
RELIEF: Relieving Memory Pressure In SoCs Via
Data Movement-Aware Accelerator Scheduling

Sudhanshu Gupta
University of Rochester

sgupta45@cs.rochester.edu

Sandhya Dwarkadas
University of Virginia
sandhya@virginia.edu

Abstract—Data movement latency when using on-chip accel-
erators in emerging heterogeneous architectures is a serious
performance bottleneck. While hardware/software mechanisms
such as peer-to-peer DMA between producer/consumer accel-
erators allow bypassing main memory and significantly reduce
main memory contention, schedulers in both the hardware and
software domains remain oblivious to their presence. Instead,
most contemporary schedulers tend to be deadline-driven, with
improved utilization and/or throughput serving as secondary or
co-primary goals. This lack of focus on data communication will
only worsen execution times as accelerator latencies reduce.

In this paper, we present RELIEF (RElaxing Least-laxIty to
Enable Forwarding), an online least laxity-driven accelerator
scheduling policy that relieves memory pressure in accelerator-
rich architectures via data movement-aware scheduling. RELIEF
leverages laxity (time margin to a deadline) to opportunistically
utilize available hardware data forwarding mechanisms while
minimizing quality-of-service (QoS) degradation and unfairness.
RELIEF achieves up to 50% more forwards compared to state-
of-the-art policies, reducing main memory traffic and energy
consumption by up to 32% and 18%, respectively. At the same
time, RELIEF meets 14% more task deadlines on average and
reduces worst-case deadline violation by 14%, highlighting QoS
and fairness improvements.

I. INTRODUCTION

Modern smartphone systems-on-chip (SoCs) comprise of

several dozens of domain-specific hardware accelerators dedi-

cated to processing audio, video, and sensor data [42]. These

accelerators, which sit outside the CPU pipeline, are referred

to as loosely-coupled accelerators (LCAs). They appear as

programmable I/O devices to the OS and communicate with

the CPU using memory-mapped registers and shared main

memory, sometimes connecting to the last-level cache [16]. To

maximize performance and accelerator-level parallelism [43],

applications can request a chain of accelerators running in

producer/consumer fashion [38]. The speedups these chains

provide, however, is limited by the fact that the accelerators

communicate via the main memory, creating contention at the

memory controller and the interconnect. This bottleneck will

worsen as SoCs become more heterogeneous and incorporate

accelerators for more elementary operations [15].

Techniques to reduce this contention include 1) forwarding
data from the producer to the consumer, i.e., moving data from

the producer’s local memory directly to the consumer’s, and 2)

colocation of consumer tasks with producer tasks, thus elimi-

nating all data movement. Examples of forwarding techniques

include insertion of intermediate buffers between producer and

consumer accelerators (VIP [38], [58]) or optimizing the cache

coherence protocol to proactively move data from producer’s

cache to the consumer’s cache directly (FUSION [28]). The

former requires design-time determination of communicating

accelerator pairs, while the latter requires that the accelerators

use caches and be part of the same coherence domain,

limiting their scalability and flexibility. More recent techniques

include ARM AXI-stream [4], [6], which allows multiple

producer/consumer buffers to be connected over a crossbar

switch, and Linux P2PDMA [31], [50], which enables direct

DMA transfers between PCIe devices without intermediate

main memory accesses. Unlike VIP and FUSION, they allow

for dynamic creation of producer/consumer pairs at run time

in order to move data between them. Efficient utilization of

such forwarding techniques, however, remains a challenge.

Existing systems expect software to explicitly utilize the

forwarding mechanism to move data between producer and

consumer [36], [38], [40], requiring knowledge of task mapping

to accelerators. Distributed management of tasks by each

accelerator, however, results in the accelerator’s inability to

utilize forwarding mechanisms due to the lack of knowledge of

task mappings to other accelerators. A centralized accelerator

manager has a global view of the system, allowing imple-

mentation of policies that opportunistically employ forwarding

mechanisms to improve accelerator utilization and application

performance. Unfortunately, the scheduling policies employed

thus far [15], [20] by these managers are not designed to

efficiently utilize forwarding hardware.

Scheduling policies typically prioritize tasks using arrival

time, deadline, or laxity. Such policies can be extended to

prioritize tasks that may forward data from a producer, similar

to FR-FCFS scheduling in memory systems [46], where row

buffer hits are prioritized over older tasks. However, this can

lead to unfairness where an application with more forwards

can starve others with fewer forwards. Therefore, we need a
scheduling policy that can opportunistically perform data
forwards while still providing fairness and quality of service
(QoS).

In this paper, we introduce RELIEF, an online accelerator

scheduling policy that has forwarding, QoS, and fairness as

first-class design principles. RELIEF prioritizes newly ready

tasks over existing ones since they can move data directly

from the producer’s memory using forwarding mechanisms.

RELIEF provides QoS in terms of meeting task deadlines and

1063

2024 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

2378-203X/24/$31.00 ©2024 IEEE
DOI 10.1109/HPCA57654.2024.00084

20
24

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
Hi

gh
-P

er
fo

rm
an

ce
 C

om
pu

te
r A

rc
hi

te
ct

ur
e

(H
PC

A)
 |

 9
79

-8
-3

50
3-

93
13

-2
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I:
10

.1
10

9/
HP

CA
57

65
4.

20
24

.0
00

84

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

fairness in terms of reducing variance in application slowdown

due to contention. It achieves both by tracking task laxity and

throttling priority elevations if they can cause missed deadlines.

These properties matter where tail-latency is important, such

as user-in-the-loop smartphone and client-server applications.

We evaluate RELIEF on a suite of vision and machine learning

benchmarks with strict latency constraints on a mobile platform.

Our key contributions are:

• An evaluation of data movement overheads for low-latency

accelerator chains used in deadline-constrained vision and

machine learning applications. We observe that some of

these applications spend as much as 75% of their execution

time on data movement.

• A novel scheduling policy, called RELIEF, that maximizes

utilization of existing forwarding hardware. RELIEF can

be easily integrated into existing hardware managers and

is agnostic of both the forwarding mechanism and the

specific definition of laxity, allowing for wider adoption.

• Extensive evaluation of RELIEF on a simulated mobile

SoC, encompassing performance improvements, imple-

mentation overheads, and sensitivity to microarchitectural

design decisions. RELIEF achieves up to 50% more

forwards compared to state-of-the-art (SOTA) policies,

resulting in 32% and 18% lower main memory traffic

and energy consumption, respectively. Simultaneously,

RELIEF improves QoS by meeting 14% more task

deadlines on average, and improves fairness by reducing

the worst-case deadline violation by 14%.

II. BACKGROUND

General-purpose processors and domain-specific accelerators

represent two ends of a spectrum of performance and flexibility,

with the latter trading off the former’s versatility for improved

performance. A middle ground between the two approaches

is to have a set of accelerators for elementary operations that

can be stitched together dynamically by each application to

serve its needs [15]. This is supported by the observation that

applications across domains are often composed of similar

kernels [22]. Such an approach eliminates redundancy of

hardware functional units along with greatly minimizing the

need for a specialized accelerator for each new application.

In this section, we present a suite of real-time smartphone

workloads that are widely used in modern devices and discuss

how they can be broken down into a set of elementary acceler-

ators. We quantify how memory-bound these accelerators are,

motivating the need for techniques to reduce data movement

costs. Next, we discuss the functionality of an accelerator

manager [15] and why they are well-equipped to improve

hardware utilization and provide QoS. Finally, we present

examples to explain how SOTA accelerator scheduling policies

fall short in utilizing forwarding hardware.

A. Modern smartphone workloads

We study two important classes of modern smartphone

workloads in this paper: vision and recurrent neural networks.

grayscale
(G)

convolution
(C)

elem-matrix
(EM)

harris-non-
max (HNM)

edge-
tracking (ET)

ISP (I)

canny-non-
max (CNM)

(a) Legend

G C

EM

EM

EM EM ETEM

C

C

I CNM

(b) Canny edge detection

G C EM EMCI

n times

(c) Richardson-Lucy deblur

G
C

EM

C
EM

EM

EM

EM

EM

EM

EM EM

EM

C

C

C

I HNM

(d) Harris corner detection

EM EM

EM EM EM EM
EM

EM
EM

EM

EM

EMEM EM
EM

(e) GRU

EM

EM

EM

EM

EM

EM

EM EM

EM

EM EM

EM EM

EM EM

EM EM

EM

(f) LSTM

Fig. 1: Kernels in different image processing and RNN applications

Both classes together represent a wide variety of compute-

intensive user-facing applications, making them suitable for

hardware acceleration.

Computer vision: Mobile visual computing applications

have exploded in popularity in recent years, ranging from

complex photography algorithms to AR/VR applications [19].

These applications often utilize several common image pro-

cessing kernels. One example is Canny edge detection [10],

which is used in face detection, either alone [35] or as

part of a neural network pipeline [54]. Another example

is Harris corner detection [24], which is used for feature

extraction in panorama stitching algorithms [30], especially in

VR applications [32]. Richardson-Lucy deconvolution [33], [45]

is an image deblurring algorithm that sharpens shaky camera

images. These three applications are commonly fed images

directly from an image signal processor (ISP) that captures

raw camera output and performs preprocessing operations like

demosaicing, color correction, and gamma correction [25].

Recurrent neural networks (RNNs): These are a class of

machine learning kernels used for time-series data, wherein

the inference at a time step can affect the inference at a later

time. This makes them particularly well-suited for speech

1064

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

recognition [41] and language translation [55] applications in

modern phones. We evaluate two different RNN applications:

long short-term memory (LSTM) [26] and gated recurrent unit
(GRU) [13]. Given their widespread use, RNNs have been the

subject of prior work in low-latency accelerator design [21]

and accelerator scheduling [14], [59].

Details about these benchmarks, including their deadline

and input size, are listed in Table V. These applications can

be represented as directed acyclic graphs (DAGs) of seven

compute kernels, each of which can be implemented as a

separate hardware accelerator, as shown in Figure 1. The

description of each accelerator is listed in Table I. These

accelerators are ultra low-latency, spending significant time

moving data to/from memory. The data movement overhead

for each accelerator and each application is quantified in

Table II. For each application, the table compares the memory

time without forwarding hardware to an ideal scenario where

forwarding hardware is used whenever possible.

TABLE I: Elementary accelerators

Accelerator (SPAD
size in B) Description

canny-non-max
(262,144)

Suppress pixels that likely don’t belong to
edges.

convolution (196,708) Convolution with a max. filter size of 5x5.
edge-tracking
(98,432)

Mark and boost edge pixels based on a
threshold.

elem-matrix (262,144)
Element-wise matrix operations including
add, mult, sqr, sqrt, atan2, tanh, and sigmoid.

grayscale (180,224) Convert RGB image to grayscale.
harris-non-max
(196,608)

Enhance maximal corner values in 3x3 grids
and suppress others.

