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ABSTRACT: Complex crystal structures are composed of
multiple local environments, and how this type of order
emerges spontaneously during crystal growth has yet to be
fully understood. We study crystal growth across various
structures and along different crystallization pathways, using
self-assembly simulations of identical particles that interact via
multiwell isotropic pair potentials. We apply an unsupervised
machine learning method to features from bond-orientational
order metrics to identify different local motifs present during a
given structure’s crystallization process. In this manner, we
distinguish different crystallographic sites in highly complex
structures. Tailoring this order parameter to structures of
varying complexity and coordination number, we study the
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emergence of local order along a multistep crystal growth pathway—from a low-density fluid to a high-density, supercooled
amorphous liquid droplet and to a bulk crystal. We find a consistent under-coordination of the liquid relative to the average
coordination number in the bulk crystal. We use our order parameter to analyze the geometrically frustrated growth of a
Frank—Kasper phase and discover how structural defects compete with the formation of crystallographic sites that are more
high-coordinated than the liquid environments. The method presented here for classifying order on a particle-by-particle level
has broad applicability to future studies of structural self-assembly and crystal growth, and they can aid in the design of
building blocks and for targeting pathways of formation of soft-matter structures.
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INTRODUCTION

Crystal growth and nucleation constitute a rich field studied
across a wide range of systems. Crystallization processes span
length scales and materials families: from the biological—such
as the crystallization of proteins in solution" or the assembly of
gyroid structures in butterfly wings’—to the physical—on the
mesoscale: the organization of colloids,® nanoparticles,” and
block copolymers® into various structures; and on the atomic
scale: the formation of quasicrystals® or more ubiquitous
substances such as ice.” The emergence of order is a ubiquitous
phase transition, yet our understanding of spontaneous
phenomena such as crystallization remains incomplete.®
Experimental and simulation studies of growth are largely
isolated to specific systems,”'’ while theoretical models for
studying, e.g., layer growth11 or Wilson—Frenkel growth,lz’B
or methods such as kinetic Monte Carlo'* make a number of
simplifying assumptions that impede the extraction of
generalized crystal growth principles for the study of more
intricate crystal structures.

The applicability of mechanisms such as particle-by-particle
attachment and classical nucleation theory''® has been
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challenged by experimental evidence across various chemistries
and length scales, such as the effects of order development in
liquid precursor droplets prior to nucleation'”'® that may
enhance nucleation and §rowth rates'”** or other multistep
- 1—24 . .
crystallization pathways. Nonclassical nucleation and
crystallization theory posit that prior to nucleation, an
intermediate, metastable liquid phase (or prenucleation
: 25,26 ; . .27
cluster) is formed lowering the barrier to nucleation,
yet a complete understanding of how liquid motifs affect
crystallization remains elusive. In the case of complex crystals,
growth models and experimentally observed mechanisms do
not account for the presence of more than one local
environment or a large periodic unit cell in the crystallizing
structure. How do identical particles find their specific role to

Received: January 26, 2024
Revised:  May 9, 2024
Accepted: May 17, 2024

Published: May 30, 2024

https://doi.org/10.1021/acsnano.4c01290
ACS Nano 2024, 18, 14989—15002


https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Maya+M.+Martirossyan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Matthew+Spellings"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Hillary+Pan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Julia+Dshemuchadse"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsnano.4c01290&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c01290?ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c01290?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c01290?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c01290?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.4c01290?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/ancac3/18/23?ref=pdf
https://pubs.acs.org/toc/ancac3/18/23?ref=pdf
https://pubs.acs.org/toc/ancac3/18/23?ref=pdf
https://pubs.acs.org/toc/ancac3/18/23?ref=pdf
www.acsnano.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsnano.4c01290?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.acsnano.org?ref=pdf
https://www.acsnano.org?ref=pdf

ACS Nano

www.acshano.org

. . . . 28,29
occupy in a structure with multiple local environments,

and what role does the liquid play in crystal growth?’”’" As
such one—comgonent complex structures are being studied on
the mesoscale’”** and engineering such materials with DNA-
functionalization is becoming an ever more powerful tool for
design,**~*° achieving a better understanding of the structural
transitions and pathways during crystal growth for complex
structures is critical for directing self-assembly.

Probing these questions can prove experimentally challeng-
ing, whereas simulations targeting growth of complex
structures’** can provide access to rich real-space positional
data—the complete trajectories of all particles in the assembly.
Systems of identical particles that interact via isotropic,
multiwell pair potentials have been shown to spontaneously
assemble into a diverse set of crystal structures.’”””** Such
short-ranged potentials with tunable features are good models
for simulating the self-assembly of soft- matter particles,
resulting in structures as complex as clathrates”® and Frank—
Kasper phases.””™* While conclusions drawn from these pair
potentials may not be directly transferable to atomic systems,
this study attempts to address open questions regarding the
growth of complex structures whose self-assembly cannot be
probed with available atomistic interaction potentials.

In this paper, we simulate the crystal growth of model
systems across a wide range of chemical interactions, ranging
from low-coordinated to high-coordinated structures (with
coordination numbers CN = 0—6 and 12—18, respectively)
with varying degrees of complexity,"""** as shown in Figure 1.
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Figure 1. Unit cells of structures simulated in this study, plotted by
their complexity (the number of Wyckoff sites) and CN. Color is
used to represent the CN of individual particles, ranging from
purple (CN = 0) and blue (CN = 4), through green (CN = 6),
yellow/orange (CN = 12), to pink/red (CN = 14) and maroon
(CN = 15). Average CNs for structures with more than one
Wyckoff position are (CN) = 3.4 for cP54-K,Si,; and cF160-
Na,,Si;z6, (CN) = 12.8 for cP20-Mn, (CN) = 13.5 for cP8-Cr,Si
and tP30-CrFe.

We study crystallization across these structures through the
evolution of local order throughout the growth process. To do
so, we developed an order metric using unsupervised learning
that can distinguish a large number of different local
environments and be applied robustly along the self-assembly
pathway across various structures. We discuss the interrelation

between the structure of precrystallization liquids and the
lowest-coordinated sites in their respective crystalline solids, as
well as how the liquid develops the various coordination
environments of complex crystal structures in our study. Our
exploration of crystal growth highlights the complexity of
structural signatures present during self-assembly that depend
on the growth pathway as well as the presence of defect motifs
that arise when a crystal has multiple local environments.

