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Abstract— In this paper, we present CaveSeg - the first visual
learning pipeline for semantic segmentation and scene parsing
for AUV navigation inside underwater caves. We address the
problem of scarce annotated training data by preparing a com-
prehensive dataset for semantic segmentation of underwater
cave scenes. It contains pixel annotations for important naviga-
tion markers (e.g. caveline, arrows), obstacles (e.g. ground plain
and overhead layers), scuba divers, and open areas for servoing.
Through comprehensive benchmark analyses on cave systems in
USA, Mexico, and Spain locations, we demonstrate that robust
deep visual models can be developed based on CaveSeg for
fast semantic scene parsing of underwater cave environments.
In particular, we formulate a novel transformer-based model
that is computationally light and offers near real-time execution
in addition to achieving state-of-the-art performance. Finally,
we explore the design choices and implications of semantic
segmentation for visual servoing by AUVs inside underwater
caves. The proposed model and benchmark dataset open up
promising opportunities for future research in autonomous
underwater cave exploration and mapping.

I. INTRODUCTION & BACKGROUND

Underwater cave formations, sediment properties, and
water chemistry provide insights into the world’s past climate
conditions and geological processes [1], [2]. Underwater
caves also play a crucial role in monitoring and tracking
groundwater flows in Karst topographies, while almost 25%
of the world’s population relies on Karst freshwater re-
sources [3]. Despite the importance, underwater cave explo-
ration and mapping by humans is a tedious, labor-intensive,
and extremely dangerous operation, even for highly skilled
divers [4]. When a new section of a cave is discovered, a
single and continuous line termed caveline [5] is laid out
identifying the skeleton of the main passages. The caveline
is attached to other navigation guides such as arrows and
cookies [6], marking the orientation of the cave, distance
to the entrance and presence of other divers. Such surveys
by the explorers produce a one-dimensional retraction of the
3D environment. Recording all this information together with
additional observations [7] is a challenging, time-consuming,
and error-prone process.

Enabling Autonomous Underwater Vehicles (AUVs) and
Remotely Operated Vehicles (ROVs) to navigate, explore,
and map underwater caves safely and effectively is of signifi-
cant importance [2], [8]; Fig. 1(a) shows an ROV deployment
scenario inside the Orange Grove Cave System in Florida.
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Fig. 1: (a) A tethered BlueROV2 is operating inside an underwater
cave system in FL, USA; it is teleoperated by a surface operator
following the caveline as a navigation guide; (b) the corresponding
POV from the robot’s camera; (c) the proposed semantic parsing
concept is shown; the envisioned capabilities are: first-layer &
second-layer obstacle avoidance, ground plain estimation, and cave-
line detection, following, and 3D estimation – to enable autonomous
robot navigation inside underwater caves.

Our earlier work [9] developed a high-precision camera
trajectory estimation method by a Visual-Inertial Odome-
try (VIO) algorithm [10], which can generate 3D caveline
trajectory estimates comparable to the manually surveyed
measurements. More recently in [6], we addressed the lack
of annotated samples in visual learning for caveline detection
and tracking across different scenes for AUV navigation.

In this work, we focus on developing a deep visual
learning pipeline to extract dense semantic information for
autonomous underwater cave exploration by mobile robots.
Considering the limited onboard resources available on em-
bedded platforms, our objective is to design a computa-
tionally light model that can (learn to) identify the navi-
gation markers of underwater caves (e.g. caveline, arrows),
obstacles to avoid (e.g. ground plain and overhead layers),
scuba divers (for cooperative missions), and safe open areas
for visual servoing in real-time. We identify two major
difficulties to achieve these: (i) no large-scale datasets are
available for underwater cave environments; (ii) the state-
of-the-art (SOTA) models for semantic scene parsing are
computationally too demanding for robotic platforms.

