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HODGE-RIEMANN RELATIONS FOR SCHUR CLASSES
IN THE LINEAR AND KAHLER CASES

JULIUS ROSS AND MATEI TOMA

ABSTRACT. We prove a version of the Hodge-Riemann bilinear relations for Schur poly-
nomials of Kéhler forms and for Schur polynomials of positive forms on a complex vector
space.

1. INTRODUCTION

Let (X,w) be a compact Kihler manifold of dimension d > 2 and let Hﬂlk’l(X ) be
its real Dolbeault cohomology group in bi-degree (1,1). The classical Hodge-Riemann
bilinear relations imply that the quadratic form

Qruya—: H]é’l(X) - R, {a} — / a® Awi=?
s

is non-degenerate of signature (1, h%* — 1). We will summarize this by saying that the
class {w}9=2 has the Hodge-Riemann property.

When X is a complex torus we may take parallel representatives in the classes {w}
and {a} and the above statement reduces to its “linear version”, namely that if E is a d-
dimensional complex vector space and w is a strictly positive (1,1)-form on E then the
quadratic form

1,1

Qa2 : /\E* - R, a—
R

a? A wid—2

vol

has signature (1, %! — 1), which is a purely linear algebraic statement (see Section 2.1
for the notation). This has an easy direct proof since we may diagonalize w with respect to
some appropriate basis of F and immediately obtain the representative matrix of (),,a—2 in
terms of such a basis.

In relation with classical questions arising in convex geometry, Alexandrov considers
in his 1938 paper [Ale38] the situation in the linear set-up where in the expression of
Q the form w2 is replaced by the exterior product wi A ... A wq_o of d — 2 strictly
positive (1, 1)-forms wy, ...,wq—2 on E. He proves, by a non-trivial algebraic argument,
that the signature of the corresponding form Qu, a...Aw,_, s still (1, pbl — 1) in this case.
Similarly, in [Gro90] Gromov proves the “Kéahler version” of this statement, namely that
if wi,...,wq—o are Kihler forms on the compact complex manifold X then

Q{Wl}»»»{wd72} : Hﬂlg’l(X) — R, {a} — / a2 ANwi NA... Nwg—2
X
has signature (1, h%! —1).
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In our previous work on this subject, we show in [RT19] that if A\ = (A1,...,Ay) isa
partition of d — 2 with 0 < Ay < ... < A\ < e, the Schur classes sy (E) of ample vector
bundles F of rank e on X also have the Hodge-Riemann property. Here the Schur class
sx(F) is defined in terms of the Chern classes ¢; := ¢;(E) by

C)\l c>\1+1 T C)\1+N—1
Chxo—1 Cx, e Chxo+N—-2
d—2,d—2
sA(E) = det : : : : € Hy 7" 7(X).
C)\N7N+1 C)\N7N+2 Tt C)\N

Note that the hypothesis that £ is ample necessarily implies that X is projective. More-
over, if I splits as a direct sum of line bundles ' = ©_; L; then s)(F) is a symmetric
homogeneous polynomial in the Chern classes a; := c¢1(L;) of the line bundles L;. We
will denote this polynomial by sy (a, ..., a.). Our result is compatible with that of Gro-
mov when taking ¢ = d — 2 and the partition A\ = (d — 2), for then sy = c¢4—2 and
S)\(E) =C1 (Ll) VARERIVAN Cl(Ld,Q).

These considerations allow us to formulate both a linear version and a Kéhler version
of our main result in [RT19] and the main purpose of this paper is to prove these versions.

Theorem 1.1. Let d > 2, ¢ > 1 be two integers and A = (A1, ..., Ay) be a partition of
d—2with0 < Ay < ... < )\ < e. Let further £ be a d-dimensional complex vector
space and X be a d-dimensional compact complex manifold. The following statements
hold.

(1) If wy,...,w, are strictly positive (1, 1)-forms on F then sy (w1, . ..,w.) has the
Hodge-Riemann property, i.e. the quadratic form
1,1 9
. . a® A sxy(wiy ..., we)
st(wl,...wc) . /]R}E - R, a— vol

has signature (1, 2! —1).
(2) If wy,...,w. are Kihler forms on X then s)({w1},...,{w.}) has the Hodge-
Riemann property, i.e. the quadratic form

Qus (fwn}oowe})  Hg''(X) = R, {a} H/ o Asa(wr, ..., we)
X

has signature (1, A% — 1).

Outline of the proof. The stages of our proof run as follows. We first prove (2) in the
case that X is a torus with maximal Picard rank. From this one can deduce the statement
(1) rather easily by taking E as the tangent space at a point in such a torus and considering
the parallel translates of the positive (1,1) forms w; on E which become Kéhler forms on
X. From this linear case it is possible to deduce the general case of (2) using a pointwise
to global argument.

So the main work is done in proving (1) when X is a torus with maximal Picard rank.
For such an X, any Kihler form can be perturbed to a rational Kéhler form. From our
_____ {wed) has the
Hodge-Riemann property, and thus we deduce that even without this rationality assumption
@ has the weak Hodge-Riemann property, by which we mean that it is a limit of intersection
forms with the Hodge-Riemann property.

Of course that is not enough, so to prove that in fact () has the Hodge-Riemann property
we will consider what happens when replacing each w; with w; + th for some ample class
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h and small parameter ¢. This leads us to various families of bilinear forms with the
weak Hodge-Riemann property. In Section 3 we develop a linear algebra machine that
considers such families and gives carefully constructed conditions under which the full
Hodge-Riemann property can be shown to hold.

We note that this proof of the linear case still uses geometry, as it relies on our previous
work and thus ultimately on the Hard-Lefschetz Theorem. It would be interesting to know
if a purely linear algebra proof is possible.

1.1. Combinations of Schur Classes. It is natural to ask if other characteristic classes
than the Schur classes given in Theorem 1.1 enjoy the Hodge-Riemann property. Our
linear algebra machine can also be used to give a condition that guarantees that this is the
case for certain linear combinations of Schur classes. To describe this fixd > 2, N > d—2
and e > 1. Then for each partition A of d — 2 we can consider the following two objects
(1) The Schur polynomial sy (z1, ..., Zc),
(2) The Schubert class C) inside the Grassmannian Grass(N,CY*¢) of N dimen-
sional linear subspaces of CV+¢,

Similarly we can consider linear combinations of these objects. To this end we will con-

sider sums over all partitions A = (A1,--- ,A,) of d —2suchthate > \y > Xy > -+ >
An > 0. We order these partitions in some arbitrary but fixed way as AV, ... A(*) where
k is the number of such partitions.

Then for non-negative real numbers © = (z1, ..., z)) that sum to 1 consider the poly-
nomial

I, = g TiS\Gi)-
i

We say that I',, has the universal Hodge-Riemann property if for all complex manifolds
X of dimension d — 2 and all ample vector bundles £ on X of rank e the bilinear form
induced by the class I';,(E) on Hﬂi’l (X) has the Hodge-Riemann property. Similarly we
say that I';, has the Hodge-Riemann property in the linear (resp. Kdhler) case if the analog
of the conclusion of Theorem 1.1(1) (resp. Theorem 1.1(2)) holds for I';,.

On the other hand for = as above we say that x is irreducibly representable if all the x;
are rational and there exist positive integers N > d — 2 and m such that the cycle

m Z €Z; O)\(i)
inside Grass(IV, CV1¢) is algebraically equivalent to an irreducible cycle.

Theorem 1.2. Let B denote the set of all x that are irreducible representable. Then for all
x € B the following hold

(1) The class I',, has the universal Hodge-Riemann property.

(2) The class I';, has the universal Hodge-Riemann property in the linear case

(3) The class I';, has the universal Hodge-Riemann property in the Kihler case.

We emphasize that the statement holds for points in the closure of B, and passing from
B to its closure is non-trivial as the Hodge-Riemann property for bilinear forms is an open
but not closed condition.

