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ABSTRACT: Deep learning Neural Networks (NN) have been
developed in the field of molecular modeling for the purpose of
circumventing the high computational cost of quantum-mechanical
calculations while rivaling their accuracies. Although these networks
have found great success, they generally lack the ability to
accurately describe long-range interactions, which makes them
unusable for extended molecular systems. Herein, we provide a
method for partially retraining the deep learning general-use neural
network ANI, in which the long-range interactions are represented
via atomic electrostatic potentials. The electrostatic potentials,
generated with polarizable e!ective fragment potentials (EFP), are
used as an additional input feature for the network. This new ANI/
EFP network can predict solute−solvent interaction energies on a trained data set with a kcal/mol accuracy. It also shows promise in
predicting the interaction energies of a solute in solvent environments that have not been included in a training data set. The
proposed protocol can be taken as an example and further developed, leading to highly accurate and transferable neural network
potentials capable of handling long-range interactions and extended molecular systems.

1. INTRODUCTION
Machine learning has proven to be a useful problem-solving
tool in almost any field. In computational chemistry, scientists
have developed neural networks (NN) to replace computa-
tionally expensive quantum-mechanical calculations.1 Graph
neural networks have been developed to predict chemical
reactivity.2,3 Even tasks as daunting as predicting protein
folding have been tackled with success by groups like
AlphaFold.4 Deep molecular neural networks, such as
MEGNet5 and SchNet,6 have achieved computational accuracy
rivaling correlated electronic structure methods,7 while
boasting the computational cost of classical force fields. One
of the most successful NN of the latter type is ANAKIN-ME1,8
(ANI), an open-source general-purpose neural network-based
atomistic potential for organic molecules. To date, several ANI
models have been published, focusing on organic molecules in
the gas phase. The original ANI-1 model was developed by
random sampling conformational space of 57,000 organic
molecules composed of C, N, O, and H atoms and then
running wB97x-D/6-31G(d,p) density functional theory
(DFT) calculations to obtain potential energies for training.
The subsequent ANI-1x model was improved through an
active learning scheme.9 The latest ANI-2x and ANI-2xt were
trained at the same level of theory, but now include elements S,
F, and Cl.10,11 Unfortunately, these neural networks have their
own set of problems.
ANI uses a modified version of the symmetry functions

proposed by Behler and Parrinello in 2007 for representing

molecules in a vectorized form.12 As the method circumvents
the need for excess feature engineering, it has been adopted by
many di!erent projects.13−15 However, it is also a source of
one of the greatest limitations of these networks. The
symmetry functions act like radial distribution functions, i.e.,
they represent the environment around each atom through
pairwise distances and three-bodied angles.12 E!ectively, the
symmetry functions create a fingerprint for each atom. To
ensure computational e"ciency and avoid overfitting, both
radial and angular symmetry functions utilize a distance cuto!;
the atoms past the cuto! distance are ignored.12 For example,
the radial and angular cuto!s in the original implementation of
ANI are 5.2 and 3.5 Å, respectively.8 Because of this, in the
eyes of the network, each atom only “sees” other atoms within
this 5.2 Å range, meaning that any long-range e!ects beyond
two overlapping environments are neglected. Thus, while
providing significant computational savings, the distance
cuto!s result in the accumulation of errors in modeling larger
systems where long-range e!ects might originate from
electrostatic, polarization, and van der Waals terms. The
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inclusion of long-range terms in ANI potentials was previously
explored using additive dispersion corrections and Coulomb
interactions via partial charges trained in a complementary
charge network.16 The goal of this work is to develop an
alternative computationally e"cient way to account for the
long-range e!ects by coupling ANI potentials with an e!ective
fragment potential (EFP) polarizable force field.
EFP is a model potential designed for systematic first-