LOCAL STRUCTURAL METRICS

For quantifying local order in three-dimensional crystal
structures, the Steinhardt order parameter46

1/2
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and N(i) = {nearest neighbors of particle i}

and its neighbor-averaged variant”’ have hlstorlcally been used
to fingerprint structural motifs in hqulds, distinguish liquid
from crystalline order,” differentiate between simple sphere
packings [body-centered cubic (bcc), cubic-close packed
(ccp), and hexagonally close packed (hcp)],*” distinguish
structures formed in systems of hard shapes,™ etc. However, in
all of these applications, an informed choice of the value of [—
the order of the spherical harmonic Y,,—is required, which
selects for the symmetries to which the parameter is sensitive.
Moreover, the values of Q; are hlghly dependent on the choice
of neighborhood cutoff distance,” and its per-particle values
are not sufficiently sensitive to distinguish between geometri-
cally similar Wyckoff sites in a highly complex crystal structure.

Unsupervised Machine Learning for Local Environ-
ment Identification. More recently, Spellings and Glotzer™
created a machine learning-based method for crystal structure
identification (i.e, a global order parameter) using local
features, which is able to accurately distinguish between
similar, complex structures. The featurization is generated
using the functional form

Zm(i) k) - Z tj; ’

JEN(i)

where N,(i) = {k nearest neighbors of particle i}

Values of Y,,(i, k) are computed for a range of
neighborhood sizes 4 < k < N, and 0 < [ < [ ., values
and 0 < m < |, where N, and ., are chosen according to the
investigated system. Like Steinhardt’s parameter, spherical
harmonics are used as a set of basis functions, but a key
difference lies in how rotational invariance is established.
Rather than summing over values of m, an orientation is
generated from the principal axes of inertia, which allows the
separation of symmetry elements for each spherical harmonic.
Such a featurization is necessarily high-dimensional and
requires machine-learning methods for interpretation. Un-
supervised learning approaches have shown promise in
uncovering phase transitions’>” or learning atomic fea-
tures” " from simulations.
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Figure 2. Structural analysis pipeline for Spellings’ featurization. (a) For each particle in the training data set, a range of neighborhood sizes
is chosen (in this example, the range [4, 6] is shown) and neighbors are selected based on their proximity to the central particle. The middle
column illustrates the projection of the relative locations of a particle’s neighbors onto a sphere. The right column shows the neighborhood’s
reorientation using the principal axes of its moment-of-inertia tensor, which is done for all particles in a system snapshot, such that their
superposition encompasses all possible choices of N neighbors. The rotationally invariant representation shown in the right column thus
also demonstrates permutation invariance—due to thermal noise, permutations of neighbor choices for the N = 4 and N = 5 neighborhood
sizes are sampled, while the complete shell of N = 6 particles appears featureless. (b) The construction of the data set and its transformation
throughout the analysis process: the featurization for each particle from each training frame is generated, and through dimensionality
reduction less relevant features of the data set are discarded. After a Gaussian mixture model (GMM) is trained and the number of clusters
optimized, particles can be assigned to clusters, representing local environments.

Put simply, Spellings’ features are a higher-dimensional
version of Steinhardt’s Q, features: they forego summation over
the m values, odd-numbered [ values are included, and
neighborhood sizes of N = 4 to N = N_,,, are included, as
opposed to a single neighborhood size for Steinhardt’s features.
We implemented both Steinhardt’s Q; and Spellings’
featurization via the pythia® software to study the local
environments present in simulations of crystallizing structures,
using the features to build local order parameters. This process,
as shown in Figure 2, is performed on individual simulations,
creating an order parameter for each crystallizing structure of
interest. We applied an unsupervised learning approach in
order to avoid prescribing the local environments present
during crystallization a priori as well as for ease of application
to a variety of crystal structures. Similar approaches applying
unsupervised methods to individual particles have been
implemented with other spherical harmonics-based descrip-
tors,">” but do not use varying neighborhood sizes in their
data set construction and focus on the crystallization of simpler
structures. The results presented here will describe the use of
Spellings’ featurization because it is higher-dimensional and
contains more detailed information, but the treatment and
training of the data will be nearly identical for Steinhardt’s and
Spellings’ features (see “Benchmarking against existing order
metrics” subsection in the Supporting Information).

For all structures, I, = 12 was used. Typically, N, (for
Steinhardt’s featurization, N = N,,,,) was set to the highest CN
expected for the idealized structure; however, in some cases it
was necessary to include more neighbors. Including part of (in
the case of tP30-CrFe and cI16-Si) or the entire second-
neighbor coordination shell (in the case of cP1-Po, cPS4-
K,Si,;, and cF160-Na,,Sij3 which are all notably low-
coordinated structures) showed better accuracy in distinguish-
ing different local environments (further discussed in the

14991

Results and the “Possible challenges for training unsupervised
models” subsection of the Supporting Information). For each
structure, the smallest sufficient N, was the first free
parameter fixed in the process of optimizing each structure’s
trained model. Additionally, we tested using subsets of
neighborhood sizes rather than an entire range for Spellings’
featurization, but this approach produced poor clustering
results, suggesting that neighborhood sizes that did not
necessarily correspond to a certain symmetry were important
for fingerprinting local environments. )
GMMs were implemented via the scikit-learn software>® to
cluster and classify particle environment data after projecting
the data into 64-dimensional space using principal component
analysis (PCA). For the Steinhardt featurization, since it is only
6-dimensional—one dimension per even value of | ranging
from 2 to 12—we did not perform PCA. The choice of the
number of clusters allows for flexibility in classifying order for
each structure, as the “best” choice would depend on the use
case for which a model is trained. For example, to distinguish
between noncrystalline and crystalline order, it would typically
be sufficient to simply train the model using two clusters.
However, for a study of the growth of complex crystals, it is
desirable to train the model to distinguish among different bulk
environments, the surface of the crystallite, the liquid, and the
gas. Therefore, it was often necessary to use a larger number of
clusters in this study. Further details for training the models are
provided in the “Unsupervised learning for various structures”
section of the Supporting Information. We used the following
criteria to select the number of clusters: (1) separation of
noncrystalline environments from bulk crystalline sites, (2)
separation of the liquid from the gas wherever possible, and
(3) minimizing the number of clusters needed to differentiate
as many local environments (Wyckoff positions) as possible,
while maintaining good accuracy at low temperatures. We

