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4.3. Implications of ecosystem state transitions on water cycling in 
tallgrass prairie

While aboveground evidence for ecosystem state transitions and 
hysteresis in mesic grasslands has been building over the last decade 
(Ratajczak et al., 2014b; Collins et al., 2021), we do not have a solid 
understanding of how these transitions impact the hydrological systems 
to which they are intricately linked. We do know that hydrological 
systems can exhibit threshold behaviors – for example, recent work in 
tallgrass prairie groundwater systems has found that stream discharge 
occurs only when thresholds of groundwater storage have been reached 
(Hatley et al., 2023). This threshold behavior indicates that decreasing 
groundwater recharge due to woody encroachment may have non-linear 
effects on stream discharge, and that restoration of stream flow by 
removal of woody vegetation may have substantial lag-effects depend
ing on the degree to which groundwater has decreased (Dodds et al., 
2023a). As such, these results have implications for management stra
tegies aimed at restoring streamflow or groundwater levels by me
chanically removing woody vegetation. The timing of the observed 
‘breakdown’ in connectivity between precipitation and stream discharge 
at KPBS corresponds temporally with the rapid increase in woody cover 
that occurred in ~ 2000 (Fig. 3a,b; Ratajczak et al., 2014b; also docu
mented in Macpherson et al., 2019). This linkage is not evidence of 
direct causation, but it does illustrate that declining stream discharge is 
more closely linked with changes in woody cover than with changes in 
precipitation dynamics over the last ~ 40 years (Sadayappan et al., 
2023).

In addition, our results show that stream discharge has declined in all 
of the watersheds observed in this study, not just the infrequently 
burned watersheds (Fig. S5) – we do not currently know the extent to 
which stream discharge and groundwater recharge in one watershed are 
impacted by encroachment across the broader landscape (i.e., upstream 
or in neighboring watersheds). Groundwater dye tracer studies at this 
site have demonstrated that groundwater can enter and leave a water
shed without ever showing up in the stream (Barry, 2018) and 
geophysical data suggest a high degree of connectivity across this mer
okarst system (Sullivan et al. 2019). Therefore, it is presumable that 
groundwater flow does not strictly follow watershed boundaries, and 
extensive woody encroachment in one watershed could have implica
tions for water yield beyond the boundaries of that specific watershed. 
While the consequences of woody encroachment on hydrological fluxes 
in tallgrass prairie are becoming evident (e.g., increasing ET, declining 
streamflow), identifying mechanisms responsible for alterations to the 
whole hydrological system requires decadal-scale observations. Changes 
in hydrological functioning, or potentially a shift to an alternative hy
drological state, as a result of woody encroachment could take decades 
or centuries to reverse. Understanding the hydrological impacts of land- 
cover change, particularly within the context of changing climate con
ditions, is vital to predicting how these ecosystems will change and 
transform in the future.
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