we may fix k and
k;(3 < j # a), noticing that k. belongs to a disc of radius min(N,, R; (N,)C"
once all k;(3 < j & {a,c}) are fixed, and then apply Lemma 4.4(2) to count
the pair (k1,k2) and get

(4.52)

(#55) H

=1

Noi_1

)

Ny
Ry’

< MM()(mln(Nc,Rl QHNQZ R ] N2>N1
2p+1<jé{a,c}

which gains a factor N7 ! upon (4.28). Finally, assume 2p + 1 < b € A. Then

we will prove (4.30). Let max(®?{N; : 2p+1 < j € A} ~ N;. We may fix k and

k;j(j & {a,b,d}), then apply Lemma 4.4(2) to count the pair (ky, kq) and get

Noi_1

W) #5H]] <MM0(HN22 we T1 N)Ne

=1 i 2p+1§j€{a,b,d}
alternatively we may choose to fix k;(j & {a,b}) and then apply Lemma 4.4(2)
to count the pair (k,k,) and get

17 Maict L 2
wsn) It s m([[ M I NN

=1 i=1 2p+1<j#{a,b}
Combining (4.53) and (4.54) yields (4.30).
In the last part we will explain how to put back the powers ]\72701 In fact,

in each estimate above we have the product [[;>o Na;_ 1 Ri. As Ry < <N 1 and
Ngi_l ~ Ngi, we have
3 2 2 -2
Nyi_1Ri S Noj1Naj - Nog”Y',
which allows us to incorporate the extra factor N2217_°1 for 7 > 2. Thus we lose
at most a factor Nl2 70 which is acceptable as N1 < Npg. O

COROLLARY 4.6. Recall ag > 1 defined in (1.35), and let all the param-
eters (d, Nj, ¢j, etc.) be as in Proposition 4.5. From the sets Sj(1 < j < 3)
in Proposition 4.5 we may construct the quantities £; as follows: each &; is a
sum over a set S}i“. This S}in is formed from S; by removing from its defin-
ing properties the one that involves the quadratic algebraic sum % (this ¥ is
k12 i kn|? —|E|? for Sy and S, and vy k1|24 -4 inlkn |2 4| K2 — k|2
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for S2), and the summand is simply (X — a)~%. Similarly define S;F by re-
placing S; with S;-r.

Then, inequalities (4.25)—(4.30), as well as their improvements, hold with
#S; replaced by &; (#SJ+ replaced by S;F), and with the factor M on the right-
hand sides of (4.28) and (4.30) removed.

Proof. This is straightforward, by applying Proposition 4.5 for each value
of ¥ and summing up using ag > 1 for (4.25)—(4.27), and by dyadically de-
composing (X — «) and applying Proposition 4.5 for each dyadic piece for
(4.28)—(4.30). O

5. Proof of the multilinear estimates

In this section we will prove Proposition 3.4, thus completing the local
theory. We start with an estimate for general multilinear forms without pairing.
Given d € Z? and o« € R, consider the following expressions:

(5.1)

X = Z / dAd); -

(k kl? 7k'n
t1k1++inkn=k+d

a0 = k2 = 32 050y — 1) — o [T )

Jj=1 Jj=1

V= - /dAdA’dAl Ay - n<)\, A= k> =N = |K'?)
(k&' k1, kon)
tiki4Finkn ik’ =k+d

—Z@ s P) o e 0 ) T O

j=1
where d € Z? and o € R are fixed and 7 is a function that satisfies

(5.3) (X, )]+ 105 .m\, )] < ()10

In the summation we always assume that there is no pairing'® among the

variables k, k" and k;.

10T his requirement appears in the form of coefficients that are indicator functions of sets
of form {k; # ki}. Such coefficients may lead to slightly different multilinear Gaussian
expressions in the estimates below, but there will be at most (N.)€ possibilities where N, is
a parameter to be defined below, and will not affect any estimates since our exceptional sets

6
will always have measure at most Cpe™ (V)"
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We assume that the input functions v9) are as in Proposition 3.4, where
v are of type (G) or (C) for 1 < j < ny, and of type (D) for n; +1 < j < n.
Since we are working excluswely in the \; spaces, we will abuse notation here
and write (vf)(\;) instead of (v o) ().

Let the parameters Nj, Lj, NG ete., and the sets G and C be as in
Proposition 3.4. We further assume that the functions vg(\) and ygr (A, \)
satisfy

G4 ISl ST TN O eVl s ST,

and that vg()) is supported in {|k] < No} and yr (A, \') is supported in
{Ik[, |K'| < No}.

PROPOSITION 5.1. Recall the relevant constants defined in (1.35), and
that 7 < 1. Under all the above assumptions, there exist p and q, and Napi; 2
Ropy1 2 Lopi(1 <1 < q) such that 2p + g < ny, that for 1 < i < p we must
have No;_1 ~ No; and t2;—1 = —t9;, and that 2t — 1 and 2i do not both belong
to G. Define R; = max(Lo;j_1, Lo;), and let N, be fized. Then the following
estimates hold T—'N,-certainly. Here, as in Proposition 3.4, the exceptional
set of w removed does not depend on the choice of the functions v(j)(j >ni+1)
or v or w.

(1) Assume N, = max(No, N(U). Then we have

P N1+2'yo n

(5‘5) |X|2§T—0(N*)Cn 1 H 2i—1 HN 2 H N2'y H L;%O,

=1 j>n1+1 2p+1<j<n
and similarly

p 1+2’yo n

(5.6) |V]> ST 0N e e =5 Naii HN— I~ [ >

=1 j>ni1+1 2p+1<5j<n1

where 1 and E are the quantities defined in Corollary 4.6, with ag = 2b—1085,
and for some choice of the parameters in that corollary that do not appear in
the assumptions of the current proposition. Moreover, if in the sum defining
X we also assume the I'-condition (3.34), then (5.5) holds with & replaced by
Es. (See that cor for the relevant definitions.)

(2) Assume N, = max(Ny, NV). Then we have

(5.7)
p 1+2v0\2 n

s o et (T14) I I a0 11 o,

i=1 j>ni+1 2p+1<j<n
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and similarly

(5.8)
. D NH—ZW 2 n ,
D}’4 < T_G(N*)CH 5255',—(1_[ 2i—1 ) HN— H N;W H L?Oﬂ :
i=1 j>n1+1 2p+1<j<ny
where &; and S;F are the quantities deﬁned in Corollary 4.6, again for some
choice of the parameters in that corollary that do not appear in the assumptions
of the current proposition. In the set ST in (4.23), the set A will contain
{1,2,...,2p} U{n1 + 1,...,n}. Moreover, if in the sum defining X we also
assume the T-condition (3.34), then (5.7) holds with E1E] replaced by E3E5.
(3) Assume, in addition, that NV ~ N, and N, > N . Then (5.7) is
true, with N, replaced by N2 in both quantities & and Efr. Moreover, we have

1t S 70O (VW) A (V) D

(5.9) P N1+2’Yo 2n—1 2pt+q
i=1 j=2p+1

where & is the quantity defined in Corollary 4.6 for some choice of the pa-
rameters in that corollary that do not appear in the assumptions of the current
proposition, but with N, replaced by N2 . Similarly Sfr is the quantity Ef
defined in Corollary 4.6 with A = {1,...,n}, but with N,, replaced by N and
Nop1y replaced by R2p+l(N*)C“7l for 1 <1 < q. Moreover, the exceptional set
of w removed is independent of NV

5.1. Proof of Proposition 5.1. We will prove Proposition 5.1 in this sec-
tion. We will only prove the bounds for X without I'-condition; with obvious
modifications the proof also works for ) and for the version with I'-condition.
For simplicity we will omit the w dependence, and may ignore any factors that
are < 770(N,)OF

Our proof will roughly follow an algorithm, indicated by the following steps:

(1) Distinguish between the inputs j € D, where v() are bounded in ¢(2L2,
with j € GUC.