https://doi.org/10.1021/acsnano.4c01290
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Table 1. Structures Analyzed with Spellings’ Features”

clusters

structure Nioax
cP54-K,Si,; (clathrate T) 24 (full second shell) 8
cF160-Na,,Si 3 (clathrate IT) 28 (full second shell) 8
cI16-Si (high-pressure silicon) 11 (partial second shell) 4
cP1-Po (simple cubic) 18 (full second shell) 3
cF4-Cu (ccp/fec) 18 (full second shell) 3
hP2-Mg (hcp) 18 (full second shell) 3
cP20-Mn (f-manganese) 12 (partial first shell) 3
cI2-W (bec) 14 (full first shell) 3
cP8-Cr,Si (FK A1S phase) 14 (full first shell) 4
tP30-CrFe (FK o-phase) 32 (partial second shell) 8

local environments expected CNs calculated CNs

2X gas

[
)

surface, liquid
defects

24k, 6¢

16i

6d 0
2a 0
2X gas

surface, liquid

defects

96g 4
32e, 8a
16¢ 0
8b 0

gas, surface

|
E

|
N

liquid, subsurface

2 X 16¢ 4
gas

liquid, surface

la 6

gas, partial surface

|
[N

\O?O\NO-PWOOO-P-PWOOOO-P-PWOO
)

|
—_
%)

liquid, partial surface

4a 12
gas 0-1

liquid, surface 7-12

2 12 12

0—1, 6-9, 11-14

—_
)

gas, surface, liquid

12d 14 14

8c 12 12

gas 0-2
liquid, surface 7—14
2a 14 14

gas 0-2
liquid, surface 8—14
2a, liquid 12, - 11-12
6¢ 14 14

2X gas 0-2
surface 3—-11
subsurface, liquid 11-1§
defects

2b, 8i' 12, 12 12

8i 14 14

8j 14 14

4g 15 14-15

“For each structure, the N,,,, hyperparameter used to train the order parameter, the number of GMM clusters, the environments associated with
each cluster, and the CNs of those environments (expected and calculated) are listed. The environments are described by the following: gas (low-
density fluid), liquid (high-density fluid), surface(s), defects, and Wyckoff site in the bulk crystal. In almost all cases, results were highly similar

using Steinhardt’s features.

expect that the crystalline sites will have symmetries that may
not be present in environments such as the surface, liquid, or
gas and that complex crystals with multiple local environments
in the bulk should also have different symmetries at those sites.

Optimizing Training Parameters. We study the growth
process for both low- and high-coordinated structures, and in
particular structures with more than one Wyckoff site, by
applying our method to all 10 structures shown in Figure 1.
The optimization of training parameters, or hyperparameters,
was most sensitive for low-coordinated structures, which did
not contain enough structural information in their first

14992

neighbor shell. Highly complex structures proved challenging
as well, as they were susceptible to inadvertently splitting low-
density environments that were effectively identical into two
clusters in order to allow for different local environments in the
crystal to be distinguished. The separation of certain sites,
especially with low multiplicity (i.e, number of equivalent
positions in the unit cell) or highly similar neighborhood
geometry or the same CN, as in the case of the highly complex
structures, was not always possible.

The optimized hyperparameters—N,,,, and number of
clusters—are reported in Table 1 for each structure analyzed.

https://doi.org/10.1021/acsnano.4c01290
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Figure 3. Snapshots from simulations of growing (a—c) simple cubic (cP1-Po) and (d—f) clathrate-I (cP54-K,Si,3) crystal structures colored
by particles’ GMM clusters. Visualizations in (a,d) are created using the flowws-analysis®> software, and for ease of visualization, most fluid/
surface particles have been removed iteratively from the convex hull. In (a—c) the colors correspond to gas/LDF (red), liquid/HDF and
surface (lilac), and crystalline bulk (blue), while in (d—f) the colors correspond to the gas/LDF (yellow and orange), three-coordinated
defects (blue), surface and liquid (magenta), the 0-coordinated cage centers (green: Wyckoff site 2a, red: Wyckoff site 6d), and the 4-
coordinated cage framework sites (lilac: Wyckoff site 16i, gray: Wyckoff sites 24k and 6¢). In (b,e), chord plots are used to visualize the
change of cluster identity for individual particles from each simulation snapshot; these show the flow between states (i.e., GMM clusters) as
well as the total fraction of each cluster out of the total number of particles (as represented by the circular sector assigned to each cluster). In
(e), the two gas/LDF clusters are represented by a single grouping (orange) for simplicity. In (c,f), the CN histograms for each simulation

snapshot shown in (a,d), respectively, are generated for each cluster and labeled accordingly.

These hyperparameters were chosen based on each structure’s
coordination and complexity. For high-coordinated, simple
structures, this process was straightforward, as N, was set to
be equal to the singular motif's CN. Low-coordinated, high-
complexity structures often needed to include neighborhood
sizes corresponding to partial or even full second-neighbor
shells. An initial guess for the cluster number can be made
based on the expected number of local environments to be
distinguished (i.e., Wyckoff sites, as well as fluid phases), but
ultimately this number was determined by testing a range of
cluster numbers. The identified local environments for
Spellings’ featurization are labeled by inspection of simulation
trajectories and by comparing physical metrics of clusters, such
as CN. For each cluster, the “calculated CN” indicates the CN
that was computed from the simulation trajectory, while the
“expected” CN is based on the environment(s) identified as
belonging to each cluster, according to the ideal crystal
structure that is ultimately being assembled.

Training time varied depending on the size of the data set
(defined by the number of training frames provided and N,,,,)
as well the number of GMM clusters tested, taking a few
minutes on one CPU to train a mixture model on a data set of
roughly 40,000 particles. The computational cost of cluster
assignment for a system of 4096 particles was under a minute
per simulation frame on a CPU, but it also depended highly on
the number of Gaussian clusters in the model. In the
Supporting Information, we provide benchmarks for the
performance of the order parameter—trained using Stein-
hardt’s and Spellings’ featurizations—against both the standard
Steinhardt Q; parameter and CN to show the improved level of
structural detail that can be captured with the here-presented
method. The ability to train and apply our unsupervised
models without the use of high-performance or GPU resources
is a significant advantage over more sophisticated machine
learning methods with fewer tuned features.”**~®' Further-
more, using features based on existing bond-orientational order

https://doi.org/10.1021/acsnano.4c01290
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metrics allows for greater interpretability of our resulting
machine-learned models.