We address these challenges by proposing CaveSeg, the
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first large-scale semantic segmentation dataset and learning
pipeline for underwater cave exploration. We collect com-
prehensive training data by ROVs and scuba divers through
robotics trials in three major locations [6]: the Devil’s system
in Florida, USA; Dos Ojos Cenote in QR, Mexico; and
Cueva del Agua in Murcia, Spain. Our processed data contain
3350 pixel-annotated samples with 13 object categories that
include first and second layer obstacles, human scuba divers,
and navigation aids (see Sec III; Fig. 2). We also compile
a CaveSeg-Challenge test set that contains 350 samples
from unseen waterbody and cave systems such as the Blue
Grotto and Orange Grove cave systems in FL, USA. We
conduct extensive benchmark evaluation of SOTA models
across the Convolutional Neural Network (CNN) [11], [12],
Conditional Random Fields (CRF) [13], [14], and Vision
Transformer (ViT) [15]–[17] literature, which validate that
robust semantic learning is feasible on CaveSeg.

Moreover, we develop a novel CaveSeg model by rigorous
design choices to balance the robustness-efficiency trade-
off [18]. The proposed model consists of a transformer-
based backbone, a multi-scale pyramid pooling head, and a
hierarchical feature aggregation module for robust semantic
learning (see Sec.IV). Experimental evaluation and compar-
ison with SOTA models suggest that the CaveSeg model
is over 3× more memory efficiency and offers 1.8× faster
inference than SOTA models, while providing comparable
benchmark performances. A series of experiments on un-
seen challenging scenes prove its robustness across different
waterbody conditions and optical artifacts (see Sec.V).

Furthermore, we highlight several challenging scenarios
and practical use cases of CaveSeg for real-time AUV
navigation inside underwater caves. Those scenarios include
safe cave exploration by caveline following and obstacle
avoidance, planning towards caveline rediscovery, finding
safe open passages and exit directions inside caves, giving
uninterrupted right-of-way to scuba divers exiting the cave,
and 3D semantic mapping and state estimation. We demon-
strate that CaveSeg-generated semantic labels can be utilized
effectively for vision-based cave exploration and semantic
mapping by AUVs (see more in Sec. VI).

II. RELATED WORK

A. Underwater Cave Exploration and Mapping

Exploration and mapping of underwater caves by human
divers traditionally employed photogrammetry [19] methods
in order to generate informative photorealistic representation,
especially for sites with archaeological interest [1], [20].
Autonomous underwater cave mapping by AUVs remains
an open problem due to many challenges. Mallios et al. [21]
manually moved an AUV collecting acoustic data for offline
mapping, and Weidner et al. [22], [23] used images from a
stereo camera to create a 3D reconstruction of the cave walls,
floor, and ceiling. Major challenges to vision-based state
estimation in an underwater environment include lighting
variations, light absorption, and blurriness [24]. Rahman et
al. [10], [25] proposed a framework where visual, acoustic,
inertial, and water depth data are fused together to estimate

the trajectory of an AUV or a sensor while in parallel
generates a sparse representation of the underwater cave.
Denser models of the cave boundaries can be obtained by
mapping the moving shadows [26], the contours [27], or via
dense online stereo reconstruction [28].

More recently, Richmond et al. [2] describe a man-
portable AUV named Sunfish, which can work safely inside
underwater caves and bring back chemical profiles, detailed
imagery, and sonar maps of the cave. Our recent work [6],
[18] develops a ViT-based caveline detection model for au-
tonomous caveline following by underwater robots. However,
beyond detecting cavelines, a full-form scene parsing is
essential for safe AUV navigation inside underwater caves.

B. Semantic Segmentation of Underwater Scenes

Deep visual learning algorithms have revolutionized se-
mantic segmentation and scene parsing benchmarks on stan-
dard datasets, which are mostly developed for terrestrial
applications. The existing learning pipelines trained on ter-
restrial imagery are not directly applicable because the
object categories and image statistics are entirely different.
A unique set of underwater image distortion artifacts and
the unavailability of large-scale annotated datasets have
influenced a significant lack of research attempts on seman-
tic segmentation of underwater imagery. The contemporary
research literature offers application-specific image datasets
for coral reef segmentation and coverage estimation [29],
visual attention modeling [30], human-robot cooperative
missions [31], image restoration and foreground enhance-
ment [32], and fish detection [33], [34].

