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HODGE-RIEMANN RELATIONS FOR SCHUR CLASSES

IN THE LINEAR AND KÄHLER CASES

JULIUS ROSS AND MATEI TOMA

ABSTRACT. We prove a version of the Hodge-Riemann bilinear relations for Schur poly-

nomials of Kähler forms and for Schur polynomials of positive forms on a complex vector

space.

1. INTRODUCTION

Let (X,ω) be a compact Kähler manifold of dimension d ≥ 2 and let H1,1
R (X) be

its real Dolbeault cohomology group in bi-degree (1, 1). The classical Hodge-Riemann

bilinear relations imply that the quadratic form

Q{ω}d−2 : H1,1
R (X) → R, {α} 7→

∫

X

α2 ∧ ωd−2

is non-degenerate of signature (1, h1,1 − 1). We will summarize this by saying that the

class {ω}d−2 has the Hodge-Riemann property.

When X is a complex torus we may take parallel representatives in the classes {ω}
and {α} and the above statement reduces to its “linear version”, namely that if E is a d-

dimensional complex vector space and ω is a strictly positive (1, 1)-form on E then the

quadratic form

Qωd−2 :

1,1
∧

R

E∗ → R, α 7→
α2 ∧ ωd−2

vol

has signature (1, h1,1 − 1), which is a purely linear algebraic statement (see Section 2.1

for the notation). This has an easy direct proof since we may diagonalize ω with respect to

some appropriate basis of E and immediately obtain the representative matrix of Qωd−2 in

terms of such a basis.

In relation with classical questions arising in convex geometry, Alexandrov considers

in his 1938 paper [Ale38] the situation in the linear set-up where in the expression of

Q the form ωd−2 is replaced by the exterior product ω1 ∧ . . . ∧ ωd−2 of d − 2 strictly

positive (1, 1)-forms ω1, . . . , ωd−2 on E. He proves, by a non-trivial algebraic argument,

that the signature of the corresponding form Qω1∧...∧ωd−2
is still (1, h1,1 − 1) in this case.

Similarly, in [Gro90] Gromov proves the “Kähler version” of this statement, namely that

if ω1, . . . , ωd−2 are Kähler forms on the compact complex manifold X then

Q{ω1}...{ωd−2} : H1,1
R (X) → R, {α} 7→

∫

X

α2 ∧ ω1 ∧ . . . ∧ ωd−2

has signature (1, h1,1 − 1).
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In our previous work on this subject, we show in [RT19] that if λ = (λ1, . . . , λN ) is a

partition of d− 2 with 0 ≤ λN ≤ . . . ≤ λ1 ≤ e, the Schur classes sλ(E) of ample vector

bundles E of rank e on X also have the Hodge-Riemann property. Here the Schur class

sλ(E) is defined in terms of the Chern classes ci := ci(E) by

sλ(E) := det











cλ1 cλ1+1 · · · cλ1+N−1

cλ2−1 cλ2 · · · cλ2+N−2

...
...

...
...

cλN−N+1 cλN−N+2 · · · cλN











∈ Hd−2,d−2
R (X).

Note that the hypothesis that E is ample necessarily implies that X is projective. More-

over, if E splits as a direct sum of line bundles E = ⊕e
j=1Lj then sλ(E) is a symmetric

homogeneous polynomial in the Chern classes aj := c1(Lj) of the line bundles Lj . We

will denote this polynomial by sλ(a1, . . . , ae). Our result is compatible with that of Gro-

mov when taking e = d − 2 and the partition λ = (d − 2), for then sλ = cd−2 and

sλ(E) = c1(L1) ∧ · · · ∧ c1(Ld−2).
These considerations allow us to formulate both a linear version and a Kähler version

of our main result in [RT19] and the main purpose of this paper is to prove these versions.

Theorem 1.1. Let d ≥ 2, e ≥ 1 be two integers and λ = (λ1, . . . , λN ) be a partition of

d − 2 with 0 ≤ λN ≤ . . . ≤ λ1 ≤ e. Let further E be a d-dimensional complex vector

space and X be a d-dimensional compact complex manifold. The following statements

hold.

(1) If ω1, . . . , ωe are strictly positive (1, 1)-forms on E then sλ(ω1, . . . , ωe) has the

Hodge-Riemann property, i.e. the quadratic form

Qsλ(ω1,...,ωe) :

1,1
∧

R

E∗ → R, α 7→
α2 ∧ sλ(ω1, . . . , ωe)

vol

has signature (1, h1,1 − 1).
(2) If ω1, . . . , ωe are Kähler forms on X then sλ({ω1}, . . . , {ωe}) has the Hodge-

Riemann property, i.e. the quadratic form

Qsλ({ω1},...,{ωe}) : H
1,1
R (X) → R, {α} 7→

∫

X

α2 ∧ sλ(ω1, . . . , ωe)

has signature (1, h1,1 − 1).

Outline of the proof. The stages of our proof run as follows. We first prove (2) in the

case that X is a torus with maximal Picard rank. From this one can deduce the statement

(1) rather easily by taking E as the tangent space at a point in such a torus and considering

the parallel translates of the positive (1, 1) forms ωj on E which become Kähler forms on

X . From this linear case it is possible to deduce the general case of (2) using a pointwise

to global argument.

So the main work is done in proving (1) when X is a torus with maximal Picard rank.

For such an X , any Kähler form can be perturbed to a rational Kähler form. From our

previous work, we know that if each ωj is rational then Q := Qsλ({ω1},...,{ωe}) has the

Hodge-Riemann property, and thus we deduce that even without this rationality assumption

Q has the weak Hodge-Riemann property, by which we mean that it is a limit of intersection

forms with the Hodge-Riemann property.

Of course that is not enough, so to prove that in fact Q has the Hodge-Riemann property

we will consider what happens when replacing each ωi with ωi + th for some ample class
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h and small parameter t. This leads us to various families of bilinear forms with the

weak Hodge-Riemann property. In Section 3 we develop a linear algebra machine that

considers such families and gives carefully constructed conditions under which the full

Hodge-Riemann property can be shown to hold.

We note that this proof of the linear case still uses geometry, as it relies on our previous

work and thus ultimately on the Hard-Lefschetz Theorem. It would be interesting to know

if a purely linear algebra proof is possible.

1.1. Combinations of Schur Classes. It is natural to ask if other characteristic classes

than the Schur classes given in Theorem 1.1 enjoy the Hodge-Riemann property. Our

linear algebra machine can also be used to give a condition that guarantees that this is the

case for certain linear combinations of Schur classes. To describe this fix d ≥ 2, N ≥ d−2
and e ≥ 1. Then for each partition λ of d− 2 we can consider the following two objects

(1) The Schur polynomial sλ(x1, . . . , xe),
(2) The Schubert class Cλ inside the Grassmannian Grass(N,CN+e) of N dimen-

sional linear subspaces of CN+e.

Similarly we can consider linear combinations of these objects. To this end we will con-

sider sums over all partitions λ = (λ1, · · · , λn) of d − 2 such that e ≥ λ1 ≥ λ2 ≥ · · · ≥
λn > 0. We order these partitions in some arbitrary but fixed way as λ(1), . . . , λ(k) where

k is the number of such partitions.

Then for non-negative real numbers x = (x1, . . . , xk) that sum to 1 consider the poly-

nomial

Γx :=
∑

i

xisλ(i) .

We say that Γx has the universal Hodge-Riemann property if for all complex manifolds

X of dimension d − 2 and all ample vector bundles E on X of rank e the bilinear form

induced by the class Γx(E) on H1,1
R (X) has the Hodge-Riemann property. Similarly we

say that Γx has the Hodge-Riemann property in the linear (resp. Kähler) case if the analog

of the conclusion of Theorem 1.1(1) (resp. Theorem 1.1(2)) holds for Γx.

On the other hand for x as above we say that x is irreducibly representable if all the xi

are rational and there exist positive integers N ≥ d− 2 and m such that the cycle

m
∑

i

xiCλ(i)

inside Grass(N,CN+e) is algebraically equivalent to an irreducible cycle.

Theorem 1.2. Let B denote the set of all x that are irreducible representable. Then for all

x ∈ B the following hold

(1) The class Γx has the universal Hodge-Riemann property.

(2) The class Γx has the universal Hodge-Riemann property in the linear case

(3) The class Γx has the universal Hodge-Riemann property in the Kähler case.

We emphasize that the statement holds for points in the closure of B, and passing from

B to its closure is non-trivial as the Hodge-Riemann property for bilinear forms is an open

but not closed condition.

Outline of the proof. For points inside B we use the irreducible cycle algebraically equiv-

alent to m
∑

i xiCλ(i) to produce a morphism π : Ĉ → X from an irreducible variety Ĉ

and a nef vector bundleU on Ĉ so that π∗(cn−2(U)) = Γx(E). Essentially by our previous

work, this is enough to prove the statement in this case. So by continuity for every x in the
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closure of B we know that the bilinear form associated to Γx has the weak Hodge-Riemann

property, and we then apply the same linear algebra machinery discussed above.

Comparison with previous work: Our first work in this subject is [RT19] in which we

prove the Hodge-Riemann property for Schur classes of ample bundles. We continue this

in [RT21] in which we emphasize more the importance of the weak Hodge-Riemann prop-

erty (which is much easier to prove) and from this we develop various inequalities among

characteristic classes of nef vector bundles. The linear algebra machinery we develop in

this paper is an abstraction of the arguments in [RT19]. In fact, combining what is written

here with [RT21] reproves the main results of [RT19].