The featurization and clustering approach outlined in this
paper, with which we distinguish particles with geometrically
distinct local environments, works well in application even to
systems with some amount of thermal noise and disorder, such
as those in our simulations. In almost all structures, the gas
[ie, low-density fluid (LDF)], liquid [i.e.,, high-density fluid
(HDF)], and bulk crystal environments can be distinguished.
The surface environment tended to be combined with the
GMM cluster that included the liquid/HDF since both motifs
exhibit high degrees of anisotropy and ambiguity. In some
cases, the surface and subsurface environments could be
separated, in which cases the subsurface environment was
typically grouped with the liquid (dense fluid) environment,
while the outermost surface environment was either entirely
distinct or grouped with the gas (LDF). The two motifs,
however, can often be separated according to the time at which
they occur during the simulation, because the surface
environment cannot form without the presence of the
crystalline bulk and is distinct from the local motifs in the
dense fluid. In all crystal structures with two Wyckoft sites, the
sites were separated from one another; in all crystal structures
with five Wyckoff sites, all but two sites (with the same number
of neighbors) were separated from one another. For the
clathrate structures, we identified a GMM cluster representing
3-coordinated defects which were abundant in the training set.

To our knowledge, no existing methods of quantifying bond-
orientational order have been applied to identify many
different local environments during self-assembly for a broad
range of structures. The strength of this method for order
classification is due to the sensitivity of spherical harmonics-
based featurizations to symmetry because using different I
values and choosing neighborhood sizes prior to dimension-
ality reduction generates the representations that are most
important for a particular crystal structure. Differentiating
various crystalline sites and fluid environments, which are not
necessarily known a priori, would necessitate a manual trial-
and-error investigation of each crystal structure. With
appropriate training parameters, the featurization captures a
sufficient amount of relevant information to allow for the
identification of local environments without needing super-
vision during training. Further details on how to train a GMM
for a given structure are included in the Supporting
Information. A trained model generalized well to different
simulations that assembled the same crystal structure, even if
those simulations were performed by modeling interactions
with a different pair potential. It is worth noting that for
Spellings’ featurization, the variability in the data captured after
PCA was typically 40—50%, suggesting a nonlinear distribution
of the original high-dimensional data that can be harnessed
further in the future, using other machine learning approaches.

RESULTS AND DISCUSSION

Our order parameter can be applied to study the growth of all
ten structures shown in Figure 1. For all structures, a
simulation with condensation from a low-density gas phase
to a dense fluid phase, followed by crystallization from a dense
fluid droplet, was observed. The types of local environments
present during this growth process are described in Table 1 for
all crystal structures. In Figure 3, the application of the trained
models to a simulation of nucleation and growth from a
droplet is shown for both a simple structure (cP1-Po) and a

complex structure (cP54-K,Siy;), with particles colored by
their GMM cluster assignment. Figure 3 shows how the cluster
assignments and CN of particles belonging to each cluster
change on a per-particle basis over the time elapsed, as
illustrated by consecutive simulation snapshots. The two
examples show how differently growth can proceed from the
liquid phase: in the case of cP54-K,Si,; (clathrate 1), the dense
fluid phase has barely formed when the crystalline environ-
ments become present and a crystal nucleates (apparent in the
small size of the liquid droplet). We provide a more detailed
analysis of the growth of the clathrate I structure in the
Supporting Information, and we show that the structure of the
dense fluid/surface environment is structurally more similar to
that of the LDF. We document later in this paper how this is
not the case for other dense fluids in our study. In the case of
cP1-Po (simple cubic), the fluid droplet constitutes the
majority of particles in the simulation before nucleation and
growth of the crystalline phase.

While the vast majority of our simulations crystallized via a
dense fluid droplet, some exhibited growth directly from the
gas phase. The latter crystallization pathway was significantly
rarer across the hundreds of simulations in our data set, likely
because a dense fluid lowers the nucleation free energy
barrier.”” Among the three types of pair potentials used in this
study, the Lennard-Jones—Gauss potential stabilized liquids
with the widest temperature range, the oscillating pair potential
exhibited a narrower liquid phase stability region, and the
Yukawa—Gauss potential was the only pair potential to exhibit
nucleation and growth directly from the gas phase—or via an
exceedingly narrow liquid phase that could only be captured by
high frame-rate data. This is likely due to the increasing
steepness of Lennard-Jones—Gauss potentials vs oscillating
pair potentials vs Yukawa—Gauss potentials.

In several cases, we were able to compare particles
interacting with different types of pair potentials that
crystallized into the same structures. Here, we highlight the
trends and observations of crystal growth across structures and
growth pathways with a particular focus on the complex
structures in our study such as the Frank—Kasper phases cP8-
Cr;Si and tP30-CrFe. In the Supporting Information, we
include a detailed analysis of the growth of cI2-W (bcc) and
cP54-K,Si,; (clathrate I). Application of our order parameter
elucidates the structural complexity inherent in the process of
crystallization and allows us to compare growth across different
crystallization pathways, examine the similarity of the liquid
environments to a subset of the crystalline coordination
environments, and dissect the growth of a complex structure,
including recrystallization.

Differing Crystallization Pathways. For the cP8-Cr,;Si
structure in particular, growth along two different pathways
was observed: particle-by-particle growth directly from the gas
phase was observed with the Yukawa—Gauss potential, while
crystallization proceeding via a dense fluid was observed with
the oscillating pair potential. This set of simulations allows us
to compare the performance of the order parameters for
different crystallization pathways and consider the relevance of
the dense fluid to crystal growth.

