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browsed treatment was likely due to decreased leaf clumping since k was 
greater in less dense canopy sections in all treatments. Additionally, 
increased k and the overestimation of LAI in browsed canopies were 
likely the result of a greater wood to leaf ratio compared to control and 
grazed canopies (Chen, 1996; Yan et al., 2019), since browsed canopies 
had leaves removed while woody components were mostly left intact. 
The extent of the effect of wood to leaf ratio was not measured here, but 
woody components have been found to make up 21–22 % and 11 % of 
the total plant area index in aspen and oak-hickory forests (Chason et al., 
1991; Chen et al., 1997; Gower et al., 1999), and woody-encroaching 
species can contain more stems and branches than forest species (Sta
ver et al., 2012; Charles-Dominique et al., 2017). Theoretically, a 
reduction in leaves would influence ceptometer LAI estimates, which do 
not differentiate between woody and leafy canopy components. 

The high sensitivity of ceptometer LAI to simulated browsing has 
significant implications for indirect LAI measurements in open ecosys
tems. Open ecosystems contain many of earth’s remaining megafaunal 
browsers, which play a key role in shaping plant communities (Char
les-Dominique et al., 2016; Malhi et al., 2016). In areas with large intact 
populations of megafaunal browsers, such as the African Serengeti, high 
intensity browsing may bias LAI estimates. In the North American Great 
Plains, populations of browsing herbivores including elk (Cervus ela
phus), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra 
americana) were largely extirpated in the late 19th century (Shaw and 
Lee, 1997; Rickel, 2005). Today, browser reintroductions have been 
proposed as a management strategy for combating woody plant 
encroachment (O’Connor et al., 2020; Wilcox et al., 2022). In locations 
where browsers have been reintroduced, approaches using ceptometers 
and other plant canopy analyzers will likely require site- and 
species-specific calibration. 

4.2. Comparison of methods: handheld 3D scanner 

Handheld 3D scanners are a promising tool for capturing complex 3D 
structural traits and are typically used for plant phenotyping of smaller 
crop species. To our knowledge, this specific technology has not been 
used to evaluate leaf area of woody plant canopies. The 3D handheld 
scanner had the best relationship with direct leaf area measurements, 
but it underestimated the leaf area of ramets with increasing bias at 
larger leaf areas. The occlusion effect likely drives this underestimation 
(Béland et al., 2014; Jiang et al., 2021). On multiple occurrences, we 
noticed that parts of leaves in the centers of larger crowns were not 
captured in scans. Occlusion effects are common when estimating LAI 
with other 3D scanning methods such as terrestrial lidar. Machine 
learning and automated gap filling can be used to reduce underestima
tion but were not used in the study. Previous research has also developed 
occlusion correction techniques, such as 3D kriging, to interpolate 
occluded areas (Soma et al., 2020). More research is needed to deter
mine the applicability of occlusion correction techniques to handheld 3D 
scanners and scanners using LED instead of lidar as a source of detection. 
In addition to underestimation from leaf occlusion, leaf portions on the 
ends of branches were sometimes absent in scans due to the loss of po
sition tracking while scanning. This often occurred on longer isolated 
branches and would potentially increase in species with less compact 
canopies. While leaf occlusion and the loss of position tracking led to 

some underestimation, the handheld 3D scanner had a strong relation
ship with direct measurements while requiring minimal post-processing 
(r2 = 0.86). The finding indicates that 3D handheld scanners are a 
promising tool for evaluating leaf area of small to medium sized 
canopies. 

4.3. Comparison of methods: remote sensing NEON AOP 

Remote sensing could theoretically provide wall-to-wall measure
ments of encroachment and ensuing changes in LAI at the landscape 
scale. Previous studies have produced accurate LAI estimates with 
spectral remote sensing in some environments, including deciduous 
forest, shrubland, grassland, and cropland (He et al., 2020; Brantley 
et al., 2011; Potithep et al., 2013; Li et al., 2016; Huete, 1988; Zheng and 
Moskal, 2009). Our findings revealed a large, consistent, underestima
tion of LAI by the NEON AOP data, with most LAI estimates similar to 
those reported previously in the herbaceous open tallgrass prairie (Pau 
et al., 2022). Underestimation of LAI by the NEON LAI data increased at 
greater LAI. This result could indicate that the NEON LAI data is accu
rate but needs clumping corrected. However, underestimation of LAI 
may also be due to a saturation effect since NEON LAI estimates 
asymptote at~3.5, while direct LAI measurements continue to increase. 
Saturation is common for spectrometry LAI estimates in dense canopies, 
but typically occurs at higher values (Huete et al., 1997; Fang et al., 
2019; Zhen et al., 2021). Saturation effects were found at similar LAI 
values (~3–4) for remotely sensed LAI estimates in canopies of Morella 
cerifera—another dense encroaching shrub (Brantley et al., 2011). 
Despite this, the NEON LAI data had a significant correlation with direct 
measurements, suggesting a potential to develop usable LAI products 
from this data. However, in its current state, the NEON LAI product is 
not suitable for ‘off the shelf’ usage of LAI for woody encroaching shrub 
canopies. 

5. Conclusions 

LAI is one of the most fundamental measurements in plant ecology. 
However, direct measurements of LAI consume large amounts of time 
and effort, which has spurred the creation of indirect methods. While 
many indirect methods are promising, they are often used without 
examining their accuracy. Comparing three very different measure
ments of LAI, we found that the ceptometer performed well at estimating 
the high LAI of C. drummondii shrub canopies when browsing was not 
present. However, the accurate LAI estimates may be due to the amount 
of woody stems in these canopies (Fig. S3). Future research is needed to 
better understand the accuracy of the ceptometer in dense clonal shrub 
canopies after accounting for woody materials. The recently developed 
Einscan Pro 2X Plus 3D scanner had high precision for estimating the 
one-sided leaf area of individual C. drummondii ramets but tended to 
underestimate at greater leaf area. The high precision and linear rela
tionship between the 3D scanner and direct measurements makes this 
method suitable for estimating leaf area with the use of a simple 
correction factor. In contrast, airborne spectral data drastically under
estimated LAI and requires further calibration to provide accurate wall- 
to-wall values of LAI for dense shrub canopies in grassy ecosystems. 
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Table 2 
ANOVA results for variables measured using direct methods in best-fit regression 
models. All significant effects (P < 0.05) are denoted with an asterisk (*). Ab
breviations: k = coefficient of light extinction; LAD = leaf area density.  

Variable Model Parameters DF F P R2 

k Best Fit LAD 
Depth 
LAD*Depth 

1 
2 
2 

19.3 
0.61 
8.39 

<0.001* 
0.55 
<0.001* 

0.50 

Best Fit log(LAD) 1 27.9 <0.001* 0.41  
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