ISP (115,204)
Perform demosaicing, color correction, and
gamma correction on raw images.

The percentage of time spent on data movement by each

accelerator is primarily a function of its operational intensity.

Accelerators like convolution have abundant data reuse,

which leads to high operational intensity and a higher compute-

to-memory access time ratio. Meanwhile, elem-matrix has

little to no data reuse depending on the operation requested,

which causes its run time to be dominated by memory access

latency. The frequency of use of each accelerator type dictates

how much time each application spends on data movement.

GRU and LSTM, which exclusively use elem-matrix, spend

nearly 75% of their run time moving data between accelerators

while Deblur, which relies heavily on convolution, spends

a mere 3%. More importantly, we can see how efficient use of

forwarding hardware can significantly reduce data movement

overheads, especially for memory heavy RNN applications.

B. Accelerator manager

The use of dedicated hardware to manage the execution of

accelerators frees up the host cores from performing scheduling

and serving frequent interrupts from accelerators [15], espe-

cially for applications with thousands of low latency nodes.
1 The manager implements a runtime consisting of a host

1We use the terms node and task interchangeably.

TABLE II: Absolute time spent in compute vs data movement. These
are sum totals and do not account for computation/communication
overlap.

Accelerator Time (us)
Compute Memory

canny-non-max 443.02 30.45
convolution 1545.61 18.25

edge-tracking 324.73 13.56
elem-matrix 10.94 30.44

grayscale 10.26 15.23
harris-non-max 105.01 13.77

ISP 34.88 8.71

Application Time (us)
Compute Mem (no fwd) Mem (ideal)

canny 3539.37 237.74 173.29
deblur 15610.58 509.80 420.06

gru 1249.31 3343.72 1608.01
harris 6157.30 372.19 303.16
lstm 1470.02 3879.98 1797.77

interface, a scheduler, and driver functions for each accelerator

type.

Host interface: The CPU and the hardware manager commu-

nicate via shared main memory, with user programs submitting

tasks to the manager via either a system call or user-space

command queues [29], [44].

Scheduler: The submitted tasks are written into queues in

the main memory that can be read directly by the hardware

manager. The hardware manager performs sorted insertion of

these tasks into their respective accelerator’s ready queue using

a scheduling policy. These policies typically sort using arrival

time, deadline, or laxity.

Drivers: Tasks from ready queues are then launched onto ac-

celerators via driver functions. Drivers manipulate accelerators

or their DMA engine’s memory-mapped registers (MMRs) to

launch computations or load/store data, respectively.

Hardware managers can be realized as an accelerator

themselves or as a microcontroller, with the latter trading

off latency for ease of implementation and flexibility [20].

C. Limitations of SOTA scheduling policies

To illustrate how contemporary accelerator scheduling poli-

cies underutilize forwarding mechanisms, consider the two

DAGs presented in Figure 2a. The number of each accelerator

type available is indicated in the ”Accelerators” box. The color

inside each node represents the type of resource it requires.

The upper number is the execution time of the node while the

lower number is the deadline. The node deadlines have been

computed using critical-path method assuming both DAGs

arrive at time 0 and have deadlines of 16 and 15 time units,

respectively.

We compare the schedules generated by four SOTA policies

to an ideal schedule. Each of the policies presented below work

by sorting a per accelerator-type ready queue based on the

described criteria. As an accelerator of a given type becomes

available, the manager runtime pops the head of the queue for

execution.

1) First Come First Serve (FCFS): Simplest baseline policy

where incoming tasks are appended to the tail of the

1065

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

2
15

2
15

5
20

5
12 3

17

2
192

14

Runtime
DeadlineKey:

5
17

3
13

Accelerators
x2

x1

x1

(a) Example DAGs

2
15

2
15

5
12

5
17

2
19

3
17

t = 0 t = 3 t = 5 t = 7 t = 10

2
14

t = 12

5
20

3
13

t = 17 t = 19

(b) Ideal / RELIEF

2
15

2
15

5
12

5
17

2
19

3
17

t = 0 t = 3 t = 5 t = 7 t = 9

2
14

t = 12

5
20

t = 17

3
13

t = 19t = 14

(c) FCFS

2
15

2
15

5
12

5
17

2
19

3
17

2
14

5
20

3
13

t = 0 t = 3 t = 5 t = 7 t = 12 t = 15 t = 17 t = 22

(d) GEDF-D

2
15

2
15

5
12

5
17

2
19

3
17

2
14

5
20

3
13

t = 0 t = 3 t = 5 t = 7 t = 9 t = 14 t = 17 t = 19

(e) GEDF-N / HetSched

2
15

2
15

5
12

5
17

2
19

3
17

2
14

5
20

3
13

t = 0 t = 3 t = 5 t = 7 t = 12 t = 14 t = 19

(f) LAX

Fig. 2: Comparison of FCFS, GEDF-D, GEDF-N, LAX, and HetSched
to an ideal schedule. RELIEF achieves the ideal schedule. Brown and
green arrows represent forwarding and colocation, respectively. The
”Accelerators” box indicates the available number of each accelerator
type.

ready queue. FCFS represents the non-preemptive version

of round-robin scheduling used in GAM+ [15].

2) Global Earliest Deadline First (GEDF): A straightfor-

ward extension of the uniprocessor optimal Earliest

Deadline First (EDF) policy, where the tasks are sorted

based on increasing deadline. There are two variants

depending on how the task deadlines are computed:

a) GEDF-DAG (GEDF-D): Uses the deadline of the

DAG that the task belongs to as the task deadline.

This was previously used in VIP [38].

b) GEDF-Node (GEDF-N): Sets the task deadline by

performing critical-path analysis on the DAG. This

is amongst the most well-studied policies in real-

time literature [51], [56], [60].

3) Least Laxity First (LL): Another uniprocessor optimal

scheme [17], this policy works by sorting tasks in

increasing order of their laxity, which is defined below

in Equation 1. The deadline used here is set using the

critical-path method.

laxity = deadline − runtime − current time (1)

4) LAX [59]: A variant of LL that de-prioritizes tasks with

a negative laxity in favor of tasks with a non-negative

laxity to improve the number of tasks that meet their

deadline. We use this variant of LL for comparison in

the rest of the paper.

5) HetSched [3]: A least-laxity first policy that assigns task

deadlines using the following equation:

deadlinetask = SDR × deadlineDAG (2)

Here, sub-deadline ratio (SDR) quantifies the contribution

of a task to the execution time of the path it is on.

Figure 2 shows the possible schedules generated by each

of the policies above. The figures shows both cases, one

where data is forwarded from producer to consumer (brown

arrow), and another when computation is colocated, putting the

consumer computation on the same accelerator as the producer,

thereby eliminating all data movement (green arrow). For the

same number of forwards, the policy that generates more

colocations is therefore the better one. Note that intermediate

results are dispensable; we only care about the final output.

Looking at the ideal schedule in Figure 2b, we observe that it

not only meets deadlines, but also achieves 5 forwards and 2

colocations. The ideal policy is able to achieve these forwards

and colocations by running the consumer nodes immediately

after producer nodes, allowing for better utilization of the

aforementioned forwarding techniques. To the best of our

knowledge, this is an optimization that no current scheduling

policy performs. All other policies, barring GEDF-D, meet

the deadline but miss out on forwarding opportunities. FCFS

achieves 5 forwards, but performs no colocations. GEDF-D

achieves better forwarding with 5 forwards and 1 colocation

but misses deadlines. GEDF-N and HetSched produce the

same schedule where they meet deadlines but with sub-optimal

number of colocations. LAX has a different schedule than

GEDF-N/HetSched, but achieves the same number of forwards.

We, therefore, need a scheduling policy that exploits forwarding

opportunities while being deadline aware.

III. RELIEF: RELAXING LEAST-LAXITY TO ENABLE

FORWARDING

A. Scheduling algorithm

We now present RELIEF, RElaxing Least-laxIty to Enable
Forwarding, our proposed LL-based policy that attempts to

maximize the number of data forwards while delivering QoS.

The key idea behind the policy is to promote nodes whose

parents have just finished execution, ensuring that the children

can forward the data from the producer before it is overwritten.

To reduce unfairness and missed deadlines such promotions

might cause, RELIEF employs a laxity-driven approach that

1066

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

throttles priority escalations when deadlines could potentially

be missed. By combining priority elevations with laxity-driven

throttling, RELIEF achieves the ideal schedule shown in

Figure 2b as well as the ideal data movement time in Table II.

We can see from the figure how RELIEF’s behavior deviates

from LAX, another LL-based policy, at timestep 7, where

RELIEF favors the second DAG’s newly ready child over

existing ready nodes with lower laxity and deadlines.

The RELIEF algorithm is presented in Algorithm 1. Newly

ready nodes whose parents have just finished execution are

called forwarding nodes, since they can potentially forward

data from the producer’s local memory. RELIEF schedules

these forwarding nodes immediately if there are resources

available, bypassing nodes with lower laxity if they can meet

their deadline under a LL scheme. If no priority escalation

is possible, the algorithm proceeds in a vanilla LL fashion.

We also experiment with LAX’s de-prioritization mechanism

that allows tasks with non-negative laxity to bypass those with

negative laxity in the ready queue (Section II-C). While this

mechanism can improve the number of tasks that complete

by their deadline (Section V-D), we show that it can lead to

unfairness in Section V-E.