(2) Identify the pairings among k;(j € G) and k}(j € C), and reduce the sum
of products of the h) functions over the paired variables to some functions
P (see (5.11)) that are also bounded in ¢2L2.

(3) Estimate the sum in unpaired variables using Lemma 4.2. (In Section 5.1.2
we will skip step (2) and estimate the whole sum including paired and
unpaired variables using Lemma 4.1.)

(4) Apply Cauchy-Schwartz to handle all the factors in #2L?, and then reduce
to the &; type quantities in Corollary 4.6.
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(5) When necessary, apply a 7*7 argument and repeat the previous steps for
the resulting kernel.

As the proof will be notation heavy, the reader may do a first reading
making the following simplifications without missing the core parts of the proof:
(1) omit integration in any A; and pretend A; = 0 (so v is a function of k; only
and h) is a function of k; and k% only); (2) when identifying pairings, restrict
to only simple pairings where (say) kf = k:j and does not equal any other ;.
These will make formulas like (5.12) simpler and the proofs more transparent.

Throughout the proof we will fix the sets U = {1,2,...,n} and V =
{1,2,...,n—1}. We will (in this section only) introduce a shorthand notation
for vectors: for a finite set X, define k[x) to be the vector (k; : j € X); similarly
define A[x, kJE‘X], etc., and define dA(x] = [[;ex dA;-

5.1.1. A simple bound. We first prove (5.5). By definition we expand
X = > > / dAdA

(kvk[U]) L1k1++bnkn:k+d k‘rU]
n

(5.10) ><77(/\,)\—Ik‘\Q—ZLJ()\j—WﬂQ)—Oé)

j=1
T G e T )
X vg(A) H <k,:> hkjjk;()‘j) H [Ukjj (A7
j=1*1J j=n1+1
recall that kj;) means (ki,...,k,), etc. The sum in kFU] is restricted to % <

(k7) < Nj, and h,(g?k; (Aj,w) is defined as in (3.25) for j € C and is defined to
be 1kj:k;5(\()\j) for j € G.

Consider now the sum in k["U]. By identifying all pairings among them
(recall the definition of pairings in Definition 1.10), we may assume there are
psets V(1 <i<p,2p<nqp)and aset Z that partitions {1,...,n;}, such that

(i) each Y; contains a pairing;
(i) the k} takes a single value for j in each Y;;
(i) this value is different for different Y; and is different from £ for j € Z;
and
(iv) there is no pairing in {k] : j € Z}.
Then we manipulate this sum and rewrite it as a combination of two types of
sums, namely,

(1) where we only require'! that kj takes a single value for j in each Y; and
that there is no pairing in {k} : j € Z}; and

" That is, we relax the requirement (iii) above, keeping only requirements (ii) and (iv).
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(2) where there are more pairings in addition to case (1), namely when the
value for Y; equals the value for some other Y;, or some k;‘ for j € Z.

Since there are strictly more pairings in case (2) than in the sum we started
with, we may repeat this process and eventually reduce to sums of type (1)
only. The purpose of this manipulation is to ensure that the sum in k} (j€Y)
gives exactly

(5.11) => 11 hk e (Ag) T (R) 7% (g )™ (1)
k* jeY;
where q1 + ¢2 = q3 = |Yi].

Note that N; for j € Y; are all comparable. Without loss of generality we
may assume {2i —1,2i} C Y and t9;—1 = —t9;. As (koj—1, k2;) is not a pairing,
2i — 1 and 2i cannot both belong to G. Now we may assume |ko;—1 — k*| <
Loi—1(N,)O"" and similarly for ko, since otherwise we gain a power (N, )~200n"
due to the last bound in (3.26), which cancels any summation in any (k;, k7).
The estimate will then follow immediately.

Let R, = maX(LQi_l, LQi), say R; = Lg;—1. Then we have ’kgi_l — k2i| S
Ri(N,)°* " for 1 < i < p. For (5.11) using the first two bounds in (3.26), we
have that

(5.12)
1R85, o) TT ORI s
jEY; kv A Yy
— 21
< LN 100 e ol g iz, > T1 1O B0 09I, 15
JeY; 20w 2i#£j€Y; Y
b (21 D) 2 2 25
< [[(A2i-1) h 1]@*()\21'71)”@%2 ) H N H L 0
Jjey;
j#2i—1,27
< N211+21“m R_l H Nj_2 H Lj—250.
Jjey; JEY;
§£2i—1,2i
Now we have reduced the expression for X to
(5.13)
= ¥ Z/dww A 2 =3 050~ Iy P) o
(kk)): j=1

L1 kl 4+ Finkn=k+d

Ly

9y . n . _
x uh HP Qo) T gy 00 T 1) o

jez ' J j=ni1+1
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Compared to (5.10) it is important that there is no pairing in er}. For sim-
plicity of notation, we will write

(5.14) x=> 130,
(1) /

where the symbol ) [ represents the sum in k and ki z) and integration
in A and A 7], the factor § is

(5.15) HP“ o) 1 200,

j=ni+1
and the multilinear Gaussian & is given by

Ly

Gpx
(5.16) & —ZZ/d)\[Z I1 <l:]> ()\]>bh,(j),€*()\.)i.9l,

[Z] k[Z] jeZ

with coefficient 21 of form

(5.17) =15, uik;=do - 77<>\7040 = 4 - Vﬂj!z)> [T

JjEZ JjEZ
where

(5.18) do :=k+d—Y 1k € Z*, ag:=A—[k*—a=)_1;(\;—|k;*) €R
¢z ¢z

The goal now is to estimate &. For fixed values of (k, A, kjrn 71, Ar z)), we may

apply Lemma 4.2; in order to make this uniform, we will apply the meshing

-7 .
Co™" choices,

argument in Remark 4.3. This allows us to reduce to at most (V)
so in the end, after removing a set of probability < Cge_(TilN 9 we can apply
Lemma 4.2 for all choices of (k, A, ki 7], A\ z)) and use the first bound in

(3.26) to get that
& < TN 2T L% - 12z

JE€EZ JjEZ
(5.19) ; —ao
-2 -2 2
SIVEIIE™ X (X ulbk)
JjEZ jeZ k[Z]:ZjeZijj:dO JjEZ

Finally applying Cauchy-Schwartz in the variables (k, A, kjin 21, A\ z1), we de-
duce that

x| < <Z/ \)2b GI;I\Z )2b mz)(z/ —2b el;[\Z —-2b Q5|2)

where the first parenthesis (together with some factors from the second paren-
thesis) gives the product of all factors in (5.5) except &, by using (3.27),
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(5.4) and (5.12); the second parenthesis, after applying (5.19), integrating in
(A Ay 7)) and plugging in (5.18), reduces to

Z <2_a>7a0 5517
(kvk[U]):
t1ki++inkn=k+d

where ¥ = 11]k1|2 + -+ + tn|kn|? — |k|? as in Corollary 4.6. This proves (5.5).