We have already mentioned Gromov’s paper [Gro90] who following work of Alexan-

drov in the linear case [Ale38] initiated the investigation into what classes on Kähler man-

ifolds have the Hard-Lefschetz and Hodge-Riemann properties. This has since been taken

up by others, for instance [Cat08, DN06, DN13].

The idea that Schur classes of ample vector bundles have some kind of positivity origi-

nates in the work of Fulton-Lazarsfeld [FL83] who prove that top-degree Schur classes of

ample vector bundles are positive. All our results concerning Hodge-Riemann properties

of characteristic classes of ample vector bundles rely on this statement.

Acknowledgements: The first author was supported by NSF grants DMS-1707661 and

DMS-1749447 during this work.

2. PRELIMINARIES

2.1. Linear Algebra Notation. Let E be a d-dimensional complex vector space. We

denote by E∗ := HomC(E,C), Ē∗ := HomC−antilin(E,C) and by
∧p,q E∗ the spaces

of (1, 0), (0, 1) and (p, q)-forms on E, respectively. Recall that
∧p,q

E∗ is the image

of
∧p

E∗ ⊗
∧q

Ē∗ in
∧p+q

(E∗ ⊕ Ē∗). The conjugation operator E∗ → Ē∗ naturally

extends for each bidegree (p, q) as an operator
∧p,q E∗ →

∧q,p E∗ and when p = q
we denote by

∧p,p
R E∗ its space of fixpoints; it is the space of real (p, p)-forms on E.

Anticipating our application when E will be the holomorphic tangent space at a point

of a complex manifold, we denote a basis of E by ( ∂
∂z1

, . . . , ∂
∂zd

) and its dual basis by

(dz1, . . . , dzd). We have a canonical orientation on E given by the top degree form vol :=
idz1 ∧ dz̄1 ∧ . . . ∧ idzd ∧ dz̄d.

2.2. R-twisted vector bundles. Given a vector bundle E on a manifold X and a class

δ ∈ H1,1
R (X) we denote theR-twisted bundle by E〈δ〉 which is a formal object understood

to have Chern classes defined by the rule

cp(E〈δ〉) :=

p
∑

k=0

(

e − k

p− k

)

ck(E)δp−k for 0 ≤ p ≤ e. (2.1)

Equivalently, if x1, . . . , xe are the Chern roots of E then x1+δ, . . . , xe+δ are by definition

the Chern roots of E〈δ〉. The reader is referred to [Laz04, Section 6.2, 8.1.A] or [RT19,

Sec. 2.4] for the basic properties of these objects.

2.3. Quadratic Forms and the (weak) Hodge-Riemann property. Let V be a real vec-

tor space of finite dimension ρ and

Q : V × V → R

be a symmetric bilinear form on V . We write Q(v) := Q(v, v) for v ∈ V for the associated

quadratic form.
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Definition-Lemma 2.1 (The Hodge-Riemann property). Suppose there exists an h ∈ V
such that Q(h) > 0. Then the following statements are equivalent, in which case we say

that Q has the Hodge-Riemann property.

(1) Q has signature (1, ρ− 1).
(2) There exists a subspace of dimension ρ− 1 in V on which Q is negative definite.

(3) For any h′ ∈ V such that Q(h′) > 0, the restriction of Q to the primitive space

Vh′ := {v ∈ V : Q(v, h′) = 0}

is negative definite.

(4) For any h′ ∈ V such that Q(h′) > 0 and all v ∈ V the Hodge-Index inequality

Q(v)Q(h′) ≤ Q(v, h′)2 (2.2)

holds, with equality iff v is proportional to h′.

Proof. (1) ⇒ (2) and (3) ⇒ (1) and (4)⇒ (3) are immediate, and (1)⇒ (3) comes from

Sylvester’s law of inertia. For (3)⇒ (4): Given v ∈ V choose λ so Q(v + λh′, h′) = 0.

By (3), this implies Q(v + λh′, v + λh′) ≤ 0 with equality iff v + λh′ = 0. Rearranging

gives (4). �

Definition 2.2. When Q has the Hodge-Riemann property and h ∈ V is such that Q(h) >
0 we will say that Q has the Hodge-Riemann property with respect to h.

Note that when Q has the Hodge-Riemann property, choosing an element h in the set

{v ∈ V | Q(v) > 0} serves to distinguish one of the two connected components of this set

whose elements may be looked upon as “positive” vectors for Q.

Definition 2.3. We will say that Q has the weak Hodge-Riemann property if Q is a limit

of symmetric bilinear forms on V that have the Hodge-Riemann property. If moreover an

elementh ∈ V exists such thatQ(h) > 0, we will say that Q has the weak Hodge-Riemann

property with respect to h.

Lemma 2.4. Let Q be symmetric bilinear form on V as before and suppose that an element

h ∈ V exists such that Q(h) > 0. Then Q has the weak Hodge-Riemann property with

respect to h if and only if

Q(v)Q(h) ≤ Q(v, h)2 for all v ∈ V.

Proof. If Q satisfies the condition Q(h) > 0 and is also the limit of a sequence (Qn)n∈N

of bilinear forms having the Hodge-Riemann property, then we may clearly suppose that

the forms Qn have the Hodge-Riemann property with respect to h and thus they satisfy

the Hodge-Index inequality Qn(v)Qn(h) ≤ Qn(v, h)
2 for all v ∈ V . It follows that Q

satisfies the Hodge-Index inequality too.

Conversely, if Q satisfies the condition Q(h) > 0 and the Hodge-Index inequality

Q(v)Q(h) ≤ Q(v, h)2 for all v ∈ V , then diagonalizing Q with respect to a basis having

h as first vector leads to a form where all diagonal entries but the first one are non-positive.

Thus Q has the weak Hodge-Riemann property with respect to h. �

2.4. Previous Results for Vector Bundles. The proof we give of our main result will

depend on our previous work on Schur classes of vector bundles. Here we state and sketch

the proofs of two results from [RT19] and [RT21] which will be used in an essential way

in Proposition 4.7. (In fact we will use slight generalizations that allow the base space to

be irreducible rather than smooth.)
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Theorem 2.5. [RT21, Theorem 7.2] Let X be a complex projective manifold of dimension

d, let E be a Q-twisted nef vector bundle on X and let λ be a partition of d− 2. Then the

quadratic form

Qsλ(E) : H
1,1
R (X) → R, {α} 7→

∫

X

α2 ∧ sλ(E)

has the weak Hodge-Riemann property.

Sketch Proof. Rather than repeat the proof here we merely indicate the main ingredi-

ents. The first step is to observe that if h is an ample class on X and E is ample then

Qsλ(E)(h) > 0 by Fulton-Lazarsfeld [FL83].

We start by proving the statement when E has rank d − 2 and for the Chern class

cd−2(E). This is done by a continuity argument, replacingE with theR-twist E〈th〉 where

h is an ample class on X and t > 0 is real. By the Bloch-Gieseker Theorem (which relies

on the Hard-Lefschetz Theorem on the projective bundle P(E)) we know that Qcd−2(E〈th〉)

is always non-degenerate, and so its signature does not change as t > 0 varies. But the

classical Hodge-Riemann bilinear relations for hd−2 imply that this signature is of the

expected form for t large, completing the proof in this case.

The general case then follows from this by a geometric construction that provides a

morphism π : ĈE → X from an irreducible variety ĈE of dimension n and a nef bundle

U on ĈE of rank n− 2 so that π∗cn−2(U) = sλ(E) (see Section 4.1 for a brief discussion

of this construction in the case that E splits as a sum of line bundles). Then the weak

Hodge-Riemann property for sλ(E) follows from that for cn−2(U). �

Another result that we will need is the following inequality on Chern classes of ample

vector bundles.

Theorem 2.6. [RT19, Theorem 3.2][RT21, Theorem 10.2] Let X be a complex projective

manifold of dimension d, let E be a nef vector bundle on X and h be an ample class on X .

Then for all α ∈ H1,1(X) it holds that
∫

X

α2cd−2(E)

∫

X

hcd−1(E) ≤ 2

∫

X

αhcd−2(E)

∫

X

αcd−1(E). (2.3)

Sketch Proof. The statement is trivial unless the rank of e is at least d − 1. Consider the

productX ′ := X×P1 and the bundleE′ := E⊠OP1(1). Then Theorem 2.5 says that bilin-

ear form Qcd−1(E′) has the weak Hodge-Riemann property on H1,1
R (X ′) = H1,1

R (X)⊕R,

so in particular satisfies the Hodge-index inequality. Applying this to a suitable class in

H1,1
R (X ′) (see the proof of [RT21, Theorem 10.2]) gives (2.3). �

3. AUGMENTATION

Suppose that Rt for t ∈ R is a family of bilinear forms on a fixed vector space V each

of which has the weak Hodge-Riemann property. In this section we describe conditions on

this family under which it is possible to deduce that R0 actually has the Hodge-Riemann

property (perhaps after restricting to a certain subspace of V ). For lack of a better term we

call this process “augmentation” which is, in the end, nothing but a formal piece of linear

algebra.

To describe this more precisely, let W be a finite dimensional vector space and consider

V := W ⊕ R.
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To ease notation, let ζ be a vector that spans the extra factor of R, so each β ∈ V can be

written as

β = α+ λζ for α ∈ W and λ ∈ R.