More recent work by Modasshir et al. combined a deep
learning-based classifier model to identify and track the
locations of different types of corals to generate semantic
maps [35] as well as volumetric models [36]. Islam et al.
formulated the SUIM dataset [31] for semantic segmenta-
tion of underwater imagery with eight object categories:
fish, coral reefs, aquatic plants, wrecks/ruins, human divers,
robots/instruments, and sea-floor. Other datasets consider
even fewer object categories such as marine debris or ship
hull defects [37]. With limited training samples per object
category over only a few waterbody types, it is extremely
challenging to achieve good generalization performance by
SOTA deep learning-based models for image segmentation
and scene parsing. More importantly, these object categories
are not useful for underwater cave exploration and mapping
applications – which we address in this paper.

III. CAVESEG DATASET: DATA PREPARATION AND
PROBLEM FORMULATION

We prepared learning pipelines with data collected from
three cave systems in different geographical locations [6]:
the Devil’s system in Florida, USA; Dos Ojos Cenote in
QR, Mexico; and Cueva del Agua in Murcia, Spain. For
the semantic labels, we considered the following object
categories: caveline, first layer (immediate avoidance areas),
second layer (areas to be avoided subsequently), open area
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Fig. 2: A few sample images from the proposed CaveSeg dataset, corresponding ground truth labels, and their overlayed visualizations
are shown; color codes for each object category are listed on the right.

(obstacle-free regions), ground plain, scuba divers, naviga-
tion aids (e.g., arrows, reels, and cookies), and caveline-
attached rocks. Moreover, cave ornaments (e.g., stalactites,
stalagmites, and columns) are also considered if they are
present in the scene, which is the case for the Mexico
caves. With these 13 object categories in consideration, a
total of 3350 images are labeled in the CaveSeg dataset.
A few annotated samples are shown in Fig. 2; the dataset
and relevant information are available online at https:
//robopi.ece.ufl.edu/caveseg.html.

As mentioned earlier, the role of the caveline is crucial for
any underwater cave operations. It represents the direction
of exploration, the main area where the cave extends, and
equally important, the path to safely exit the cave. Caveline
pixels are marked as yellow in order to generate maximum
contrast. The rock formations where the caveline is attached
are often called placements or attachment points. These rocks
most of the time signal a change in the direction of the
caveline and they are marked in brown. Navigational markers
such as arrows (dark red) and cookies (red) provide important
information about the direction to the nearest cave exit and
the presence of other divers in the cave, respectively.

A special category in our semantic mapping scheme is
the scuba divers (magenta). An AUV should always give the
right of way to divers, especially those exiting the cave. In
case of an emergency, there should be nothing impeding the
divers from reaching the surface, which is a norm practiced
by cave divers. As such we have established a human diver
category to incorporate emergency responses when a diver
is detected, for example, lowering the light intensity, moving
away from the main passage, avoiding abrupt motions, etc.

Fig. 3: Frequencies and distributions of important object categories
are shown in the train, validation, and test sets.

Fig. 3 shows the frequency and distribution of various
object categories in CaveSeg dataset. Human diver is present
in 40% of the images. Over 90% of the samples contain
caveline, obstacle-free open areas, as well as the first and
second layer obstacles. Navigation markers (e.g., cookies,
arrows, reels) typically occupy smaller pixel areas compared
to other objects, and they are found in 20% of the data.
Overall, these 13 object categories in the scene embed useful
information for vision-based planning and navigation for
AUVs inside underwater caves.