Algorithm 1: RELIEF

1 Function RELIEF(finishing node):
2 for child ∈ finishing node.children do
3 child.cmplt parents += 1
4 if child.cmplt parents == child.num parents then
5 child.runtime = predict runtime(child)
6 child.laxity = child.deadline - child.runtime
7 index = find pos(fwd nodes[child.acc id], child)
8 fwd nodes[child.acc id].insert(index, child)

9 for each acc id do
10 max forwards = num idle accelerators[acc id]
11
12 while not fwd nodes[acc id].empty() do
13 node = fwd nodes[acc id].pop front()
14 index = find pos(ready queue[acc id], node)
15
16 if max forwards > 0 and

is feasible(ready queue[acc id], node, index)
then

17 ready queue[acc id].push front(node)
18 node.is fwd = true
19 max forwards -= 1
20 update fwd metadata(finishing node, child)

21 else
22 ready queue[acc id].insert(index, node)
23 node.is fwd = false

RELIEF works by creating a laxity-sorted list of candidate

forwarding nodes, called fwd nodes, from newly ready nodes

(Algorithm 1, lines 2-8). We store laxity as deadline - runtime,

subtracting the current time from it when manipulating the

ready queue (Algorithm 2, line 6). The candidate nodes are then

inserted into the ready queue at either the front (Algorithm 1,

line 17) or at the position dictated by their laxity (Algorithm 1,

line 22). A candidate node is escalated in priority only if 1)

the number of forwarding nodes in the ready queue for an

accelerator type is less than the number of idle instances of

that type (controlled by max_forwards), and 2) the function

is_feasible() returns true. The first condition ensures

that forwarding nodes are always the next to run, ensuring

their input data is still live in its producer’s local memory.

is_feasible() returns true if the priority escalation of

the candidate node is unlikely to cause deadline misses. Our

evaluation shows that predicting node runtime once at the

time of insertion into the ready queue has sufficient accuracy

(Section V-F).
The key to minimizing missed deadlines is

is_feasible()’s ability to predict which node promotions

might cause them. It takes three arguments: the ready queue,

the candidate forwarding node, and its position in the ready

queue based on laxity. In our implementation, presented in

Algorithm 2, we use a laxity-driven approach. For each node

in the ready queue that has a higher priority than the candidate

node, we ensure that its laxity is more than the candidate

node’s run time. That is, each of those nodes can tolerate

the additional latency of the candidate node without missing

their deadline. Since the queue is already sorted by laxity, we

start at the head of the queue and find the first node that is 1)

itself not a forwarding node, and 2) has positive laxity. If the

node thus found has laxity greater than the candidate node’s

runtime, then every following node does too and the candidate

node’s priority can be safely escalated. The first condition

here ensures that existing forwarding nodes do not prevent

escalation of other nodes, while the second is an optimization

that lets us bypass negative laxity nodes since they are not

expected to meet their deadlines even without the promotion.

Algorithm 2: is feasible

1 Function is_feasible(ready queue, fnode, index):
2 can forward = True;
3 for node ∈ ready queue do
4 if ready queue.index(node) == index then
5 break;

6 curr laxity = node.laxity - curTick();
7 if not node.is fwd and curr laxity > 0 then
8 can forward = curr laxity > fnode.runtime;
9 break;

10 if can forward then
11 for node ∈ ready queue do
12 if ready queue.index(node) == index then
13 break;

14 node.laxity -= fnode.runtime;

15 return can forward

B. Execution time prediction
Since RELIEF and its feasibility check are laxity-driven,

they require an estimate of each node’s execution time. We

accomplish that by predicting the compute time and memory

access time of each task separately.

1067

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

Compute time prediction: The compute time of fixed-

function accelerators, such as the ones used in this study,

is largely a function of the input size and the requested

computation, owing to the data-independent nature of their

control flow [14]. The compute time of such devices can,

therefore, be profiled just once at either design time or system

boot-up since there will be very little variation. Our evaluation

shows that this scheme has an average error of just 0.03%

(Section V-F).

Memory time prediction: The memory access time predic-

tion works by predicting two values: the available bandwidth

and the amount of data movement. For the former, we experi-

ment with three different predictors based on prior work [18]:

Last value, Average, which computes the arithmetic mean of

the bandwidth of n previous tasks, and Exponentially Weighted
Moving Average (EWMA), that computes a weighted sum of

the most recently achieved bandwidth (bw) and historical data,

as shown below:

predn = α× bw + (1− α)× predn−1 (3)

The data movement predictor works by analyzing the graph

and observing node states. For predicting input data movement,

we need to predict if a node can be colocated with its parent,

since colocations eliminate producer/consumer data movement.

Given that the scheduler performs colocations by tracking the

previously executed node on an accelerator, only one child

can be colocated. We predict that the child with the earliest

deadline of a set of newly ready children will colocate with

the parent if they use the same accelerator type.

For predicting output data movement, we need to predict

the number of forwards. If all children can forward from the

node, then we will not need to write results back to the main

memory. This will be true if a) all the children map to a

unique accelerator, and b) all the children will be ready when

the node finishes. The former is a simple comparison between

the number of tasks mapping to an accelerator type and the

instances of that type, while the latter is achieved by ensuring

that the node is the latest finishing parent based on its deadline.

The accuracy and performance of bandwidth predictors

compared to a Max prediction scheme, where the maximum

available bandwidth is used, are presented in Section V-F. We

also compare the data movement predictor to a Max prediction

scheme where maximum data movement is assumed.

C. System architecture

We present the system architecture that we assume in

Figure 3. The accelerators are modeled to directly access

physical memory without address translation, like some existing

designs [39]. We propose exposing the entire scratchpad

memory in each accelerator to the rest of the system via a

non-coherent read-only port. The newly exposed scratchpad

memories are not mapped to user address space and access

is hidden behind device drivers, ensuring secure access. We

also use a discrete hardware manager that is coherent with the

CPUs (Section II-B), responsible for scheduling nodes onto

accelerators as well as for orchestration of data movement

between producers and consumers.

 Hardware
 manager

Main
memory DAG

node
node
node

Acc.
metadata

Acc.
Driver

1. Interrupt
service routines
2. Scheduler

Runtime

Host interface

Non-coherent Bus
Bridge

Coherent XBar

ACC0

SPAD
FU

DMA

ACC1

SPAD
FU

DMA

CPU

Cache

Fig. 3: System architecture depicting the hardware manager and the
interconnect.

The CPUs, the hardware manager, and the accelerators

communicate via shared main memory and interrupts. The

CPU informs the hardware manager of new DAGs by writing

the root nodes into shared queues in the main memory. Each

node is a structure that represents a task for an accelerator, as

shown in Table III. The hardware manager parses each node

to push them onto ready queues, and launches them on the

accelerators via driver functions. The accelerators inform the

manager of the completion of each task by raising an interrupt.

When a node completes, the manager updates its status
field to inform the host CPU program of its completion and

pushes its children onto ready queues if their dependencies are

satisfied. The user program can learn of the completion of an

entire DAG by reading the status of leaf nodes.

TABLE III: DAG node data structure

struct node
uint32_t acc_id;
void *acc_inputs[NUM_INPUTS];
node *children[NUM_CHILDREN];
node *parents[NUM_INPUTS];
uint8_t status;
uint32_t deadline;
acc_state *producer_acc[NUM_INPUTS];
uint32_t producer_spm[NUM_INPUTS];
uint32_t completed_parents;

The node structure contains a few more synchronization

and bookkeeping fields that we hide for brevity. The size of

the structure depends on the number of parents and children

each node has, along with the pointer size. Assuming 32-bit

pointers, the base size of the structure with a single parent and

child is 72 bytes, with each additional parent and child adding

12 bytes and 4 bytes, respectively. The largest node we see in

our applications is 96 bytes. While we show the arrays to be

of a constant size, this implementation choice may be replaced

with dynamic structures.
1) Forwarding mechanism: Exposing accelerator private

scratchpad memories onto the system interconnect allows

consumer DMA engines to perform reads from producer

scratchpads without having to go to the main memory. Such

1068

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

a modification should be fairly straightforward in modern

SoCs [52], exposing the scratchpad memories to the system

interconnect on the DMA plane. This is what we assume in

our evaluation. It also possible to leverage PCIe resizable-BAR

support [2], which enables exposure of multiple gigabytes of

private accelerator memory into the CPU address space, and

Linux P2PDMA interface [31], [50], which allows for direct

DMA transfers between PCIe devices.
2) Hardware manager: We now detail the data structures

maintained and runtime executed by the hardware manager

described in Section II-B. We chose a microcontroller-based im-

plementation for our work since it offers sufficient performance

(Section V-G).
Manager data structures: The hardware manager maintains

metadata for each accelerator to track its state and to manage

synchronization of data between producers and consumers.

Table IV presents the key metadata fields. In addition to

maintaining the address for accelerator and DMA engine MMRs

(acc_mmr and dma_mmr), the metadata also holds the address

of the scratchpad memory partitions (spm_addr), the state of

the accelerator (status, e.g., idle or running), and the number

of accelerators currently reading from each of its scratchpad

partitions (ongoing_reads). Scratchpad partitions are used

to implement multi-buffering.

TABLE IV: Accelerator metadata

struct acc state
uint8_t *acc_mmr;
uint8_t *dma_mmr;
uint8_t *spm_addr[NUM_SPM_PARTITIONS];
uint8_t status;
node *output[NUM_SPM_PARTITIONS];
uint32_t ongoing_reads[NUM_SPM_PARTITIONS];

The scratchpad partition addresses are physical addresses

used by consumer DMA engines to perform direct data transfers.

The field ongoing_reads is used to keep track of how

many consumers are reading from a scratchpad partition of

the accelerator to avoid overwriting the data. The manager

increments the count before a consumer starts transferring the

data to its local scratchpad memory and reduces the count after

it is done, thus ensuring that write-after-read dependencies are

respected when data is being forwarded.
The metadata size for each accelerator in our implementation,

assuming 32-bit pointers and a maximum of 3 scratchpad

partitions (NUM_SPM_PARTITIONS), is 32 bytes, totaling to

236 bytes for the 7 accelerators our system simulates.
Manager runtime: Alongside launching tasks onto accel-

erators, the manager runtime implements an interrupt service

routine (ISR) and the scheduler. The ISR is triggered every

time an accelerator finishes a job, where a job could be a DMA

operation or computation.
Once an accelerator finishes execution and the scheduler

is run, the field output[p] (Table IV) is set to point to

the node that just finished, denoting that partition p holds the

node’s output. The producer_acc and producer_spm
fields are also set in the child nodes to inform their drivers of

which producer accelerator and partition to read from. When

child nodes are launched, their driver checks if the data is still

present in the producer’s scratchpad and forwards it if it is.

In addition, if all the child nodes are not at the head of their

respective ready queue (i.e., not next in line for execution), or

the parent node does not have any children, the runtime calls

the producer driver to write the results back to main memory

immediately.

IV. EVALUATION METHODOLOGY

A. Benchmarks

We evaluate RELIEF against the four policies summarized

in Section II using three vision and two RNN applications.

The five applications, along with their input size, deadline, and

laxity (when run alone), are listed in Table V. We assume the

vision applications run at 60 frames per second (FPS) and thus

use a deadline of 16.6 ms. Deadline for RNN applications has

been borrowed from previous work [59]. Input sizes mirror

prior work as well [15], [59]. Richardson-Lucy deblur is an

iterative algorithm where higher iterations lead to better picture

quality. We use 5 iterations to have a representative input size

balanced with simulation time. Along similar lines, we assume

a sequence length of 8 for both LSTM and GRU.