Now suppose Rt for t ∈ R is a family of bilinear forms on V that we assume is differen-

tiable with respect to t, and write R′
t for the derivative. We also fix some non-zero element

h ∈ W .

3.1. Augmentation 1.

Definition 3.1. We say that Rt has property (A) if the following hold

(A1) R0(h) > 0 and R′
0(h) > 0.

(A2) For |t| ≪ 1Rt has the weak Hodge-Riemann property with respect to h, i.e.

Rt(β)Rt(h) ≤ Rt(β, h)
2 for all β ∈ V.

(A3) The following inequality holds

R′
0(β)R0(h) ≤ 2R′

0(β, h)R0(β, h) for all β ∈ V.

(A4) There exists some c = cR ∈ R such that R′
0(β, ζ) = cR0(β, h) for all β ∈ V .

(A5) R0(ζ, h) > 0.

Remark 3.2. The reader should just consider these as abstract properties of the family

Rt. In our application later (A2) will follow from Theorem 2.5 and (A3) will follow from

Theorem 2.6.

Theorem 3.3. Let Rt be family bilinear forms on V that has property (A). If R′
0 has the

Hodge-Riemann property with respect to h then R0 also has the Hodge-Riemann property

with respect to h.

Proof. Note that we are assuming (A2) that R0 has the weak-Hodge Riemann property,

and the task is to show that it actually has the Hodge-Riemann property, and by (A1) we

know R0(h) > 0. So suppose β ∈ V is such that

R0(β, h) = 0 = R0(β). (3.1)

Then the task is to show that β = 0.

Step 1: We claim that

R′
0(β) = 0. (3.2)

To prove this consider

f(t) := Rt(β)Rt(h)− (Rt(β, h))
2 . (3.3)

By (A2), f(t) ≤ 0 for all |t| ≪ 1 and (3.1) implies f(0) = 0. Thus

0 = f ′(0) = R0(β)R
′
0(h) +R′

0(β)R0(h)− 2R0(β, h)R
′
0(β, h) = R′

0(β)R0(h)

which implies the claim (3.2) as R0(h) > 0 by (A1).

Step 2: Now we use the assumption that R′
0 has the Hodge-Riemann property, which

in particular implies it is non-degenerate. Thus there exists a γ ∈ V that is dual to the

linear map R0(·, h), i.e. such that

R′
0(δ, γ) = R0(δ, h) for all δ ∈ V. (3.4)

Observe that since R0(h) > 0 we know that γ 6= 0.
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Step 3: We next claim that

R′
0(β, h)R0(γ, h) = 0. (3.5)

To see this consider

g(s) := R′
0(β + sγ)R0(h)− 2R′

0(β + sγ, h)R0(β + sγ, h).

By (A3) we have g(s) ≤ 0 for all s, and by (3.1,3.2) we know g(0) = 0. Thus

0 = g′(0) = 2R′
0(β, γ)R0(h)− 2R′

0(β, h)R0(γ, h)− 2R′
0(γ, h)R0(β, h)

= 2R0(β, h)R0(h)− 2R′
0(β, h)R0(γ, h) (by (3.4) and (3.1))

= −2R′
0(β, h)R0(γ, h) (by (3.1) again)

proving the claim.

Step 4: We next show that β and γ are proportional, i.e. there exists a κ ∈ R such that

β = κγ.

Suppose first that R′
0(β, h) = 0. Recall we already know from Step 1 that R′

0(β) = 0
and by (A1) R′

0(h) > 0. Thus since R′
0 is assumed to have the Hodge-Riemann property

we deduce that β = 0 so the Claim certainly holds with κ = 0.

So we may assume R′
0(β, h) 6= 0 and so by (3.4), R′

0(γ) = R0(γ, h) = 0 by Step 3.

Thus in summary, the classes β and γ both lie in ker(R0(·, h)) and also in the null cone

of R′
0. Recall R′

0 has signature (1, dimV − 1) and by (A3) is negative semidefinite on

ker(R0(·, h)). But this is only possible if β is proportional to γ (this is a formal statement

about such bilinear forms that for completeness we include in Lemma 3.4). This proves

the claim that β = κγ.

Step 5: We are now ready to complete the proof by observing that

κR0(ζ, h) = κR′
0(ζ, γ) (by definition of γ in (3.4))

= R′
0(ζ, β) (as β = κγ)

= cR0(β, h) (by (A4))

= 0 (by our hypothesis on β in (3.1))

But (A5) tells us that R0(ζ, h) > 0, so we must have κ = 0 and hence β = 0 completing

the proof. �

Lemma 3.4. Let Q be a bilinear form on a finite dimensional vector space V with the

Hodge-Riemann property. Let V ′ ⊂ V be a subspace on which Q is negative semidefinite.

Then if β, γ ∈ V ′ satisfy Q(β) = Q(γ) = 0 and γ 6= 0 then β = κγ for some κ ∈ R.

Proof. Let h ∈ V be such that Q(h) > 0. For t ∈ R we have β + tγ ∈ V ′ and hence

0 ≥ Q(β + tγ) = 2tQ(β, γ).

Since this holds for all t we conclude Q(β, γ) = 0. Thus we actually have

0 = Q(β + tγ) for all t ∈ R.

If Q(γ, h) = 0 then as Q(γ) = 0 and Q has the Hodge-Riemann property we would have

γ = 0 which is absurd. So Q(γ, h) 6= 0. Thus we may find t0 so Q(β+ t0γ, h) = 0. Since

also Q(β+ t0γ) = 0 we deduce from the Hodge-Riemann property of Q that β+ t0γ = 0
and we are done. �
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3.2. Recursive version.

Theorem 3.5. Fix an integer j ≥ 2 and let (Ri,t)1≤i≤j be a sequence of families of

bilinear forms on V with the following properties:

(1) For i ≥ 2 the families Ri,t have property (A).
(2) For each i ≥ 2 there exists a positive constant Ci such that

R′
i,0 = CiRi−1,0. (3.6)

(3) R1,0|W = 0.
(4) R2,0|W has the Hodge-Riemann property with respect to h.

(5) The constant cR2 in condition (A4) for R2,t is non-zero.

Then the forms Ri,0 have the Hodge-Riemann property with respect to h for all i ∈
{2, . . . , j}.

Proof. We prove the statement by induction on i starting with i = 2. The inductive step

follows from Theorem 3.3 and (3.6). So we only have to show that R2,0 has the Hodge-

Riemann property under our hypotheses.

Assume for contradiction that R2,0 does not have the Hodge-Riemann property on V .

Since it does have this property on W , there must exist an element β ∈ V of the form

β = α+ ζ with α ∈ W such that

R2,0(β, h) = 0 = R2,0(β). (3.7)

Then we get by condition (A4) for R2,t on one hand

R′
2,0(β, ζ) = cR2R2,0(β, h) = 0 (3.8)

and by Step 1 of the proof of Theorem 3.3 on the other hand

R′
2,0(β) = 0. (3.9)

Now by (3.6) we may rewrite (3.8) and (3.9) as a system
{

R1,0(β, ζ) = 0,
R1,0(β) = 0

(3.10)

which using the vanishing of R1,0 on W translates into
{

R1,0(α, ζ) +R1,0(ζ, ζ) = 0
2R1,0(α, ζ) +R1,0(ζ, ζ) = 0.

(3.11)

This implies R1,0(ζ, ζ) = 0 which again by (3.6) and by condition (A4) for R2,t entails

cR2R2,0(ζ, h) = 0.

But since cR2 is supposed to be non-zero this contradicts condition (A5) for R2,t. �

3.3. Augmentation 2. It turns out that for the applications we have in mind the above

recursive form of the augmentation is not enough, and we will need another form of aug-

mentation that makes hypotheses on the second derivative but with a weaker conclusion.

We continue with the notation above, so Rt is a family of bilinear forms on the vector

space V = W ⊕ Rζ but we ask it to be twice differentiable in t this time, and h ∈ W is

fixed.

Definition 3.6. We say that Rt is a has property (B) if the following hold

(B1) R0(h) > 0.

(B2) For |t| ≪ 1Rt has the weak-Hodge Riemann property with respect to h, i.e.

Rt(β)Rt(h) ≤ Rt(β, h)
2 for all β ∈ V.
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(B3) For |t| ≪ 1 the following inequality holds

R′
t(β)Rt(h) ≤ 2R′

t(β, h)Rt(β, h) for all β ∈ V.

(B4) R′′
0 (α, ζ) = 2R′

0(α, h) for all α ∈ W .

(B5) R′′
0 (ζ, ζ) = 2R0(h).

Theorem 3.7. Let Rt be family bilinear forms on V that has property (B). If R′′
0 has

the Hodge-Riemann property with respect to h then the restriction R0|W has the Hodge-

Riemann property with respect to h.

Proof. We are assuming (B2) that R0 has the weak-Hodge Riemann property, and since

h ∈ W (B1) implies that R0|W also has the weak Hodge-Riemann property. Thus the

task is to show that it actually has the Hodge-Riemann property, and by (B1) we know

R0(h) > 0. So suppose α ∈ W is such that

R0(α, h) = 0 = R0(α). (3.12)

Then task is to show that α = 0.

Step 1: We claim that

R′
0(α) = 0. (3.13)

which is proved exactly as in Step 1 of the proof of Theorem 3.3 and is omitted.