principles-based description of intermolecular interac-
tions.17−21 EFP represents a molecular system as a collection
of e!ective fragments that interact via electrostatic, polar-
ization, dispersion, exchange-repulsion, and charge-transfer
terms derived from the Rayleigh−Schrödinger perturbation
theory. The parameters of the e!ective fragments, which are
typically chosen to be either individual molecules or functional
units of polymers and other macromolecules, are precomputed
in separate quantum-mechanical calculations and reused in all
subsequent evaluations of the system properties, providing
significant computational savings. Additionally, EFP can be
used in conjunction with quantum mechanics (QM) methods
in hybrid quantum mechanics/molecular mechanics (QM/
MM) or, more precisely, QM/EFP calculations, where the
chemically active region is modeled quantum-mechanically,
while the remainder of a system is modeled with EFP.22−28 In
QM/EFP models, EFP provides polarizable embedding for the
QM region, which has been shown to be essential for
describing electronic excited and ionized states in solvated
chromophores and photoactive proteins.27−31 However, the
cost of QM/EFP calculations is only slightly more expensive
than the cost of the analogous gas-phase calculation of the QM
region.
In this work, we explore the ANI/EFP hybrid model in

which ANI describes properties of the chemically active region,
i.e., formally substitutes the QM calculation in QM/EFP, while
the EFP embedding accounts for long-range interactions. To
accomplish this task, we augment the ANI network with
additional input parameters that represent interactions of ANI
atoms with the EFP environment. The modified network is
retrained on the interaction energies between the QM and EFP
regions, as obtained from the QM/EFP calculations. The
performance of the ANI/EFP network is evaluated on the
interaction energies in several systems with simple molecular
solvents (water, methanol, ammonia, and methane) and a
subset of water-solvated molecules from the FreeSolv data-
base.32 Prospects and limitations of the developed NN, along
with an outlook for future work, are also discussed.

2. THEORETICAL DETAILS
2.1. ML/MM Model. Our machine learning/molecular

mechanics (ML/MM) models closely mimic the electrostatic
or polarizable embedding QM/MM. In QM/MM, the QM
Hamiltonian is augmented by coupling terms responsible for
interactions with the classical environment, such that the
quantum wave function “feels” the electrostatic field produced
by partial charges (or, generally, electrostatic multipoles) of
surrounding classical atoms and, in the case of the polarizable
embedding, also by induced dipoles. Such coupling between
the quantum and classical regions is essential for the e"cient
modeling of extended systems. Since electrostatic interactions
decay slowly with distance, one needs to include at least several
nanometers of the classical environment around the chemically
active region.27,33 On the other hand, typical ML potentials are
based on a local atomic environment, such that each atom is

aware of its neighbors within a ∼1 nm radius.8 While training
an NN based on the local atomic environment protects it from
overparameterization, the resulting ML potentials e!ectively
account only for the short- and midrange interactions, such
that the long-range e!ects need to be incorporated separately.
In this work, we address this shortcoming of local atomic
environment networks by training the NN in the presence of
an additional parameter, an electrostatic potential (EP)
specified on each atom described by the NN. E!ectively, the
electrostatic potential provides a compact representation of a
classical environment on a given atom in the ML region.
Moreover, the EP is a scalar property that will not destroy the
NN’s translational and rotational invariance. The NN
augmented by EPs as additional input parameters will ensure
that long-range electrostatic interactions are accounted for. In
principle, such ML potentials can be trained in the presence of
electrostatic charges only, mimicking electrostatic embedding
QM/MM or in a self-consistently polarized system, which
would correspond to polarizable embedding models.
The QM/MM system is described with the Hamiltonian Ĥ

= + +H H H HQM MM QM MM (1)

The total ground-state energy in the electrostatic embedding
is defined by

= | + | + +
+ +

E H V E E

E E

QM/MM QM
coul

QM MM
vdW

MM
coul

MM
vdW

MM
bond (2)

where Ψ is the wave function of the quantum system, EMM
coul,

EMM
vdW, and EMM

bond are electrostatic, van der Waals, and covalent
energies of the classical region defining the Hamiltonian ĤMM.
The energy of van der Waals interactions between the QM and
MM subsystems, EQM−MM

vdW , and the electrostatic perturbation of
the quantum Hamiltonian by the classical region, V̂coul, define
the coupling term ĤQM−MM. ĤQM is the electronic Hamiltonian
of a pristine QM system. In the simplest form, V̂coul = ∑i