We trained two models, one on simulations of each pathway.
The optimal hyperparameter N,,, = 14 reported in Table 1 for
cP8-Cr;Si was found by training on the simulation exhibiting
growth from a HDF. Although we report an optimal cluster
number hyperparameter in Table 1, exploring different cluster
numbers for each of the two models can elucidate the

https://doi.org/10.1021/acsnano.4c01290
ACS Nano 2024, 18, 14989—-15002


https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c01290/suppl_file/nn4c01290_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c01290/suppl_file/nn4c01290_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c01290/suppl_file/nn4c01290_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acsnano.4c01290/suppl_file/nn4c01290_si_001.pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.4c01290?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ACS Nano

www.acshano.org

distinctiveness of various environments present during growth.
In both models, the 14-coordinated Wyckoff site (6¢) is the
first crystalline environment to be differentiated from the
remaining particle environments, as early as with two clusters.
Most of the HDF and all surface particles can be separated
from the 12-coordinated Wyckoff site (2a) in a four-cluster
model, having remained combined when using three clusters. A
second model can be trained on simulation data exhibiting
growth directly from the gas phase, also with N, = 14. This
model behaves similarly to the first model for the three-cluster
case—and differently for the four-cluster case.

The application of both models is illustrated by the two-
dimensional t-distributed stochastic neighbor embeddings (t-
SNEs) of the respective training data colored by their GMM
cluster in Figure 4. Proximity between data points in the two-
dimensional embeddings suggests structural similarity as
detected by the features used. Likewise, the separation of
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Figure 4. (a) CN histograms and (b) two-dimensional embeddings
of particle training data from two different simulations in which
cP8-Cr;Si forms via different crystallization pathways (left: via a
HDF/liquid; right: via a LDF/gas). (a) Training frames are chosen
before and after crystallization in each system, and the temper-
ature in each frame decreases from left to right. (b) Embeddings
are generated using t-SNE*® on the PCA data and colored by each
particle’s GMM cluster assignment. The CNs for all particle
training data in each GMM cluster are shown for each model, with
the histograms left unscaled for ease of visualization due to particle
count differences between clusters. Detailed CN histograms are
provided in the Supporting Information.

groupings of data points in the two-dimensional embedding
implies a separation in the original high-dimensional data. The
structural dissimilarity of the 12- and 14-coordinated Wyckoff
sites is apparent by the distinct separation of their GMM
clusters along both growth pathways. In the case of growth via
a liquid phase, the difference between the three-cluster and
four-cluster models illustrates the structural similarity between
the cP8-Cr;Si liquid and the icosahedral environment of the
12-coordinated Wyckoff site. While icosahedral order in liquids
has been demonstrated,®>** the icosahedra present in the
liquid and crystalline environments are still sufficiently distinct
as to be distinguished by our order parameter.

The four-cluster models can be directly compared using the
CN histograms for each cluster as well as the space spanned by
each cluster’s embedded data. In the four-cluster model trained
on the simulation exhibiting growth directly from the gas
phase, the fourth cluster is formed by splitting the gas
environment identified in the three-cluster model in two. The
two partitions exhibit equivalent CN distributions, suggesting
that the split is not structurally meaningful. This is
unsurprising, given that no dense fluid was observed in this
simulation.

For the four-cluster model trained on the simulation
exhibiting growth via a dense fluid, the fourth cluster identified
is structurally distinct from the other three clusters and
represents most of the liquid and all surface local environ-
ments. Additional simulation snapshots and CN histograms for
this model are provided in the Supporting Information. This
pair of simulations and their respective order parameters show
how our simulations can model structurally distinct growth
pathways, which nonetheless can lead to the formation of the
same final structure. Our analysis approach and low-dimen-
sional embeddings highlight the complexity of local structural
data across a crystallization trajectory. Moreover, the
embeddings shown in Figure 4 underscore the different
relationships between the Wyckoff sites and the dense fluid
phase along both growth pathways, which will further be
highlighted by a comparison of liquid and crystalline
coordinations in the following section.

Liquid Under-Coordination. Short-range order in liquids
of metallic elements has been studied both in simulation® as
well as experiment,”* identifying a relationship between the
structure of the liquid and the respective solid that forms in the
same system. With the multiwell potentials used in this study,
we further probe how this relationship extends to the
formation of complex crystal structures. We can distinguish
the HDF phase (ie., liquid) from the LDF (ie, gas) and
crystalline phases through classification with our order
parameter(s), and we calculate CNs for each liquid cluster in
the simulation frames immediately preceding crystallization.
We find that particles in the high-density liquid-like droplet
prior to crystallization have fewer nearest neighbors than the
average in its solid, as seen in Figure $, if calculating CN with a
radial cutoff found from the solid’s radial distribution function
(RDF). It is worth noting the diversity in CNs exhibited by the
precrystallization liquids—with respect to which our order
parameter is robust—highlighting the difficulty of using
straightforward CN analysis to distinguish the liquid droplet
from the gas (LDF).

A subtler feature, illustrated in Figure 5, lies in the
comparison of liquid under-coordination for simple structures
(one Wyckoff site) to complex structures (two or more
Wyckoff sites). All of the simple structures—cI16-Si, cP1-Po,
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Figure 5. CNs of the liquid clusters for each crystal structure
plotted against that structure’s theoretical average CN in the solid,
calculated using a spherical cutoff distance from the first minimum
in the solid’s RDF. Violin plots are used to show the distribution of
(integer) CNs of the supercooled fluid immediately before
crystallization, with the median marked as a horizontal line. All
structures consistently exhibit under-coordination of their dense
fluids relative to their bulk crystal phases.

cF4-Cu, hP2-Mg, and cI2-W—show under-coordination by
one to two neighbors compared to their bulk crystals. On the
other hand, the complex structures—cF160-Na,,Si 35, cP54-
K,Siy3, ¢P20-Mn, cP8-Cr;Si, and tP30-CrFe—are not under-
coordinated relative to the lowest coordination in their bulk
crystal structures but only relative to the crystalline sites with
higher CNs. The high-coordinated cP20-Mn, cP8-Cr;Si, and
tP30-CrFe all have a median of 12 neighbors in their dense
liquid droplet, which is equivalent to the lowest-coordinated
site(s) in their solids; the low-coordinated clathrates, cP54-
K,Si,; and cF160-Na,,Sij3;, have a median of 0 and 1
neighbor(s) in their liquids, and both have zero-coordinated
cage centers in their bulk crystals.