TABLE V: Benchmarks

(Symbol) Benchmark Input / hid-
den layer size Deadline Laxity

(C) Canny edge detection [10] 128 x 128 16.6 ms 13.6 ms
(D) RL deblur [33], [45] 128 x128 16.6 ms 0.2 ms
(G) GRU [13] 128 7 ms 2.3 ms
(H) Harris corner detection [24] 128 x 128 16.6 ms 14 ms
(L) LSTM [26] 128 7 ms 3.6 ms

B. Platform

We use gem5-SALAM [47] for our evaluation, which

provides a cycle-accurate model for accelerators described

in high-level C. The simulator consumes the description of

an accelerator in LLVM [1] intermediate representation (IR)

and a configuration file and provides statistics like execution

time and energy consumption. These accelerators are then

mapped into the simulated platform’s physical address space,

enabling access via memory-mapped registers. The simulated

configuration, listed in Table VI, models a typical mobile

device [38]. We model the hardware manager using an ARM

Cortex-A7 based microcontroller running bare-metal C code.

Cortex-A7 has an area and power overhead of 0.45mm2 and

<100mW [5], which can be reduced further by stripping

the vector unit. The simulated platform models end-to-end

execution of applications, from inserting the tasks into ready

queues till the completion of each requested application. This

includes interrupt handling, scheduling, driver functionality,

DMA transfers, and accelerator execution. In addition to

the bus-based interconnect between the accelerators listed in

Table VI, we evaluate RELIEF’s performance with a crossbar

switch in Section V-H. The two topologies represent two ends

of the interconnect cost/performance spectrum.

Our evaluation uses seven image processing accelerators, one

each for the kernels shown in Figure 1. Each accelerator was

1069

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: Simulation setup

Hardware
manager

ARM Cortex-A7 based 1.6 GHz single-core in-
order CPU
32 KB 2-way L1-I; 32 KB 4-way L1-D; 64 B
cache line size

Main memory
LPDDR5-6400; 1 16-bit channel; 1 rank; BG
mode; tCK = 1.25ns; burst length = 32
Peak bandwidth = 12.8 GB/s

Interconnect
Full-duplex bus; width = 16 B
Peak bandwidth = 14.9 GB/s

designed in isolation by determining the energy×delay2 (ED2)
product for the execution of a single task on the accelerator,

while varying the configuration in terms of the number of

functional units and memory ports. The configuration with the

minimum ED2 was chosen for the design, similar to previous

work [47], [53]. In practice, we expect accelerators to work on

the same input size to allow for easy chaining and sharing of

data by commonly used applications. Our accelerators, clocked

at 1 GHz, thus, have enough scratchpad memory to work on

128x128 inputs along with double buffered output to avoid

blocking on consumer accelerator reads. The precise scratchpad

memory sizes are listed in Table I. For accelerators with

differing input sizes, the software runtime or the hardware

manager can break down tasks into smaller chunks, similar to

accelerator composition in GAM+ [15].

C. System load

Combinations of the applications in Table V are often

seen in real-world scenarios, e.g., Canny+LSTM is used

for lane detection in self driving cars [57]. Enumerating all

combinations of these applications, thus, helps us cover all

their existing and potential future use cases. We experiment

with four levels of contention to see how each of the policies

scale. Low contention is just a single application, medium
contention is all combinations of size 2, while high contention

is all combinations of size 3. Increasing contention represents

reduced ability to meet deadlines, with combinations larger

than 3 meeting very few deadlines and thus not evaluated. In

each of these scenarios, each application is instantiated once

and the simulation ends when the last application finishes

execution. The fourth level of contention, called continuous
contention, is a modification of high contention where each

of the three applications are run in a continuous loop to

ensure each application experiences contention throughout its

execution. We limit the execution time of each simulation to

50ms and report results for finished tasks. Each application is

represented with a symbol in the following figures, as listed

in Table V.

V. RESULTS

A. Data forwards

Our primary design goal with RELIEF is producing more

data forwards than SOTA policies. We quantify this increase

in Figure 4.

Observation 1: SOTA policies under-utilize forwarding
mechanisms. In contrast, RELIEF consistently achieves

C D G H L Gmean0

20

40

60

80

100

120

140

Fo
rw

ar
ds

 /
ed

ge
s

(%
)

COL: FCFS
FWD: FCFS

GEDF-D
GEDF-D

GEDF-N
GEDF-N

LAX
LAX

HetSched
HetSched

RELIEF
RELIEF

(a) Low contention

CD CG CH CL DG DH DL GH GL HL Gmean0

20

40

60

80

100

120

140

Fo
rw

ar
ds

 /
ed

ge
s

(%
)

COL: FCFS
FWD: FCFS

GEDF-D
GEDF-D

GEDF-N
GEDF-N

LAX
LAX

HetSched
HetSched

RELIEF
RELIEF

(b) Medium contention

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL Gmean0

20

40

60

80

100

120

140

Fo
rw

ar
ds

 /
ed

ge
s

(%
)

COL: FCFS
FWD: FCFS

GEDF-D
GEDF-D

GEDF-N
GEDF-N

LAX
LAX

HetSched
HetSched

RELIEF
RELIEF

(c) High contention

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL Gmean0

20

40

60

80

100

120

140

Fo
rw

ar
ds

 /
ed

ge
s

(%
)

COL: FCFS
FWD: FCFS

GEDF-D
GEDF-D

GEDF-N
GEDF-N

LAX
LAX

HetSched
HetSched

RELIEF
RELIEF

(d) Continuous contention

Fig. 4: Percent of total forwards and colocations, computed as the
ratio of the total number of forwards/colocations to the total number
of edges in the mix.

>65% of all possible forwards, on average. This is clear

from Figure 4, which shows the percentage of total data

forwards and colocations, computed as the ratio of number

of forwards/colocations to the total number of edges in

the mix. We can see how SOTA policies’ obliviousness to

data forwarding mechanisms leads to their under-utilization,

achieving as little as 8% of all forwards possible. In contrast,

RELIEF improves over HetSched, the leading SOTA policy,

by nearly 1.2x on average under continuous contention.

We observe two trends across all three four of contention in

Figure 4: 1) RNN applications (GRU and LSTM) are the biggest

contributors to colocations, and 2) application mixes with more

RNN applications achieve better forwarding with RELIEF than

others. The first observation is unsurprising given that all RNN

tasks map onto a single resource. For the second observation,

we attribute the gains with RNN applications to the fact that

they contain long, linear chains (up to 9 nodes) that have the

same structure and node deadlines. Having the same node

deadlines means that deadline-aware policies schedule each

1070

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

of those chains in a round-robin fashion, thus forfeiting any

forwarding opportunities. FCFS has a similar problem of being

locality oblivious. HetSched is able to achieve significantly

more forwards than other baseline policies. These gains stem

primarily from HetSched’s ability to prioritize GRU’s critical

path, which happens to contain most of its forwards.

B. Data movement

To understand each policy’s data movement behavior, Fig-

ure 5 plots the percentage of data transfers (in bytes) that

materialize as main memory accesses, scratchpad-to-scratchpad

transfers, and colocations.

C D G H L Gmean0

20

40

60

80

100

120

140

D
at

a
m

ov
em

en
t (

%
)

SPAD: FCFS
DRAM: FCFS

GEDF-D
GEDF-D

GEDF-N
GEDF-N

LAX
LAX

HetSched
HetSched

RELIEF
RELIEF

(a) Low contention

CD CG CH CL DG DH DL GH GL HL Gmean0

20

40

60

80

100

120

140

D
at

a
m

ov
em

en
t (

%
)

SPAD: FCFS
DRAM: FCFS

GEDF-D
GEDF-D

GEDF-N
GEDF-N

LAX
LAX

HetSched
HetSched

RELIEF
RELIEF

(b) Medium contention

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL Gmean0

20

40

60

80

100

120

140

D
at

a
m

ov
em

en
t (

%
)

SPAD: FCFS
DRAM: FCFS

GEDF-D
GEDF-D

GEDF-N
GEDF-N

LAX
LAX

HetSched
HetSched

RELIEF
RELIEF

(c) High contention

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL Gmean0

20

40

60

80

100

120

140

D
at

a
m

ov
em

en
t (

%
)

SPAD: FCFS
DRAM: FCFS

GEDF-D
GEDF-D

GEDF-N
GEDF-N

LAX
LAX

HetSched
HetSched

RELIEF
RELIEF

(d) Continuous contention

Fig. 5: Breakdown of data movement into main memory traffic (lower
bars), SPAD-to-SPAD traffic (upper bars), and colocations (empty
space). Data is normalized to total data movement when all loads and
stores go to main memory.

Observation 2: RELIEF reduces main memory traffic
by up to 32% compared to HetSched, under each level
of contention. The average reduction compared to HetSched

rests at 10%, 14%, 16%, and 16%, for low, medium, high,

and continuous contention, respectively. This is a key result

and highlights how simple changes to the scheduler can yield

significant reductions in memory traffic.

The percentage of forwards that materialize as colocations

in a mix is a function of its application composition. As

explained before and evident from Figure 5a, all GRU and

LSTM forwards are colocations since these applications map to

a single accelerator. In contrast, the vision applications are more

diverse in their resource needs and exhibit a greater degree

of scratchpad-to-scratchpad data movement. The behavior of

single applications impacts the behavior of entire mixes. Mixes

CD, CH, and DH (medium contention), for instance, have

fewer colocations than other mixes. The same is true for mix

CDH (high/continuous contention).

The reduction in data movement traffic reduces energy

consumption for both the main memory and scratchpad

memories. We quantify this reduction for the high contention

scenario in Figure 6.

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL Gmean0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

M
em

or
y

en
er

gy
 (n

or
m

. t
o

LA
X)

SPAD: FCFS
DRAM: FCFS

GEDF-D
GEDF-D

GEDF-N
GEDF-N

LAX
LAX

HetSched
HetSched

RELIEF
RELIEF

Fig. 6: Total main memory and scratchpad memories’ energy
consumption under high contention using gem5-SALAM’s energy
models.

Observation 3: RELIEF reduces main memory and
scratchpad memory energy consumption by up to 18%
and 8%, respectively, compared to HetSched under high
contention. The average main memory and scratchpad energy

reduction compared to HetSched is 7% and 4%, respectively.

Forwards reduce main memory traffic while colocations elimi-

nate both main memory and scratchpad memory traffic. While

forwards cause an increase in scratchpad activity, colocations

more than make up for the increase. RELIEF has the same

scratchpad energy consumption as LAX for CDH, for instance,

but reduces it by 24% for CGL.

C. Accelerator utilization

Figure 7 shows accelerator utilization (or occupancy), defined

as the sum, across all accelerators, of the fraction of total

execution time for which each accelerator was busy. Accelerator

occupancy provides a measure of degree of parallelism in each

scenario. Note that while the numerator is relatively constant

under the low, medium, and high contention scenarios, the

denominator, which is total execution time, is impacted both

by the degree of computational parallelism and by the data

movement cost resulting from the use of each policy. For

the continuous contention scenario, the denominator remains

constant, while the numerator is impacted by the number and

type of nodes executed, the data movement cost, and the degree

of computational parallelism, all of which vary by policy.