atomsq̂i/
|r − Ri|, where q̂i and Ri are partial charges and positions of
classical atoms i, and r is the electronic coordinate.
In the ML/MM model, the ML potentials can be trained to

replicate the energies and gradients of the ⟨Ψ|ĤQM + V̂coul|Ψ⟩
integral. Thus, similarly to how ANI potentials return an
e!ective atomic energy following the training to molecular
energies ⟨Ψ|ĤQM|Ψ⟩, the potentials in ANI/MM are trained to
reproduce atomic energies of a molecule embedded in the EP
given by V̂coul. The total system energy and gradient in ANI/
MM can be obtained by evaluating the remaining terms in eq 2
classically, in complete analogy to QM/MM models.
The e!ective fragment potential (EFP) is designed to

describe intermolecular interactions.19−21 EFP represents a
molecular system as a collection of e!ective fragments with
predefined parameters that interact with each other through
electrostatic, polarization, dispersion, and exchange-repulsion
terms

= + + +E E E E EEFP EFP
elec

EFP
pol

EFP
disp

EFP
ex rep (3)

The parameters of the e!ective fragments, including
distributed multipoles, distributed static and dynamic polar-
izability tensors, localized wave function, and Fock matrix, can
be either computed in the GAMESS electronic structure
software34−36 or obtained from a database of the precomputed
parameters.37
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The total ground-state energy in the polarizable QM/EFP
model EQM/EFP is

= | + + | +
+ + + + +
+

E H V V E

E E E E E

E

QM/EFP QM
coul pol

QMnuc EFP
coul

pol
QM EFP
disp

QM EFP
ex rep

EFP
coul

EFP
disp

EFP
ex rep (4)

where the last three terms represent electrostatic, dispersion,
and exchange-repulsion interactions in the EFP subsystem;
EQM−EFP
disp and EQM−EFP

ex−rep are dispersion and exchange-repulsion
interactions between the QM and EFP subsystems.
The electrostatic operator V̂coul includes contributions from

point charges q̂m, dipoles μ̂m, quadrupoles Θ̂m, and octupoles
Ω̂m located at the atoms and bond midpoints, referred to as
multipole expansion points m positioned at Rm, of the EFP
fragments Ä

Ç
ÅÅÅÅÅÅÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑÑ

=

+

V q T r R T r R

T r R

T r R

( ) ( )

1
3

( ) 1
15

( )

m
m m

a

x y z

a m a m

a b

x y z

ab m ab m

a b c

x y z

abc m abc m

coul
mult.points , ,

,

,

, ,

,

, ,

, ,

,
(5)

T, Ta, Tab, and Tabc are the electrostatic tensors of ranks zero
to three.38 EQMnuc−EFP

coul is an electrostatic interaction energy
between solute nuclei ZA and EFP multipoles. This interaction
can be expressed as an interaction of classical point charges
with the electrostatic potential of a multipole expansion PAcoul

=E Z P
A

QMnuc EFP
coul

QMnuclei

A A
coul

(6)Ä
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(7)

where electrostatic tensors T, Ta, etc., are computed between
the positions of multipole expansion points Rm and solute
nuclei RA.
The polarization perturbation due to the EFP fragments V̂pol

is

=
+

= + ( )

V
a

r R

T r R

1
2

( )

1
2

( )

p a

x y z
a p a p

p

p a

x y z

a p a p a p

pol
pol.points , ,

, ,
3

pol.points , ,

, ,
(8)

where μ̂p and p are the induced and conjugated induced
dipoles on points p with positions Rp, converged self-
consistently with the electronic ground-state wave function.
Polarization energy ÄÇÅÅÅÅÅÅÅ ÉÖÑÑÑÑÑÑÑ

=

+ ( )

E F

F F

1
2 p a

x y z

a p a
p

a p a p a p a p

pol
pol.points , ,

,
mult,

, ,
QM

, ,
QMnuc

(9)

includes the polarization energy of the EFP subsystem (the
first term, Famult,p, is the field due to static multipoles on
e!ective fragments) and an additional contribution to the QM-
EFP polarization energy (two terms in parentheses, Fa,pQM and
Fa,pQMnuc, are the fields due to the QM electronic wave function
and the QM nuclei, respectively).
The interaction energy between the QM solute and EFP

solvent, where the “solute” and “solvent” are broadly defined, is
given as

=

= | + + | +
+ + +

E E E E

H V V E E

E E E E( )

inter QM/EFP QM EFP

QM
coul pol

QMnuc EFP
coul

QM

pol
EFP
pol

QM EFP
disp

QM EFP
ex rep

(10)