5.1.2. A general T*T argument. Now we prove (5.7), starting from (5.13).
Note that due to (3.27) and (5.4), the bound for X would follow from the
EinLin — éiLi bound of the linear operator 7 with kernel

(5.20)
— Z/d/\m 77(A A= |k~ ij(kj—kjp)—a)
kv L1k1+ Finkn=k+d k, =1
T pl) L P D
x (HPk[Yilwm 11 Gy 0 T 1) (&)]”)W‘ )"
i=1 jez VI j=m+l1

We then calculate the kernel of O = 7*T, which (similar to (5.14)) can be
written as

(5.21) Ok, (Ans Ap) = (An) T(N) ™ Z/s ®,
@

where the symbol } ) | represents the sum in (kpn2)5 kfv\ Z]) and integration
n ()‘[V\Z]v)‘fv\z})v the factor § is independent of (ky, k., An, Al,), and is now
defined as

p n=1 ____
(522)  F= HP OB N TT W o oo,
j=ni1+1

and the multilinear Gaussian & is now given by

Li Ljg
(5.23) = > Ia'se. > ¢
(k[*Z] kiz) €2 (kK 21,k 7)):
Z]ez vikj=k+do
Yjez tiki=k+dj
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with coefficient € of form

(5.24)
= /d)\d)\[z]d)\’m : <)\>‘2b77(>\,>\ = k2= (N = kP — ao)
jez
2 / ap) / L&) + [ /
A A= [k = ZLJ(AJ‘ - |ky‘ ) — ap H thjk;()‘j) (k') k’k’*()\ )
jez jez VI J

where we now have

do:=d = ukj, dy=d—Y ;K]

i¢Z i¢Z
(5.25) i¢ i¢ ,
aO::a+ZLj()\j—|kJ\ , Qg —a+ZLJ ]k
¢z ¢z

As in Section 5.1.1 we may assume |kg;—1 — ko;| < Ri(]\ﬁk)c’(1 forl1<i<p
and similarly for k), , and k};. The goal now is to estimate & in (5.23).
Let Ly = max{L; : j € Z}. In view of the power (L.)%"* on the right-
hand side of (5.7), we may assume N; > (L4)? for each j € Z; otherwise we
simply sum over (kj;,k}) and (K}, k") and get rid of these variables. By the
meshing argument in Remark 4.3, we may reduce to < (N*)C‘S_7 choices for
(ko z)5 ka\Z], Ao\2)» )\’[U\Z}); for each single choice, as € is B£L+ measurable
and there is no pairing in k[kZ] or kf*zp we may apply Lemma 4.1 and get

G2)  lePs Y (X% > ).

(kFZ\W]’ku\W’]) kél=k£’;(1§lﬁs) (k, k[Z Z])
dez tikj=k+do
Yjez Liki=k+dg

where W = {ai,...,as} and W' = {by,...,bs} are subsets of Z, and we
have Ny, ~ Ny, and ¢4, = 1, for 1 < [ < 5. As before we may assume
|kj — k| < Ly(N.)* " and similarly for &} — k7, and due to the (L)%’
factor we may then fix the values of k; — k7 = e; and K} — ki* = e} Therefore
k‘gl — ko, = egl — €q, := f1 is also fixed.

Now the outer sum in (5.26) can be viewed as a sum over kiz ] and
ku\W'}v and the inner sums can be viewed as a sum over (k, kq,, by, 1 1 <1 <s)
that satisfies k{)l — kq, = fi. When all these k-variables are fixed, we have

sup [5) B2k Oz S 1, sup 105 B () az, S 1
J

kj k5 J 73
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due to the first bound in (3.26). Using the algebra property of the norm
1 (A)’R(N)]| 2 under convolution, we have

e STIN7 [ar- o

j€z
—b —b
(5.27) X </\ — R[>+ ulks)? - ao> </\ — K[>+ ulK? - 046>
jez jez
—b —b
STV (WP = Yol o) (2 = Ik + )
J€Z j€Z j€zZ
With (5.27) we can now bound & by
(5.28)
62 < (L) [ v;
j€z
s —b
Y (D Y kP bkl + o)
(kiz\w )k ) (okiay ok :1<I<5) JEZ\W =1
s —b\ 2
(P = Y Gl =k ah) )
JEZ\W' =1
Multiplying out the square we get
(5.29)
2 _ _ o _ O —
B2 S L) TN Y Yo T
jEZ (k[Z\W]’kEZ\W/]) (k,kal,kélzlglgs)
(kskay kip, 1 <I<s)
where

S

Y=k = > ylkl? = talkal® + o,

jeZ\W =1
o o s o
Y=k = > ylkil* =D talkal” + oo,
JEZ\W =1
S
Y=k = D ylkP =k P+ af,
JjEZ\W' =1
S
T = |]%]2— Z Lj’k}|2—ZLbl’kél|2+a6,
JEZ\W =1

with tq, = tp,, 9 and aj as in (5.25). The variables in the summation (5.29)
verify the following linear equations:
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Z ijj+zbalkal_k: Z lefj—i—Z:LalkZl_]%:d()7

icZ\W =1 icZ\W =1

5.30) . JEA .
Z ij;—l-ZLblkél —k= Z ij;—i-ZLblkél —Z::dg,

JEZ\W =1 JEZ\W! =1

with d and dj as in (5.25), as well as kj, — ka, = Ky — ko, = fi.

By Cauchy-Schwartz, we may replace the summand on the right-hand side
of (5.29) by (Y)=20.(Y")=2 (or by <'i‘>’2b -(Y")~2%, which is treated similarly
by symmetry). Now going back to (5.21) and applying Cauchy-Schwartz in
the variables (kpy\ 7], kEV\Z]v /\[V\Z]7)‘/[V\Z])7 we get

|X|4 <N 4(1-7) Z /d)\ d)\ |Ok kL, ()\na)‘n)|

kn k!,
4(1— v)(Z/ H 2b X 2b mz)
JjEV\Z
/d)\ d)\, —2b )\/ 2bZ/ H —2b /\l 2b'|6|2>.
kn,k’ (2) JEV\Z

The first parenthesis (together with some factors from the second parenthesis)
give the product of all factors in (5.7) except £&1&;, by using (3.27) and (5 12).
The second parenthesm after applylng (5 29) with the summand (Y)~° <T>*b-
(Y~ -<T’) replaced by (1)~ 2b<T )~2, integrating in Ay z) and )\[U\Z], and
plugging in (5.25), reduces to
(5.31) S S E—a) M -,

(k[U\W]’kEU\W’]) (k,kal,kél :11<i<s)

(k,kal,kglzlglgs)

where ¥ and 3 are respectively
(5.32)

= ulk \2+Zbal\kal!2 = > Lg\k’!2+ZLbl\kbl!2 k[,
JEW JjEW’

and the variables in the summation satisfy

Zijj+ZLalkal_k: ZL]k +ZLal al_ = 7

A4 = jew

Z Lik ] —}—ZLblkbl Z ij‘} —i—ZLblk‘Zl — k=
=1

JEW! JEW!

(5.33)
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as well as k;n — k= kzl — k:j” = fi. Now, when kjnwy and (k, kg, 1 1 <1 < s)
are fixed, the sum of (ZO]’ —a)™% over ka\W,] and (l(%, kzl :1 <1< s)can be
bounded by & with A = U\W’ in (4.23) due to (5.33); on the other hand, the
sum of (¥ — a)~2 over kinw) and (K, kg, 1 1 < 1 < s) can be bounded by &;.
This bounds the sum (5.31) by £,&; and proves (5.7).

5.1.3. A special T*T argument. Assume now N,, = N® and N, 2 N®@),
Again we only need to study the operator 7 given by the kernel (5.20); note
that Tk, (X, An) is supported in the set {(k, k) : |k —tnkn+d| < NP}, By the
standard orthogonality argument it suffices to prove the same operator bound
for T which is T restricted to the set Ak k—fl < N®Y, uniformly in f € Z2.
Below we will fix an f and denote T still by 7T, so that in any summations
below we may assume |k — f| < N@ and |k, — tn(f + d)] < N@ (same for
k!). At this point the parameter N @ or N, no longer explicitly appears in
the estimate, so the set of w we remove will be independent of it. Also we
can prove (5.7), with N,, replaced by N 2) in both & and &Y, by essentially
repeating the proof in Section 5.1.2 above (and making the bound uniform in
f in exactly the same way as below); it remains to prove (5.9).