Step 2: Consider now

g(t) := R′
t(α)Rt(h)− 2R′

t(α, h)Rt(α, h).

Then by (3.12,3.13) we have g(0) = 0 and (B3) implies g(t) ≤ 0 for |t| ≪ 1. Thus

0 = g′(0) = R′′
t (α)Rt(h) +R′

t(α)R
′
t(h)− 2R′′

t (α, h)Rt(α, h)− 2R′
t(α, h)

2|t=0

= R′′
0 (α)R0(h)− 2R′

0(α, h)
2

=
1

2

(

R′′
0 (α)R

′′
0 (ζ)−R′′

0 (α, ζ)
2
)

(by (B4,B5))

Thus

R′′
0 (α)R

′′
0 (ζ) = R′′

0 (α, ζ)
2.

Now we are assuming that R′′
0 has the Hodge-Riemann property with respect to h, and

since R′′
0 (ζ) = 2R0(h) > 0 the Hodge-index inequality for R′′

0 also holds with respect

to ζ (see Definition-Lemma 2.1(4)). So we deduce that α is proportional to ζ, but since

α ∈ W this is only possible if α = 0 and we are done. �

Remark 3.8. The following example shows that a naive approach to get an Augmentation

1 type result like Theorem 3.3 is bound to fail (that is, some additional hypothesis like

those appearing in condition (A) are really needed). Let Rt be a family of quadratic forms

on a vector space V of dimension n ≥ 1 as above and suppose that there exists a non-zero

element h ∈ V such that:

(1) Rt has the weak Hodge-Riemann property with respect to h for |t| ≪ 1,

(2) Rt has the Hodge-Riemann property for |t| ≪ 1 and t 6= 0,

(3) R′
t has the Hodge-Riemann property with respect to h for |t| ≪ 1.

Then eitherR0 has the Hodge-Riemann property or the kernelN ofR0 is one-dimensional.

Moreover the latter case can happen as soon as n > 1.
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Proof. By assumption dimN ≥ 1. Let β be any vector in N . We consider

f(t) := Rt(β)Rt(h)− (Rt(β, h))
2 . (3.14)

Then f(t) ≤ 0 for all |t| ≪ 1 and f(0) = 0. Thus

0 = f ′(0) = R0(β)R
′
0(h) +R′

0(β)R0(h)− 2R0(β, h)R
′
0(β, h) = R′

0(β)R0(h)

and so β must lie in the null coneC0
R′

0
:= {α ∈ V | R′

0(α) = 0} of R′
0. But by Lemma 3.4

C0
R′

0
cannot contain two-dimensional vector subspaces since R′

0 has the Hodge-Riemann

property and the first assertion follows.

For the second assertion it is enough to consider the following family of quadratic forms

on Rn:

Rt(x) = (1 + t)x2
1 + 2x1x2 + (1 − t)x2

2 +

n
∑

i=3

(−1− t)x2
i .

�

4. SCHUR POLYNOMIALS OF KÄHLER FORMS ON TORI WITH MAXIMAL PICARD

NUMBER AND THE LINEAR CASE OF THEOREM 1.1

The main result of this section is the following Theorem 4.1 which is Theorem 1.1(2)

in the special case when X is a torus with maximal Picard number, i.e. X is a torus T

such that N1
R(T ) = H1,1

R (T ). From it we will easily be able to deduce in Subsection 4.4

the linear case of our main result , i.e. Theorem 1.1(1). Note that tori with maximal Pi-

card number exist in every dimension, e.g (C/Z[i])d, see [Bea14] for results on projective

manifolds with maximal Picard number.

Theorem 4.1. Let d ≥ 2, e ≥ 1 be two integers and λ = (λ1, . . . , λN ) be a parti-

tion of d − 2 with 0 ≤ λN ≤ . . . ≤ λ1 ≤ e. Let further T be a d-dimensional com-

plex torus with maximal Picard number and let ω1, . . . , ωe be Kähler forms on T . Then

sλ({ω1}, . . . , {ωe}) has the Hodge-Riemann property.

Since the statement is certainly satisfied when 2 ≤ d ≤ 3 or when e = 1, we will

suppose for the rest of this section that d ≥ 4 and e ≥ 2.

We will work in the following set-up:

• X is a d-dimensional compact complex manifold (which we will later take to be

the torus T ).

• e is a positive integer and λ = (λ1, . . . , λN ) a partition of d − 2 with 0 ≤ λN ≤
. . . ≤ λ1 ≤ e.

• W := H1,1
R (X).

• h is a fixed ample class on X .

• X̂ := X × Pd and ζ will denote the hyperplane class on Pd.

• V := H1,1
R (X̂) = W ⊕ Rζ.

• For a vector a := (a1, . . . , ae) ∈ V ⊕e we denote by sλ(a) its Schur polyno-

mial sλ(a1, . . . , ae) as defined in the Introduction and by s
(j)
λ (a) its derived Schur

polynomials that are defined by requiring

sλ(a1 + x, . . . , ae + x) =

|λ|
∑

j=0

s
(j)
λ (a)xj for all x ∈ V
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(this notation and terminology originates in [RT19]). Thus

s
(j)
λ (a) ∈ H

|λ|−j,|λ|−j
R (X̂) for 0 ≤ j ≤ |λ|,

and for j outside this range we set s
(j)
λ (a) to be zero.

• ω := (ω1, . . . , ωe) ∈ W⊕e is a vector of Kähler classes on X .

Definition 4.2. Define ω̂j := ωj + ζ for 1 ≤ j ≤ e and ω̂ := (ω̂1, . . . , ω̂e). Define a

symmetric bilinear form Qi(·, ·;ω) form on V by

Qi(β, β
′) := Qi(β, β

′;ω) :=

∫

X̂

βsλ(ω̂)ζ
ihd−iβ′

for β, β′ ∈ V . This makes sense for 0 ≤ i ≤ d. For i outside this range we set Qi = 0.

Remark 4.3. This definition is made clearer if one considers the expansion sλ(ω̂) =
∑

j s
(j)
λ (ω)ζj which reveals

Qi(β, β
′) =











∫

X
βs

(d−i)
λ (ω)hd−iβ′ if β, β′ ∈ W

∫

X
βs

(d−i−1)
λ (ω)hd−i if β ∈ W and β′ = ζ

∫

X
s
(d−i−2)
λ (ω)hd−i if β = β′ = ζ

(4.1)

In fact one can equally take the definition of Qi to be (4.1) and then require symmetry and

extend linearly in each variable. Note that with our conventions the three formulas hold

for all i but they may give non-zero values only when 2 ≤ i ≤ d for the first one, when

1 ≤ i ≤ d− 1 for the second one and when 0 ≤ i ≤ d− 2 for the third one.

By definition

Qi(β, ζ) = Qi+1(β, h) for β ∈ V and all i, (4.2)

and from this it is clear that for α ∈ W , λ ∈ R and all i

Qi(α+ λζ, h) = Qi(α, h) + λQi+1(h), (4.3)

Qi(α+ λζ) = Qi(α) + 2λQi+1(α, h) + λ2Qi+2(h). (4.4)

Definition 4.4. Under the above notations we set for t ∈ R and for 0 ≤ i ≤ d

Ri,t :=

i
∑

k=0

(

d− i+ k

k

)

tkQi−k.

For i outside the given range we set Ri,t = 0.

In particular we have

Ri,t = Qi + (d− i+ 1)tQi−1 +O(t2)

for 0 ≤ i ≤ d. Moreover a direct computation shows that

R′
i,t = (d− i+ 1)Ri−1,t (4.5)

for all i and all t.
Our aim is to apply the augmentation results from the previous section to the families

Ri,t, so we will need to check that the various hypotheses hold true. For example we will

need to show that each Ri,t has the weak Hodge-Riemann property. Note that this is a

closed condition, so as long as we assume that we can perturb each ωj to a rational Kähler

class then we may assume this rationality, and then this weak Hodge-Riemann property

will follow by realizing Ri,t geometrically as we do in the next section.
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4.1. Geometric realization of the forms Ri,t. In this subsection we show how one may

realize the forms Ri in the case that each ωj is rational using a classical construction which

relates Schur classes and degeneracy loci of morphisms of vector bundles.

The rationality assumption we need is that the classes ωj are the (real) Chern classes of

line bundles Lj on X . That is, we suppose that ωj = c1(Lj) ∈ H1,1
R (X) for 1 ≤ j ≤ e

and consider the vector bundle

E :=

e
⊕

j=1

Lj .

By possibly adding zeroes to the partition λ we may take its length N to be arbitrarily

large. We will suppose here that N ≥ d − 2. Set ai := e + i − λi for 1 ≤ i ≤ N ,

fix a vector space H of dimension e + N and a nested sequence of subspaces 0 ( A1 (
A2 ( · · · ( AN ⊂ H with dim(Ai) = ai. Next set F := H∗ ⊗ E = Hom(H,E), let

f + 1 = rk(F ) = e(e+N) and define

C̃E := {σ ∈ Hom(H,E) : dimker(σ(x)) ∩ Ai ≥ i for all i = 1, . . . , N and x ∈ X}

which is a cone in F . Set further ĈE := [C̃E ] ⊂ Psub(F ). Finally we denote by π :
Psub(F ) → X the projection morphism and by U the quotient bundle of π∗F on Psub(F )
which sits in the tautological exact sequence

0 → OPsub(F )(−1) → π∗F → U → 0. (4.6)

We note that

H1,1
R (Psub(F )) = π∗H1,1

R (X)⊕ Rξ = π∗W ⊕ Rξ,

where ξ := c1(OPsub(F )(1)). We also note that ĈE is locally a product with irreducible

fibers over X and that dim(ĈE) = f + 2 (the notation thus far follows that of [RT19,

Section 5]).