The functional form of EQM−EFP
disp and EQM−EFP

ex−rep terms have been
discussed and developed in refs 18,39−42. However, in
polarizable embedding models, it is common to represent
these energy contributions classically, i.e., as dispersion and
exchange-repulsion terms in a purely EFP system (eq 3).43−45

We utilized this approach in this work. Additionally, assuming
that polarization (and induced dipoles) of the solvent is not
strongly a!ected by the solute, the solute−solvent interaction
energy becomes

| + + | +

+

+ [ + ]

E H V V E E

F F

E E

1
2

( )
p a

x y z

a p a p a p a p

inter QM
coul pol

QMnuc EFP
coul

QM
pol.points , ,

, ,
QM

, ,
QMnuc

EFP EFP
disp

EFP EFP
ex rep (11)

where the polarization solute−solvent interactions are split
between the integral term and the two terms in parentheses,
while the dispersion and exchange-repulsion interactions
between the solute and solvent are modeled at the EFP level
(two terms in square brackets).
The ANI potentials in the ANI/EFP model are trained to

replicate the energies of the Coulomb and polarization
components of the interaction energy in eq 11, i.e.

= | + + | +

+ ( )
E H V V E E

F F
1
2

p a

x y z

a p a p a p a p

inter
train

QM
coul pol

QMnuc EFP
coul

QM
pol.points , ,

, ,
QM

, ,
QMnuc

(12)

After the NN returns this interaction energy, the total solute−
solvent interaction energy can be evaluated using eq 11, and
the total system energy can be obtained following eq 4, in
which all nonintegral terms are computed at the EFP level. To
provide the NN with information on the polarizable solvent
environment, we consider the following classical electrostatic
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potential EP on the atoms of the solute subsystem A with
positions RA

Ä
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ÅÅÅÅÅÅÅÅÅÅÅÅ
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mult.points
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, ,

, A

,

, ,

, A

, ,

, ,

, A

pol.points , ,

, , A
(13)

where summation goes over all EFP solvent multipole and
polarizability points. This potential is a representation of the
Coulomb and polarization contributions of the EFP environ-
ment to the quantum region. The values of the electrostatic
potential at all solute nuclei are evaluated in the EFP
calculation of the (solute + solvent) system and provided as
additional parameters to the NN. The electrostatic potential is
the only information that the NN defined for the solute system
knows about the solvent.
2.2. Symmetry Function Modification. When develop-

ing a neural network that takes molecular coordinates as input,
the final output needs to be invariant to the transformations of
translation, rotation, and permutation of the same types of
atoms.46 This makes working with raw coordinates as input to
a network more di"cult, and usually, some transformation is
done when vectorizing a molecule to prepare it. Behler and
Parinello proposed the symmetry functions that satisfy the
preservation of the required symmetries.12 These functions
were called an atomic environmental vector (AEV), G⃗i

Z = {G1,
G2, G3,···, and GM}, and for each atom, an associated AEV is
computed and passed through its own atomic network to
return the atomic energy. The total energy is obtained as a sum
of all-atom energies. The ANI model, built upon the work by
Behler and Parrinello, borrows the radial symmetry function
(Gm

R) and uses a modified version of the angular symmetry
function (Gm

Amod)8

=G f Re ( )m
R

j i

R R
ij

all atoms
( )

C
ij S

2

(14)Ä
Ç
ÅÅÅÅÅÅÅÅÅÅÅikjjjj y{zzzz

É
Ö
ÑÑÑÑÑÑÑÑÑÑÑ

= +

+

G

R R
R f R f R

2 (1 cos( )) exp

2
( ) ( )

m
A

j k i
ijk

ij ik
ij ik

1

,

all atoms

s

S

2

C C

mod

(15)