Outline of the proof. For points inside B we use the irreducible cycle algebraically equiv-
alent to m ) . 2;Cy to produce a morphism 7 : C — X from an irreducible variety C
and a nef vector bundle U on C'so that . (¢, _»(U)) = I',(E). Essentially by our previous
work, this is enough to prove the statement in this case. So by continuity for every x in the
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closure of B we know that the bilinear form associated to I'; has the weak Hodge-Riemann
property, and we then apply the same linear algebra machinery discussed above.

Comparison with previous work: Our first work in this subject is [ ] in which we
prove the Hodge-Riemann property for Schur classes of ample bundles. We continue this
in [ ] in which we emphasize more the importance of the weak Hodge-Riemann prop-
erty (which is much easier to prove) and from this we develop various inequalities among
characteristic classes of nef vector bundles. The linear algebra machinery we develop in
this paper is an abstraction of the arguments in [ ]. In fact, combining what is written
here with [ ] reproves the main results of [ ].

We have already mentioned Gromov’s paper [ ] who following work of Alexan-
drov in the linear case [ ] initiated the investigation into what classes on Kéhler man-
ifolds have the Hard-Lefschetz and Hodge-Riemann properties. This has since been taken
up by others, for instance [ s X ].

The idea that Schur classes of ample vector bundles have some kind of positivity origi-
nates in the work of Fulton-Lazarsfeld [ ] who prove that top-degree Schur classes of
ample vector bundles are positive. All our results concerning Hodge-Riemann properties
of characteristic classes of ample vector bundles rely on this statement.

Acknowledgements: The first author was supported by NSF grants DMS-1707661 and
DMS-1749447 during this work.

2. PRELIMINARIES

2.1. Linear Algebra Notation. Let E be a d-dimensional complex vector space. We
denote by E* := Homc(E,C), E* := Homc_ansitin(F, C) and by AP? E* the spaces
of (1,0), (0,1) and (p, q)-forms on E, respectively. Recall that A”’? E* is the image
of A’ E* @ N\ E* in A"*9(E* @ E*). The conjugation operator E* — E* naturally
extends for each bidegree (p, q) as an operator A”? E* — A?P E* and when p = ¢
we denote by AR” E* its space of fixpoints; it is the space of real (p, p)-forms on E.
Anticipating our application when E will be the holomorphic tangent space at a point
of a complex manifold, we denote a basis of E by (6%1, ceey Bizd) and its dual basis by
(dz1,...,dzq). We have a canonical orientation on E' given by the top degree form vol :=
idzy AdZy A ... Addzg A dZg.

2.2. R-twisted vector bundles. Given a vector bundle E on a manifold X and a class
§ € Hy' (X)) we denote the R-twisted bundle by E(5) which is a formal object understood
to have Chern classes defined by the rule

P
cp(B(8)) = (;: :) cr(E)0P R for0 < p <e. Q2.1
k=0

Equivalently, if 1, . . ., . are the Chern roots of F then 1+, ..., x.+d are by definition
the Chern roots of E(§). The reader is referred to [ , Section 6.2, 8.1.A] or [ s
Sec. 2.4] for the basic properties of these objects.

2.3. Quadratic Forms and the (weak) Hodge-Riemann property. Let V' be a real vec-
tor space of finite dimension p and
Q:VxV-oR

be a symmetric bilinear form on V. We write Q(v) := Q(v,v) for v € V for the associated
quadratic form.
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Definition-Lemma 2.1 (The Hodge-Riemann property). Suppose there exists an h € V/
such that Q(h) > 0. Then the following statements are equivalent, in which case we say
that () has the Hodge-Riemann property.

(1) @ has signature (1,p — 1).

(2) There exists a subspace of dimension p — 1 in V' on which @) is negative definite.

(3) Forany h’ € V such that Q(h') > 0, the restriction of @ to the primitive space

Vi i={veV:Q(v,h")=0}

is negative definite.
(4) Forany h' € V such that Q(h’) > 0 and all v € V the Hodge-Index inequality

Q)Q(R) < Q(v,n')? 2.2)
holds, with equality iff v is proportional to A'.

Proof. (1) = (2) and (3) = (1) and (4)= (3) are immediate, and (1)= (3) comes from
Sylvester’s law of inertia. For (3)= (4): Given v € V choose A so Q(v + AW/, k') = 0.
By (3), this implies Q(v + AR/, v + Ah’) < 0 with equality iff v + Ah’ = 0. Rearranging
gives (4). [l

Definition 2.2. When () has the Hodge-Riemann property and i € V is such that Q(h) >
0 we will say that @ has the Hodge-Riemann property with respect to h.

Note that when @ has the Hodge-Riemann property, choosing an element £ in the set
{v € V| Q(v) > 0} serves to distinguish one of the two connected components of this set
whose elements may be looked upon as “positive” vectors for Q.

Definition 2.3. We will say that () has the weak Hodge-Riemann property if @ is a limit
of symmetric bilinear forms on V' that have the Hodge-Riemann property. If moreover an
elementh € V exists such that Q(h) > 0, we will say that @ has the weak Hodge-Riemann
property with respect to h.

Lemma 2.4. Let () be symmetric bilinear form on V' as before and suppose that an element
h € V exists such that Q(h) > 0. Then @ has the weak Hodge-Riemann property with
respect to h if and only if

Q)Q(h) < Q(v,h)? forallv € V.

Proof. TIf Q satisfies the condition Q(h) > 0 and is also the limit of a sequence (Q)nen
of bilinear forms having the Hodge-Riemann property, then we may clearly suppose that
the forms (),, have the Hodge-Riemann property with respect to h and thus they satisfy
the Hodge-Index inequality Q,,(v)Q,(h) < Q,(v,h)? for all v € V. It follows that Q
satisfies the Hodge-Index inequality too.

Conversely, if @ satisfies the condition Q(h) > 0 and the Hodge-Index inequality
Qv)Q(h) < Q(v,h)? for all v € V, then diagonalizing ) with respect to a basis having
h as first vector leads to a form where all diagonal entries but the first one are non-positive.
Thus @ has the weak Hodge-Riemann property with respect to h. (|

2.4. Previous Results for Vector Bundles. The proof we give of our main result will
depend on our previous work on Schur classes of vector bundles. Here we state and sketch
the proofs of two results from [ ] and [ ] which will be used in an essential way
in Proposition 4.7. (In fact we will use slight generalizations that allow the base space to
be irreducible rather than smooth.)
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Theorem 2.5. [ , Theorem 7.2] Let X be a complex projective manifold of dimension
d, let E be a Q-twisted nef vector bundle on X and let A be a partition of d — 2. Then the
quadratic form

QsA(E) : Hﬂéﬂl(X) - Rv {a} = / 042 A S)\(E)
X
has the weak Hodge-Riemann property.

Sketch Proof. Rather than repeat the proof here we merely indicate the main ingredi-
ents. The first step is to observe that if h is an ample class on X and E is ample then
Qs, () (h) > 0 by Fulton-Lazarsfeld [ 1.

We start by proving the statement when E has rank d — 2 and for the Chern class
¢d—2(FE). This is done by a continuity argument, replacing £ with the R-twist F(th) where
h is an ample class on X and ¢ > 0 is real. By the Bloch-Gieseker Theorem (which relies
on the Hard-Lefschetz Theorem on the projective bundle P(E)) we know that Q. , (g (n))
is always non-degenerate, and so its signature does not change as ¢ > 0 varies. But the
classical Hodge-Riemann bilinear relations for h%~2 imply that this signature is of the
expected form for ¢ large, completing the proof in this case.

The general case then follows from this by a geometric construction that provides a
morphism 7 : Cg — X from an irreducible variety C'g of dimension n and a nef bundle
U on Cg of rank n — 2 so that m,c,,_o(U) = s (E) (see Section 4.1 for a brief discussion
of this construction in the case that E splits as a sum of line bundles). Then the weak
Hodge-Riemann property for s (F) follows from that for ¢,,_o(U). O

Another result that we will need is the following inequality on Chern classes of ample
vector bundles.