Proposition 4.5. Let 0 ≤ i ≤ d. Then under the isomorphism V = W ⊕ Rζ → π∗W ⊕

Rξ = H1,1
R (Psub(F )) acting as π∗ on W and mapping ζ onto ξ, the bilinear form Ri,t on

V corresponds to the form

Si,t(β, β
′) :=

∫

ĈE

βcf−(d−i)(U〈π∗(th)〉)π∗(h)d−iβ′

on H1,1
R (Psub(F )). Here we use the notation U〈δ〉 for an R-twisted vector bundle as

described in Section 2.2.

Proof. Note first that U has rank f . So for any δ ∈ H1,1
R (Psub(F ))

cp(U〈δ〉) :=

p
∑

k=0

(

f − k

p− k

)

ck(U)δp−k for 0 ≤ p ≤ f. (4.7)

Replacing k by p− j and putting p = f − (d− i) and δ = π∗(th) gives

cf−(d−i)(U〈π∗(th)〉) :=

f−(d−i)
∑

j=0

(

(d− i) + j

j

)

tjcf−(d−i)−j(U)π∗(h)j . (4.8)
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Plugging this into the expression of Si,t we obtain

Si,t(β, β
′) =

∫

ĈE

ββ′

f−(d−i)
∑

j=0

(

(d− i) + j

j

)

tjcf−(d−i)−j(U)π∗(h)j+d−i

=

∫

ĈE

ββ′
i

∑

j=0

(

(d− i) + j

j

)

tjcf−(d−i)−j(U)π∗(h)j+d−i,

where we have used that our choice of N implies f − d ≥ 0, hence f − (d − i) ≥ i, and

also that hj+d−i = 0 for j > i for dimension reasons.

By comparing to the definition of Ri,t we thus see that in order to prove the Proposition

it suffices to check that for 0 ≤ l ≤ d the bilinear forms Ql on V correspond to the forms

(β, β′) 7→

∫

ĈE

ββ′cf−(d−l)(U)π∗(h)d−l (4.9)

on H1,1
R (Psub(F )) . To check this we will use the identity

π∗(cf−(d−j)(U)|
ĈE

) = s
(d−j)
λ (E)

which holds for 2 ≤ j ≤ d by [RT19, Proposition 5.2] as well as the following formulas

cp(U)ξπ∗(η) = cp+1(U)π∗(η),

cp(U)ξ2π∗(η) = cp+2(U)π∗(η)

for η ∈ Hk,k(X)R and p+ k ≥ d, which are easily deduced from the exact sequence (4.6)

[RT19, Lemma 4.17]. With these at hand we rewrite the form (4.9) in the three cases of

equation (4.1) and get for 0 ≤ l ≤ d:

• if β, β′ ∈ W

(π∗(β), π∗(β′)) 7→

∫

ĈE

π∗(ββ′hd−l)cf−(d−l)(U) =

∫

X

ββ′hd−lπ∗(cf−(d−l)(U)|
ĈE

) =

∫

X

βs
(d−l)
λ (E)hd−lβ′ = Ql(β, β

′),

• if β ∈ W and β′ = ξ

(π∗(β), ξ) 7→

∫

ĈE

π∗(βhd−l)cf−(d−l)(U)ξ =

∫

ĈE

π∗(βhd−l)cf−(d−l−1)(U) =

∫

X

βhd−lπ∗(cf−(d−l−1)(U)|
ĈE

) =

∫

X

βs
(d−l−1)
λ (E)hd−l = Ql(β, ζ),

• if β = β′ = ξ

(ξ, ξ) 7→

∫

ĈE

π∗(hd−l)cf−(d−l)(U)ξ2 =

∫

ĈE

π∗(hd−l)cf−(d−l−2)(U) =

∫

X

hd−lπ∗(cf−(d−l−2)(U)|
ĈE

) =

∫

X

s
(d−l−2)
λ (E)hd−l = Ql(ζ, ζ),

which proves the Proposition. �
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4.2. Basic Properties of Ri. We are now ready to show that, as long as each ωj can

be approximated by rational Kähler clases, the Ri,t satisfy all the conditions in property

(A) and that Rd,t satisfies the conditions in property (B). As the reader will see, most

of the properties we prove are formal from the definition of Ri, with the exception of

(A2,A3,B2,B3) that will use the geometric realization from the previous section.

Lemma 4.6 (A1,B1). It holds that

Ri,0(h) = Qi(h) > 0 for 2 ≤ i ≤ d (4.10)

and

R′
i,0(h) = (d− i+ 1)Qi−1(h) > 0 for 3 ≤ i ≤ d. (4.11)

Proof. The first follows as s
(i)
λ is monomial positive so Qi(h) is a sum of positive coeffi-

cients times integrals of strictly positive classes, and so is strictly positive (the reader may

observe that this is the analog of Fulton-Lazarsfeld positivity for ample vector bundles,

but is trivial in the case we are considering). The second statement is immediate from the

definition. �

Proposition 4.7 (A2,A3,B2,B3). Assume that each ωj is the limit of rational Kähler

classes.

(1) For all 2 ≤ i ≤ d and for |t| ≪ 1 the quadratic forms Ri,t have the weak Hodge-

Riemann property with respect to h.

(2) For all i, for all β ∈ V and for |t| ≪ 1 we have

R′
i,t(β)Ri,t(h) ≤ 2R′

i,t(β, h)Ri,t(β, h). (4.12)

Proof. The statement is closed under variation of ωj so by our hypothesis is is enough to

prove it when the classes ωj are rational. Next by multiplying all ωj by an appropriate

positive integer, we may also assume that they are all integral. Then ωj = c1(Lj) for some

ample line bundles Lj on X and we set

E =
e

⊕

j=1

Lj

which is ample. By construction we now have sλ(ω) = sλ(E) and by Proposition 4.5 we

reduce ourselves to checking the corresponding properties for the quadratic forms Si,t on

H1,1
R (Psub(F )).
We first check that the forms Si,t have the weak Hodge-Riemann property for 2 ≤

i ≤ d and for |t| ≪ 1. Indeed for β, β′ ∈ H1,1
R (Psub(F )) we have Si,t(β, β

′) :=
∫

ĈE
βcf−(d−i)(U〈π∗(th)〉)π∗(h)d−iβ′ and we know that U〈π∗(th)〉 is nef on Psub(F )

for |t| ≪ 1 as a formal quotient of the nef R-twisted vector bundle π∗(E〈th〉).
Now we are in a position to inject the geometric argument from our previous work, and

conclude that the weak Hodge-Riemann property holds for Si,t by [RT21, Lemmata 6.6

and 7.1]. (This is essentially an application of Theorem 2.5, but since ĈE is irreducible but

not necessarily smooth one must pass to a resolution of singularities loc. cit..)

For the second statement we rewrite the inequality (4.12) using (4.5) as

Ri−1,t(β)Ri,t(h) ≤ 2Ri−1,t(β, h)Ri,t(β, h). (4.13)

It is enough now to prove (4.13) for 1 ≤ i ≤ d, since for the remaining i it is trivially

verified. But for 1 ≤ i ≤ d we rephrase it by our geometric interpretation as

Si−1,t(β)Si,t(h) ≤ 2Si−1,t(β, h)Si,t(β, h), (4.14)
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which holds by [RT19, Corollary 3.4] for |t| ≪ 1. (This is essentially Theorem 2.6 only

once again we have to allow for the fact that ĈE is not smooth.) Here we have used again

that the R-twisted vector bundle U〈π∗(th)〉 is nef on Psub(F ) for |t| ≪ 1. �

Lemma 4.8 (A4).

R′
i,0(β, ζ) = (d− i+ 1)Ri,0(β, h) for all β ∈ V and all i

Proof. This follows immediately from (4.2). �

Lemma 4.9 (A5).

Ri,0(ζ, h) > 0 for 1 ≤ i ≤ d− 1.

Proof.

Ri,0(ζ, h) = Qi(ζ, h) = Qi+1(h, h) > 0 for 1 ≤ i ≤ d− 1

by (4.2) and Lemma 4.6. �

Remark 4.10. The reader may find it useful to observe that condition (A5) fails when

i = d, and thus the need for the second augmentation result.

Lemma 4.11 (B4,B5).

R′′
d,0(β, ζ) = 2R′

d,0(β, h) for all β ∈ V and

R′′
d,0(ζ, ζ) = 2Rd,0(h).

Proof. These follow straight from the definition. Actually by differentiating in (4.5) we

get

R′′
i,t = (d− i+ 2)(d− i+ 1)Ri−2,t (4.15)

which together with (4.2) gives

R′′
d,0(β, ζ) = 2Rd−2,0(β, ζ) = 2Qd−2(β, ζ) = 2Qd−1(β, h) = 2R′

d−1(β, h)

for all β ∈ V and in the particular case when β = ζ

R′′
d,0(ζ, ζ) = 2Qd−1(ζ, h) = 2Qd(h, h) = 2Rd(h).