Observation 4: RELIEF improves accelerator utilization
by up to 41%, compared to LAX under high contention,
with an average improvement of 4%. HetSched, in turn,

1071

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

C D G H L Gmean0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Ac
ce

le
ra

to
r

oc
cu

pa
nc

y
FCFS GEDF-D GEDF-N LAX HetSched RELIEF

(a) Low contention

CD CG CH CL DG DH DL GH GL HL Gmean0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Ac
ce

le
ra

to
r

oc
cu

pa
nc

y

FCFS GEDF-D GEDF-N LAX HetSched RELIEF

(b) Medium contention

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL Gmean0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Ac
ce

le
ra

to
r

oc
cu

pa
nc

y

FCFS GEDF-D GEDF-N LAX HetSched RELIEF

(c) High contention

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL Gmean0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Ac
ce

le
ra

to
r

oc
cu

pa
nc

y

FCFS GEDF-D GEDF-N LAX HetSched RELIEF

(d) Continuous contention

Fig. 7: Accelerator occupancy is defined as ratio of the sum of total of
all accelerators’ compute time to the the end-to-end system execution
time, measured from the initiation of all applications to the completion
of the last application. Higher is better.

results in best case and average improvements of 41%
and 5% relative to RELIEF, respectively. RELIEF’s im-

provements over LAX are a result of increased number of

forwards, resulting in lower execution time. In its attempt to

increase forwards, RELIEF can sometimes hinder the progress

of tasks whose children map to different accelerators, resulting

in a lower degree of parallelism. This is especially evident

in mixes CGL and GHL under continuous contention, where

GRU and LSTM tasks, all of which map to elem-matrix,
get promoted frequently, limiting the time they execute in

parallel with the vision tasks, which utilize a variety of

accelerators. HetSched and LAX’s gains over RELIEF for

these application mixes are primarily attributed to RELIEF’s

lower accelerator-level parallelism and increased scheduling

latency (Section V-G).

While RELIEF’s promotions reduce the degree of parallelism

on average relative to HetSched, they do not cause unfairness. In

fact, it is a fairer policy when compared to LAX and HetSched,

as we will see in Section V-E.

D. Node deadlines met

RELIEF integrates a feasibility check (Section III) that makes

a best-effort to minimize missed deadlines. To evaluate its

efficacy, we compute the percentage of node deadlines met in

each application mix and present the results in Figure 8.

Observation 5: RELIEF meets up to 70% more node
deadlines compared to HetSched, under high contention,
with an average improvement of 14%. More importantly,

RELIEF rarely reduces the number of deadlines met compared

to SOTA. This highlights the effectiveness of the feasibility

check in throttling priority elevations to prevent deadline

violations.

C D G H L Gmean0

20

40

60

80

100

120

N
od

e
de

ad
lin

es
 m

et
 (%

) FCFS GEDF-D GEDF-N LAX HetSched RELIEF

(a) Low contention

CD CG CH CL DG DH DL GH GL HL Gmean0

20

40

60

80

100

120
N

od
e

de
ad

lin
es

 m
et

 (%
) FCFS GEDF-D GEDF-N LAX HetSched RELIEF

(b) Medium contention

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL Gmean0

20

40

60

80

100

120

N
od

e
de

ad
lin

es
 m

et
 (%

) FCFS GEDF-D GEDF-N LAX HetSched RELIEF

(c) High contention

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL Gmean0

20

40

60

80

100

120

N
od

e
de

ad
lin

es
 m

et
 (%

) FCFS GEDF-D GEDF-N LAX HetSched RELIEF

(d) Continuous contention

Fig. 8: Percent of node deadlines met

The only instance where RELIEF performs worse than

existing policies is in the high contention mix CDH. We observe

that GEDF-N and RELIEF prioritize Deblur nodes over Canny

and Harris nodes since the former have a lower deadline and

laxity. This causes nearly all of the Canny and Harris nodes to

miss their deadlines. Furthermore, not all Deblur nodes meet

their deadlines either because of high contention. HetSched has

a similar story of prioritizing Deblur due to its longer critical

path. LAX’s ability to de-prioritize applications with negative

1072

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

TABLE VII: Number of finished DAGs in each application mix under continuous contention.

Policy C D G C D H C D L C G H C G L C H L D G H D G L D H L G H L
FCFS 8 1 11 4 0 4 8 1 8 5 11 5 11 3 4 5 5 8 1 11 5 2 3 4 1 5 8 3 7 4
GEDF-D 5 1 12 3 1 2 3 2 9 5 11 4 2 4 4 3 3 9 1 11 3 1 4 4 1 3 9 4 2 4
GEDF-N 4 2 11 2 1 2 3 2 8 4 11 4 2 4 4 3 3 8 1 11 3 1 4 4 1 3 8 4 2 4
LAX 5 0 11 5 0 5 3 0 8 4 11 4 12 3 4 3 3 8 0 11 4 3 3 4 0 3 8 3 7 4
RELIEF-LAX 8 1 11 4 0 4 8 1 8 5 11 5 11 3 4 5 5 8 1 11 5 2 3 4 1 5 8 3 7 4
LL 4 2 11 2 1 2 3 2 8 4 11 4 2 4 4 3 3 8 1 11 3 1 4 4 1 3 8 4 1 4
HetSched 6 1 14 2 1 2 6 1 10 6 14 5 6 7 5 6 5 10 1 14 3 3 7 5 1 3 10 7 3 5
RELIEF 5 1 14 2 1 2 5 2 12 5 14 5 2 6 6 5 4 12 1 14 3 2 6 6 1 3 12 6 2 6

laxity allows it to de-prioritize Deblur, allowing all Canny and

Harris nodes to make progress. FCFS does not suffer from

this problem either because it does not prioritize DAGs and

nodes. GEDF-D has the same schedule as FCFS given that all

the DAGs in this mix have the same deadline. RELIEF also

performs worse than HetSched in DGL, but the latter achieves

the gains by unfairly slowing down LSTM. We will explore

fairness in more detail in Section V-E.

Continuous contention has a different setup compared to

the other three scenarios, as described in Section IV-C. Under

continuous contention, each mix executes a different number

and type of nodes under different policies for a fixed period of

time. In the other three scenarios, each application in a given

application mix runs to completion and executes exactly once,

so the number of nodes executed is constant across policies

with the execution time depending on the policy’s scheduling

decisions. This different simulation setup results in what looks

like anomalous behavior of a higher percentage of deadlines

met under continuous contention compared to high contention

(e.g., CDG), but in reality they cannot be directly compared.

This hints at a tradeoff between deadlines met and fairness

that we explore in the next section.

E. Quality-of-Service and Fairness

An important aspect of RELIEF’s design is fairness: in-

creased forwards for one application should not come at the

cost of excessive slowdown for others. Figure 9a shows a box

plot of application slowdown in each mix under high contention.

The figure also shows the results for LL and RELIEF-LAX,

a variant of RELIEF that integrates LAX’s de-prioritization

mechanism (Section II-C). Figure 9b, meanwhile, plots the

percent of DAG deadlines met under high contention.

Figure 9a shows how RELIEF reduces maximum slowdown

and variance by up to 17% and 93%, respectively, compared to

HetSched. The latter meets the same or more DAG deadlines

across the board, however (Figure 9b). The two results highlight

a key tradeoff: HetSched meets more DAG deadlines by

unfairly slowing down one application over another, as evident

from its wider slowdown spread, while RELIEF attempts

to distribute slowdowns and allows each DAG to make

progress commensurate with its deadline. This tradeoff is made

even more evident under continuous contention, as shown in

Figures 10a and 10b.

Observation 6: RELIEF improves fairness, reducing
worst-case deadline violation and variance by up to 14%
and 98%, respectively, compared to HetSched under

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sl
ow

do
w

n

FCFS
GEDF-D

GEDF-N
LAX

RELIEF-LAX
LL

HetSched
RELIEF

(a) Slowdown is defined as the ratio of an application’s runtime to
its deadline. The box edges and the median represent the slowdown
for each of the three applications.

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL0

20

40

60

80

100

120
D

AG
 d

ea
dl

in
es

 m
et

 (%
) FCFS

GEDF-D
GEDF-N
LAX

RELIEF-LAX
LL

HetSched
RELIEF

(b) Percent of DAG deadlines met.

Fig. 9: Slowdown (a) and DAG deadlines met (b) under high
contention.

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sl
ow

do
w

n

 in
f

 in
f

 in
f

 in
f

 in
f

 in
f

FCFS
GEDF-D

GEDF-N
LAX

RELIEF-LAX
LL

HetSched
RELIEF

(a) Slowdown is defined as the ratio of an application’s runtime to
its deadline. The box edges and the median represent the geometric
mean slowdown for each of the three applications. Infinite values
represent starved applications.

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL0

20

40

60

80

100

120

D
AG

 d
ea

dl
in

es
 m

et
 (%

) FCFS
GEDF-D

GEDF-N
LAX

RELIEF-LAX
LL

HetSched
RELIEF

(b) Percent of DAG deadlines met.

Fig. 10: Slowdown (a) and DAG deadlines met (b) under continuous
contention.

1073

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

TABLE VIII: Accuracy of compute time and data movement predictors, along with the accuracy and performance of memory bandwidth
predictors. Negative error values represent underestimation of true value while positive error values represent overestimation. The geometric
mean uses absolute error values.

Mix Compute Memory DM Memory BW error (%) Forwards Node deadlines met
error (%) error (%) Max Last Average EWMA Max Last Average EWMA Max Last Average EWMA

CDG 0.06 -0.95 -56.33 5.85 -1.24 1.1 139 138 138 139 136 136 136 136
CDH 0 -8.06 -59.03 -19.42 -3.95 -4.68 46 46 47 47 22 22 22 22
CDL -0.05 -0.88 -56.47 5.19 -1.27 2.02 155 155 155 155 160 160 160 160
CGH 0.1 -1.01 -55.7 7.13 -1.18 2.19 130 130 130 130 150 150 150 150
CGL 0.02 0.59 -55.39 11.23 0.42 4.37 230 230 232 231 257 255 254 252
CHL 0.05 -0.93 -56.63 5.93 -0.64 2.79 143 143 143 143 174 174 174 174
DGH 0.03 -3.14 -56.94 4.26 -1.33 0.96 142 142 142 142 142 142 142 142
DGL -0.02 -2.15 -55.5 8.95 -0.07 2.67 244 245 244 245 240 242 239 242
DHL 0 -3.33 -56.7 3.65 -1.36 1.31 156 156 157 157 166 166 166 166
GHL -0.05 -0.57 -55.41 11.13 0.09 3.06 237 238 239 238 263 261 260 258

Gmean 0.03 1.47 56.4 7.31 0.68 2.22 - - - - - - - -

continuous contention. HetSched is able to meet more DAG

deadlines (Figure 10b) and improve accelerator utilization

(Section V-C) by unfairly favoring some applications over

others. For instance, HetSched meets 10 DAG deadlines in

DGL while RELIEF meets 0, but it does so by slowing down

one application (LSTM) by 22%. In contrast, every application

suffers a slowdown of <7% under RELIEF , accompanied by

a 98% reduction in variance.