Theorem 2.6. [ , Theorem 3.2][ , Theorem 10.2] Let X be a complex projective
manifold of dimension d, let E be a nef vector bundle on X and & be an ample class on X.
Then for all « € H*!(X) it holds that

/ o’cq_o(E) / heq-1(F) <2 / ahcq_o(E) / acqg_1(E). (2.3)
X X X X

Sketch Proof. The statement is trivial unless the rank of e is at least d — 1. Consider the
product X’ := X xP! and the bundle £’ := EXOp: (1). Then Theorem 2.5 says that bilin-
ear form Q.,_, gy has the weak Hodge-Riemann property on Hﬂi’l (X" = Hﬂé’l(X) OR,
so in particular satisfies the Hodge-index inequality. Applying this to a suitable class in
Hé’l(X’) (see the proof of [ , Theorem 10.2]) gives (2.3). O

3. AUGMENTATION

Suppose that R, for ¢ € R is a family of bilinear forms on a fixed vector space V' each
of which has the weak Hodge-Riemann property. In this section we describe conditions on
this family under which it is possible to deduce that R actually has the Hodge-Riemann
property (perhaps after restricting to a certain subspace of V'). For lack of a better term we
call this process “augmentation” which is, in the end, nothing but a formal piece of linear
algebra.

To describe this more precisely, let W be a finite dimensional vector space and consider

V.=WaoR.
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To ease notation, let ¢ be a vector that spans the extra factor of R, so each 3 € V can be
written as
B=a+ A foraa € Wand A € R.

Now suppose R; for ¢t € R is a family of bilinear forms on V' that we assume is differen-
tiable with respect to ¢, and write R, for the derivative. We also fix some non-zero element
heW.

3.1. Augmentation 1.

Definition 3.1. We say that R, has property (A) if the following hold
(A1) Ro(h) > 0and Ry(h) > 0.
(A2) For |t| < 1 R; has the weak Hodge-Riemann property with respect to h, i.e.
Ri(B)Re(h) < Ri(B,h)* forall 3 € V.
(A3) The following inequality holds
Ry (B)Ro(h) < 2RH(B, h)Ro(5, h) forall B € V.
(A4) There exists some ¢ = cg € R such that R{(8,¢) = ¢Ro(8, h) forall 3 € V.
(AS) Ro(¢,h) > 0.

Remark 3.2. The reader should just consider these as abstract properties of the family
R:. In our application later (A2) will follow from Theorem 2.5 and (A3) will follow from
Theorem 2.6.

Theorem 3.3. Let R; be family bilinear forms on V' that has property (A). If R{, has the
Hodge-Riemann property with respect to i then R also has the Hodge-Riemann property
with respect to h.

Proof. Note that we are assuming (A2) that Ry has the weak-Hodge Riemann property,
and the task is to show that it actually has the Hodge-Riemann property, and by (A1) we
know Ro(h) > 0. So suppose 5 € V is such that

Ro(B,h) =0=Ro(B). (3.1
Then the task is to show that 5 = 0.

Step 1: We claim that
Ry(B) = 0. (3.2)
To prove this consider
F(t) = Re(B)Re(h) — (Re(B,1))*. (3.3)
By (A2), f(t) < 0forall |t < 1 and (3.1) implies f(0) = 0. Thus
0= f"(0) = Ro(B)Ro(h) + Ro(B)Ro(h) — 2Ro(B, h)Ry (B, h) = Ry (B)Ro(h)
which implies the claim (3.2) as Ro(h) > 0 by (Al).

Step 2: Now we use the assumption that R{, has the Hodge-Riemann property, which
in particular implies it is non-degenerate. Thus there exists a v € V that is dual to the
linear map R (-, h), i.e. such that

R.(6,7) = Ro (8, h) forall § € V. (3.4)
Observe that since Ro(h) > 0 we know that v # 0.



8 JULIUS ROSS AND MATEI TOMA

Step 3: We next claim that
Ro(B,h)Ro (7, h) = 0. (3.5)
To see this consider
9(s) = Ro(B + 57)Ro(h) = 2Ro(B + 57, h)Ro(B + s7, h).
By (A3) we have g(s) < 0 forall s, and by (3.1,3.2) we know ¢(0) = 0. Thus

= 2Ro(B, h)Ro(h) — 2R4(8, h)Ro (7, ) (by (3.4) and (3.1))
= —2Ry (B, h)Ro (7, h) (by (3.1) again)

proving the claim.

Step 4: We next show that 8 and -y are proportional, i.e. there exists a x € R such that
B8 = K.

Suppose first that Rj, (5, h) = 0. Recall we already know from Step 1 that R((58) = 0
and by (A1) Rj(h) > 0. Thus since Ry, is assumed to have the Hodge-Riemann property
we deduce that 5 = 0 so the Claim certainly holds with x = 0.

So we may assume R (5, h) # 0 and so by (3.4), R;(y) = Ro(y,h) = 0 by Step 3.
Thus in summary, the classes 5 and ~y both lie in ker(RRo(-, 7)) and also in the null cone
of R{. Recall R{, has signature (1,dim V" — 1) and by (A3) is negative semidefinite on
ker(Ro(+, h)). But this is only possible if 5 is proportional to +y (this is a formal statement
about such bilinear forms that for completeness we include in Lemma 3.4). This proves
the claim that 8 = k~.

Step 5: We are now ready to complete the proof by observing that

KRo (¢, h) = kKRG(C, ) (by definition of «y in (3.4))
=Ro(C, ) (as = K7)
= cRo(B, h) (by (A4))
=0 (by our hypothesis on 3 in (3.1))

But (A5) tells us that Ry(¢, h) > 0, so we must have £ = 0 and hence 8 = 0 completing
the proof. ]

Lemma 3.4. Let Q be a bilinear form on a finite dimensional vector space V with the
Hodge-Riemann property. Let V' C V be a subspace on which Q is negative semidefinite.
Then if 3,y € V' satisfy Q(8) = Q(v) = 0 and v # 0 then 3 = k+y for some k € R.

Proof. Let h € V be such that Q(h) > 0. For ¢ € R we have 3 + ¢y € V' and hence
0> Q(B +ty) = 2tQ(B,7).

Since this holds for all ¢ we conclude Q(3, ) = 0. Thus we actually have
0=Q(B +ty)forallt € R.

If Q(~y,h) = 0 then as Q(y) = 0 and Q has the Hodge-Riemann property we would have
~ = 0 which is absurd. So Q(~, k) # 0. Thus we may find ¢y so Q(5 +to7y, h) = 0. Since
also Q(8 + toy) = 0 we deduce from the Hodge-Riemann property of Q that 5+ oy = 0
and we are done. (]



HODGE-RIEMANN RELATIONS IN THE LINEAR AND KAHLER CASES 9

3.2. Recursive version.

Theorem 3.5. Fix an integer ;7 > 2 and let (Rz‘,thgigg‘ be a sequence of families of
bilinear forms on V' with the following properties:

(1) For i > 2 the families R, ; have property (A).

(2) For each i > 2 there exists a positive constant C; such that

Rio=CiRi—1,0. (3.6)

(3) Riolw = 0.
(4) Ra,0|w has the Hodge-Riemann property with respect to h.
(5) The constant cr, in condition (A4) for R ; is non-zero.

Then the forms R; o have the Hodge-Riemann property with respect to h for all 1 €
{2,...,4}

Proof. We prove the statement by induction on ¢ starting with ¢ = 2. The inductive step
follows from Theorem 3.3 and (3.6). So we only have to show that R o has the Hodge-
Riemann property under our hypotheses.

Assume for contradiction that R o does not have the Hodge-Riemann property on V.
Since it does have this property on W, there must exist an element 5 € V of the form
8 = a+ ¢ with « € W such that

Ro,0(B:h) =0="TRa0(B). (3.7
Then we get by condition (A4) for R, ; on one hand
R50(8,¢) = cryRa20(8,h) =0 (3.8)
and by Step 1 of the proof of Theorem 3.3 on the other hand
50(8) = 0. (3.9)
Now by (3.6) we may rewrite (3.8) and (3.9) as a system
7?'1 O(ﬁa <) = 07
’ 3.10
{ Ri0(8) =0 G40
which using the vanishing of R0 on W translates into
{ Rl,O(avc) +R1,0(<7<) =0 (311)
2R10( ¢) + Ra,0(¢,¢) =0.