�

With this we are ready to invoke our recursive argument. Before doing this we check

two more properties.

Lemma 4.12. R1,0|W = 0 and R2,0|W has the Hodge-Riemann property.

Proof. We have R1,0 = Q1 and we have already seen that Q1|W vanishes, Remark 4.3.

Now for α, α′ ∈ W

R2,0(α, α
′) = Q2(α, α

′) =

∫

X

αs
(d−2)
λ (ω)α′hd−2

and s
(d−2)
λ (ω) ∈ R>0 is a positive constant. So, up to this positive constant, R2,0|W is

the intersection form on H1,1
R (X) given by intersecting with hd−2 which has the Hodge-

Riemann property by the classical Hodge-Riemann bilinear relations as h is assumed to be

ample. �
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4.3. Proof of Theorem 4.1. We apply the work in this section to X = T . Since T is

assumed to have maximal Picard rank each ωj can be approximated by rational Kähler

classes so Proposition 4.7 applies. We claim that:

(1) Ri,0 has the HR property over V for 2 ≤ i ≤ d− 1,

(2) Rd,0|W has the Hodge-Riemann property with respect to h.

Since Rd,0(α, α
′) = Qd(α, α

′) =
∫

X
αsλ(ω)α for α, α′ ∈ H1,1

R (X) = W , the second

statement is precisely that sλ(ω) has the Hodge-Riemann property, as claimed in Theorem

4.1.

The facts established in this Section show on one hand that the hypotheses in Theorem

3.5 are fulfilled for the sequence (Ri,t)1≤i≤d−1 and on the other hand that the family Rd,t

satisfies conditions (B1-B5). Thus Claim (1) holds by Theorem 3.5. The special case

i = d− 2 of Claim (1) tells us now that the form R′′
d,0 = 2Rd−2,0 has the Hodge-Riemann

property. Hence the hypotheses of Theorem 3.7 are fulfilled for the family Rd,t and thus

Rd,0|W has the Hodge-Riemann property with respect to h, which is (2) and finishes the

proof of Theorem 4.1.

4.4. Proof of the linear case of Theorem 1.1. Let d ≥ 2, e ≥ 1 be two integers and

λ = (λ1, . . . , λN ) be a partition of d − 2 with 0 ≤ λN ≤ . . . ≤ λ1 ≤ e. Let further E
be a d-dimensional complex vector space. We want to show that if ω1, . . . , ωe are strictly

positive (1, 1)-forms on E then sλ(ω1, . . . , ωe) has the Hodge-Riemann property, i.e. the

quadratic form

Qsλ(ω1,...,ωe) :

1,1
∧

R

E∗ → R, α 7→
α2 ∧ sλ(ω1, . . . , ωe)

vol

has signature (1, h1,1 − 1). For this we choose a d-dimensional complex torus T with

maximal Picard number, say T = (C/Z[i])d, and endow it with the flat hermitian metric

coming from the euclidean metric on Cd. Then for p, q ∈ Z the harmonic (p, q)-forms on

T are precisely the parallel (p, q)-forms on T . Thus if we identify E to the holomorphic

tangent space of T at some point x ∈ X , we get by Hodge theory natural isomorphisms

p,q
∧

R

E∗ ∼= Hp,q
R (T )

and our claim directly follows from Theorem 4.1.

5. POINTWISE TO GLOBAL ARGUMENT AND THE KÄHLER CASE OF THEOREM 1.1

In this section we show that in our set-up the Hodge-Riemann property in the linear case

implies the Hodge-Riemann property in the Kähler case. The argument follows the same

line as the corresponding one of Gromov in [Gro90] but we give it in detail as parts of it go

over to the non-Kähler case. We end the section with a discussion on the notion of balanced

metrics of Hodge-Riemann type on compact complex manifolds, Remark 5.9, which was

introduced by Chen and Wentworth in their recent paper [CW21]. As an application of

our main result we show in Corollary 5.11 that the Schur forms sλ(ω1, . . . , ωe) appearing

in our Theorem 1.1 give rise to such metrics and thus provide further situations where the

results of [CW21] apply.

Let E be a d-dimensional complex vector space. Inside
∧p,p

R E∗ lies the closed convex

cone SP p,p of strongly positive forms, which is by definition the convex hull of the set

{iα1 ∧ ᾱ1 ∧ . . . ∧ iαp ∧ ᾱp | αj ∈ E∗, j ∈ {1, . . . , p}} of simple forms. Its dual cone is
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the cone of weakly postive forms WP d−p,d−p := {η ∈
∧d−p,d−p

R E∗ | η ∧ γ ≥ 0 ∀γ ∈
SP p,p}. One also defines the cone of positive forms as

P p,p := {η ∈

p,p
∧

R

E∗ | η ∧ i(d−p)2β ∧ β̄ ≥ 0 ∀β ∈

d−p,0
∧

E∗}.

It is shown in [HK74, Corollary 1.3] that the dual cone of P p,p is P d−p,d−p. One sees eas-

ily that SP p,p ⊂ P p,p ⊂ WP p,p and that the interior of SP p,p in
∧p,p

R E∗ is non-empty;

in fact
∧p,p

R E∗ admits a basis formed of simple forms [Dem12, Chapter III Lemma 1.4].

We will call a (p, p)-form strictly positive, respectively strictly weakly positive or strictly

strongly positive if it lies in the interior of P p,p, respectively of WP p,p or of SP p,p. For

p = 1 and for p = d − 1 we have SP p,p = P p,p = WP p,p, [Dem12, Chapter III Corol-

lary 1.9], and we will call forms lying in these cones simply positive. All this terminology

extends to differential forms on complex manifolds. Directly from the definition we see

that an exterior product of strongly positive forms is strongly positive and that an exte-

rior product of weakly positive forms is weakly positive if all factors but one are strongly

positive.

Definition 5.1. To a real (d−2, d−2)-form Ω on E (and a volume form vol) we associate

an intersection form on
∧1,1

R E∗ by the formula

QΩ :

1,1
∧

R

E∗ ×

1,1
∧

R

E∗ → R, (α, β) 7→
α ∧ Ω ∧ β

vol
.

We will say that Ω has the Hodge-Riemann property if the bilinear formQΩ has the Hodge-

Riemann property. This property does not depend on the choice of the volume form.

A differential (d − 2, d − 2)-form Ω on a d-dimensional complex manifold X will be

said to have the Hodge-Riemann property pointwise if for each point x ∈ X the form Ω(x)

has the Hodge-Riemann property on
∧1,1 T ∗

xX .

Let X be a compact complex manifold of dimension d ≥ 2 and let Ω be a strictly

weakly positive (d − 2, d − 2)-form on X such that i∂∂̄Ω = 0. Let Ep,q be the sheaf of

germs of smooth (p, q)-forms on X . We will write Ep,p
R for the subsheaf of real forms.

We will be interested in the real Bott-Chern cohomolgy group of bidegree (1, 1) on X . In

terms of forms it is defined as H1,1
BC(X,R) := {η ∈ E1,1

R (X) | dη = 0}/i∂∂̄E0,0
R (X). The

following intersection form on H1,1
BC(X)

Q[Ω]([α]BC , [β]BC) :=

∫

X

α ∧ β ∧ Ω

is well defined. (In the notation Q[Ω] the square brackets around Ω are meant to suggest

that the intersection form only depends on the Aeppli cohomology class of Ω, a fact which

we will not need in this paper.)

Consider further a strictly positive i∂∂̄-closed (d−1, d−1)-form η on X . Note that any

compact complex manifold of dimension d admits such forms; they are the d − 1 powers

of Gauduchon forms. Then the map

L[η] : H
1,1
BC(X) → R, [α]BC 7→

∫

X

α ∧ η

is well defined.

Remark 5.2. If X is Kähler then L[η] is clearly positive on Kähler classes, so L[η] 6= 0 in

this case. More generally, L[η] is positive on classes of non-zero positive d-closed currents
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of type (1, 1). Such currents always exist when dimX = 2 surfaces, cf. [Lam99], but this

need not be the case in higher dimensions. In fact there are examples of compact complex

manifolds allowing strictly positive d-exact (d − 1, d − 1)-forms η, [Yac95], and clearly

for such (d− 1, d− 1)-forms the corresponding linear forms L[η] vanish identically.

The following Lemma is certainly well-known to experts, but we give a proof for com-

pleteness.

Lemma 5.3. Let η be a strictly positive i∂∂̄-closed (d−1, d−1)-form on X and let vol be

a volume form on X . Then the image of the differential operator on the space of smooth

real functions

P : C∞(X) → C∞(X), f 7→
i∂∂̄f ∧ η

vol

is the space {g ∈ C∞(X) |
∫

X
gvol = 0}.

Proof. A direct computation shows that the symbol of the operator P at a point x ∈ X and

a real cotangent vector in T ∗
xX projecting to ξ ∈ (T 1,0

x X)∗ is
iξ∧ξ̄∧η(x)

vol(x)
6= 0, hence P is

an elliptic operator, [Dem12, Chapter VI Section 1].

On C∞(X) we consider the scalar product

(f, g) 7→ 〈f, g〉 :=

∫

X

fgvol

with respect to which the formal adjoint of P is

P ∗(g) :=
i∂∂̄g ∧ η − i∂̄g ∧ ∂η + i∂g ∧ ∂̄η

vol
.