We also see how LAX’s de-prioritization mechanism causes

significant unfairness in mixes CGL, DGL, and GHL. In all

three cases, the RNN applications start missing deadlines

early on due to contention and are de-prioritized by LAX and

RELIEF-LAX in favor of the vision applications, causing sig-

nificant unfairness. This is especially troublesome considering

that they have lower deadlines compared to vision applications

(Table V). In contrast, RELIEF allows the RNN applications

to progress alongside the vision applications, ensuring more

deadlines are met while reducing unfairness.

LAX also has a starvation problem, as is made evident

from Figure 10a and Table VII. The table lists the number

of completed DAG iterations for each application in each

continuous contention mix. We see how Deblur is starved in

every mix it is in except DGL. Deblur is extremely sensitive

to queuing delays given its laxity of just 0.2ms (Table V).

Combined with its linear task graph, this means that if even a

single Deblur node is delayed by more than 0.2ms, the node’s

laxity will drop below 0 and it will get deprioritized by LAX.

This is precisely what happens when Deblur contends with

other vision applications for the convolution accelerator:

if any node is launched on the convolution accelerator

while a Deblur node is waiting, the latter will be stalled for

at least 1.5ms (Table II), causing starvation. This stalls any

progress for Deblur until the system has no other node to

offload to the convolution accelerator. DGL does not suffer

from this problem because GRU and LSTM do not use the

convolution accelerator. FCFS also has 0 finished Deblur

iterations in CDH, but our experiments show that it is not

starved; rather it is making slow progress.

F. Prediction accuracy

The feasibility check presented in Section III utilizes a

predictor to estimate compute and memory access times for

accelerators. Table VIII presents the error in the compute

time, the data movement, and the different memory bandwidth

predictors under high contention, along with the latter’s impact

on the number of forwards and node deadlines met. We

empirically chose n=15 for Average and α = 0.25 for EWMA
for the best accuracy.

Observation 7: Compute time prediction has a maximum
error of just 0.03%. This validates prior observations that

compute time can be defined as a function of input size and

requested operation for fixed function accelerators [14].

Data movement prediction also works well, with an average

error of 1.35%. Memory bandwidth predictors, meanwhile,

exhibit a range of accuracies, with Average performing the

best both in terms of mean (0.68%) and maximum (3.95%)

error. Their accuracy has little to no impact on performance,

however. We can see from Table VIII how each policy achieves

essentially the same number of forwards and deadlines met.

To understand the incremental impact of data movement and

memory bandwidth predictors, Figure 11 plots the performance

impact of the two predictors in isolation and combined,

normalized to having Max predictor for both. The bandwidth

predictor here is Average. We can see how little impact the

accuracy of the predictor has on RELIEF’s ability to meet

deadlines. Their impact on forwards (not shown) is similar.

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL Gmean0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
od

e
de

ad
lin

es
 m

et
(n

or
m

. t
o

m
ax

 p
re

di
ct

or
s) Pred. BW Pred. DM Pred. BW + Pred. DM

Fig. 11: Impact of memory predictors on missed deadlines under high
contention.

Observation 8: RELIEF does not benefit from dynamic
memory time prediction. Each application has several for-

warding chains, which are contiguous sequence of forwarding

producers/consumers. The laxity calculation based on the

memory time prediction decides how these chains get broken

up into sub-chains and interleaved. We notice that the number

of sub-chains produced by each predictor does not differ

1074

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

significantly, which is why they all achieve similar overall

performance. Given this observation, we have used the baseline

Max predictors for all our evaluations since they offer the same

performance for negligible overhead.

G. Scheduler execution time

The execution time of a scheduling policy is an important

factor in choosing one, since a better schedule may not offset

the overhead of preparing the schedule itself. Figure 12 plots

the average and tail latency of pushing a task into the ready

queue for each policy on a Cortex-A7 based microcontroller.

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL0.00

0.15

0.30

0.45

0.60

0.75

0.90

1.05

1.20

Av
er

ag
e

la
te

nc
y

(u
s)

Tail: FCFS
Avg: FCFS

GEDF-D
GEDF-D

GEDF-N
GEDF-N

LAX
LAX

HetSched
HetSched

RELIEF
RELIEF

−4

−3

−2

−1

0

1

2

3

4

Ta
il

la
te

nc
y

(u
s)

Fig. 12: Average (bars) and tail (lines) latency of the scheduler with
different policies on a Cortex-A7 based microcontroller, under high
contention.

Observation 9: RELIEF has higher overhead than
existing policies, but is easily overlapped with accelerator
execution. Looking at Figure 12 and Table II, we can see that

RELIEF’s modest scheduling overhead can be easily overlapped

with computation, minimizing its contribution to the critical

path.

H. Impact of interconnect topology

A crossbar is a high-throughput switch allowing up to n×m
concurrent transactions for n requesters and m responders. This

should benefit RELIEF since it permits concurrent transactions

between independent producer/consumer pairs. Figure 13

shows RELIEF’s sensitivity to the interconnect in terms of

interconnect occupancy and the total execution time, under

high contention.

CDG CDH CDL CGH CGL CHL DGH DGL DHL GHL Gmean0

10

20

30

40

50

60

70

In
te

rc
on

ne
ct

 o
cc

up
an

cy
 (%

)

Occupancy: LAX
Exec. time: LAX

RELIEF-Bus
RELIEF-Bus

RELIEF-XBar
RELIEF-XBar

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Ex
ec

ut
io

n
tim

e
(n

or
m

. t
o

LA
X)

Fig. 13: RELIEF’s sensitivity to system interconnect under high
contention. Interconnect occupancy is defined as the percentage of
cycles for which the interconnect had at least one transaction going
through.

Observation 10: RELIEF reduces interconnect occupancy
by up to 49% compared to LAX, with an average reduction
of 33%. It does not, however, benefit from high-performance
interconnects. RELIEF’s low interconnect occupancy is a

result of its reduction in data movement (Section V-B) as well

as a lack of accelerator-level parallelism (Section V-C). This

indicates that these applications are not interconnect-bound,

an observation further supported by the fact that the average

queuing delay for the bus is less than a cycle (not shown). We

expect applications with more varied resource needs and larger

input sizes to benefit more from complex interconnects.

VI. RELATED WORK

GPU Scheduling: Prior work in GPU scheduling has looked

at co-scheduling and distributing work across CPUs and GPUs

to reduce synchronization and data-movement overhead [23],

[34]. PTask [48] optimizes for fairness and tries to reduce data

movement by scheduling child tasks onto the same device as

the producer when possible. Cilk [9] also implements a child-

first scheduling policy that improves locality but it optimizes

primarily for improved hardware utilization. While being child-

first, both PTask and Cilk are deadline blind, rendering them

unsuitable for real-time applications. Zahaf et al. [60] use an

EDF policy to determine which device each node should be

mapped to (e.g., GPU, DSP) such that all DAG deadlines are

met. Their work can be extended by optimizing for better

colocation using RELIEF.

Baymax [12] and Prophet [11] use online statistical and

machine learning approaches, respectively, to predict whether

an accelerator can be shared by user-facing applications and

throughput-oriented applications at the same time, without

violating the former’s QoS requirements. RELIEF can be

extended with Baymax and Prophet to efficiently utilize multi-

tenant accelerators like GPUs.

Menychtas et al. [37] present a fair queuing-based scheme

where the OS samples each process’ use of accelerators in

fixed time quanta and throttles their access to provide fairness.

Accelerator scheduling: Gao et al. [21] batch identical task

DAGs across multiple user-facing RNN applications together

for simultaneous execution on a GPU, thereby improving

GPU utilization and reducing inference latency. PREMA [14]

utilizes a token-based scheduling policy for preemptive neural

processing units (NPUs) that distributes tokens to each task

based on its priority and the slowdown experienced due to

contention, balancing fairness with QoS. While both policies

are QoS-aware, neither of them optimize for data movement

across multiple accelerators.

GAM+ [15] is a hardware manager that decomposes algo-

rithms into accelerator tasks and schedules them onto physical

accelerator instances using a preemptive round-robin policy.

The hardware manager we used is based on GAM+. VIP [38]

is an accelerator virtualization framework that uses a hardware

scheduler at each accelerator to arbitrate among different

applications’ tasks. The authors use an EDF scheme where the

FPS of the application serves as the deadline. Yeh et al. [59]

propose exposure of performance counters in GPUs that drives

1075

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

LAX, a non-preemptive least laxity-based scheduling policy.

HetSched [3] is another laxity-driven scheduling policy for

autonomous vehicles that takes task criticality and placement

into account. The scheduling policies underlying these systems

are used in our comparative evaluation in Section V.

Real-time scheduling: Optimal scheduling using a job-level

fixed priority algorithm is provably impossible [27], unless

task release times, execution times, and deadlines are known a
priori [17]. Baruah presented optimal but NP-complete integer-

linear programming formulations [7] along with approximate

linear-programming relaxations [8] for scheduling real-time

tasks on heterogeneous multiprocessors. Previous work also

exists on providing tighter bounds on the response time of the

system under both preemptive and non-preemptive variants of

GEDF [51], [56]. These mathematically sound formulations

provide strong performance guarantees but tend to be infeasible

in an online setting. RELIEF’s goal is to meet application-

specified deadlines while minimizing data movement using a

fast, online heuristic approach.

3DSF [49] is a hierarchical scheduler for cloud clusters

that integrates three schedulers. The top layer avoids missed

deadlines by using a least-laxity (LL) scheme to prioritize

deadline constraint jobs over regular ones when necessary, the

middle layer minimizes data movement by queuing tasks on

servers that have the most inputs available locally, and the

bottom layer allocates server resources to each running job

proportional to its requirements. Although locality aware, 3DSF

has multiple optimization targets that come with execution time

overheads untenable for micro-second latency tasks.

VII. SUMMARY AND DISCUSSION

In this paper, we present RELIEF (RElaxing Least-laxIty to

Enable Forwarding), an online least laxity-based (LL-based)

scheduling policy that exploits laxity to improve forwarding

hardware utilization by leveraging one application’s laxity

to reduce data movement in another application. RELIEF

increases direct data transfers between producer/consumer

accelerators by up to 50% compared to SOTA, lowering main

memory traffic and energy consumption by up to 32% and

18%, respectively. Simultaneously, RELIEF improves QoS by

meeting 14% more task deadlines on average, and improves

fairness by reducing the worst-case deadline violation by 14%.

RELIEF integrates into existing architectures with hardware

forwarding mechanisms and a hardware manager, requiring

minimal software changes.