We start with (5.21) and now look for further pairings in (k7 2] k[ }) in the
expression & given by (5.23). By repeating the same reduction step in Sec-
tion 5.1.1, we can find two partitions (X1, ..., Xy, W) and (X7,..., Xy, W)i2
of the set Z, where 2p + ¢ < n1, such that N; are all comparable for j in each
X; U X/, and further reduce (5.21) to a sum

(5.34) Oty (s ) = )P O0)* Y [ 57 -0,
3

where the symbol } 73 | represents the sum in kpyAw) and ka\W/} and inte-
gration in Apy\y) and /\’[V\W,], the factor §* is independent of (k,, k., An, \),),

g+—HP QB O

[Yi]
(5.35) .
j Ui ] Ui l
% H [Ui(vi-)()‘j)] ! [Ul(cz)()‘;)] ’ HQ](C[)XZ],kEX,](A[le Aixp):
j=ni+1 =1 l
QY et M)
k[Xz]’kfx’] X ALx7]
5.36 - o
>3 = [T nie O0* T mdhe )* (6% (90) ™ (@),
k* jeX; JEXZ

2This W and W’ are different from the W and W’ of Section 5.1.2.
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where ¢1 + ¢2 = ¢3 = |X;| + |X]|, and the P factors are defined as in (5.11).
We may also fix a; € X; and b € Xl’ such that tq, = t,; without loss of
generality, assume b; = 2p + [ for 1 <[ < gq. We can bound (5.36) just like we
bound (5.11) in (5.12), except that now it is possible to have X; UX] C G. Let
Ropyi =max{L;:j € X;UX]} 2 Lopy;. Then the same argument as in (5.12)
gives

b b2
194 e, Qo X TLOD TLOME e
(5 37) [X7] jex, jEX! Xl xR
’ -2 242 2
’S H Nj H Nj N2p+l'YOR2p+l
JEX) jeX]
Finally, the multilinear Gaussian &7 is given by
+
o= Y Y [ avdie
(k[W] w ])( [W]’kf{tV’
(5.38)
Wi, X R () -,

JGW J jew! j

where there is no pairing among (k:[ W k[W,]) and coefficient A" of form

(5.39)

AT = > /dA'n<>\,>\|kl2i%()\jij|2)04>

kirki++inkn=k+d Jj=1
vkl Ak, =k+d

n

(A= K= 0 = ) o) TT 0 TT )

j=1 jew jew’

where the sum is over a single variable k. As before we may also assume
|k —k*| S R2p+l(N*)C“7l for j € X; in (5.36) and similarly for &} and j € X

so, in particular, |k, — k5, | < Rop+i(Nx )ert

The goal now is to estimate &. As before, we need to reduce to (N*)C‘S_7
choices for (kn\w1, Ajp\w1) and (ka\W],)\’[U\W]) an(71 f. By the meshin%{ ar-
gument (Remark 4.3), we may assume |A| < (N,)° " and |\;| < (N.)° " for
j & W (similarly for )\3) and get rid of these parameters; in the same way we
may also fix kp\w) and ka\W’}’ as well as f +d — ik, and f + d — k).
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Letting k = f + g, we can rewrite

Z 1Zj€W tjkj=g+do
|g‘§N(2) EjEW’ ij;-:g—i—d{)

< fan-n(xa=2rg =16 = 3 0 - P+ () +9)

jev

x <A>—2”n(A,A ~2f g lg = 35X~ K + 5 +)
Jjev
< [Tow™ TT o0

JEW jew!

(5.40)

where 7,7 € [0,1) are fixed, dy,d € Z*, and B(f),5'(f) are fixed integer-
valued functions of f. We may assume |do|, |dj| < N?) since otherwise 2 = 0.
Then we may fix them and see that f enters the whole expression only through
the function —2f - g + B(f); moreover we may restrict g to the set where
| =2f-g+ B(f)] < (N*)‘s_7 since otherwise either A or one A\; must be large
and we close as before. The reduction to finitely many cases can then be done
by invoking the following claim, which will be proved at the end of this section.

CLAIM 5.2. Let the function Fyg(g) :== =2f - g+ B, with the particular
domain Dom(Ffg) = {lg] < N® : | -2f - g+ | < (N)O" "}, Then when
f € Z* and B € Z wvaries, the function Fyp (together with its domain) has
finitely many, and in fact < (N*)C‘SJ, possibilities.

From now on we may fix the value of f. By removing a set of probability
< Cge*(TilN*)G, we can apply Lemma 4.2 and (recalling that ag = 2b — 1069)
conclude that

[SREES H N;? H N;? Z /dA[W]dA W

< [T~ T ¥ { > / dA
JjeEW jew’ kiiki+-Finkn=k+d
(5.41) u ki 4kl =k+d
(A= K2 = 50— ) — o
j=1

n 2
X n(A,)\ — B> =D (X — Ik - oz)} .

=1
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The integral over A\ gives a factor

n —b n —b
<Z—ij)\j —a> <E’—ZL]-)\;- —a> ,
j=1 j=1

where ¥ and Y’/ are defined as
n

3= ijyw — |k, ¥ = ijykgﬁ — |k
j=1

=1
Since there is only one value of k in the summation, we can reduce

(5.42)

LHEDIDY /d>‘[ My LT O TT A~

k (k[W]’kEW’]) jeEW JjeEW’
n —2b n —2b
TIN TIN5 (2= —a) (=3 0% —a)
JEW JjeEW’ 7=1 j=1
-2 -2
s I
JEW Jjew’
—ao —ao

X T ETevee) (T una)

ke (kpwykyn) jew jew’

where in the summation over k and (kpy, k:fw,}) we assume that t1kq + -+ +
tnkn = 11k} + - + k], = k + d. Returning to (5.34), by applying Cauchy-
Schwartz in the variables (w1, Ap\w1) and (kEV\W']v )‘/[V\W'}) we conclude
as before that

[ S (V)10 ”(Z [T o T oo™ m?)

JEV\W jEVAW/
Z/(D‘ d)\/ —2b )\/ 2bz/ H H <)\;->_2b-|®|2>,
kn,kl, 3) JjeEV\W JEVAW!

The first parenthesis (together with some factors from the second parenthesis)

gives the product of all factors in (5.9) except glé'fr, by using (3.27), (5.12)
and (5.37). The second parenthesis, after applying (5.42) and integrating in
Anw) and )‘/[U\W'}’ reduces to

(5.43) > > > (X — )7y — a)7%,

k k[U]5L1k1+"'+Lnk'n:k+d k’EU]:uk’/l-‘r'“-‘ank;L:k-i-d
ﬁgw when (k, k) are fixed, the sum of (X'—a) ™ over ka} can be bounded by
& with A= {1,...,n} in (4.23), due to the linear equation 11k} +- - -+ 1,k =
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k+d, the fact that ky,,; belongs to a disc of radius O(Rap1i(N« )ER ) once kq,
is fixed, and the fact that [t,hy, — f—d| S N®@). Moreover, the sum of (¥ —a) =%
over (k, kjy)) can be bounded by &1, due to the fact that ltnkn — f—d| S NG,

This then bounds (5.43) by 51€1+ and proves (5.9).

Proof of Claim 5.2. Let D = Dom(Fyg). If D contains three points
g1, 92, g3 that are not collinear, then we have |f - (g1 — g2)| < (N*)‘SJ, |f -
(n —93)] < (N*)‘SJ, and that gy — g2 and g1 — g3 are linearly independent.
This implies that | f] < (V)2 " and hence |8] < (N,)3 " so the result is triv-
ial. Now let us assume D is contained in a line £; we may assume £ contains at
least two points in the set {g : [g| < N}, otherwise D is at most a singleton
and the result is also trivial. Then the integer points in ¢ can be written as
p+qo, where (p,q) € (Z?)? has at most (N@)10 choices (so we may fix them),
and hence D = {p+qo : |[p+qo| < N®, |ac+b| < (N,)® '}, where a and b are
integers. Again, as |D| > 2, we know that |a| < (N.)2 " and |b] < (N,)3 ',
so Ft g indeed has < (N*)C‘S possibilities, as claimed. O

Remark 5.3. For later use, we will also consider the following variant of
X (same for )):

(5.44) X7 .= > / dAdAp -+ dApdp - - - dps

(k kl’ ,kn
t1k1+Finkn=Fk+d

n(AAZIHE=3 00 k) Zug—a) o) [T 1 TT wses),

J=1 J=1 Jj=1

where each w; satisfies
1) w5 (i)llzs <1

Then X' will satisfy exactly the same estimates as X (same for ). In fact we
can introduce a “virtual” variable [; that takes a single value and view w;(1;)
as a function of [; and p; that has type (D), and repeat all the above proofs
with these new variables.