By the general theory of elliptic differential operators we know that the range of P is closed

and that there is an orthogonal direct sum decomposition C∞(X) = P (C∞(X))⊕KerP ∗,

[Dem12, Chapter VI Corollary 2.4]. Since η is strictly positive we may apply the maximum

principle of E. Hopf [Kob87, Chapter III theorem 1.10] and obtain that KerP ∗ consists of

the constant functions alone. From this the Lemma follows. �

Corollary 5.4. Let η be a strictly positive i∂∂̄-closed (n − 1, n − 1)-form and α be a d-

closed (1, 1)-form on X such that
∫

X
α∧η = 0. Then there exists a smooth representative

α̃ in the Bott-Chern cohomology class [α]BC of α such that

α̃ ∧ η = 0.

Proof. Clearly it suffices to find a smooth function f on X such that i∂∂̄f ∧ η = −α ∧ η.

By Lemma 5.3 for any top degree form σ on X with
∫

X
σ = 0 a smooth solution f to the

equation

i∂∂̄f ∧ η = σ

exists and we are done. �

Take ω0 a strictly positive (1, 1)-form on X such that η := Ω ∧ ω0 is ∂∂̄-closed. Note

that, by Gauduchon’s [Gau84, Théorème I 14] again, for any strictly positive (1, 1)-form

ω on X a positive function f exists such that i∂∂̄(fω ∧ Ω) = 0.

Proposition 5.5. If Ω has the Hodge-Riemann property pointwise and ω0 is a strictly

positive (1, 1)-form on X such that Ω ∧ ω0 is ∂∂̄-closed, then Q[Ω] is negative definite

on the subspace KerL[Ω∧ω0] of H1,1
BC(X). In particular, Q[Ω] has the Hodge-Riemann

property when X is Kähler.
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Proof. Let α be a d-closed (1, 1)-form on X . By Corollary 5.4 applied to η := Ω ∧ ω0 if

the class [α]BC belongs to KerL[Ω∧ω0], there exists a smooth representative α̃ in [α]BC

such that

α̃ ∧ Ω ∧ ω0 = 0.

Since ω0 is strictly positive it follows by the pointwise Hodge-Riemann property of Ω that

α̃ ∧ α̃ ∧ Ω ≤ 0 with equality if and only if α̃ vanishes identically. Thus

Q[Ω]([α]BC , [α]BC) =

∫

X

α̃ ∧ α̃ ∧ Ω ≤ 0

and equality holds if and only if [α]BC = 0. Hence Q is negative definite on KerL[Ω∧ω0].

If moreover X is Kähler, Q[Ω] will be positive on Kähler classes, hence Q[Ω] will have the

Hodge-Riemann property as stated. �

Using this and the already established linear case of Theorem 1.1 we get the following

Corollary which finishes the proof of Theorem 1.1.

Corollary 5.6. The second statement of Theorem 1.1, i.e. the Kähler case of that theorem,

holds.

Example 5.7 (The Case of Surfaces). For d = 2 the positive form Ω will be just a pos-

itive function. In this case it automatically has the Hodge-Riemann property pointwise.

Since it is required to be also ∂∂̄-closed, Ω has to be a constant function. We will as-

sume that this constant is 1. Then the corresponding intersection form on H1,1
BC(X) is

Q([α]BC , [β]BC) :=
∫

X
α∧ β. Consider now a Gauduchon form ω on X . By Proposition

5.5 Q is negative definite on KerL[ω]. As remarked before we have KerL[ω]  H1,1
BC(X)

in the surface case. Two cases may occur:

(1) If X is Kähler we have seen that Q has the Hodge-Riemann property and we thus

recover the Hodge Index Theorem in this case.

(2) If X is non-Kähler and if α is a smooth representative of a non-zero d-exact posi-

tive (1, 1)-current, then α is d-exact, L[ω]([α]BC) > 0 and Q([α]BC , [β]BC) = 0

for all [β]BC ∈ H1,1
BC(X). Thus Q is degenerate semi-definite in this case.

Following [CW21] we introduce the following

Definition 5.8. We say that a pair of strictly weakly positive forms (Ω, ω) of types (d −
2, d− 2) and (1, 1) respectively on a d-dimensional complex manifold X defines a Hodge-

Riemann structure on X if Ω has the Hodge-Riemann property pointwise and is ∂∂̄-closed.

Remark 5.9. As mentioned before if (Ω, ω) defines a Hodge-Riemann structure on the

compact complex manifold X , there exists a unique conformal rescaling of ω to ω0 := fω
such that i∂∂̄(ω0∧Ω) = 0. We denote the d−1-root of ω0∧Ω by ω′. This is a Gauduchon

form on X . Then the hermitian metric ω′ is balanced of Hodge-Riemann type in the sense

of [CW21, Definition 2.7] if Ω and ω0∧Ω are moreover d-closed and Ω is strictly positive.

Note that the requirement that Ω be strictly positive is equivalent to the condition appearing

in [CW21, Definition 2.7 (2)] that Ω be a Hodge-Riemann form for (2, 0). Thus balanced

hermitian metrics of Hodge-Riemann type in the sense of [CW21, Definition 2.7] are par-

ticular cases of Hodge-Riemann structures on compact complex manifolds in our sense. It

is worthwhile noticing that the results of [CW21, Section 3] on polystable vector bundles

are more generally valid over compact complex manifolds carrying Hodge-Riemann struc-

tures. (In order to see this it suffices to apply [LT95, Lemma 2.1.5] in the proof of [CW21,

Theorem 3.2].)
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Example 5.10. A hermitian metric (which we identify with its fundamental (1, 1)-form) ω
on a d-dimensional compact complex manifold X is called astheno-Kähler if i∂∂̄ωd−2 =
0. This notion was introduced by Jost and Yau in [JY93]. Examples of non-Kähler astheno-

Kähler metrics have been constructed for all d ≥ 3, cf. [FT11], [LU17], . If ω is an

astheno-Kähler metric on X then clearly (ωd−2, ω) defines a Hodge-Riemann structure on

X .

The main example of Hodge-Riemann structures provided by our paper occurs however

in the Kähler set-up and is the content of the following corollary to our main theorem.

Corollary 5.11. Let ω1, . . . , ωe be Kähler forms on a compact complex manifold of di-

mension d ≥ 3, let ω be an arbitrary strictly positive (1, 1)-form on X and let λ =
(λ1, . . . , λN ) be a partition of d− 2 with 0 ≤ λN ≤ . . . ≤ λ1 ≤ e. . Then

(sλ(ω1, . . . , ωe), ω)

defines a Hodge-Riemann structure on X and the quadratic form [α]BC 7→
∫

X
α2 ∧

sλ(ω1, . . . , ωe) has the Hodge-Riemann property on H1,1
BC(X). If ω is moreover closed

then (sλ(ω1, . . . , ωe), ω) induces a balanced hermitian metric of Hodge-Riemann type on

X as in Remark 5.9.

6. CONVEX COMBINATIONS OF SCHUR CLASSES

In this section we show that the device we developed to prove our main result also

applies to prove the Hodge-Riemann property for certain convex combinations of Schur

classes. The main criterion to decide for which convex combinations this happens, The-

orem 6.3, is given in terms of irreducibility of certain cycles on appropriate Grassmann

varieties.

To describe this, fix integers b ≥ 1, e ≥ 1 and d ≥ b. We will consider the (k − 1)-
simplex

Σk−1 := {x ∈ (R≥0)
k |

k
∑

i=1

xi = 1},

where k := k(b, e) is the number of partitions λ = (λ1, . . . , λn) of b with e ≥ λ1 ≥ . . . ≥
λn > 0. We will order these partitions in some arbitrary but fixed way as λ(1), . . . , λ(k).

Then when b = d − 2 we will be interested in finding conditions under which convex

combinations of Schur classes sλ(i) , 1 ≤ i ≤ k, of ample vector bundles have the Hodge-

Riemann property. (We exclude the case when d = 2 and b = 0 since it is trivial.)

We next introduce two definitions, one concerning linear sums of Schur polynomials

and then one concerning linear sums of Schubert varieties. For x ∈ Σk−1 define

Γx :=

k
∑

i=1

xisλ(i) .

By Fulton-Lazarsfeld [FL83], for any x ∈ Σk−1, for any projective d-dimensional

manifold X , for any ample vector bundle E of rank e and for any ample class h on X it

holds that
∫

X
Γx(E)hd−b > 0.

Definition 6.1. We say that for x ∈ Σk(d−2,e)−1 the characteristic class Γx has the univer-

sal Hodge-Riemann property if for any d-dimensional projective manifold X and for any

ample rank e vector bundle E on X the class Γx(E) has the Hodge-Riemann property.
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Now to each partition λ and integer N ≥ b we let Cλ be the corresponding Schubert

variety in Grass(N,CN+e), where by Grass(N,CN+e) we denote the Grassmannian of

N -dimensional linear subspaces of CN+e. That is, if λ = (λ1, . . . , λn) is a partition of b
with e ≥ λ1 ≥ . . . ≥ λn > 0, we fix a sequence of subspaces 0 ( A1 ( A2 ( · · · (
An ⊂ CN+e with dim(Ai) = ai := e+ i− λi for 1 ≤ i ≤ n we set

Cλ := {L ∈ Grass(N,CN+e) | dimL ∩ Ai ≥ i for all i = 1, . . . , n}.