This implies R1,0(¢, ¢) = 0 which again by (3.6) and by condition (A4) for R, entails

cryR2,0(C,h) = 0.
But since cr, is supposed to be non-zero this contradicts condition (AS) for Ra ;. O

3.3. Augmentation 2. It turns out that for the applications we have in mind the above
recursive form of the augmentation is not enough, and we will need another form of aug-
mentation that makes hypotheses on the second derivative but with a weaker conclusion.
We continue with the notation above, so R; is a family of bilinear forms on the vector
space V = W @ R( but we ask it to be twice differentiable in ¢ this time, and h € W is
fixed.

Definition 3.6. We say that R, is a has property (B) if the following hold
(B1) Ro(h) > 0.
(B2) For |t| < 1 R; has the weak-Hodge Riemann property with respect to h, i.e.
Re(B)Re(h) < Re(B,h)? forall 5 € V.
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(B3) For |t| < 1 the following inequality holds
Ri(BYR(h) < 2R}(B, hYR4(8, h) for all B € V.

B4) Ri(a,¢) =2Ry(a, h) forall o € W.
(B5) RG(C,¢) = 2Ro(h).
Theorem 3.7. Let R; be family bilinear forms on V' that has property (B). If R has

the Hodge-Riemann property with respect to h then the restriction Ro|w has the Hodge-
Riemann property with respect to h.

Proof. We are assuming (B2) that Ry has the weak-Hodge Riemann property, and since
h € W (B1) implies that Rg|w also has the weak Hodge-Riemann property. Thus the
task is to show that it actually has the Hodge-Riemann property, and by (B1) we know
Ro(h) > 0. So suppose o € W is such that

Ro(a,h) =0 =Ro(a). (3.12)

Then task is to show that o« = 0.

Step 1: We claim that
Ry(a) = 0. (3.13)

which is proved exactly as in Step 1 of the proof of Theorem 3.3 and is omitted.

Step 2: Consider now

g(t) := Ri(a)Re(h) — 2R} (o, h) Ry (cx, ).
Then by (3.12,3.13) we have ¢g(0) = 0 and (B3) implies g(¢) < 0 for |¢| < 1. Thus
0=g'(0) = R} (a)Re(h) + Ri(e)Ry(h) — 2R (e, h)Re (v, h) — 2R (e, h)e=o
= R{ (@) Ro(h) — 2R{ (e, h)?
1

= 5 (RG(@)Rg () = R (@, O)?) (by (B4.B5))

Thus
R ()R () = R (e, O)*.

Now we are assuming that R{, has the Hodge-Riemann property with respect to h, and
since R (¢) = 2Ro(h) > 0 the Hodge-index inequality for R{ also holds with respect

to ¢ (see Definition-Lemma 2.1(4)). So we deduce that « is proportional to ¢, but since
o € W this is only possible if @ = 0 and we are done. ]

Remark 3.8. The following example shows that a naive approach to get an Augmentation
1 type result like Theorem 3.3 is bound to fail (that is, some additional hypothesis like
those appearing in condition (A) are really needed). Let R, be a family of quadratic forms
on a vector space V' of dimension n > 1 as above and suppose that there exists a non-zero
element i € V such that:

(1) R+ has the weak Hodge-Riemann property with respect to h for || < 1,
(2) R: has the Hodge-Riemann property for |t| < 1 and ¢ # 0,
(3) R} has the Hodge-Riemann property with respect to h for || < 1.

Then either Ry has the Hodge-Riemann property or the kernel N of R is one-dimensional.
Moreover the latter case can happen as soon as n > 1.
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Proof. By assumption dim N > 1. Let 3 be any vector in N. We consider
F(t) = Re(BYRu(h) — (Re(B, 1) (3.14)
Then f(t) < 0forall [t| < 1 and f(0) = 0. Thus
0= f'(0) = Ro(B)Ry(h) + Ro(B)Ro(h) — 2Ro(B, h)Ry (B, h) = Ry (B)Ro(h)

and so 3 must lie in the null cone C2 ;= {a € V| R{(a) = 0} of R{,. But by Lemma 3.4
C%/ cannot contain two-dimensional vector subspaces since R, has the Hodge-Riemann
property and the first assertion follows.

For the second assertion it is enough to consider the following family of quadratic forms
on R™:

Ri(x) = (14 t)af +2mmy + (1 — t)af + (-1 —t)a}.
1=3

4. SCHUR POLYNOMIALS OF KAHLER FORMS ON TORI WITH MAXIMAL PICARD
NUMBER AND THE LINEAR CASE OF THEOREM 1.1

The main result of this section is the following Theorem 4.1 which is Theorem 1.1(2)
in the special case when X is a torus with maximal Picard number, i.e. X is a torus T'
such that Ni(T) = Hy'(T). From it we will easily be able to deduce in Subsection 4.4
the linear case of our main result , i.e. Theorem 1.1(1). Note that tori with maximal Pi-
card number exist in every dimension, e.g (C/Z[i])?, see [ ] for results on projective
manifolds with maximal Picard number.

Theorem 4.1. Let d > 2, e > 1 be two integers and A = (A1,...,A\x) be a parti-
tionof d — 2 with 0 < Ay < ... < Ay < e. Let further T be a d-dimensional com-
plex torus with maximal Picard number and let wy, ..., w. be Kéhler forms on T". Then
sx({w1}, ..., {we}) has the Hodge-Riemann property.

Since the statement is certainly satisfied when 2 < d < 3 or when e = 1, we will
suppose for the rest of this section that d > 4 and e > 2.

We will work in the following set-up:

e X is a d-dimensional compact complex manifold (which we will later take to be
the torus 1).

e ¢ is a positive integer and A = (A1,..., Ay) a partition of d — 2 with 0 < Ay <
e S /\1 S €.

o W= Hy'(X).

e his afixed ample class on X.

e X := X x P4 and ¢ will denote the hyperplane class on P<.

o V:=Hy'(X)=WaRC(

e For a vector a := (ai,...,a.) € V& we denote by sy(a) its Schur polyno-
mial sy(aq,...,ae) as defined in the Introduction and by SE\]) (@) its derived Schur

polynomials that are defined by requiring
A .
sa(ar +2,...,a.+x) = ngj)(g)xj forallz € V
j=0
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(this notation and terminology originates in [ 1). Thus
s (a) € HMTPI (X for 0 < j < |,

and for j outside this range we set 5(7)( ) to be zero.

o w:=(wi,...,we) € W* is a vector of Kihler classes on X.
Definition 4.2. Define &; := w; + (forl < j < eand @ := (&1,...,W0,). Define a
symmetric bilinear form Q; (-, -;w) form on V by

Qi(B,8') = Qi(B, B'sw) = / Bsa(@)C T
X
for 3,8 € V. This makes sense for 0 < i < d. For i outside this range we set Q; = 0.

Remark 4.3. This definition is made clearer if one considers the expansion sy (@) =
> s& (w)¢? which reveals

[ BV @hd—ig 8,8 eW
Qi(B,8) =1 [yBs <d - 1> w)hd=i if € W and B = ¢ @.1)
e s )hdﬂ' it =4 =¢
In fact one can equally take the definition of Q; to be (4.1) and then require symmetry and
extend linearly in each variable. Note that with our conventions the three formulas hold

for all ¢ but they may give non-zero values only when 2 < ¢ < d for the first one, when
1 <4 < d —1 for the second one and when 0 < 5 < d — 2 for the third one.

By definition
Qi(B,¢) = Qi+1(B, h) for B € V and all i, 4.2)
and from this it is clear that forao € W, A € R and all ¢
Qi(a + AC, h) =Q; (av h) + )‘Qi-l-l (h)7 (4.3)
Qila+ X)) = Qi(a) + 22Qi1(a, h) + A2 Q44 2(h). (4.4)

Definition 4.4. Under the above notations we set fort € Rand for0 <i: <d
LA =itk
Rii = Z < i )t Qi—k
k=0
For 7 outside the given range we set R; ; = 0.

In particular we have
Rip= Qi+ (d—i+1)tQi_1 + O(t?)
for 0 < ¢ < d. Moreover a direct computation shows that
Rie=(d—i+1)Ri s (4.5)

for all 7 and all £.