It may seem unsurprising to report liquid under-coordina-
tion relative to each structure’s bulk crystal given that a change
in density is often expected upon crystallization. Calculating a
liquid’s CN is highly sensitive to how a particle’s neighbors are
chosen, but because the relationship of the liquid’s local
structure to that of the solid is of primary interest in our study,
we choose to use a radial cutoff derived from the solid’s RDF.
Prior literature on two-dimensional hard disks®® and three-
dimensional Lennard-Jones liquids (comprised of ccp, hep, and
icosahedral motifs)*® did not report under-coordination of the
liquids for simple structures, but this discrepancy is likely due
to how CN cutoffs are calculated (see Supporting Information
for calculation of under-coordination for a Lennard-Jones
liquid). The under-coordination of liquids has, however, been
theorized for Frank—Kasper phases. These structures have
multiple high-coordinated environments in their solids (CN >
12), and their liquids consist largely of icosahedral shells (CN
= 12), under- and overcoordinated particles (with CN = 10
and CN = 14) forming disclination lines, and pairs of particles
with CN = 11 and CN = 13 neighbor shells signifying the
presence of vacancies and interstitials, respectively.”> The
formation of CN > 12 sites upon crystallization is attributed to

disclination networks forming in order to accommodate the
geometric frustration from the CN = 12 icosahedral shells
present in the crystal structure.

In more recent work, the Lennard-Jones—Gauss potential
has been used to model geometrically frustrated amorphous
calcium carbonate due to competing stabilizing interparticle
distances from multiple potential wells.”” Geometric frustra-
tion can explain our more general observation of liquid under-
coordination prior to growth of complex structures including
those that are not Frank—Kasper phases, such as c¢P20-Mn (f-
manganese), cP54-K,Siy; (clathrate 1), and cF160-Na,,Si;s6
(clathrate II). This means that the liquids of highly complex
structures may be structurally more similar to only certain bulk
sites rather than all of them equally. This insight is not
reflected in any existing models of crystal growth and suggests
the need to incorporate the relative energetic favorabilities of
possible local environments. Moreover, how the geometric
frustration of local environments in the precrystallization liquid
is resolved by crystallizing into the environments of the solid is
not yet broadly understood. From our analysis of precrystal-
lization liquids, it follows that the emergence of different local
environments present in the complex structure must undergo
different types of geometric transitions allowing them to
“choose” their various roles in the bulk crystal.

Differentiation of Local Environments during Growth
and Recrystallization. Changes in the local geometry for
different Wyckoft sites during crystallization are investigated by
applying physically interpretable metrics to our particles
partitioned by their GMM cluster assignment. We investigate
the growth via a dense fluid from a high frame-rate simulation
of tP30-CrFe (Frank—Kasper o-phase)—a structure with five
Wryckoft sites in its unit cell ranging from CN = 12—15. As
discussed in the previous section, the Frank—Kasper liquid
phases are expected to have a high occurrence of CN = 12
particles, and in this section, we dissect how the higher
coordinated sites (CN = 14 and 15) emerge from the dense
fluid, and how the presence of CN = 13 defects can inhibit
crystallization.

In particular, we analyze a highly frustrated crystal growth
trajectory, signified by an increased presence of CN = 13
particles® (see Supporting Information for CN histograms).
Applying GMM clustering to this simulation, coupled with
Voronoi analysis, reveals that crystallization proceeds in three
stages, as shown in Figure 6. Five replica simulations were run
at this state point at a high frame rate, with frustrated
assembly—a high occurrence of CN = 13 during the formation
of CN = 14 and 1S5 sites—seen in two of the five simulations.
An example of assembly where a single crystal grows directly
from the fluid without such frustration is provided in the
Supporting Information for comparison.

The boundaries between the three stages illustrated in
Figure 6 are defined at times ¢, ..., t,, as delineated by jumps in
the correlation function in Figure 6a at those times. In the first
stage, between t, and t,, the droplet grows and densifies, with
very few crystal-like environments appearing and disappearing
via random thermal fluctuations. At time #,, both isoperimetric
quotient and CN increase for the GMM clusters associated
with the 4g¢ (15-coordinated), 8i (14-coordinated), and 8j (14-
coordinated) Wyckoff sites. In the second stage, between times
t, and t;, densification and droplet size growth slow down and
crystalline order begins to emerge, as noted by a differentiation
in average local number density (N/V),,.,, average isoperi-
metric quotient (Q), and average CNy,,onoy Shown in Figure
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Figure 6. Simulation of the growth of a tP30-CrFe structure type. (a) Correlation function C(r) calculated as a function of interparticle
distance r and colored by simulation time. (b) Simulation snapshots colored by GMM cluster and bond-orientational order diagrams at
times ¢, through t,, with gas particles omitted for clarity. Switches between clusters between each time marker are represented using chord
plots. (c—e) Measures of order for each cluster (excluding the gas and surface clusters) over time. Left to right: (c) average local number
density; (d) average isoperimetric quotient of the Voronoi polyhedra; (e) average CN calculated from the Voronoi polyhedra using a weight
cutoff. Error bars represent the standard error of the mean. (f) Representative motifs extracted from the cluster associated with the 4g-site
before and after recrystallization. The topmost row shows a typical CN = 1S site after recrystallization, while the middle and bottom rows
show CN = 14 defects—which only appear prior to recrystallization—that are distorted CN = 15 sites. Both of the shown defects are
characterized by the presence of a square pyramidal motif formed by the inclusion of a neighbor (colored in black) outside the Voronoi
weight cutoff. In the bottom row, particles in the pentagonal motif are colored dark gray as a guide for the eye. (g—j) Histograms of Voronoi
weights (i.e., polyhedra facet areas) for each of the crystalline clusters from the end of the simulation (time t,) plotted against the histogram
of the “dense fluid” cluster from immediately before the onset of crystalline order (time t,). The Voronoi weight histogram at time ¢, is
included for the cluster associated with the 4g-site in (j). Idealized Voronoi polyhedra for each Wyckoff site are included as insets.

6c—e. The bond-orientational order diagrams begin to show
signs of global order between t, and t; (see Figure 6b),
suggesting that the droplet is no longer structurally amorphous.