IV. CAVESEG MODEL: SEMANTIC SCENE
SEGMENTATION OF UNDERWATER CAVES

A. Network Design and Learning Pipeline

We search for a computationally light architecture that
provides real-time underwater cave scene segmentation in
addition to achieving state-of-the-art (SOTA) performance.
To this end, we explore both CNN-based and transformer-
based backbone architectures [15], [38], [39]. The windowed
multi-head self-attention (W-MSA) module proposed in Swin
Transformer [17] is a powerful tool to maintain efficient
computation. Additionally, the window shifting technique
connects features across spatially overlapped windows. We
find this connection to be particularly useful since cave
scenes hold some spatial relation among categories. For
instance, navigation markers and attachment rocks are al-
most always found on the caveline, while the second layer
obstacles are usually found around the first layer or ground
plain. Although computationally heavy, we found such cross-
category attention extraction to be effective in cave scene
segmentation tasks. Inspired by this, we design a novel
architecture that incorporates these capabilities with a light
Swin Transformer backbone for feature extraction. With an
efficient Pyramid Pooling Module (PPM) and hierarchical
feature aggregation, our proposed CaveSeg model is over
3.3× memory efficient and offers 60% faster inference rates
than the Swin Transformer base model.

1) CaveSeg Model Architecture: The detailed network
architecture is shown in Fig 4. First, input RGB images are
partitioned into 4× 4 non-overlapping patches or tokens;
a linear embedding layer of dimension 48 is then applied
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Fig. 4: The network architecture of our proposed CaveSeg model is shown. Input images are partitioned into 4×4 patches and fed into a
four-stage transformer backbone for coarse-to-fine feature extraction. The extracted multi-scale features are then pooled and combined by
the PPM head for bottom-up and top-down feature aggregation. A hierarchical feature map is then compiled by merging several multi-level
feature representations. On this feature space, a classifier performs pixel-level semantic segmentation to generate the final outputs.

to each token. These feature tokens are passed through a
four-stage backbone, each containing a windowed and shifted
windowed module of multi-head self-attention [40]. In each
stage, patches are merged with 2× 2 neighboring regions to
reduce the number of tokens while at the same time, the lin-
ear embedded dimension is doubled. Subsequently, bottom-
up and top-down feature aggregation [41] is performed in two
separate branches. A pyramid pooling module (PPM) [42] is
attached to the backbone that further improves global feature
extraction at deep layers of the network [43]. Features from
each stage of the backbone as well as from the PPM head
are then fused and compiled into a hierarchical feature map.
Finally, a fully connected convolution layer performs pixel-
wise category estimation on that feature space.

2) Supervised Learning Pipeline: The end-to-end training
is driven by the standard cross-entropy loss [44] that quan-
tifies the dissimilarity in the generated and predicted pixel
labels for each category. For multi-class segmentation of an
image with N pixels and M classes, it is calculated as

LCE = − 1

N

N∑
i=1

M∑
c=1

yi,c log(pi,c), (1)

where pi,c denotes the probability of pixel i belonging to
class c, and y is 0 (or 1) for correct (or incorrect) predictions,
respectively. The training is optimized by the Stochastic
Gradient Descent (SGD) algorithm with an initial learning
rate of 1e−4 and a momentum of 0.9.

B. Training Setups for CaveSeg and Baseline Models

We configured a unified training pipeline for CaveSeg and
several SOTA benchmark models for training and evaluation.
Specifically, we used the MMSegmentation libraries [45]
in PyTorch for the large-scale training on CaveSeg dataset
with a 85:5:10 split ratio for train, validation, and test,
respectively. For baseline comparison, we considered the
following SOTA models across the CNN, CRF, and ViT
literature: FastFCN [39], DeepLabV3+ [38], Segmenter [16],
Segformer [15], and Swin Transformer [17]. The proposed

CaveSeg model is pre-trained on ADE20k [46] followed by
the unified training. The input-output resolution is set to
960×540 for all models; other SOTA model-specific param-
eters are chosen based on their recommended configurations.
TABLE I: Semantic segmentation performances of all models are
compared on 350 test images from the CaveSeg-Challenge set; here,
higher scores (↑) are better for all metrics in consideration.