Our aim is to apply the augmentation results from the previous section to the families
Ri.t, so we will need to check that the various hypotheses hold true. For example we will
need to show that each R;; has the weak Hodge-Riemann property. Note that this is a
closed condition, so as long as we assume that we can perturb each w; to a rational Kihler
class then we may assume this rationality, and then this weak Hodge-Riemann property
will follow by realizing R; ; geometrically as we do in the next section.
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4.1. Geometric realization of the forms R; ;. In this subsection we show how one may
realize the forms R; in the case that each wj is rational using a classical construction which
relates Schur classes and degeneracy loci of morphisms of vector bundles.

The rationality assumption we need is that the classes w; are the (real) Chern classes of
line bundles L; on X. That is, we suppose that w; = ¢;(L;) € Hy'(X) for1 < j <e
and consider the vector bundle

FE = é L7
j=1

By possibly adding zeroes to the partition A we may take its length N to be arbitrarily
large. We will suppose here that N > d — 2. Seta; ;= e+i— \;forl < i < N,
fix a vector space H of dimension e + N and a nested sequence of subspaces 0 C A; C
Ay C -+ C Ay C H with dim(4;) = a;. Nextset F := H* ® E = Hom(H, E), let
f+1=1k(F)=e(e+ N) and define

Cp := {0 € Hom(H, E) : dimker(o(z)) N A; > iforalli=1,...,Nandz € X}

which is a cone in F. Set further Cp := [C’E] C Psup(F). Finally we denote by 7 :
Psub(F) — X the projection morphism and by U the quotient bundle of 7* F' on Py, (F')
which sits in the tautological exact sequence

0—Op,,(r)(=1) = m"F =U—0. (4.6)
We note that
Hy'' Py, (F)) = 7* Hy' (X) @ RE = W @ RE,

where £ := ¢1(Op,_,, (r)(1)). We also note that C is locally a product with irreducible

fibers over X and that dim(C'E) = f + 2 (the notation thus far follows that of [ ,
Section 5]).

Proposition 4.5. Let 0 < i < d. Then under the isomorphism V' =W & R( — 7*W &
R¢ = Hﬂi’l (Psub (F)) acting as 7* on W and mapping ¢ onto &, the bilinear form R, ; on
V' corresponds to the form

Sl 8) = [ Beyay (Ul () (08

on Hy' (Peup,(F)). Here we use the notation U(8) for an R-twisted vector bundle as
described in Section 2.2.

Proof. Note first that U has rank f. So for any § € Hy" (Psuy(F))
LIy
cp(U(8)) := Z < )ck(U)apk for0 <p< f. 4.7)
im0 \PF

Replacing k by p — j and putting p = f — (d — i) and § = 7*(th) gives

Fd=)
ey @)= > (70T

)tjcf(di)j(U)w*(h)j. (4.8)
j=0
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Plugging this into the expression of S; ; we obtain

f—(d—1)

Sia(8,8) / 8" Z
:/ ﬂﬂ’z <(d_i,)+j>tij_(d_i)_j(U)Tr*(h)jeri7
e j

where we have used that our choice of N implies f — d > 0, hence f — (d — i) > 4, and
also that h7+4=% = 0 for j > i for dimension reasons.

By comparing to the definition of R; ; we thus see that in order to prove the Proposition
it suffices to check that for 0 < [ < d the bilinear forms Q; on V' correspond to the forms

( —i j) tep_(amiy—y (U)m* (h)IH4

(8,8 = | BB cs_a_p(U)r*(h)4! (4.9)

Cg
on Hﬂi’l (Psub(F)) . To check this we will use the identity

mu(er—ap(D)le,) = s\ (EB)

which holds for 2 < 7 < d by [ , Proposition 5.2] as well as the following formulas

cp(U)sm*(n) = cp1(U)m™ (n),

ep(U)E 7™ () = cpra(U)m* ()
forne H k,k (X)r and p+ k > d, which are easily deduced from the exact sequence (4.6)

[ , Lemma 4.17]. With these at hand we rewrite the form (4.9) in the three cases of
equation (4.1) and get for 0 <[ < d:
o if 3,8 €W

(m*(B),7*(8)) = | 7 (B8'h* s a-ny(U) =

Cg
/ﬁﬁ W (er—@-p(U)lg,) /Bsd NEN = Qu(B,B),
eiffeWandp =¢

(m(8),€) = [ 7 (B ep_a-n(O)E = | 7 (Bh*")ep—(a—1-1y(U) =

Cg Cg
[ At e @le,) = [ A @ = 0B,
ciff=p =¢
€ [ 0@ = [ e () =

Cg

/hdilﬂ'*(Cf—(d—l—2)(U)|(§E):/ ST = (G, ),
X X

which proves the Proposition. O
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4.2. Basic Properties of R;. We are now ready to show that, as long as each w; can
be approximated by rational Kéhler clases, the R; ; satisfy all the conditions in property
(A) and that R4, satisfies the conditions in property (B). As the reader will see, most
of the properties we prove are formal from the definition of R;, with the exception of
(A2,A3,B2,B3) that will use the geometric realization from the previous section.

Lemma 4.6 (A1,B1). It holds that
Rio(h) = Q;(h) >0for2<i<d (4.10)

and
;)O(h)z(d—z'—i—l)Qi_l(h) >0for3 <i<d. 4.11)

Proof. The first follows as sf\l) is monomial positive so Q;(h) is a sum of positive coeffi-
cients times integrals of strictly positive classes, and so is strictly positive (the reader may
observe that this is the analog of Fulton-Lazarsfeld positivity for ample vector bundles,
but is trivial in the case we are considering). The second statement is immediate from the
definition. O

Proposition 4.7 (A2,A3,B2,B3). Assume that each wj; is the limit of rational Kihler
classes.
(1) Forall 2 <4 < d and for |t| < 1 the quadratic forms R; ; have the weak Hodge-
Riemann property with respect to h.
(2) Forall, forall 8 € V and for |¢| < 1 we have

R{i,t(B)Ri,t(h’) S 2R/i,t(67 h)Ri,t (ﬁa h) (4’12)

Proof. The statement is closed under variation of w; so by our hypothesis is is enough to
prove it when the classes w; are rational. Next by multiplying all w; by an appropriate
positive integer, we may also assume that they are all integral. Then w; = ¢1(L;) for some
ample line bundles L; on X and we set

E= éLj
j=1

which is ample. By construction we now have sy (w) = sx(F) and by Proposition 4.5 we
reduce ourselves to checking the corresponding properties for the quadratic forms S; ; on
H]llk)l (Psub (F))

We first check that the forms S; ; have the weak Hodge-Riemann property for 2 <
i < dand for |[t| < 1. Indeed for g, € Hﬂé’l(Psub(F)) we have S;.(8,5) =
féE Beg—(a—iy(U(m*(th)))m*(h)4~'B" and we know that U(r*(th)) is nef on Py (F)
for |t| < 1 as a formal quotient of the nef R-twisted vector bundle 7* (E(th)).

Now we are in a position to inject the geometric argument from our previous work, and
conclude that the weak Hodge-Riemann property holds for S; ; by [ , Lemmata 6.6
and 7.1]. (This is essentially an application of Theorem 2.5, but since C is irreducible but
not necessarily smooth one must pass to a resolution of singularities loc. cit..)

For the second statement we rewrite the inequality (4.12) using (4.5) as

Ri—14(B)Rit(h) < 2Ri—1.4(8, h)Ri (5, h). (4.13)

It is enough now to prove (4.13) for 1 < ¢ < d, since for the remaining ¢ it is trivially
verified. But for 1 < ¢ < d we rephrase it by our geometric interpretation as

Si—1,4(8)Sit(h) < 28,1 +(8,h)Sit (B, h), (4.14)
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which holds by [ , Corollary 3.4] for |t| < 1. (This is essentially Theorem 2.6 only

once again we have to allow for the fact that C is not smooth.) Here we have used again
that the R-twisted vector bundle U (7*(th)) is nef on Py, (F) for |¢| < 1. O

Lemma 4.8 (A4).
Rio(B,¢) = (d—i+1)Rio(B,h) forall 3 € Vand all i

Proof. This follows immediately from (4.2). O
Lemma 4.9 (A5).
Ri70(<,h) >0forl <i:<d-—1.
Proof.
Ri,O(C7h) = Ql(c,h) = QH_l(h,h) >0forl <:<d-—1
by (4.2) and Lemma 4.6. (I

Remark 4.10. The reader may find it useful to observe that condition (AS5) fails when
1 = d, and thus the need for the second augmentation result.