Here, Rij and Rik are the distances between atoms i and j and i
and k, respectively, and θijk is the angle between atoms i, j, k
centered on atom i. Rs and η are the center and width of the
Gaussian peak for the radial distribution. Di!erent Rs and η
values, indexed by m, set the part of the radial environment to
be probed by the symmetry function. Similarly, θs and ζ
determine the center and width of the angular probe. The
cuto! function f C is defined as

lmoooooo
noooooo

ikjjjjj y{zzzzz=
◊ +

>
( )f R

R
R

R R

R R

0.5 cos 0.5 for

0.0 for
ij

ij
ij

ij

C C
C

C (16)

where RC is the cuto! radius.
The symmetry functions encode N interatomic distances

with ith atom neighbors within a cuto! radius Rc into invariant
fixed-length AEV. To adapt these symmetry functions to
chemical environments that consist of more than one or two
atom types, an explicit-type di!erentiation is performed
whereby AEV consists of multiple radial vectors for each
atom type and multiple angular vectors for each atom type pair.
A separate neural network model is used for each element.
This explicit atom type di!erentiation leads to a quadratic
growth in the size of the AEV with the number of atomic
species included in the training set and a di!erent network for
each atomic species.
Each G⃗i

Z for the ith atom with atomic number Z is used as
input into a single neural network potential (NNP). With an
invariant AEV G⃗i

Z, the total energy of a molecule m is expressed
as

=E (m) NNP (G )
i

Ztotal

all atoms

i
Z

i
(17)

In the ANI/EFP network, the ANI AEV is computed for
each atom. The associated electrostatic potential for the atom
is concatenated to the end of the AEV and passed through the
network. The EFP electrostatic potentials are computed in the
LibEFP software library.47,48

2.3. Neural Network Architecture. Development and
training of the ANI/EFP network was done via TorchANI.1
The design of the ANI/EFP network is as follows: The original
ANI-1x network is used for the base, and an additional node,
termed the “EFP node” and schematically shown with orange
circles in Figure 1, is added to each layer except for the final.
The EFP nodes have no connections to the original ANI
network, but the ANI nodes do have new connections to the

Figure 1. Schematic representation of the ANI/EFP network
architecture. Blue: original ANI network nodes. Red: added EFP
nodes. The weights of the connections linking to the EFP nodes,
shown schematically with dark gray lines, are retrained.
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EFP nodes whose weights are updated through training. The
biases for each layer are set to zero. The weights of the original
ANI network are frozen during training so as not to retrain the
ANI portion of the network.
The EFP node of the initial input layer contains the

electrostatic potential EP (eq 13) felt by the atom due to its
EFP environment. This value is passed through the network
alongside the ANI network and then combined in the final
layer. This final number is the atomic energy that accounts for
both the atom’s local ANI environment and the long-range
EFP environment. In this work, we trained the ANI/EFP
network to the Coulomb and polarization components of the
QM/EFP interaction energy Einter

train (eq 12). The loss function L
is

=L E E( )
j

j j

all molecules
ANI/EFP

inter,
train

(18)

where Ej
ANI/EFP is the energy returned by the network. In the

present implementation of the ANI/EFP model, the forces
were not included in the loss function.
The architecture of the ANI/EFP network was modeled

after that of the ANI-1x network. The network consists of four
individual networks for each supported atom type: H, C, N,
and O. Each atom network varies slightly in the width of each
layer. The input layer for each network is 385 nodes wide,
composed of 384-length ANI-1x AEV and an additional node
containing the EFP electrostatic potential. The number of
nodes per layer is a hyperparameter tuned during the
development and training of ANI; it is kept the same in
ANI/EFP. A CELU activation function is used for all nodes.
There are three hidden layers in the network for a total of five
layers, including the input and output layers.