At t;, we see further differentiation in (N/V), . for the
crystalline GMM clusters (see Figure 6¢), with particles in the
“dense fluid” cluster dropping to lower (N/V),., and {Q) (see
Figure 6d). Also, at f;, the cluster associated with the 1S-
coordinated 4g site increases in (Q) (see Figure 6d) and in
CNy,ronoi (see Figure 6e). The final stage of assembly, from
to t;, moves the frustrated system with multiple nucleating
grains and grain boundaries to a single-crystalline assembly,
representing recrystallization. The delayed differentiation of
the 15-coordinated site in the calculated physical metrics is a
key difference between the frustrated and nonfrustrated
crystallization processes, and it is detected by the order
parameter. Due to the direct crystallization of a single crystal,
the nonfrustrated crystallization pathway lacks the intermediate
stage between time f, and t; suggesting that the proper
formation of the CN = 15 site is inhibited by the geometric
frustration from CN = 13 defects contained in the “dense fluid”

cluster. This is not to say that the 15-coordinated site is
necessarily the only one inhibited in its formation by CN = 13
defects: the “dense fluid” cluster contains particles ranging
from CN = 11—15 as noted in Table 1 (and in the Supporting
Information).

The particles in the GMM cluster associated with the 12-
coordinated Wyckoff site(s) undergo little change in their local
environment after time t,, i.e,, crystallization. The “dense fluid
cluster” prior to crystallization is not under-coordinated
relative to the lowest-coordinated sites in the tP30-CrFe
crystal structure (see Figure 6e), and the distribution of
Voronoi weights of the associated GMM clusters (the “dense
fluid” cluster at ¢, and the CN = 12 cluster at ¢,) are centered at
the same peak position (shown in Figure 6g—j). The Voronoi
weights for the cluster associated with the CN = 12 sites at
time ¢, only show a narrowing of the unimodal distribution
relative to that of the dense fluid at time ¢,. By contrast, the
other Wyckoff sites with CN > 12 neighbors all exhibit
geometric transitions to bimodal distributions of Voronoi
weights—corresponding to the facets connected to either 5- or
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6-coordinated vertices in the Frank—Kasper polyhedra.’® In
contrast, the dense fluid exhibits a unimodal Voronoi weight
distribution, with the most abundant weights falling between
the two modes. We provide additional unimodal Voronoi
weight data for the “dense fluid” cluster for the growth
trajectory in the Supporting Information. The fact that the 12-
coordinated sites are most similar in local structure to the
dense fluid suggests that the mechanism for the emergence of
14- and 1S5-coordinated sites at crystallization occurs in
conjunction with a reorganization of those coordination shells
to accommodate more neighbors, which does not happen for
the 12-coordinated crystalline sites.

At high temperature (near crystallization), our order
classification method places particles into clusters associated
with—Dbut not necessarily identical to—the Wyckoff site at low
temperatures, particularly because of motifs present during the
frustrated assembly. This is evident in all crystalline clusters
between times t; and t,, for the cluster associated with the 15-
coordinated Wyckoft site 4¢g between times ¢, and ¢;, and vice
versa for the dense fluid cluster between t; to t, (when the
entire droplet has crystallized). In the case of the CN = 15 site,
we see an “intermediate” local environment between times t,
and t;, which is similar to that of the 4g Wyckoff site but with a
lower (CNygone) Value and a geometry (measured by (Q))
that is more similar to that of the 14-coordinated sites. The
Voronoi weight histogram of the 4g-site associated cluster at t;,
as seen in Figure 6j, lacks the characteristic bimodal
distribution that appears at time t,. The 8i-site associated
cluster at t, is also not quite bimodal. Interestingly, the modest
increase in (CNygonoi) for the site at time t; also vanishes if
faraway neighbors (with Voronoi weights <0.05) are not
discarded, and instead we observe a decrease in (CNy,,onoi) at
time t; for the “dense fluid” cluster (see Supporting
Information).

We used this insight to extract these distorted local
environments between times ¢, to t; from the cluster associated
with the 4g site, and we find that—in addition to the 4g local
environment—the cluster also detects defects, such as
distorted 4g sites with a pentagon and triangle motif replacing
a planar hexagonal motif, as depicted in Figure 6f. As a result,
the (CNygonei) value of the cluster associated with the 4g
Wyckoff site is not quite equal to 1S5. In the Supporting
Information, we provide a further breakdown of Q as it
changes with CNyn0; OVer time for the particles in this cluster
and the “dense fluid” cluster, and we also include the Voronoi
histograms for the GMM clusters associated with crystalline
sites at low temperature (kT = 0.1). The structural distortions
and defects highlighted in this particular frustrated assembly
and recrystallization process illuminate the need for a more
structure-based approach for understanding crystal growth.

CONCLUSIONS

In this paper, we utilize a versatile unsupervised machine
learning-based method for classifying particles by local
environment in order to better understand the growth of
crystal structures with different CNs and degrees of complex-
ity. Tuning the model hyperparameters in accordance with a
structure’s complexity and CN can allow for the distinction
between different local geometries, which is not accomplished
to the same degree by standard order metrics. This method can
also distinguish between different phases—gas, liquid, and
solid—even in cases where a liquid’s local environments are
similar to those in the solid. The broad applicability to different

kinds of structures (demonstrated on 10 crystal structures with
1—160 particles per unit cell and local CN = 0—1S5), and the
ease of training a model using standard unsupervised learning
methods, make our method a good local order parameter for
studying the growth of complex structures in simulation. An
extension of this method to multicomponent systems would
also be straightforward, as the descriptor is agnostic to particle-
level features such as type, size, or shape. The unsupervised
technique we present here can also further enable the
exploration of other phenomena such as surface reorganization,
coarsening, and dislocation motion—in simulations or experi-
ments.

We used our method to analyze both fluid—fluid and fluid—
solid structural transitions and extract general patterns in
crystal growth. We observe under-coordination of the liquid
across all structures relative to the crystal coordination, in
contrast to hard anisotropic shapes, for which equal CN had
been reported for fluids and their respective solids in
simulation.”” Our findings suggest that the geometric
mechanisms for crystallization of complex structures from a
dense fluid differ compared to those of simple structures,
because certain crystallographic sites in a complex structure are
not under-coordinated relative to their precrystallization liquid.

In systems of particles interacting with isotropic pair
potentials, we capture the structural transitions during crystal
growth via a pathway from a LDF to a HDF and ultimately to a
crystal and investigate how these transitions can differ for
different Wyckoff sites in a highly complex structure. We
observe the differential effect of recrystallization and frustrated
assembly on specific Wyckoff sites, finding that structural
defects during growth, such as in tP30-CrFe are identified by
our order parameter. Further investigation of other nucleation
and crystallization pathways for complex structures is
warranted, as we did not use methods such as umbrella
sampling’® to probe difficult-to-access states near the
crystallization temperature of each structure.