Lemma 4.11 (B4,B5).
Riyo(B,¢) = 2R5 (B, h) forall 5 € V and

Ri1.0(C,¢) = 2Rao(h).

Proof. These follow straight from the definition. Actually by differentiating in (4.5) we
get

Riy=(d—i+2)(d—i+1)Riay (4.15)
which together with (4.2) gives

570(67 C) = 2Rd—2,0(67 C) = 2Qd—2(ﬁ7 <) = 2Qd—1(67 h) = 2R/d*l(ﬁ7 h)
forall 5 € V and in the particular case when 3 = (

2.0(¢:¢) = 2Qa-1(¢, h) = 2Qa(h, h) = 2Ra(h).
(I

With this we are ready to invoke our recursive argument. Before doing this we check
two more properties.

Lemma 4.12. Ry o|w = 0 and Ra,0|w has the Hodge-Riemann property.

Proof. We have Rq,9 = Q; and we have already seen that Q1 |y vanishes, Remark 4.3.
Now for a, 0’ € W

Rao(a, o) = Qa(a, ) :/ ozsf\dﬂ) (w)a'hd=2
X

and sf\dﬂ) (w) € Ry is a positive constant. So, up to this positive constant, R o|w is

the intersection form on Hé"l (X) given by intersecting with h%~2 which has the Hodge-
Riemann property by the classical Hodge-Riemann bilinear relations as h is assumed to be
ample. O
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4.3. Proof of Theorem 4.1. We apply the work in this section to X = 7. Since T is
assumed to have maximal Picard rank each w; can be approximated by rational Kéhler
classes so Proposition 4.7 applies. We claim that:

(1) R4, has the HR property over V for2 <i <d —1,

(2) Ra,0|lw has the Hodge-Riemann property with respect to h.

Since Rao(a, ') = Qy(a, o) = [y asy(w)a for a,o’ € Hy'(X) = W, the second
statement is precisely that s (w) has the Hodge-Riemann property, as claimed in Theorem
4.1.

The facts established in this Section show on one hand that the hypotheses in Theorem
3.5 are fulfilled for the sequence (R; ¢)1<i<q—1 and on the other hand that the family R ¢
satisfies conditions (B1-B5). Thus Claim (1) holds by Theorem 3.5. The special case
i = d — 2 of Claim (1) tells us now that the form Rg,o = 2R 4—2,0 has the Hodge-Riemann
property. Hence the hypotheses of Theorem 3.7 are fulfilled for the family R4 ¢ and thus
Ra,0lw has the Hodge-Riemann property with respect to h, which is (2) and finishes the
proof of Theorem 4.1.

4.4. Proof of the linear case of Theorem 1.1. Let d > 2, e > 1 be two integers and
A= (A,...,AN) be a partition of d — 2 with 0 < Ay < ... < Ay < e. Let further £

be a d-dimensional complex vector space. We want to show that if wy, ..., w, are strictly
positive (1, 1)-forms on E then sy (w1, .. ., w.) has the Hodge-Riemann property, i.e. the
quadratic form
1,1 9
a® A sxa(wiy ... we)
st(wh...,we) : QE* —>R, o — vol

has signature (1,h%! — 1). For this we choose a d-dimensional complex torus 7" with
maximal Picard number, say T = (C/Z[i])¢, and endow it with the flat hermitian metric
coming from the euclidean metric on C?. Then for p, ¢ € Z the harmonic (p, ¢)-forms on
T are precisely the parallel (p, ¢)-forms on T'. Thus if we identify F to the holomorphic
tangent space of 7" at some point z € X, we get by Hodge theory natural isomorphisms

p.q

N\E* = HP(T)
R
and our claim directly follows from Theorem 4.1.

5. POINTWISE TO GLOBAL ARGUMENT AND THE KAHLER CASE OF THEOREM 1.1

In this section we show that in our set-up the Hodge-Riemann property in the linear case
implies the Hodge-Riemann property in the Kéhler case. The argument follows the same
line as the corresponding one of Gromov in [ ] but we give it in detail as parts of it go
over to the non-Kéhler case. We end the section with a discussion on the notion of balanced
metrics of Hodge-Riemann type on compact complex manifolds, Remark 5.9, which was
introduced by Chen and Wentworth in their recent paper [ ]. As an application of
our main result we show in Corollary 5.11 that the Schur forms s (w1, . . ., w.) appearing
in our Theorem 1.1 give rise to such metrics and thus provide further situations where the
results of [ ] apply.

Let E be a d-dimensional complex vector space. Inside A" E* lies the closed convex
cone SPPP of strongly positive forms, which is by definition the convex hull of the set
{ican Nai AN ... Niap A&y | oy € E*, j € {L,...,p}} of simple forms. Its dual cone is
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the cone of weakly postive forms W P1—Pd=P .= [y ¢ /\%ﬁp’dfp E*|nAy>0Vy €
SPPP}. One also defines the cone of positive forms as

P,p d—p,0
pPPP = {ne/\E*|n/\i(d_p)2ﬁ/\ﬁ_ZOVﬁ€ /\ E*}.
R

Itis shownin [ , Corollary 1.3] that the dual cone of PP? is Pa=P:d=P_QOpe sees eas-
ily that SPPP C PP» C W PPP and that the interior of SPP? in AR” E* is non-empty;
in fact AR* E* admits a basis formed of simple forms [ , Chapter III Lemma 1.4].
We will call a (p, p)-form strictly positive, respectively strictly weakly positive or strictly
strongly positive if it lies in the interior of PPP, respectively of W PPP or of SPPP. For
p = 1andforp = d — 1 we have SPPP = PPP = WPPP [ , Chapter III Corol-
lary 1.9], and we will call forms lying in these cones simply positive. All this terminology
extends to differential forms on complex manifolds. Directly from the definition we see
that an exterior product of strongly positive forms is strongly positive and that an exte-
rior product of weakly positive forms is weakly positive if all factors but one are strongly
positive.

Definition 5.1. To areal (d —2,d — 2)-form §2 on E (and a volume form vol) we associate
an intersection form on /\ng1 E* by the formula
1,1 1,1

Qo: \NE* x NE* >R, () anQNE
R R

vol

We will say that €2 has the Hodge-Riemann property if the bilinear form Q)¢ has the Hodge-
Riemann property. This property does not depend on the choice of the volume form.

A differential (d — 2, d — 2)-form {2 on a d-dimensional complex manifold X will be
said to have the Hodge-Riemann property pointwise if for each point z € X the form Q(z)
has the Hodge-Riemann property on /\1"1 T:X.

Let X be a compact complex manifold of dimension d > 2 and let €2 be a strictly
weakly positive (d — 2,d — 2)-form on X such that i99Q2 = 0. Let 7 be the sheaf of
germs of smooth (p, ¢)-forms on X. We will write £;"” for the subsheaf of real forms.
We will be interested in the real Bott-Chern cohomolgy group of bidegree (1,1) on X. In
terms of forms it is defined as H}gé (X,R) := {n € &' (X) | dy = 0}/iBIEY" (X ). The
following intersection form on H éé (X)

Qa)([else; [BlBC) 1:/ aANBAQ

X
is well defined. (In the notation )| the square brackets around {2 are meant to suggest
that the intersection form only depends on the Aeppli cohomology class of €2, a fact which
we will not need in this paper.)
Consider further a strictly positive i09-closed (d— 1, d — 1)-form 5 on X . Note that any
compact complex manifold of dimension d admits such forms; they are the d — 1 powers
of Gauduchon forms. Then the map

Liy  HEH(X) = R, [a]pe H/ aAn
X
is well defined.