3. COMPUTATIONAL DETAILS
3.1. Data Set. The data set is composed of 5964 randomly

sampled structures from the molecular dynamics trajectories of
the following systems: ammonia solvated in ammonia,
methanol solvated in methanol, methane solvated in methane,
and water solvated in water. Additionally, 1364 structures of
small organic molecules from the FreeSolv32 data set solvated
in water are included. Molecular dynamics simulations were
conducted in the GROMACS software.49 Each system was first
prepared by inserting the molecule into a 3 nm wide cubic box
and solvating the box. Depending on the system, the
simulation cell contained roughly 300 to over 800 solvent
molecules. First, an energy minimization step was performed,
followed by a 300 ps NVT step, then a 1.8 ns NPT step, and
finally, a 10 ns production run with a 2 fs time step, all
performed at 298 K and ambient pressure, using the OPLS all-
atom force field for all molecules including water.50 LINCS
algorithm was used to constrain the bonds involving H
atoms.51 2500 snapshots were randomly extracted from the
trajectories of the production runs.
Each molecular structure is split into two parts: a central

molecule as the solute region and the remaining molecules as
the solvent region. EFP parameters for each solute and solvent
molecule were prepared using the MAKEFP run in the
GAMESS electronic structure package34−36 in a 6-31G* basis
set. Then, the following calculations were conducted for each
molecular system: (1) a full-system EFP calculation provided
electrostatic potentials due to the EFP environment on each
atom in the solute region (also represented as the EFP

fragment); (2) a gas-phase QM energy calculation of the solute
region ignoring the solvent; (3) an EFP energy calculation of
the solvent region ignoring the solute region; and (4) a full-
system QM/EFP energy calculation in which the solute is
represented with QM and the solvent is modeled with EFP.
Using this data, the QM/EFP interaction energy was evaluated
following eq 12 and used as the training label. Note that the
interaction energies do not account for the solute and solvent
deformation energies.
EFP-only calculations were conducted in the LibEFP

software library.47,48 The QM and QM/EFP calculations,
conducted in the Q-Chem electronic structure package,52,53
were performed with the wB97x54/6-31G* level of theory to
match the level of theory used for training ANI-1x. The data
set was randomly shu#ed and split into a ratio of 80:20 for
training and testing, respectively.

3.2. Additional Structures for Testing ANI/EFP Trans-
ferability. To test the transferability of the retrained ANI/
EFP network, additional molecular structures were generated.
None of these structures were used for training the network.
These additional structures can generally be split into three
categories: (1) known solute, known solvent; (2) known
solute, unknown solvent; and (3) unknown solute, known
solvent. For the first category, one ammonia molecule (known
solute) is solvated in ten or hundred ammonia molecules
(known solvent). For the second category, one ammonia
molecule (known solute) is solvated in about ten solvent
molecules of the following: acetic acid, acetonitrile, benzene,
and toluene (unknown solvent). For the last category, random
small organic molecules from the FreeSolv data set32 that were
not a part of the original training/testing data set were taken
(unknown solute) and solvated in 10 water molecules (known
solvent). All of these structures were obtained from the ab
initio MD simulations performed in the Q-Chem electronic
structure package52,53 using the wB97x level of theory with a 6-
31G* basis set. Each system was sampled for 5 ps, with 0.48 fs
time step and with initial velocities corresponding to 298 K, in
the NVE ensemble. 1000 structures were sampled from each
trajectory. This was also to test if energies of the structures
sampled from ab initio MD could be predicted by the network,
since the network was only trained on structures sampled from
classical MD simulations originally.

3.3. Code Availability. Scripts for generating the data set
and for training the ANI/EFP network, as well as the data set
and the best-performing network, are available in the GitHub
repository.55 The repository also contains a tutorial on how to
mimic the workflow of this project. Most of the code to retrain
ANI-1x was taken from the TorchANI tutorials stored on the
TorchANI Web site.1,56

4. RESULTS AND DISCUSSION
4.1. Performance of the ANI/EFP Network on the

Original Data Set. First, we analyze the performance of the
ANI/EFP network in predicting electrostatic and polarization
components of the solute−solvent interaction energies in the
original training data set. Figure 2 shows the regression plot
and the histogram of the network errors versus the QM/EFP
interaction energies of eq 12 on the training data set. Note that
di!erently from the original ANI-1x, the ANI/EFP network
produces the solute−solvent interaction energy as the output.
For reference, Figure S1 in the Supporting Information
provides a comparison of the total interaction energies of all
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systems in the training data set computed with the original
ANI-1x versus the QM/EFP model.
The new ANI/EFP network has an RMSE of 1.318 kcal/