5.2. Proof of Proposition 3.4. Armed with Corollary 4.6 and Proposi-
tion 5.1, we can now prove Proposition 3.4. Recall that we will abuse notation
and write (v,(j))(/\ /) instead of (v (J))k]. (Aj). We will proceed in three steps; note

that as before, in the proof below we will ignore any factor < 7=¢(N, )"

Step 1: Reduction to estimating X and ). First notice that, when the set
of pairings among the variables involved in N, is fixed, the coefficient in N,
will be a constant (see Remark 2.3). By Lemma 2.6, we may replace Z by J in
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all estimates. Now by definition of the relevant norms, the kernel bound (2.30)
and duality, we can reduce the desired estimates to the estimates of quantities
of form X (for parts (1) and (2)) and Y (for part (3)) defined in (5.1) and (5.2)
with d = a = 0. The only exceptions are that the functions v and y introduced
by duality only satisfy weaker bounds

(5:45) IOV oWl ST I O e O Nl s ST,

instead of (5.4), and that there may be pairings in X and ) (but they will

Co where Cj is a large constant

always be over-paired). Now if |A| < (Ny)
depending only on n, then since by —b ~ 2b — 1 ~ k=t ~ 6%, we can replace
the power (A\)17% by (\)® in (5.45) to match (5.4), at a price of losing a factor
(N,)9*"" which is acceptable. Now we will assume |A| > (N, )°?; below we will
only consider part (1) of Proposition 3.4, since we have N, > N() in part (2)
and N, 2 Ny in part (3). The proof will be similar and much easier.

Here the point is to use the weight (A7 in (5.45) to gain a power
> (N*)_%, after which we still can assume [|lvi(A)[[;2z2 < 1. In view of this
gain and the assumption N, > N®)  we may fix the values of k; and/or k} for
each 1 < j <n—1. Moreover, when k; and k; are fixed, the resulting function
in A\; (we will call them w;(\;)) satisfies ”<>‘j>bwj()‘j)”L§j < 1, which implies

the corresponding Lij bound, so we may fix A;(1 < j <n—1) also. Finally as

/ M) log Ol ddn = 1) w2 ()l g5 S (N0,

we may also fix the value of A, and reduce to
X = Z/vk(A)d)\ AN = F(E)Gr—ar,
k

where |G|z ~ (NW)=147 and F(k) is a function of k which, as well as d’,
depends on the choice of the other fixed variables. By first integrating in A
using Cauchy-Schwartz and (5.3), then summing in & using Cauchy-Schwartz
again, we deduce that

2] S Wz - 1Glle S (VD)7

which suffices in view of the gain (N,)~¢0/3.

Step 2: The no-pairing case. We have now reduced Proposition 3.4 to the
estimates for the quantities X and Y. If we assume there is no pairing, then we
can apply Proposition 5.1 and then Corollary 4.6. Recall the new parameters
such as p, ¢ and R; defined in Proposition 5.1; denote L1 = max(Lop41,- - Ln,)
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and Ny = max(Np, 41, - Nyp). Also when we talk about an estimate in Propo-
sition 4.5 we are actually talking about its counterpart in Corollary 4.6.

In part (1), by combining (5.7), (4.25) and (4.25) with the improvement
factor (4.29), with N,, replaced by N® in both places, we obtain that

] S (V)TN )L (N )
on the other hand, by combining (5.9), (4.25) and (4.25) with the improvement
factor (4.29), with the changes adapted to &£ and &§* indicated in Proposi-
tion 5.1, we obtain that

x| S (N~ (N@YEr (L, )3,

noticing that Rapi 2 Lopy for 1 <1< gand N; 2 L; for 2p+q+1 < j < n;.
Interpolating the above two bounds then gives (3.28).

In parts (2) and (3), we have N® ~ N, and a € G UC; in particular,
the extra factor (4.29) is bounded by (N, )~!. Note that in case (3) we may
have a € D but in this case the extra factor will be replaced by (N™M)~1. By
combining (5.5) and (4.25) we obtain (noticing that Npr < N®))

X S (NONG) T2 (NN ) (L) ™,
and by combining (5.7) and (4.25) together with the improvement factor (4.29)
we obtain that
_1 3 _1
2] S (NONE)=2 (NE)yo(N )@ (L) (Ny) 73,

and interpolating the above two bounds gives (3.29). In the same way (3.30)
follows from (5.5), (5.7), (4.26) and (4.26) with the improvement factor (4.29),
and (3.33) follows from (5.6), (5.8), (4.27) and (4.27) with the suitable im-
provement factor.

Finally consider (3.31); here we will define N’ = max(® (N, 41,...,N,).
Note that o = 0, so by combining (5.5) and (4.28) we get

(5.46) [ S (VD)= (N (N (L)~

on the other hand, by combining (5.7) and either (4.28) with the improvement
factor (4.29) or (4.30), we get that either

(5.47) ] S (V)70 (N )T (V) V(L )10 ()75,
or
(5.48)

] S (V)70 (N )T (V) V(L )10 mim (V) 75, (N D)3 (N)~2).
Clearly interpolating (5.46) and (5.47) gives (3.31); suppose instead we have
(5.46) and (5.48). Now if Ny > (N3 and Ly > (Ny)@0", then (5.46)
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1
implies (3.31); if Ny > (N(l))% and Ly < (Ni)@om? then (5.48) implies
X < (NW)=101 which implies (3.31); if Ny < (NM)3, then interpolating
(5.46) and (5.48) implies

X S (ND)~H0(Ny )7 < (VD) ot

~

which implies (3.31).

x (2)
Note also that for general o, due to the factor %;));M)

hand side of (4.28), the above argument gives the bound

on the right-

4~ % %
(5.49) )€ (VO)F max (1,100,

Step 3: The over-pairings. We will only consider X'; ) is similar and
easier since there cannot be any pairing between {k, %'} and any k; due to
N® < NJ 7% and the restrictions |k|, [k'| > 20 in (3.33). Now due to simplicity,
any pairing in X must be an over-pairing; by collecting all these pairings we can
find a partition (Aq,...,Ap, B) of {1,...,n} such that |A4;| > 3 and k; takes
a single value for j in each A;, such that this value is different for different
1 < i < p, and there is no over-pairing among {k: : j € B}. Then we can
check that either there is no pairing among {k, k; : j € B}, or there is a unique
over-pairing k = kj, = kj, with ji, jo € B and (le, LJQ) # (—,—). In the latter
case denote {j1,7j2} = Ao and replace B by B\ Ay, so that there is no pairing
among {k,k; : j € B}. Below we will focus on the first case, and leave the
necessary changes caused by Ag to the end.

Now X is reduced to

(5.50) xX=> /H H )EN - X

l,.00p i=1j€A;

where /; is the common value of k; for j € A; (so that |I;| < N?)), and where
X’ is an expression of the same form as X, but only involves the variables
(k,k;) and (A, A;) for j € B, with d being a fixed linear combination of /;, and
a being a fixed linear combination of |I;|2. This gives

X < Z HM . sup

77777

vP(AmidAj XY,




INVARIANT GIBBS MEASURES FOR 2D NLS 71

where we recall that by = b — 65. When each [; is fixed, by Remark 5.3, the
expression

/ [T 2 onFay - &
i= 1M1 jGA

can be estimated in the same way as X’ (replacing b by be will not change the
proof), which is done in Step 2 above. We then only need to bound

ST =T M,

U yendp i=1 i=1 I
which we establish in the following claim.

CLaM 5.4. Let K; = max(N; : j € A;) and K! = max®)(N; : j € A;).
Then T*IN*—certainly we have that

CETI v A
K" K, ~ Nj,jegucC.