The method we present could be wuseful for tracking
nucleation in simulations with larger system sizes or as an
order parameter to use in forward-flux sampling.”' Future
simulation studies should also consider how the energy
landscape and growth kinetics are altered by the presence of
an intermediate supercooled liquid droplet. Significant work
has already considered growth along different crystalline facets
in simple atomic structures and even colloidal systems,”” or by
considering liquid ordering near crystalline interfaces,” yet few
models of crystal growth incorporate a dependence of
thermodynamic quantities on local structure.” The structural
characteristics of different local environments captured by
spherical harmonics-based features could help build more
sophisticated models of crystal growth. Moreover, using
structural descriptors—such as those developed in this
study—that employ supervised machine learning can help
establish formal connections between the shapes of particles’
interaction potentials and their assembled structures in future
research. Extending growth models to explore complex
structures can create a richer understanding of crystallization
and aid in the design of growth units for experimental soft
matter assembly in the quest to design materials on the
mesoscale.

METHODS

Particle interactions adapted from previous studies were modeled with
the following isotropic multiwell pair potentials: Lennard-Jones—
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Gauss, oscillating pair potentials,*’ and a Yukawa—Gauss-based
functional form.*” Few structures exist in the intermediate-
coordinated (CN = 7—11) range, which were, therefore, not included
in this study. Further details of the specific interaction potential
functions implemented and parameters used for assembling each
structure can be found in the Supporting Information.

Structures are labeled with their Pearson symbol, which specifies
the Bravais lattice and the number of particles in the unit cell, and a
prototypical compound. We denote the “complexity” of a structure by
the number of its crystallographic Wyckoff sites, which represent
symmetrically inequivalent positions in a structure’s unit cell, which
can therefore adopt different local environments.

Simulations of Crystal Growth. Molecular dynamics simulations
were performed using the open-source HOOMD-blue software.”*
Systems of N = 4096 particles were initialized with randomized
velocities in an NVT (canonical) ensemble at effectively zero pressure
and cooled using a linear temperature ramp from kT = 1.0 or kT = 1.5
to kT = 0.1, controlled by a Nosé—Hoover thermostat. For all
simulations, either 107 or 10° molecular dynamics time steps were
used with a step size of dt = 0.005 to ensure that the system was being
cooled sufficiently slowly for single crystals to form. The signac and
signac-flow software were used for workflow and data manage-
ment.”>”¢

Several replica simulations were performed at each state point, and
simulation trajectories that exhibited a low defect occurrence in the
formation of high-quality crystals were chosen for generating training
data for structural analysis. For each simulation, 100 total frames were
collected, and training frames were chosen near (before, during, and
after) the crystallization event as well as from the final frames of the
simulation. To capture more data in the crystallizing region of
interest, simulations were restarted from an existing simulation frame
in the temperature window where the crystallization occurred, and
frames were then collected every 100 time steps (the temperature
ranges tended to be sufficiently narrow for the data volume to remain
on the order of a few gigabytes per simulation trajectory for the
system sizes simulated in this study). We note that the process of
restarting the simulation from an existing frame effectively creates a
replica as our simulations are not deterministic.

Physical Order Metrics. We used physically interpretable metrics
to analyze the structural properties of each GMM cluster. These
include CN, Voronoi analysis and isoperimetric quotient, local
number density, and correlation functions, which are all calculated
using the freud software package.””

Coordination Number. In any discussion of “bonding” and nearest
neighbors, it is important to consider how those neighbors are
defined. For the most part, we define the first neighbor shell using a
spherical cutoff at the position of the first minimum in the RDE.”®
The CN values presented in this paper are calculated using a spherical
cutoff at the first minimum in the RDF, unless otherwise noted. We
note that the CN depends sensitively on the choice of RDF cutoff and
that the presented data should be interpreted only in this context. The
RDF is calculated using the freud software”” and smoothed using a
Gaussian filter with standard deviation ¢ = 2. While the RDF changes
throughout the crystallization process, the locations of its maxima
change only subtly so that the cutoff distance is calculated using only
the last (coldest) frame of a simulation. CN histograms were
generated for the training frames for each GMM cluster, which served
as a check for the interpretation of different clusters as representing
particular Wyckoft sites. We also apply CN analysis by the GMM
cluster to the high frame-rate crystallization data and isolate specific
frames prior to and during crystallization to extract phase-specific CN
values.

Voronoi Analysis and Isoperimetric Quotient. Voronoi anal-
ysis’*—a geometric, parameter-free way of determining neighbors—is
used for understanding local geometry and can serve as a proxy for
bond angles, which are particularly susceptible to thermal noise for
high-coordinated structures. Each neighbor in a particle’s Voronoi
polyhedron is weighted by the area of its corresponding facet, and
these Voronoi weights (facet areas) are determined by both a
neighboring particle’s distance from the central particle and the
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locations of other nearest neighbors adjacent to the neighboring
particle, which define the respective bond angles.

For high-coordinated structures, the Voronoi polyhedra for ordered
motifs correspond well to the coordination environments found using
a spherical cutoff. For low-coordinated and disordered motifs,
however, Voronoi polyhedra will overestimate the CN by including
additional faraway neighbors. We resolve this discrepancy by
imposing a Voronoi weight cutoff when calculating CNy,0; (here:
0.05), and for comparison, we provide figures that calculate CNyoono;
without cutoffs imposed in the Supporting Information. The
isoperimetric quotient, Q = 367V2/S’, can also be calculated from
the volume of a Voronoi polyhedron V and its total surface area S as a
way to quantify local geometry.*

Local Number Density and Correlation Functions. We define a
simple correlation function C(r) = (5,(0)-s,(r)), calculated over all
particle pairs as a function of radial distance r, with the values of s,
and s, based on the GMM cluster assignment: C = 1 for particle pairs
both assigned to “crystalline” (bulk solid) clusters and C = 0
otherwise. This correlation function can be used to observe how
crystallinity propagates during the simulation. We also used average
local number density, (N/V),,, to characterize the particles in each
cluster throughout the growth process. The local number density is
calculated based on the number of particle centers within the first
coordination shell (using a fixed radial cutoff deduced from the RDF
of the solid).
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