mol. However, this result is quite expected because the
predictions are run over the original data set used for training/
testing. In order to have a less biased analysis, the following
sections analyze the performance of ANI/EFP on the
structures that the network had never seen before.
4.2. Transferability of the ANI/EFP Network. It is

essential to test the transferability of the developed network.
We explored the performance of the ANI/EFP network
applied to a di!erent ensemble of structures, as well as to the
systems in di!erent solvent environments and containing new
solvated molecules. For that, three sets of new structures were
prepared, as explained in Section 3.2. These new structures,
not used for network training, can generally be split into three
categories: (1) known solute, known solvent; (2) known
solute, unknown solvent; and (3) unknown solute, known
solvent. The first set of structures tested whether the network
can accurately predict interaction energies for an ensemble of
structures di!erent from the molecules from the training set.
The second set explores whether training of a solute in some
solvent environments is su"cient to predict its interaction
energies with di!erent types of solvents. The third set
examines whether a solute molecule needs to be included in
the training set for an accurate prediction of its interaction with
the solvent.

The data for the first category, where one ammonia
molecule (known solute) is solvated by ten ammonia
molecules (known solvent), are shown in Figure 3.

RMSE for the ammonia in the ammonia system is 0.680
kcal/mol. The small RMSE value shows that the network can
handle predictions for structures outside the data set. Apart
from the di!erent number of solvent molecules between the
trained and tested structures, the additional disparity was in the
level of theory used to prepare the structures. The former ones
were extracted from classical MD trajectories, while the latter
ones were prepared using ab initio MD simulations. This
suggests that the network can accurately predict the interaction
energies of the structures extracted from the QM dynamics
based on the training set prepared with structures from
classical simulations.
To test the second case, i.e., the interaction of a known

solute with an unknown solvent, we computed interaction
energies of systems consisting of an ammonia molecule
(solute) sequestered within a small bubble of less than ten
solvent molecules of either acetic acid, acetonitrile, benzene, or
toluene. The hypothesis is that using a di!erent solvent should
not be a significant challenge because, in the eyes of the
network, the solvent is represented by only a single number:
the electrostatic potential. Therefore, a specific type of solvent
should not matter if the training data set includes data points
with similar electrostatic potentials. To this end, Figure 4
compares the values of electrostatic potentials at N and H
atoms in ammonia in all structures of the training data set
(shown in red) and the testing data set (shown in blue). As
demonstrated in Figure 4, the training data set provides a
broader distribution of the electrostatic potential values for
both N and H compared to the data set with new solvents,
meaning that the network is expected to accurately predict the
interaction energies in this test set.
The regression plot representing ANI/EFP versus QM/EFP

electrostatic and polarization interaction energies of ammonia
solvated in di!erent solvents is shown in Figure 5. The data in
Figure 5, with an RMSE of 0.56 kcal/mol, confirm the
hypothesis that the network can handle the e!ects of novel
solvent environments if the electrostatic potential calculated on

Figure 2. (a) Regression plot of the ANI/EFP predicted interaction
energies versus the QM/EFP interaction energies for the training data
set. y = x asymptote is shown in black. The density of points is color-
coded to a log scale, with red being the densest region of points and
blue being the least dense. (b) Histogram plot of the ANI/EFP
interaction energy errors for the training data set.

Figure 3. Regression plot of the ANI/EFP network predicted
interaction energies versus the QM/EFP interaction energies for one
ammonia molecule solvated in ten other ammonia molecules. y = x
Asymptote is shown in black. The density of points is color-coded to a
log scale, with red being the densest region of points and blue being
the least dense.
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the atoms is within the range of the training data. We consider
the results of this test as a major success of the ANI/EFP
network, which makes it suitable for modeling a solute in an
arbitrary environment.
As a side note, larger deviations between ANI/EFP and