Remark 5.2. If X is Kihler then L, is clearly positive on Kahler classes, so L} # 0 in
this case. More generally, L, is positive on classes of non-zero positive d-closed currents
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of type (1, 1). Such currents always exist when dim X = 2 surfaces, cf. [ ], but this
need not be the case in higher dimensions. In fact there are examples of compact complex
manifolds allowing strictly positive d-exact (d — 1,d — 1)-forms 7, [ ], and clearly

for such (d — 1, d — 1)-forms the corresponding linear forms L, vanish identically.

The following Lemma is certainly well-known to experts, but we give a proof for com-
pleteness.

Lemma 5.3. Let 7 be a strictly positive i00-closed (d— 1, d — 1)-form on X and let vol be
a volume form on X. Then the image of the differential operator on the space of smooth

real functions B
P:C¥(X) = C®(X), frr Za‘zf#
is the space {g € C*°(X) | [ gvol = 0}.

Proof. A direct computation shows that the symbol of the operator P at a point x € X and
a real cotangent vector in 7% X projecting to & € (T-0X)* is % # 0, hence P is
an elliptic operator, [ , Chapter VI Section 1].

On C*°(X) we consider the scalar product

(f:9) = (f,9) = / fgvol
X
with respect to which the formal adjoint of P is
i00g A — i0g A On +idg A On
vol '

P*(g) :==

By the general theory of elliptic differential operators we know that the range of P is closed
and that there is an orthogonal direct sum decomposition C*°(X) = P(C> (X))@ Ker P*,
[ , Chapter VI Corollary 2.4]. Since 7 is strictly positive we may apply the maximum
principle of E. Hopf [ , Chapter III theorem 1.10] and obtain that Ker P* consists of
the constant functions alone. From this the Lemma follows. O

Corollary 5.4. Let 7 be a strictly positive i00-closed (n — 1,1 — 1)-form and « be a d-
closed (1,1)-formon X such that | x @/An = 0. Then there exists a smooth representative
@ in the Bott-Chern cohomology class [a] o of « such that

anAn=0.

Proof. Clearly it suffices to find a smooth function f on X such that i00f An = —a A .
By Lemma 5.3 for any top degree form o on X with f « @ = 0 asmooth solution f to the
equation

i00f An =0
exists and we are done. O

Take wy a strictly positive (1, 1)-form on X such that i := Q A wy is d0-closed. Note
that, by Gauduchon’s [ , Théoréme I 14] again, for any strictly positive (1, 1)-form
won X a positive function f exists such that i00(fw A ) = 0.

Proposition 5.5. If ) has the Hodge-Riemann property pointwise and wy is a strictly
positive (1,1)-form on X such that Q A wy is d0-closed, then Qo 1s negative definite
on the subspace Ker Ligag,) of Hé’é(X ). In particular, Q[q) has the Hodge-Riemann
property when X is Kéhler.
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Proof. Let a be a d-closed (1, 1)-form on X. By Corollary 5.4 applied to i := Q A wy if
the class [a] pc belongs to Ker Liga,,], there exists a smooth representative & in [a] po
such that

aNQAwy=0.
Since wy is strictly positive it follows by the pointwise Hodge-Riemann property of €2 that
a A a A Q <0 with equality if and only if & vanishes identically. Thus

Q[Q]([OC]BC, [a]pc) = /Xd/\d/\Q <0

and equality holds if and only if [o] o = 0. Hence @ is negative definite on Ker Loy
If moreover X is Kihler, ()| will be positive on Kéhler classes, hence Qo) will have the
Hodge-Riemann property as stated. O

Using this and the already established linear case of Theorem 1.1 we get the following
Corollary which finishes the proof of Theorem 1.1.

Corollary 5.6. The second statement of Theorem 1.1, i.e. the Kéhler case of that theorem,
holds.

Example 5.7 (The Case of Surfaces). For d = 2 the positive form 2 will be just a pos-
itive function. In this case it automatically has the Hodge-Riemann property pointwise.
Since it is required to be also dO-closed, Q has to be a constant function. We will as-
sume that this constant is 1. Then the corresponding intersection form on H ;}é(X ) is
Q([a]Be, [B]Bc) = [y a A . Consider now a Gauduchon form w on X. By Proposition
5.5 Q is negative definite on Ker L. As remarked before we have Ker L, & H}B’é(X )
in the surface case. Two cases may occur:

(1) If X is Kdhler we have seen that () has the Hodge-Riemann property and we thus
recover the Hodge Index Theorem in this case.

(2) If X is non-Kéhler and if « is a smooth representative of a non-zero d-exact posi-
tive (1, 1)-current, then « is d-exact, Li,j([a]pc) > 0 and Q([a] o, [B]Bc) = 0
for all [8]pc € Hp(X). Thus Q is degenerate semi-definite in this case.

Following [ ] we introduce the following

Definition 5.8. We say that a pair of strictly weakly positive forms (2, w) of types (d —
2,d—2) and (1, 1) respectively on a d-dimensional complex manifold X defines a Hodge-
Riemann structure on X if ) has the Hodge-Riemann property pointwise and is 00-closed.

Remark 5.9. As mentioned before if (£2,w) defines a Hodge-Riemann structure on the
compact complex manifold X, there exists a unique conformal rescaling of w to wg := fw
such that 199 (wo A ) = 0. We denote the d — 1-root of wy A2 by w’. This is a Gauduchon
form on X . Then the hermitian metric w’ is balanced of Hodge-Riemann type in the sense
of [ , Definition 2.7] if £ and wg A §2 are moreover d-closed and {2 is strictly positive.
Note that the requirement that {2 be strictly positive is equivalent to the condition appearing
in [ , Definition 2.7 (2)] that  be a Hodge-Riemann form for (2,0). Thus balanced
hermitian metrics of Hodge-Riemann type in the sense of [ , Definition 2.7] are par-
ticular cases of Hodge-Riemann structures on compact complex manifolds in our sense. It
is worthwhile noticing that the results of [ , Section 3] on polystable vector bundles
are more generally valid over compact complex manifolds carrying Hodge-Riemann struc-
tures. (In order to see this it suffices to apply [ , Lemma 2.1.5] in the proof of [ ,
Theorem 3.2].)
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Example 5.10. A hermitian metric (which we identify with its fundamental (1, 1)-form) w
on a d-dimensional compact complex manifold X is called astheno-Kdhler if i00w?=2 =
0. This notion was introduced by Jost and Yau in [ ]. Examples of non-Kihler astheno-
Kihler metrics have been constructed for all d > 3, cf. [ 1, [ ], . If wis an
astheno-Kzhler metric on X then clearly (w?~2, w) defines a Hodge-Riemann structure on
X.

The main example of Hodge-Riemann structures provided by our paper occurs however
in the Kihler set-up and is the content of the following corollary to our main theorem.

Corollary 5.11. Let wy,...,w. be Kidhler forms on a compact complex manifold of di-
mension d > 3, let w be an arbitrary strictly positive (1,1)-form on X and let A =
(MA1,...,An) be apartition of d — 2 with 0 < Ay < ... < A; <e.. Then

(sa(wi, .. Wwe),w)

defines a Hodge-Riemann structure on X and the quadratic form [a]pc — [ ¥ a? A

sx(wi, ..., w.) has the Hodge-Riemann property on Hg’é(X ). If w is moreover closed
then (s) (w1, ...,w.),w) induces a balanced hermitian metric of Hodge-Riemann type on
X as in Remark 5.9.

6. CONVEX COMBINATIONS OF SCHUR CLASSES

In this section we show that the device we developed to prove our main result also
applies to prove the Hodge-Riemann property for certain convex combinations of Schur
classes. The main criterion to decide for which convex combinations this happens, The-
orem 6.3, is given in terms of irreducibility of certain cycles on appropriate Grassmann
varieties.

To describe this, fix integers b > 1, ¢ > 1 and d > b. We will consider the (k — 1)-
simplex

k
Sko1 = {z € Rx0) | Y ai =1},
i=1
where k := k(b, e) is the number of partitions A = (A1,..., A,) of bwithe > Ay > ... >
A, > 0. We will order these partitions in some arbitrary but fixed way as A("), ... A()
Then when b = d — 2 we will be interested in finding conditions under which convex
combinations of Schur classes sy, 1 <4 < k, of ample vector bundles have the Hodge-
Riemann property. (We exclude the case when d = 2 and b = 0 since it is trivial.)