Definition 6.2. We say that a point x ∈ Σk(b,e)−1 ∩Qk(b,e) is irreducibly representable if

there exist positive integers N ≥ b and m such that the cycle

m

k(b,e)
∑

i=1

xiCλ(i)

in Grass(N,CN+e) is algebraically equivalent to an irreducible cycle. We denote the set

of irreducibly representable points of Σk(b,e)−1 by Bb,e.

Theorem 6.3. For every x ∈ Bd−2,e we have

(1) The class Γx has the universal Hodge-Riemann property.

(2) The class Γx has the Hodge-Riemann property in the linear case.

(3) The class Γx has the Hodge-Riemann property in the Kähler case.

Before giving the proof we will describe the connection between Schubert varieties

and Schur classes of vector bundles through some aspects of invariant algebraic cycles on

projective manifolds under a group action.

Fix two positive integers e and N and two complex vector spaces H and H ′ of dimen-

sions e + N and e respectively. Let G := GL(H ′) be the general linear group acting

on H ′. Then G acts by composition on the vector space Hom(H,H ′) and further on its

projectivization Psub(Hom(H,H ′)). The open subset Hom(H,H ′)◦ consisting of surjec-

tive homomorphisms is G-invariant and its quotient by the G action is given by the map

p : Hom(H,H ′)◦ → Grass(N,H), σ 7→ Ker(σ). (Actually Hom(H,H ′)◦ is the subset

of (semi-)stable points for the G-action on Hom(H,H ′)).

Let now C be an algebraic cycle on Grass(N,H) and Ĉ be the algebraic cycle on

Psub(Hom(H,H ′)) given by the closure of p−1(C) in Hom(H,H ′). This is a G-invariant

cycle on Psub(Hom(H,H ′)). More generally, we claim that any algebraic family C of

cycles on Grass(N,H) induces in this way an algebraic family Ĉ of G-invariant cycles on

Psub(Hom(H,H ′)). Since on Grassmannians algebraic equivalence and rational equiva-

lence of cycles coincide, we may as well work with the latter.

This construction may be extended to a relative situation as follows. If E is a rank e vec-

tor bundle on a projective manifoldX andF := H∗⊗E = Hom(H,E) then any algebraic

cycleC on Grass(N,H) induces an algebraic cycle ĈE on Psub(Hom(H,E)) = Psub(F )
and similarly for algebraic families of cycles on Grass(N,H). It follows that two alge-

braic equivalent cycles C, C′ on Grass(N,H) induce algebraic equivalent cycles ĈE , Ĉ′
E

on Psub(F ). Thus we have a morphism of Chow groups

A∗(Grass(N,H)) → A∗(Psub(Hom(H,E))) C 7→ ĈE (6.1)

Note that by construction if C is irreducible, then also Ĉ and ĈE will be irreducible.

In particular we can apply this when C = Cλ is a Schubert variety. Then the closure of

p−1(C) in Hom(H,H ′) coincides with the subvariety

C̃ := {σ ∈ Hom(H,H ′) : dimker(σ(x)) ∩Ai ≥ i for all i = 1, . . . , n}
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of Hom(H,H ′). Indeed, p−1(C) = C̃ ∩ Hom(H,H ′)◦, C̃ is closed in Hom(H,H ′) and

C̃ is irreducible since C is irreducible.

Remark 6.4. The reader can check that for Schubert cycles C in Grass(N,H) and for

vector bundles E of rank e on some projective manifold X , the construction of the cycles

ĈE on Psub(Hom(H,E)) recovers the definition ĈE from Section 4.1.

Proof of Theorem 6.3. (1) Let X be a complex projective manifold of dimension d, E be

an ample vector bundle of rank e on X and x an element in Bd−2,e. We fix an ample class

h on X and will show that Γx(E) has the Hodge-Riemann property with respect to h.

We make the same notations as in Section 4, W := H1,1
R (X), X̂ := X × Pd, ζ :=

c1(OPd(1))R ∈ H1,1
R (Pd), V := H1,1

R (X̂) = W ⊕Rζ and define Qi and Ri,t by imitating

Definitions 4.2 and 4.4 but for the class Γx instead of sλ, i.e.

Qi(β, β
′) := Qi(β, β

′;x) :=

∫

X̂

βΓx(E〈ζ〉)ζihd−iβ′

for β, β′ ∈ V and

Ri,t :=

i
∑

k=0

(

d− i+ k

k

)

tkQi−k

for t ∈ R and for 0 ≤ i ≤ d. For i outside the given range we set Qi = 0 and Ri = 0.

Here to simplify notation we have used the symbols E and ζ also for their pull-backs to

X̂ .

We will apply our algorithm as in Section 4.3 to show that Rd,0|W has the Hodge-

Riemann property with respect to h which is exactly statement (1) of Theorem 6.3. For

this we need to check properties (A) and (B) for Ri along the lines of Section 4.2.

The only delicate part is establishing an analogue of Proposition 4.7. As both statements

in that Proposition are closed under variation of x, we may assume that x lies in the set

Bd−2,e of irreducibly representable points of Σk(d−2,e)−1. Now for x in this set, the idea

is to have a geometric interpretation of the forms Ri,t as forms Si,t in the set-up of Section

4.1, where this time Si,t is computed by integrating on a suitable irreducible variety Ĉ(x)E
(that now depends on x). This may be achieved since x was assumed to be in Bd−2,e, so we

can chooseN andm as in Definition 6.2, H a complex vector space of dimension e+N and

choose C(x) to be an irreducible cycle algebraically equivalent to m
∑k(d−2,e)

i=1 xiCλ(i) in

Grass(N,H) and then take Ĉ(x)E to be the corresponding cone in Psub(Hom(H,E))

given in (6.1). Then as C(x) is irreducible, so is Ĉ(x)E .

Then similarly to Proposition 4.5 the forms mRi,t correspond to the forms

Si,t(β, β
′) :=

∫

Ĉ(x)
E

βcf−(d−i)(U〈π∗(th)〉)π∗(h)d−iβ′

= m

k(d−2,e)
∑

j=1

xj

∫

Ĉ
λ(j)

E

βcf−(d−i)(U〈π∗(th)〉)π∗(h)d−iβ′

on H1,1
R (Psub(Hom(H,E))), where as in Section 4.1 f = rk(Hom(H,E)) − 1 = e(e +

N) − 1 and U is the universal quotient bundle on Psub(Hom(H,E)). Now the same

arguments used in Proposition 4.7 will work and prove the two corresponding statements

in the present case too (we remark that irreducibility of Ĉ(x)E is crucial here, since in that

argument we use a resolution of singularities to pass to the smooth case).
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(2) The proof of this statement goes exactly as in Section 4.4 by reduction first to the

Kähler case on tori with maximal Picard number and in that case as in Section 4.3 by the

above argument.

(3) is a consequence of the linear case (2) and of Proposition 5.5. �

Corollary 6.5. In general there exist rational points in Σk(b,e)−1 \Bb,e.

Proof. By Theorem 6.3 it suffices to show that d, e and x ∈ Σk(d−2,e)−1 ∩Qk(d−2,e) exist

together with a projective manifold X of dimension d and an ample vector bundle of rank

e on X such that Γx(E) does not have the Hodge-Riemann property. This was done in

[RT19, Section 9.2] for d = 5 and e = 3. �
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116. MR 3322784

[Cat08] Eduardo Cattani, Mixed Lefschetz theorems and Hodge-Riemann bilinear relations, Int. Math. Res. Not.

IMRN (2008), no. 10, Art. ID rnn025, 20. MR 2429243

[CW21] Xuemiao Chen and Richard Wentworth, The nonabelian Hodge correspondence for balanced hermitian

metrics of Hodge-Riemann type, arXiv:2106.09133, 2021.

[Dem12] Jean-Pierre Demailly, Complex analytic and differential ge-

ometry, OpenContentBook available from the following URL

https://www-fourier.ujf-grenoble.fr/ demailly/documents.html, 2012.

[DN06] Tien-Cuong Dinh and Viêt-Anh Nguyên, The mixed Hodge-Riemann bilinear relations for compact

Kähler manifolds, Geom. Funct. Anal. 16 (2006), no. 4, 838–849. MR 2255382

[DN13] , On the Lefschetz and Hodge-Riemann theorems, Illinois J. Math. 57 (2013), no. 1, 121–144.

MR 3224564

[FL83] William Fulton and Robert Lazarsfeld, Positive polynomials for ample vector bundles, Ann. of Math.

(2) 118 (1983), no. 1, 35–60. MR 707160

[FT11] Anna Fino and Adriano Tomassini, On astheno-Kähler metrics, J. Lond. Math. Soc. (2) 83 (2011), no. 2,

290–308. MR 2776638

[Ful98] William Fulton, Intersection theory, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete.

3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd

Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323

[Gau84] Paul Gauduchon, La 1-forme de torsion d’une variété hermitienne compacte, Math. Ann. 267 (1984),
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UNIVERSITÉ DE LORRAINE, CNRS, IECL, F-54000 NANCY, FRANCE

Email address: matei.toma@univ-lorraine.fr


	1. Introduction
	2. Preliminaries
	3. Augmentation
	4. Schur polynomials of Kähler forms on tori with maximal Picard number and the linear case of Theorem 1.1
	5. Pointwise to global argument and the Kähler case of Theorem 1.1
	6. Convex combinations of Schur classes
	References