7

Proof of Claim 5.4. Let R =||{A >b2vl (A -)||L2 Then we have ||R(j)‘|g;>_o

< IRV H@ < N7 j e D, |RY) lee S Nj 1 and |RU ng NY if
jeg. If ] € C, we will apply Lemma 4. 1 and again reduce to ﬁnltely many
A; by restricting the size of )\; and dividing into small intervals, and using
the differentiability in A; of h,(g] )k; (Aj), which is assumed in the statement of
Proposition 3.4. In the same way as before, by removing a set of probability
< Cype= "N and omitting any 7¢(N,)C*" factors, we conclude that

< N_%+’YOL<_%

1Bl S NRD g < N IO Bk Oz oz S NG 7Ly,

Kokt
as well as

||R])||é°° < Ny 1L2 sup 18 >bh}(€3)k*( j)”Lij < N;lLJZ,

J7]

which also implies ||R(j)H€;’j S Nj_o'55. Now let K; ~ N; and K] ~ N,s. Then
if j € D, (5.51) follows from applying Holder and measuring RY) and another
factor other than RY) or R®) in Ei, and all other factors in ﬁfio. Ifjeguc,
then we may assume |[;| ~ K; (otherwise (5.51) follows trivially from the third
inequality in (3.26)), so the IV; for j € A; must all be comparable. We may then
assume j € GUC for each j € A;. Then (5.51) follows from applying Holder
and measuring two factors in Ei and the rest in 77, such that at least one RW)
with j € G is measured in £;7 if there is any. This completes the proof. ([l
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The general case of Proposition 3.4 then follows from the X’ estimate,
namely the no-pairing case in Step 2, combined with Claim 5.4. More precisely,
suppose N = N, with a € A; for some i. Then if a € D, the bound (5.51)
gives the power (N1)~147 while the power (Kl’)fé in (5.51), as well as the
no-pairing case of the bounds (3.28) and (3.29), give the power (N(Q))_%.
If a € GUC, then the power (NU)=1+0 from (5.51) is already enough. If
NW = N, with a € B, then we simply apply the no-pairing case and use
(5.51) to gain decay in N?) when N®) = N, and j ¢ B. The only nontrivial
case is (3.31), where there is no need to gain decay in N )| but we have an

extra factor < max(1, \a|%) from (5.49), where « is a linear combination of
|l;|?. By Claim 5.4 we have

p ,
<0¢>% < max min Nj, HZMZ(:) N (N*)9<O‘>_%v

1<i<pjeA; Py
- K

which cancels this extra factor and proves (3.31).

Finally we consider the case with Ay, say k = k;;, = kj, and N;; > Nj,.
Here we can check that X still has the form (5.50), except that in A’ the input
vr(A) is replaced by (essentially)!?

T(\) = / ve(A0)™ - 07 (A)F 0P (Ag)F dArd)g,
+AoEA1EA=A

which due to the same proof as in Claim 5.4, satisfies
123Nl 12

S 102 u o)l 1020 A)llge g 100D 017 (02) ez

(5.52) 1
—1+vAr"3 .
<IN N €D,
~ —1+0 .
le , 7€ GuC.

The rest of proof now goes exactly as above using the additional bound (5.52),
which has exactly the same gain as in Claim 5.4, and the set Ay is treated
together with the other sets A;. This completes the proof of Proposition 3.4.

5.3. Stability and convergence. Recall that vy is the solution to (2.5).
Proposition 3.2 already implies the convergence of vy on the short time inter-
val [—7,7]. For the purpose of proving global well-posedness, we need some
additional results, namely a commutator estimate, a stability estimate and

13To deal with the 7 factor in the expression of X' (see (5.1)), we only need to assume
n(A, 1) = m(A)n2(p) has factorized form. In general it is easy to write 1 as a linear combina-
tion of functions of such a form with summable coefficients, by invoking the explicit formula
for n, which can be deduced from the calculations in the proof of Lemma 2.6.
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two convergence results laid out in Propositions 5.5 and 5.6 below. For the
notation involved in the proof, see Sections 3.1 and 3.2.

PROPOSITION 5.5. Recall the relevant constants defined in (1.35), and
that 7 < 1, J = [—7,7]. The following two statements hold 7~ -certainly:

(1) (Commutator estimate). For any N < N', we have
(5.53) H’UN — vy HXb(J) < N7,

(2) (Stability). Let w =IIyw be a solution to (2.5) on J, but with data w(ty)
assigned at some to € J such that ||w(ty) — vy (to)|lr2 < AN~ (log N),
where a > 0 is an integer. Then we have

(5.54) lw = vnll o) < BN~ (log N)*
where B depends only on A and «.

Proof. (1) It suffices to prove HHNUIV, - U}L\,be < N7 We write

Hij\,, - U}LV = Z HNyJTw = Z (Hij\/I,LO(M) + HNZ}L\/[)7
N<M<N' N<M<N'
where Lo(M) is the largest L satisfying (M, L) € K. The bound for HNZJTV[
follows from Proposition 3.3, so it suffices to bound II NT/J;FW Lo» Where Ly =
Lo(M). Let ¢ = %rv[ I, Then we have

b(t) = x()e (An f(w)) = ix-(t)

(5.55) r . e
<3 (1 + Veu(mi) ™" Ty Nopa (¥,0] - v ).
=0

Since N < %, II 1) solves the equation

(5.56)

r

Tngp(t) = —ix-(t) > (1 + Den(mi) " - Ty Noer (v, vhosovl)
1=0

—ixe(t) Y1+ en(miy)"™ - TNty (T, v 0] ).
=0

Now 7~ !-certainly we may assume (3.21) and the variant of (3.31) described
in Remark 3.5. Note that (3.21) allows us to control the first line of (5.56); the
second line of (5.56) is controlled by using (2.31) and the variant of (3.31). In
the end we get that
4
IMvllxe € 70Nl + 77 M,

which proves (5.53).



74 YU DENG, ANDREA R. NAHMOD, and HAITIAN YUE

(2) If N < Oa(1), there is nothing to prove, so we may assume N is
large depending on (4, ). Let o = Aw|> — Avux|? (this is conserved). Then
we have

o] S (low(to)ll 2 + lw(to) | 2) w(to) — vn(to) 2 S 7~ AN 7 (log N)**.
Note the log loss due to the fact that [|oy]|7.
w satisfy the equations

(iat + A)UN = Z?:O C,.l(m*N)T_lHNNQZ+1(UN, ... ,UN),
(10 + A)w = S en(my + o) " HnNoyy1(w, ..., w)

< 77%log N. Recall that vy and

~

(5.57)

on J, so z = w — vy satisfies the equation

(5.58) (10 + D)z = eql(mly + o) = (my) Ty Nor1 (v, - -, vx)
=0

.
+ ) en(miy +0) N Nara (2 + ons - 2+ on) = Narga (0, - o))
=0

on J, and zg = z(tg) satisfies ||z0||;2 < AN~ (log N)®. In order to bound
[2[[ xv(.7), it will suffice to prove that given 2z and o, the mapping
(5.59)

2 X (t — to)eltt0) B 4

'
—ixar(t —t0) > enl(miy + o) = (mp) N Ze Iy Narpa (v, -, v])
=0

T
—ixar(t —to) Z cr(mly 4+ 0) " T My [Nar (27 + ok, 2T+ 0l)
1=0

— Nopga (vl ol)]

is a contraction mapping from the set {27 : ||27]| v < AN~ (log N)**!} to
itself, where

T, F(t) = TF(t) — x(t)e' AL F (t),

t
B0 =) [ XS
to
To this end we will decompose ol N = D N'<N y;rv, and (7~ !-certainly) apply the
estimates (3.21) and (3.28), in the same way as in the proof of (3.23). More
precisely, we may use (3.21) to control the terms in (5.59) that contain only
one factor 2 (where we use the 7 gain to ensure smallness), and use (3.28) to
control the terms in (5.59) that contain at least two factors z! (where we use
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the gain of powers of IV to ensure smallness, noticing that N is large enough
compared to A). Note that in applying these estimates we need to replace
Z by Ly, and x-(t) by x2-(t —to). This can be done because in Section 3.3
all estimates for x.(t) - Z[-- -] are deduced from (2.31) and the corresponding
estimates for Z[--]; here by definition we have ||Z;, F'|| \; S [|ZF]| s for be
{b, b1}, which allows us to replace Z by Z,, and we have that Z;, F'(ty) = 0 so
(2.31) is still applicable with Z replaced by Z;, and x.(t) replaced by xa,(t—to).