We next introduce two definitions, one concerning linear sums of Schur polynomials

and then one concerning linear sums of Schubert varieties. For x € ¥j;_; define

k
1—‘1 = E TiS\G) -
=1

By Fulton-Lazarsfeld [ ], for any x € ¥j_;, for any projective d-dimensional
manifold X, for any ample vector bundle F of rank e and for any ample class » on X it
holds that [ T'y(E)h?~" > 0.

Definition 6.1. We say that for x € 3,42 )1 the characteristic class I';. has the univer-
sal Hodge-Riemann property if for any d-dimensional projective manifold X and for any
ample rank e vector bundle E on X the class ', (E) has the Hodge-Riemann property.
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Now to each partition ) and integer N > b we let C'y be the corresponding Schubert
variety in Grass(N, CV+¢), where by Grass(N,CV*¢) we denote the Grassmannian of
N-dimensional linear subspaces of CV*¢, That is, if A = (\1,...,\,) is a partition of b
withe > A; > ... > A, > 0, we fix a sequence of subspaces 0 C A; C Ay C --- C
A, € CN*e withdim(4;) = a; ;== e+1i— \; for 1 <i <n we set

Cy := {L € Grass(N,CN"¢) | dimLNA; >iforalli=1,...,n}.

Definition 6.2. We say that a pointz € Xy ¢)—1 N QF(®€) is irreducibly representable if
there exist positive integers N > b and m such that the cycle

k(b,e)

m E xiC)\m
i=1

in Grass(IN, CN*¢) is algebraically equivalent to an irreducible cycle. We denote the set
of irreducibly representable points of Yy, )1 by Bp.e.

Theorem 6.3. For every x € B;_o . we have

(1) The class I',, has the universal Hodge-Riemann property.
(2) The class I',, has the Hodge-Riemann property in the linear case.
(3) The class I';, has the Hodge-Riemann property in the Kihler case.

Before giving the proof we will describe the connection between Schubert varieties
and Schur classes of vector bundles through some aspects of invariant algebraic cycles on
projective manifolds under a group action.

Fix two positive integers e and N and two complex vector spaces H and H' of dimen-
sions e + N and e respectively. Let G := GL(H') be the general linear group acting
on H'. Then G acts by composition on the vector space Hom(H, H') and further on its
projectivization Py, (Hom(H, H')). The open subset Hom(H, H')® consisting of surjec-
tive homomorphisms is G-invariant and its quotient by the G action is given by the map
p : Hom(H, H")° — Grass(N, H), 0 — Ker(c). (Actually Hom(H, H')® is the subset
of (semi-)stable points for the G-action on Hom(H, H')).

Let now C' be an algebraic cycle on Grass(N, H) and C be the algebraic cycle on
P..s(Hom(H, H')) given by the closure of p~(C) in Hom(H, H'). This is a G-invariant
cycle on Py, (Hom(H, H')). More generally, we claim that any algebraic family C of
cycles on Grass(N, H) induces in this way an algebraic family C of G-invariant cycles on
Psup(Hom(H, H')). Since on Grassmannians algebraic equivalence and rational equiva-
lence of cycles coincide, we may as well work with the latter.

This construction may be extended to a relative situation as follows. If E is a rank e vec-
tor bundle on a projective manifold X and F' := H*® F = Hom(H, F) then any algebraic
cycle C on Grass(N, H) induces an algebraic cycle C on Py (Hom(H, E)) = Py, (F)
and similarly for algebraic families of cycles on Grass(IN, H). It follows that two alge-
braic equivalent cycles C, C’ on Grass(N, H ) induce algebraic equivalent cycles Cs,C's
on Py, (F'). Thus we have a morphism of Chow groups

A, (Grass(N, H)) = A,(Psup(Hom(H, E))) C— Cg (6.1)

Note that by construction if C' is irreducible, then also Cand C r will be irreducible.
In particular we can apply this when C' = C' is a Schubert variety. Then the closure of
p~1(C) in Hom(H, H') coincides with the subvariety

C :={o € Hom(H, H') : dimker(o(z)) N A; > iforalli=1,...,n}
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of Hom(H, H'). Indeed, p~(C) = C' N Hom(H, H')°, C is closed in Hom(H, H') and
C is irreducible since C'is irreducible.

Remark 6.4. The reader can check that for Schubert cycles C' in Grass(N, H) and for
vector bundles E of rank e on some projective manifold X, the construction of the cycles
Cg on Py, (Hom(H, E)) recovers the definition C'g from Section 4.1.

Proof of Theorem 6.3. (1) Let X be a complex projective manifold of dimension d, E be
an ample vector bundle of rank e on X and x an element in B4_2 .. We fix an ample class
hon X and will show that T", (E') has the Hodge-Riemann property with respect to h.

We make the same notations as in Section 4, W := Hﬂé’l(X), X = X x P4, ¢ =
¢1(Opa(1))g € Hy''(P4), V := Hy''(X) = W ®R¢ and define Q; and R, ; by imitating
Definitions 4.2 and 4.4 but for the class I',, instead of sy, i.e.

Q:(B.8) = Qu(B. B';x / B (E(C)C R

for 8,8 € V and

~(d—i+k\
Ri = t Qi_
fort € R and for 0 < ¢ < d. For 7 outside the given range we set Q; = 0 and R; = 0.
Here to simplify notation we have used the symbols E and ( also for their pull-backs to
X.

We will apply our algorithm as in Section 4.3 to show that R4 o|w has the Hodge-
Riemann property with respect to h which is exactly statement (1) of Theorem 6.3. For
this we need to check properties (A) and (B) for R; along the lines of Section 4.2.

The only delicate part is establishing an analogue of Proposition 4.7. As both statements
in that Proposition are closed under variation of x, we may assume that z lies in the set
B2 of irreducibly representable points of >jy_2 ¢)—1. Now for x in this set, the idea
is to have a geometric interpretation of the forms R; ; as forms S, ; in the set-up of Section

4.1, where this time S; ; is computed by integrating on a suitable irreducible variety C(x)
(that now depends on x). This may be achieved since x was assumed to be in B4_» ¢, S0 we
can choose NV and m as in Definition 6.2, H a complex vector space of dimension e+ N and

choose C(z) to be an irreducible cycle algebraically equivalent to m Z d %) 2;Cyu in
Grass(N, H) and then take C(x) 5 to be the corresponding cone in Psub(Hom(H, E))

given in (6.1). Then as C(z) is irreducible, so is C/'(-a:\)E
Then similarly to Proposition 4.5 the forms mR,; ; correspond to the forms

Sit(B,8') = //\ Bes—(a—iy (U (x* (th)))m* (h)*~' 8’

C(I)E
k(d—2,e)
=m Z z; / Bes—(a (U (" (tR))a* ()"
,\(J) E
on Hﬂi’l(Psub(Hom(H, E))), where as in Section 4.1 f = rk(Hom(H, E)) — 1 = e(e +
N) — 1 and U is the universal quotient bundle on Pgy,(Hom(H, E)). Now the same
arguments used in Proposition 4.7 will work and prove the two corresponding statements

in the present case too (we remark that irreducibility of C'(z) 5, is crucial here, since in that
argument we use a resolution of singularities to pass to the smooth case).
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(2) The proof of this statement goes exactly as in Section 4.4 by reduction first to the
Kihler case on tori with maximal Picard number and in that case as in Section 4.3 by the
above argument.

(3) is a consequence of the linear case (2) and of Proposition 5.5. ]

Corollary 6.5. In general there exist rational points in X, ¢)—1 \ Bp,e-

Proof. By Theorem 6.3 it suffices to show that d, e and x € Xjg3_2,¢)-1 1N QF(d—2.) exist
together with a projective manifold X of dimension d and an ample vector bundle of rank
e on X such that ', (E) does not have the Hodge-Riemann property. This was done in
[ , Section 9.2] ford = 5 and e = 3. O
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