Method mIoU ↑ mAcc ↑ aAcc ↑
FastFCN [39] 38.86 46.89 72.01
DeepLabV3+ [38] 38.46 49.47 71.64
Segmenter [16] 30.81 39.64 69.76
Segformer [15] 35.36 44.71 70.19
Swin Transformer [17] 48.11 56.69 73.26
CaveSeg (proposed) 40.22 45.99 72.91

V. PERFORMANCE ANALYSES OF CAVESEG

A. Quantitative Evaluation

We use three standard metrics for quantitative assessments:
mean Intersection Over Union mIOU, mean class-wise Ac-
curacy (mAcc), and Average pixel Accuracy (aAcc). The
IoU (Intersection Over Union) measures caveline localization
performance using the area of overlapping regions of the
predicted and ground truth labels, while mAcc and aAcc
represent the mean accuracy of each class category and over
all pixels, respectively. The quantitative results are in Table I;
all evaluations are performed on the CaveSeg-Challenge set,
which we curated with 350 test samples. These samples
include low-light noisy scenarios in the CL-Challenge set [6],
as well as data from cave explorations in Blue Grotto and
Orange Grove cave systems in FL, USA.

As Table I shows, our proposed dataset and learning
pipelines can achieve up to 73% accuracy for pixel-wise seg-
mentation. The proposed CaveSeg model offers comparable
performance margins despite having a significantly lighter
architecture. The comparisons for computational efficiency
are provided in Table II. CaveSeg model has less than 50%
parameters than other competitive models and offers up to
1.8× faster inference rates. While we analyze the class-wise
performance, we find that small and rare object categories
such as arrows, cookies, and reels are challenging in general.
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Fig. 5: A few qualitative performance comparisons of all models on CaveSeg-Challenge test set are shown (results for only four top-
performing models are shown for clarity). Note that the object detection and localization accuracy for categories such as caveline, open
area, and navigation markers are particularly important for AUV navigation.

TABLE II: Computational complexities for all models are compared
based on number of parameters, memory requirements in Mega-
Bytes (MB), and inference speeds in FPS. All experiments are
performed on an Nvidia™ A100 GPU server with 16GB RAM.

Method # Params ↓ Memory ↓ Speed ↑
FastFCN 66M 548.32MB 16.89FPS
DeepLabV3+ 42M 489.38MB 15.04FPS
Segmenter 98M 798.04MB 13.73FPS
Segformer 82M 956.62MB 10.92FPS
Swin Tx 120M 1380.16MB 12.39FPS
CaveSeg 35 M 406.40 MB 19.78 FPS

B. Qualitative Evaluation

Figure 5 compares the qualitative performance of CaveSeg
with other SOTA models. A unique feature of CaveSeg and
other transformer-based models is that they perform better
in finding large and connected areas, e.g., categories such as
first/second layer obstacles and open areas. The continuous
regions segmented by the CaveSeg model facilitate a better
understanding of the surroundings compared to DeepLabV3+
and FastFCN. This validates our intuition that window-
shifting technique can indeed extract global features more
accurately. While the shifted window method focuses on
global feature extraction, the deeper layers and multi-scale
pooling of PPM help to preserve the details of local features.
The precise detection of caveline, which is only a few pixels
wide, further supports this design choice.

VI. USE CASES: VISION-BASED CAVE EXPLORATION &
SEMANTIC MAPPING BY AUVS

A. Safe AUV Navigation Inside Underwater Caves

The confined nature of the underwater cave environment
makes obstacle avoidance a particularly important task. Safe
navigation approaches, such as AquaNav proposed by Xan-
thidis et al. [47] and especially AquaVis [48] can generate
smooth paths by avoiding obstacles. To this end, having a
holistic semantic map of the scene can ensure that the AUV
can safely follow the caveline and keep it in the FOV during
cave exploration. Our previous work [6] demonstrates the

Fig. 6: A BlueROV2 is being teleoperated through a cave passage in
Orange Grove, FL where the caveline is almost invisible; note that
the yellow wire on the top image is the ROV’s tether, not a caveline.
In such scenarios, an AUV can leverage the segmented obstacles
and open areas in the scene (overlayed on the right column) toward
planning a trajectory to rediscover and follow the caveline.

utility of caveline detection and following for autonomous
underwater cave exploration. While caveline detection is
paramount, having semantic knowledge about the surround-
ing objects in the scene is essential to ensure safe AUV
navigation. As shown in Fig. 6, cavelines can be obscure
in particular areas due to occlusions and blends inside the
cave passages. Hence, dense semantic information provided
by CaveSeg is important to ensure continuous tracking and
re-discovery of the caveline and other navigation markers.
A few more challenging scenarios are shown Fig. 7, where
simply following the caveline is not sufficient due to the
cluttered scene geometry. With the semantic knowledge of
first layer and second layer obstacles, caveline, and open
areas – an AUV can plan its trajectory safely and efficiently.