The rest of the proof will be the same. O

PROPOSITION 5.6 (Convergence). Recall the relevant constants defined in
(1.35), the € fized as in Remark 1.4, and that T < 1 and J = [—7,7]. Then
the following hold T~ -certainly:

(1) For any N < N', we have

6
(5.60) lon — vnrllx-0m2(y < T ONT2,

(5.61) (o — "o (0)) — (s — "o (0))]]

N

X%*’YO*Q’IQ(J) < N :

Note that the X**(J) bounds also imply the corresponding CYHZ(J) bounds.

(2) Let Ny (v) be a polynomial that is also viewed as a multilinear form
N (D 0™ as in (2.16), but it is only assumed to be input-simple (in-
stead of simple). Then for any N < N', the distance in CYH,°(J) between
any two of the following expressions,

(5.62) N (v), IINN, (v), TN NG (v) 2 v € {on, vy, Tyon },

is bounded by T~ N=7. The same conclusion holds if Ny, is replaced by Wy or
Wi, or if v is perturbed by any wi satisfying [[wn || xe() < AN~ (log N)©.
In the latter case the bound will be O ro(1)N 7.

Proof. (1) We only need to prove (5.61). By taking a summation we may
assume N’ = 2N, and it suffices to prove that |lyy — eitA(AN/f(w))”ng(J) <

(N’ )7%+Vo+g. Now an extension of this function is given by
yT - Z C}VI,L + z.]TV/
L

(see Sections 3.1 and 3.2), where CJTV, ; is defined from RNLt by (3.8) and
(3.10), and AN"LT and z;rv, satisfy (3.17) and (3.23). This controls the sec-
ond term; to bound the first term, we use the B;L measurability of V'Lt

and Lemma 4.1, and perform the same reduction step as in the proof of
Claim 5.4 using differentiability in A of hgp-(\) with A = AV L1, to bound
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771 N'-certainly that

(5.63) Dokl S DN TR S ()20,
L

L

The right-hand side of (5.63) may involve a 7= factor, but this loss can always
by recovered by attaching x, since y'(0) = 0.

(2) The bounds for W" follows from the bounds for N,, and the formulas
(2.11) and (2.12), noticing that :|v|>"v: and :|v|?": are input-simple. As for NV,,,
by decomposing

=3 e e = X0 AN @) + 3 oy + 2o
N'<N 7

it suffices to bound N, (v®, - v™) 7= NM_certainly, by 7~ ¢(N()=7 in
the space CYH_¢(.J) for v) as in the assumptions of Proposition 3.4. The
proof is a much easier variant of the arguments in Section 5.1.1, so we will
only sketch the most important points.

First, since the d; derivative of all the v\)’s are bounded by (N(M)¢ (by
restricting the size of \; variables as we did in Section 5.1.1), by dividing J into
(NMYS™" intervals we may reduce to (N())P0™" exceptional sets and thus fix a
time ¢ € J. This gets rid of all the \; variables (so we are considering v,(jj ) and
h,(g)k*) and by a simple H2 < Cf argument, the estimates (3.26) and (3.27)
remain true with the obvious changes. Now by repeating the arguments in
Section 5.1.1 (in a simplified situation without A; integrations) and Section 5.2
(which deals with over-pairings) we get that

n p
||AN0Nn(U(1),...,’U(n))H22 57- (N(l))CHfl(N(l))C'y.(#S)HN] 2 Nz 1
j=1 i=1 g

where Ng;_1 ~ No; 2 R; and

~

S:{(k,kl,...,k (z3)n1 Z =k, [kl < No,

kil SN (1 <j<n), koot — koo S RN (1 < < p>}.

A simple counting estimate yields

AN N (0, o) Fe S 77 (VD) min(L, (V)7 Ny)
STONG(NW)
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as by our choice v < ¢, which concludes the proof. With the wy perturbations
the proof works the same way, except that the constants may depend also on
A and a. O

Before ending this section, we would like to shift the point of view from the
probability space (2, B, P) to the spaces V and Vy. Given 0 < 7 < 1, all of the

.

above proofs allow us to identify a Borel set E; of V with p(E;) > 1—Cge™"
such that when uy, = vy, € E;, all the results in Sections 3 and 5, including
Propositions 3.2, 3.3 and 5.5, are true.

In reality we will be using finite dimensional truncations of E,, namely
ETN = Il E;. Clearly when Ilgui, € ETN , all the quantitative estimates proved
before will remain true if all the frequencies N, N’, L, etc., are < N. Moreover,
we know that pﬁ(ETN) > p(Er) > 11— Cpe~™"; since the Radon-Nikodym

o e dpge . .
derivative ﬁ is uniformly bounded in L?(dpy), we have that

(5.64) BSAEN) > 1= O\ py(VR\EN) > 1= Cpe ™™ "

Finally, due to the gauge symmetry of (1.7) and (2.5), we may assume that E;
(and EX) is rotation invariant, i.e., e*E, = E, for a € R.

6. Global well-posedness and measure invariance

In this section we will prove Theorem 1.3. Recall the sets ETN defined
at the end of Section 5.3. Denote the solution flow of (1.7) by ®} and the
solution flow of (2.5) by W1V, which are mappings from Vy to itself. Define
successively the sets

(6.1) = () (@Y%) 'EY,
1<K *

QZ‘

=

G?’;AD = {U €Vy:3dte[-D,D]s.t. \Iftﬁv =v +"
(6.2) B . B
v € Bl I < AN (10g ),

_ : -1~N,a
(6.3) >=U N U limsup TG4 p.
D>1T>210D K>>T;A,a>1 N—00

Here H%lG =G X Vﬁ is the cylindrical set. We understand that T, K, A, D all
belong to some given countable set (say powers of two), and « is an integer.
All these sets are Borel, since in (6.2) we may replace the < sign by the < sign,
and then restrict to rational ¢ by continuity. We will start by proving global
well-posedness and then measure invariance.
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PROPOSITION 6.1. The set . satisfies u(V\X) = 0, and W* 1 (u) € H—*
is well defined for u € ¥. For any ui, € X, the solutions uyn(t) = tl)%NHNuin to
(1.7) converge to some u(t) = ®uiy in CYH,([~T,T)) for any T > 0. This
u is a distributional solution to (1.1), and u(t) € ¥ for each t. The mappings
b, 1 ¥ — X satisfy @9 =1d and @4y = O Dy .