QM/EFP results for complexes with large (by magnitude)
electrostatic and polarization interaction energies observed in
Figures 3 and 5 are somewhat expected. It should be noted
that such complexes are expected to correspond to structures
with short intermolecular distances that might be on the
repulsive part of the potential energy surface. However, for
these structures, the errors due to the representation of the
electronic density by classical point multipoles are often
significant. Similarly, utilizing electrostatic potentials only at
the solute nuclei in ANI/EFP becomes less accurate for
strongly interacting molecules compared to the QM/EFP
treatment, in which the electrostatic potential due to solvent is

available and interacts with the electron density at the whole
solute molecule. Additionally, strongly interacting complexes
often exhibit significant polarization contributions. In the
present ANI/EFP model, the solvent polarization contribution
to EP is computed at the pure EFP level, i.e., when both solute
and solvent are modeled as EFP fragments. However, in QM/
EFP, the solute is modeled quantum-mechanically such that it
induces a somewhat di!erent field to the solvent compared to
the pure EFP scheme (see discussion near eq 10 and 11). The
discrepancies in the polarization of EFP/EFP vs QM/EFP
representations, and, by formulation, the corresponding
discrepancies of ANI/EFP and QM/EFP, become more
noticeable for strongly interacting complexes.
Finally, we apply the ANI/EFP network to solute molecules

that it has never seen. For that, we generated structures of
random small organic molecules from the FreeSolv data set,32
not included in the original training/testing data set, that were
solvated by 10 water molecules. This data are shown in Figure
6.
Figure 6 demonstrates that the network’s transferability to

solute molecules it has not been trained on is poor. The RMSE
for this trial is 55.47 kcal/mol. This test provides an important
lesson that for better transferability, the training data must be
expanded to include a larger and more diverse set of solute
molecules. Another plausible solution to the problem of the
network’s transferability to di!erent solute molecules is
expanding the training set by including a variety of chemical
functional groups and binding motifs. The validity of this
approach will be explored in future work.

5. CONCLUSIONS
In this work, we developed the ANI/EFP machine-learned
neural network potential that allows a description of long-range
e!ects and solute−solvent interaction energies by combining
the short-range ANI-1x network with the EFP potentials for
describing noncovalent interactions. Electrostatic potentials on
solute atoms are used as an additional parameter in ANI/EFP.
The network is retrained on a relatively small data set of
solvated systems while keeping the weights of the original ANI-

Figure 4. Histogram plot of the electrostatic potentials on the nitrogen and hydrogen atoms of ammonia in the data set used during training (red)
and in the data set of ammonia solvated by small clusters of acetic acid, acetonitrile, benzene, or toluene (blue).

Figure 5. Regression plot of the ANI/EFP network predicted
interaction energies vs the QM/EFP interaction energies for one
ammonia molecule solvated in small clusters of acetic acid,
acetonitrile, benzene, or toluene. y = x Asymptote is shown in
black. The density of points is color-coded to a log scale, with red
being the densest region of points and blue being the least dense.
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1x network fixed. The resulting network successfully predicts
solute−solvent interaction energies for the solute molecules for
which it was trained. Thus, this work stands as a proof of
concept that it is possible to retrain a general atomistic neural
network potential to describe long-range interactions of
specific solute molecules with an arbitrary solvent. However,
such a minimally retrained network fails to predict interaction
energies for the solute molecules not included in the retraining
data set. To achieve generality, the network should be
expanded and include a larger diversity of solute molecules
in the training data.
Alternatively, the electrostatic embedding energies in QM/

MM could be accounted for by a classical polarizable model in
which the solute (QM region) is represented by atomic
charges and polarizabilities.57 In this scheme, the atomic
charges are learned using an electron-equilibration scheme, and
the Thole polarizability model relates the electronic structure
to the response of the solvent electric field.57 On the other
hand, long-range e!ects could be learned with data-driven
models like AIMNet2 utilizing a neural charge equilibration
(NQE) module and message passing iterations.58,59
Two plausible future directions for this work are to improve

the generality of the network by generating a more diverse data
set of solvated systems, especially expanding the solute
functional space. Another less computationally demanding
task is to train the ANI/EFP network for a specific class of
solute−solvent interactions, such as protein−ligand interac-
tions for a set of related ligands, e!ectively using ANI as an
accurate and computationally a!ordable potential incorporated
in multiscale modeling of biological systems.
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