B. Working With or Alongside Human Scuba Divers

The underwater cave environment is extremely hostile due
to the lack of direct access to the surface. Cave divers enforce
strict protocols on light configurations (always a primary
and two backup lights), use of breathing gas (use only 30%
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Fig. 7: A few examples of semantic scene parsing by CaveSeg
for important navigation information are shown. The first scene
shows a traceable caveline towards the open area and surrounding
obstacles. When no open areas are visible (second image), arrows
on the caveline are helpful to know the exit direction of the cave.
Lastly, the accurate detection of human divers is a crucial step for
giving the right-of-way as well as diver-robot cooperation.

on the way in, leaving 30% for the return and 30% for
emergencies), and always keep near the caveline, ensuring
there is an uninterrupted line to open water [5]. Of particular
importance is the right of way for an exiting team. As such,
CaveSeg maintains a label for divers (see Fig. 7) to ensure
appropriate actions by the AUV. Specifically, in the presence
of a diver, the lights of the vehicle will be dimmed so that
the approaching diver can see the caveline. The AUV will
reduce its speed, and refrain from using the downward-facing
propellers in order to avoid stirring up the sediment; see
Fig. 8 where the teleoperated ROV disturbed the sediment
on the floor. Finally, the vehicle will move away from the
caveline towards the walls of the cave.

Fig. 8: A BluROV2 is being teleoperated inside the Blue Grotto
cave, FL: (left) entering the cave; (right) stirring the sediments.

C. 3D Semantic Mapping and State Estimation

Another prominent use case of CaveSeg is the 3D es-
timation and reconstruction of caveline for AUV naviga-
tion. Specifically, 2D caveline estimation can be combined
with camera pose estimation from Visual-Inertial-Odometry
(VIO) to generate 3D estimates. This could potentially be
used to compare and improve manual surveys of existing
caves. Moreover, 3D caveline estimations can also be utilized
to reduce uncertainty in VIO and SLAM systems since the
line directions in 3D point clouds can provide additional
spatial constraints [49]. We demonstrate a sample result
in Fig. 9, where ray-plane triangulation of cavelines is

achieved using Visual-Inertial pose estimation for enabling
3D perception capabilities for underwater cave exploration.
This experiment is performed on field data collected by
ROVs in the Orange Grove cave system, FL, USA; we are
currently exploring these capabilities for more comprehen-
sive 3D semantic mapping of underwater caves.

Fig. 9: Ray-plane triangulation of cavelines using VIO pose esti-
mation and 2D line segments from deep segmentation pipeline are
shown. The reconstructed 3D Lines are colored based on average
re-projection error within its neighborhood in a connectivity graph.

VII. CONCLUSION & FUTURE WORK

This paper presents CaveSeg – the first comprehensive
dataset and deep visual learning pipeline for underwater cave
scene segmentation. With a focus on vision-guided cave
exploration and mapping, we include semantic labels for
object categories such as caveline, layered obstacles, arrows,
cookies, attachment points, reels, and human scuba divers.
We perform benchmark evaluations of SOTA models demon-
strating the utility of such dataset for semantic segmentation
of underwater cave scenes. We further propose a computa-
tionally light model that offers up to 1.8× faster inference
in addition to providing SOTA performance. We demonstrate
that the predicted scene parsing labels can be utilized for safe
AUV navigation inside underwater caves. We are currently
investigating the scope of augmenting semantic maps with
geometric information from a Visual-Inertial SLAM system
such as SVIn2 [10]. This will potentially reveal the 3D
position of the caveline as well as the relative location of
obstacles and markers.
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