While we have demonstrated our ideas over LL-based

scheduling, the techniques can be applied over other laxity-

based policies such as HetSched as well. LL and HetSched

differ in the manner in which laxity is distributed across nodes

in a DAG, resulting in scheduling differences in the baseline

policies. LL does not distribute its laxity, which means that

each node has laxity equal to the current DAG laxity. HetSched,

meanwhile, attempts to distribute the laxity among nodes based

on their contribution to the critical-path execution time. With

LL as a baseline policy, RELIEF has all of DAG’s laxity at

its disposal that it can choose to exploit whenever it sees fit.

With HetSched as a baseline, however, the DAG’s laxity is

distributed across the nodes, limiting the number of promotions

a node will allow. We are currently investigating the impact of

using HetSched’s laxity calculation in RELIEF. Our preliminary

results indicate that such a combination continues to offer

significant data movement cost savings, potentially increasing

both forwards and deadlines met. We observe, however, that

the choice of laxity distribution presents a tradeoff between

QoS and fairness.

ACKNOWLEDGEMENTS

This work was supported in part by U.S. National Science

Foundation grant CNS-1900803. We would like to thank Yuhao

Zhu for his input on this work. We also thank the anonymous

program committee and artifact evaluation committee reviewers

for their feedback.

REFERENCES

[1] “LLVM 3.8.1.” [Online]. Available: https://releases.llvm.org/3.8.1/docs/
index.html

[2] J. Ajanovic, “PCI Express (PCIe) 3.0 Accelerator Features.” White
paper: Intel.

[3] A. Amarnath, S. Pal, H. T. Kassa, A. Vega, A. Buyuktosunoglu,
H. Franke, J.-D. Wellman, R. Dreslinski, and P. Bose, “Heterogeneity-
Aware Scheduling on SoCs for Autonomous Vehicles,” IEEE Computer
Architecture Letters, vol. 20, no. 2, pp. 82–85, 2021.

[4] AMD, “AXI4-Stream Infrastructure IP Suite v3.0,” May 2023.
[Online]. Available: https://docs.xilinx.com/r/en-US/pg085-axi4stream-
infrastructure/AXI4-Stream-Infrastructure-IP-Suite-v3.0-LogiCORE-
IP-Product-Guide

[5] ARM, “ARM Cortex-A7.” [Online]. Available: https://developer.arm.
com/Processors/Cortex-A7

[6] ARM, “AMBA AXI-Stream Protocol Specification,” Apr. 2021. [Online].
Available: https://developer.arm.com/documentation/ihi0051/latest

[7] S. Baruah, “Feasibility analysis of preemptive real-time systems upon
heterogeneous multiprocessor platforms,” in 25th IEEE International
Real-Time Systems Symposium, 2004, pp. 37–46.

[8] S. K. Baruah, “Partitioning real-time tasks among heterogeneous multi-
processors,” in International Conference on Parallel Processing, 2004.
ICPP 2004., 2004, pp. 467–474 vol.1.

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An Efficient Multithreaded Runtime
System,” in Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPOPP ’95.
New York, NY, USA: Association for Computing Machinery, 1995,
pp. 207–216, event-place: Santa Barbara, California, USA. [Online].
Available: https://doi.org/10.1145/209936.209958

[10] J. Canny, “A Computational Approach to Edge Detection,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-8,
no. 6, pp. 679–698, 1986.

[11] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang,
“Prophet: Precise QoS Prediction on Non-Preemptive Accelerators to
Improve Utilization in Warehouse-Scale Computers,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’17.
Xi’an, China: Association for Computing Machinery, 2017, pp. 17–32.
[Online]. Available: https://doi.org/10.1145/3037697.3037700

[12] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: QoS Awareness and
Increased Utilization for Non-Preemptive Accelerators in Warehouse
Scale Computers,” in Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS ’16. Atlanta, Georgia, USA:
Association for Computing Machinery, 2016, pp. 681–696. [Online].
Available: https://doi.org/10.1145/2872362.2872368

[13] K. Cho, B. v. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations using
RNN Encoder-Decoder for Statistical Machine Translation,” 2014, eprint:
1406.1078.

1076

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

[14] Y. Choi and M. Rhu, “PREMA: A Predictive Multi-Task Scheduling
Algorithm For Preemptible Neural Processing Units,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2020, pp. 220–233.

[15] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman,
“Architecture Support for Domain-Specific Accelerator-Rich CMPs,”
ACM Trans. Embed. Comput. Syst., vol. 13, no. 4s, Apr. 2014, place:
New York, NY, USA Publisher: Association for Computing Machinery.
[Online]. Available: https://doi.org/10.1145/2584664

[16] E. G. Cota, P. Mantovani, G. D. Guglielmo, and L. P. Carloni, “An
analysis of accelerator coupling in heterogeneous architectures,” in 2015
52nd ACM/EDAC/IEEE Design Automation Conference (DAC), 2015, pp.
1–6.

[17] M. L. Dertouzos and A. K. Mok, “Multiprocessor online scheduling
of hard-real-time tasks,” IEEE Transactions on Software Engineering,
vol. 15, no. 12, pp. 1497–1506, 1989.

[18] E. Duesterwald, C. Cascaval, and S. Dwarkadas, “Characterizing and
predicting program behavior and its variability,” in 2003 12th Interna-
tional Conference on Parallel Architectures and Compilation Techniques,
2003, pp. 220–231.

[19] K. Fatahalian, “The Rise of Mobile Visual Computing Systems,” IEEE
Pervasive Computing, vol. 15, no. 2, pp. 8–13, Apr. 2016. [Online].
Available: http://ieeexplore.ieee.org/document/7445776/

[20] Y. Gan, Y. Qiu, L. Chen, J. Leng, and Y. Zhu, “Low-Latency Proactive
Continuous Vision,” in Proceedings of the ACM International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’20.
New York, NY, USA: Association for Computing Machinery, 2020, pp.
329–342, event-place: Virtual Event, GA, USA. [Online]. Available:
https://doi.org/10.1145/3410463.3414650

[21] P. Gao, L. Yu, Y. Wu, and J. Li, “Low Latency RNN Inference with
Cellular Batching,” in Proceedings of the Thirteenth EuroSys Conference,
ser. EuroSys ’18. Porto, Portugal: Association for Computing Machinery,
2018. [Online]. Available: https://doi.org/10.1145/3190508.3190541

[22] V. Govindaraju, C.-H. Ho, T. Nowatzki, J. Chhugani, N. Satish,
K. Sankaralingam, and C. Kim, “DySER: Unifying Functionality and
Parallelism Specialization for Energy-Efficient Computing,” IEEE Micro,
vol. 32, no. 5, pp. 38–51, 2012.

[23] V. Gupta, K. Schwan, N. Tolia, V. Talwar, and P. Ranganathan,
“Pegasus: Coordinated Scheduling for Virtualized Accelerator-
based Systems,” in 2011 USENIX Annual Technical Conference,
Portland, OR, USA, June 15-17, 2011, J. Nieh and
C. A. Waldspurger, Eds. USENIX Association, 2011. [On-
line]. Available: https://www.usenix.org/conference/usenixatc11/pegasus-
coordinated-scheduling-virtualized-accelerator-based-systems

[24] C. Harris and M. Stephens, “A combined corner and edge detector,” in
In Proc. of Fourth Alvey Vision Conference, 1988, pp. 147–151.

[25] J. Hegarty, J. Brunhaver, Z. DeVito, J. Ragan-Kelley, N. Cohen, S. Bell,
A. Vasilyev, M. Horowitz, and P. Hanrahan, “Darkroom: compiling
high-level image processing code into hardware pipelines,” ACM
Transactions on Graphics, vol. 33, no. 4, pp. 1–11, Jul. 2014. [Online].
Available: https://dl.acm.org/doi/10.1145/2601097.2601174

[26] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online].
Available: https://doi.org/10.1162/neco.1997.9.8.1735

[27] K. S. Hong and J. Y. Leung, “On-line scheduling of real-time tasks,”
IEEE Transactions on Computers, vol. 41, no. 10, pp. 1326–1331, 1992.

[28] S. Kumar, A. Shriraman, and N. Vedula, “Fusion: Design Tradeoffs in
Coherent Cache Hierarchies for Accelerators,” in Proceedings of the 42nd
Annual International Symposium on Computer Architecture, ser. ISCA ’15.
Portland, Oregon, USA: Association for Computing Machinery, 2015, pp.
733–745. [Online]. Available: https://doi.org/10.1145/2749469.2750421

[29] G. Kyriazis, “Heterogeneous System Architecture: A Technical Review,”
AMD, Tech. Rep., Aug. 2012.

[30] J. Li and J. Du, “Study on panoramic image stitching algorithm,” in
2010 Second Pacific-Asia Conference on Circuits, Communications and
System, vol. 1, 2010, pp. 417–420.

[31] Linux Kernel Organization, “PCI Peer-to-Peer DMA Support.” [Online].
Available: https://www.kernel.org/doc/html/latest/driver-api/pci/p2pdma.
html

[32] Q. Liu, “Smooth Stitching Method of VR Panoramic Image
Based on Improved SIFT Algorithm,” in Proceedings of the Asia
Conference on Electrical, Power and Computer Engineering, ser.
EPCE ’22. New York, NY, USA: Association for Computing

Machinery, 2022, event-place: Shanghai, China. [Online]. Available:
https://doi.org/10.1145/3529299.3531499

[33] L. B. Lucy, “An iterative technique for the rectification of observed
distributions,” Astronomical Journal, vol. 79, p. 745, Jun. 1974.

[34] C.-K. Luk, S. Hong, and H. Kim, “Qilin: Exploiting Parallelism
on Heterogeneous Multiprocessors with Adaptive Mapping,” in
Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 42. New York, NY, USA: Association
for Computing Machinery, 2009, pp. 45–55. [Online]. Available:
https://doi.org/10.1145/1669112.1669121

[35] S. Madabusi and S. V. Gangashetty, “Edge detection for facial images
under noisy conditions,” in Proceedings of the 21st International
Conference on Pattern Recognition (ICPR2012), 2012, pp. 2689–2693.