Proof. We first prove p(V\X) = 0. By definition we have

(6.4) YD ﬂ U lim sup 11+~ 1FTK,
T>210 KT N—oo

so it suffices to prove for any fixed T" > 20 that
sup M(hmsupﬂ FTK> = 1.
K>T N—o0

Now by Fatou’s lemma and the fact that the total variation of p— 7 converges
to 0, we have

<hmsupH lFTK> > hmsup,uN(H 1FTK) = hmsup,uN(FTK)

N—oo N—o0 N—o0

By invariance of du3; under the flow \Iltﬁ (Proposition 2.4) we know that
15 (FRi) = 1= (2K + Dps(VR\EY ) > 1 — Coie KT
K

uniformly in NV, and the right-hand side converges to 1 as K — oo, so u(V\X)=0.
Now suppose ui, € X. By definition we may choose some D. Then
for any T > 2D, we can find (K, A4,«) such that Hzup € GTKAD for
infinitely many N. We may fix this T (hence also (K, A,«)) and this N,
SO that H\I',{XHWIH — |2 < AN 1JrA/(logﬁ)o‘ for some ty € [-D, D] and
F i We proceed in three steps.
Step 1: Analyzing v'. We first prove that, for any N < N and |j| < K,
there holds that

(6.5) HHN\I/]TU U TN |2 < BN~ (log N)V!
K

for some B depending only on (T, K). This is obviously true for j = 0; suppose
this is true for j, since \If ’U € EN By Proposition 5.5(1) we have

||HN\I’(ji1)TU/ — U TN O o2 < N1
- K K

(note that as K > T the local theory is applicable on intervals of length %),
and

1Y, Ty N — O, Ty |2 < B'N "7 (log NI+
K K K
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by Proposition 5.5(2) and (6.5), where B’ depends only on B and (T, K),
o (6.5) holds also for j & 1, which concludes the inductive proof. By the
same argument, we can show that (6.5) remains true with % replaced by any
€ [-T,T] and |j| replaced by K.
Similarly, since W%, ]TU € EN for each [j| < K, by combining Proposi-

tions 5.5 and 5.6, we conclude that for any N < N’ < N,

(6.6) sup | UNTIne' — ON Ty || -0 < Or i (1)N"2,
te[-T,T)
(6.7) sup [[WR (W TIN') = Wi (O Ty )| g« < Or (N7,
te[-T,T)

and the same is true if W5 and Wy, in (6.7) is replaced by IIy W5 and Iy W,
Step 2: Linking ui, to v'. Recall that
1N i — o) 2 < AN~ (log N)“.
Since [tg| < D < T, by iterating Proposition 5.5(2) we deduce that
[Tt — ON, 0|2 < AN~ (log N2+,

where A’ depends only on (T, K, A, ). Writing —t¢ = ]T +t' with |j| < 278K
and |t'| < = , we may apply Proposition 5.5(2) again and combine this with
(6.5) and snnllar estimates to deduce for any N < N that
(6.8) sup UMy — U, N[ 2 < BN~ (log N)* 2K

tel—- 2 ) 2
with B depending only on (T, K, A,«). By (6.6), (6.7), (6.8) and Proposi-
tion 5.6, we conclude for all N < N’ < N that

/ _0
(6.9) sup (| UM vy — O Tvruin | -0 < Ori a0 (DN 2,
te[_%7%}
(6.10)
sup W3O N Ty win) = W (8 Tivin) [ - < Or ka0 (DN,
te[— 2’2

and the same is true for projections of Wy.

Step 3: Completing the proof. Now, for fixed (D, T, K, A, a) we know
that there exists infinitely many N such that (6.9) and (6.10) are true for
all N < N’ < N, so (6.9) and (6.10) are simply true for all N < N’. This
“(-5.%

2172
U = limy 00 \II,{V II. Since by the definition of gauge transform we have
(6.11)

N yuin = UV yug, - e PO By(t) = (r+1 / AW (UN T yug,)] dt,

implies the convergence of WM I yuy, in CYH; ]), and we will define
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(6.9) and (6.10) also imply the convergence of ®NTIyui, in CYH (-5, 1]),
as well as the convergence of Iy War tH (N T yu;y) in the same space. As uy =
NI yuiy solves equation (1.7) with the right-hand side being TIy W2 ™ (uy),
we know that the limit © = limy_,oc un solves (1.1) in the distributional sense.
Let u(t) = ®,u. The group properties of ®; follow from the group properties
of ¥V and limiting arguments similar to the above.

Finally we prove that ®; ui, € ¥ for ujy, € ¥ and any ¢1. Let D be
associated with the assumption w;, € 3, and fix Dy > D + |t1|. For any T' >
219Dy, there exists (K, A, o) such that Ispui, € G%}?,A,D for infinitely many N.

It suffices to show that for such N, we must have 5 ®4, uin € G¥ E?gl with

B depending only on (T, K, A, «). Since II5®s, uin and Wy uin only differ
by a rotation and the sets we constructed are rotation invariant, we only need
to prove the same thing for II5Ws, uiy. B
Now, on the one hand we know for some [to| < D that ||[TIyupm, — U, /|| 2
< AN 1+7(log N)a+K for some A’ depending only on (7T, K, A, ) (see Step
) and similarly [ U guin — \Iftl 02 < AN H_ﬂ/(logN)‘l‘FzK On the
other hand, by taking limits in (6.5) and (6.8) we also get |II5¥: uin —
\IJI{YHNUmHLQ < A’N_1+7(logﬁ)a+2K, and hence
N ——14 =~
Ty W, win — U3y, 0'[[ 2 < AN (log N)* 25
Applying Proposition 5.5(2) again we get that H\Ilto o g uinm — |2 <
BN "7 (10g N)* 3K with [ty — t1| < Dy and B < B(T,K, A, ), thus by
definition W uin € qu\{ }?E’,]Di' This completes the proof. O
PROPOSITION 6.2. For any Borel subset E C % and any tg € R, we have
u(E) = (@4, B).
Proof. The map ®; is a limit of continuous mappings, so it is Borel measur-

able. By taking limits, we may assume the set E is compact in H ¢ topology.
We may also assume that [to| < 1, and that for some fixed (T, K, A, a, D)

with K > T > 2'°D, we have E C lim supy_, o GIJY’I?AD‘ By the proof of
Proposition 6.1 we can deduce that for v € E and [t]| < 2,

(6.12) UM yu — Ty Tgu| 2 < N7 (log N)@ 3K

with constants depending on (7, K, A, «) (same below). Moreover, concerning
the phase By (t) involved in the gauge transform, namely

Bn(t) = (r+1) / AWE (UM yu)] dt’,

we can show that as N — oo, By(t) converges to its limit B(t) at a rate
IBN(t) = B(t)llco =22 S N7 (log N)FT4K In fact we may first reduce to
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short time intervals where local theory is applicable. Then notice that
t
/ AWE (UM T yu)| dt' = AZ[WE (U T vu))
0

for |[t| < 1, and apply Proposition 3.4, more precisely (3.29), with the ob-
servation that the mean A restricts the two highest input frequencies in any
multilinear expression N, occurring in W]%;" to be comparable, i.e., N() ~ N2,
We omit the details.

With the explicit convergence rate of By (t), we see that (6.12) holds with
UV and ¥, replaced by ® and ®;, and with 3K replaced by 4K. For |t| <1,

this gives that
My®E C ONTINE 4+ B2 (A N~ (log N) 4K
C O (IINE + Br2(AaN 7 (log N)*H55Y),

where A; o are constants depending only on (T, K, A, a), and B2(R) is the
ball of radius R in L? centered at the origin; note that the second subset
relation follows from long-time stability, which is also a consequence of the
proof of Proposition 6.1. By invariance of du%, under ®N we have that

(6.13)
N (P B) < py (M @y E) < iy gy (T E + B2(A2N 14 (log N)*+5))

— 13y (II E + B 2 (AN~ (log N)™+3K)).
It then suffices to prove that

(6.14) limsup I (TINE + B2 (AN~ (log N)*H5K)) € B,

N—o00
which would imply pu(®,E) < p(E), and conclude the proof by time re-
versibility.'* To prove (6.14), suppose u is such that |TIx(u — uy)|2 <
Ay N~ (log N)* K with uy € E for infinitely many N. Then by com-
pactness we may assume uy — v € F in H™ ¢, so uy — u coordinate-wise and
uy — v coordinate-wise, hence u = v € E and the proof is complete. O

Remark 6.3. With a little more effort, we can show that the structural in-
formation for the short time solution, i.e., (3.12), is propagated for arbitrarily
long time. This follows by iterating short time intervals using measure invari-
ance, and applying (5.53) and (5.54) in Proposition 5.5, in the same way as in
the proof of global well-posedness (Proposition 6.1) above. We omit the details.

1By repeating the proof of Proposition 6.1 we can show that ®NIyu — d,u in H®
uniformly for v € E and |t| < 2, so @, F is also compact in H~° and satisfies similar
properties as F.
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