[36] P. Mantovani, D. Giri, G. Di Guglielmo, L. Piccolboni, J. Zuckerman,
E. G. Cota, M. Petracca, C. Pilato, and L. P. Carloni, “Agile
SoC Development with Open ESP,” in Proceedings of the 39th
International Conference on Computer-Aided Design, ser. ICCAD
’20. New York, NY, USA: Association for Computing Machinery,
2020, event-place: Virtual Event, USA. [Online]. Available: https:
//doi.org/10.1145/3400302.3415753

[37] K. Menychtas, K. Shen, and M. L. Scott, “Disengaged Scheduling for Fair,
Protected Access to Fast Computational Accelerators,” in Proceedings
of the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS ’14. Salt
Lake City, Utah, USA: Association for Computing Machinery, 2014, pp.
301–316. [Online]. Available: https://doi.org/10.1145/2541940.2541963

[38] N. C. Nachiappan, H. Zhang, J. Ryoo, N. Soundararajan,
A. Sivasubramaniam, M. T. Kandemir, R. Iyer, and C. R. Das,
“VIP: Virtualizing IP Chains on Handheld Platforms,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture,
ser. ISCA ’15. New York, NY, USA: Association for Computing
Machinery, 2015, pp. 655–667, event-place: Portland, Oregon. [Online].
Available: https://doi.org/10.1145/2749469.2750382

[39] NVIDIA, “NVIDIA Deep Learning Accelerator (NVDLA),” 2017.
[Online]. Available: www.nvdla.org

[40] NVIDIA, “CUDA Runtime API,” Jun. 2023. [Online]. Available:
https://docs.nvidia.com/cuda/pdf/CUDA Runtime API.pdf

[41] M. Ravanelli, P. Brakel, M. Omologo, and Y. Bengio, “Light Gated
Recurrent Units for Speech Recognition,” IEEE Transactions on Emerging
Topics in Computational Intelligence, vol. 2, no. 2, pp. 92–102, 2018.

[42] V. J. Reddi, “Mobile SoCs: The Wild West of Domain Specific
Architectures,” Sep. 2018. [Online]. Available: https://www.sigarch.org/
mobile-socs/

[43] V. J. Reddi and M. D. Hill, “Accelerator-Level Parallelism (ALP),”
Sep. 2019. [Online]. Available: https://www.sigarch.org/accelerator-level-
parallelism/

[44] S. Rennich, “CUDA C/C++ Streams and Concurrency.”
[Online]. Available: https://developer.download.nvidia.com/CUDA/
training/StreamsAndConcurrencyWebinar.pdf

[45] W. H. Richardson, “Bayesian-Based Iterative Method of Image
Restoration,” J. Opt. Soc. Am., vol. 62, no. 1, pp. 55–59, Jan. 1972,
publisher: OSA. [Online]. Available: http://www.osapublishing.org/
abstract.cfm?URI=josa-62-1-55

[46] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,
“Memory Access Scheduling,” in Proceedings of the 27th Annual
International Symposium on Computer Architecture, ser. ISCA ’00.
New York, NY, USA: Association for Computing Machinery, 2000, pp.
128–138, event-place: Vancouver, British Columbia, Canada. [Online].
Available: https://doi.org/10.1145/339647.339668

[47] S. Rogers, J. Slycord, M. Baharani, and H. Tabkhi, “gem5-SALAM: A
System Architecture for LLVM-based Accelerator Modeling,” in 2020
53rd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020, pp. 471–482.

[48] C. J. Rossbach, J. Currey, M. Silberstein, B. Ray, and E. Witchel,
“PTask: Operating System Abstractions to Manage GPUs as Compute
Devices,” in Proceedings of the Twenty-Third ACM Symposium on
Operating Systems Principles, ser. SOSP ’11. Cascais, Portugal:
Association for Computing Machinery, 2011, pp. 233–248. [Online].
Available: https://doi.org/10.1145/2043556.2043579

[49] J. Ru, Y. Yang, J. Grundy, J. Keung, and L. Hao, “An
efficient deadline constrained and data locality aware dynamic
scheduling framework for multitenancy clouds,” Concurrency and
Computation: Practice and Experience, vol. 33, no. 5, p. e6037,
2021, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.6037.

1077

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.
6037

[50] M. Rybczynska, “Device-to-device memory-transfer offload with
P2PDMA,” Oct. 2018. [Online]. Available: https://lwn.net/Articles/
767281/

[51] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill, “Parallel
Real-Time Scheduling of DAGs,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, no. 12, pp. 3242–3252, 2014.

[52] M. C. d. Santos, T. Jia, M. Cochet, K. Swaminathan, J. Zuckerman,
P. Mantovani, D. Giri, J. J. Zhang, E. J. Loscalzo, G. Tombesi,
K. Tien, N. Chandramoorthy, J.-D. Wellman, D. Brooks, G.-Y. Wei,
K. Shepard, L. P. Carloni, and P. Bose, “A Scalable Methodology for
Agile Chip Development with Open-Source Hardware Components,”
in Proceedings of the 41st IEEE/ACM International Conference on
Computer-Aided Design, ser. ICCAD ’22. New York, NY, USA:
Association for Computing Machinery, 2022, event-place: San Diego,
California. [Online]. Available: https://doi.org/10.1145/3508352.3561102

[53] Y. S. Shao, S. L. Xi, V. Srinivasan, G.-Y. Wei, and D. Brooks, “Co-
designing accelerators and SoC interfaces using gem5-Aladdin,” in 2016
49th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO). Taipei, Taiwan: IEEE, Oct. 2016, pp. 1–12. [Online].
Available: http://ieeexplore.ieee.org/document/7783751/

[54] R. Sikarwar, A. Agrawal, and R. S. Kushwah, “An Edge Based Efficient
Method of Face Detection and Feature Extraction,” in 2015 Fifth
International Conference on Communication Systems and Network
Technologies, 2015, pp. 1147–1151.

[55] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to Sequence Learning
with Neural Networks,” in Proceedings of the 27th International
Conference on Neural Information Processing Systems - Volume 2, ser.
NIPS’14. Cambridge, MA, USA: MIT Press, 2014, pp. 3104–3112,
event-place: Montreal, Canada.

[56] K. Yang, M. Yang, and J. H. Anderson, “Reducing Response-Time
Bounds for DAG-Based Task Systems on Heterogeneous Multicore
Platforms,” in Proceedings of the 24th International Conference on
Real-Time Networks and Systems, ser. RTNS ’16. Brest, France:
Association for Computing Machinery, 2016, pp. 349–358. [Online].
Available: https://doi.org/10.1145/2997465.2997486

[57] W. Yang, X. Zhang, Q. Lei, D. Shen, P. Xiao, and Y. Huang, “Lane
Position Detection Based on Long Short-Term Memory (LSTM),” Sensors
(Basel, Switzerland), vol. 20, no. 11, May 2020, place: Switzerland.

[58] P. Yedlapalli, N. C. Nachiappan, N. Soundararajan, A. Sivasubramaniam,
M. T. Kandemir, and C. R. Das, “Short-Circuiting Memory Traffic in
Handheld Platforms,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture, 2014, pp. 166–177.

[59] T. T. Yeh, M. Sinclair, B. M. Beckmann, and T. G. Rogers, “Deadline-
Aware Offloading for High-Throughput Accelerators,” in 2021 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2021.

[60] H.-E. Zahaf, N. Capodieci, R. Cavicchioli, M. Bertogna, and G. Lipari,
A C-DAG task model for scheduling complex real-time tasks on
heterogeneous platforms: preemption matters. arXiv, 2019, arXiv
preprint: 1901.02450.

APPENDIX

A. Abstract

This artifact appendix describes how to run RELIEF and
other accelerator scheduling policies described in this paper
using gem5. The artifact includes the implementation of all
the policies in gem5 and our vision and RNN benchmark suite,
along with pre-built binaries for the latter. It also includes
optional instructions to rebuild the benchmark binaries and
hardware models.

B. Artifact check-list (meta-information)
• Algorithm: RELIEF, a least-laxity based scheduling policy.
• Program: gem5 (C++ and Python code).
• Compilation: GCC, SCons.
• Binary: Vision and RNN binaries, compiled using GNU Arm

Embedded toolchain v8.3.

• Run-time environment: Any modern Linux distribution.
• Hardware: X86-based CPU with 10 cores and 32GB main

memory.
• Metrics: Data forwards, data movement, accelerator occupancy,

slowdown, node deadlines met, DAG deadlines met.
• Output: gem5 statistics and execution trace.
• How much disk space required (approximately)?: 17 GB.
• How much time is needed to prepare workflow (approxi-

mately)?: 2-3 hours.
• How much time is needed to complete experiments (approx-

imately)?: 8-10 hours.
• Publicly available?: Yes
• Code licenses (if publicly available)?: BSD-3
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

10237117

C. Description

1) How to access: The code is available on GitHub2 and

Zenodo3.

2) Hardware dependencies: Recent X86 based CPU with at

least 10 cores and 32GB main memory. The simulations take

multiple hours to run, and we recommend at least 60 cores

and 150 GB of main memory to run all of them in parallel.

3) Software dependencies:

• Linux OS with a recent version of GCC.

• Python 2 with pip installed.

• (Optional) GNU Arm Embedded toolchain v8.3

• (Optional) LLVM 3.8

D. Installation

The steps below detail the installation for gem5 and asso-

ciated Python dependencies. There is a step for building the

benchmarks that requires GNU Arm Embedded toolchain v8.3.

Our distribution already includes benchmark binaries, so this

step is optional.

1) Navigate to the project root directory and install Python

dependencies by running:

pip install -r requirements.txt
2) Build gem5 by following the instructions in

README.md.

3) Set M5_PATH environment variable:

export M5_PATH=`pwd`
4) (Optional) Build the benchmarks by navigating to

$M5_PATH/benchmarks/scheduler/sw and run-

ning the following command. Note that this requires the

installation of GNU Arm Embedded toolchain, described

in README.md.

./create_binary_combinations_3.sh
The binaries will be put in the directory bin_comb_3.

5) (Optional) Compile the accelerator descrip-

tions into LLVM IR by navigating to

$M5_PATH/benchmarks/scheduler/hw
and running make. Note that this requires the installation

of LLVM 3.8, described in README.md.

2https://github.com/Sacusa/gem5-SALAM/tree/HPCA 2024
3https://doi.org/10.5281/zenodo.10237117

1078

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

E. Experiment workflow

Navigate to the project root directory and launch high

contention scenario simulations by running:

./run_combinations_3.sh `nproc`
The simulations need at least 10 cores to finish in a reasonable

period. The results will be saved in the directory

$M5_PATH/BM_ARM_OUT/comb_3.

F. Evaluation and expected results

We provide five scripts in

$M5_PATH/BM_ARM_OUT/scripts/comb_3:

plot_forwards.py, plot_data_movement.py,

plot_accelerator_occupancy.py,

plot_slowdown.py, and plot_deadlines_met.py,

that reproduce Figures 4c, 5c, 7c, 9a, and 8c, respectively. The

last script also reproduces 9b. Each script can be run as:

python <script>
The scripts use matplotlib to produce the

figures in PDF format, which are stored in

$M5_PATH/BM_ARM_OUT/scripts/plots.

G. Methodology

Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/

artifact-review-and-badging-current

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

1079

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on September 10,2024 at 18:32:55 UTC from IEEE Xplore. Restrictions apply.

