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Abstract

Regardless of annual rainfall amount changes, daily rainfall events 
are becoming more intense but less frequent with anthropogenic 
warming. Larger rainfall events and longer dry spells have complex 
and sometimes opposing effects on plant photosynthesis and growth, 
challenging abilities to understand broader consequences on the 
carbon cycle. In this Review, we evaluate global plant responses to 
rainfall regimes characterized by fewer, larger rainfall events across 
evidence from field experiments, satellites and models. Plant function 
responses vary between −28% and 29% (5th to 95th percentile) under 
fewer, larger rainfall events, with the direction of response contingent 
on climate; productivity increases are more common in dry ecosystems 
(46% positive; 20% negative), whereas responses are typically negative 
in wet ecosystems (28% positive; 51% negative). Contrasting responses in  
dry and wet ecosystems are attributed to nonlinear plant responses 
to soil moisture driven by several ecohydrological mechanisms. For 
example, dry ecosystem plants are more sensitive to large rainfall pulses 
compared with wet ecosystem plants, partly driving dry ecosystem 
positive responses to fewer, larger rainfall events. Knowledge gaps 
remain over optimal rainfall frequencies for photosynthesis, the 
relative dominance of rainfall pulse and dry spell mechanisms and  
the disproportionate role of extreme rainfall pulses on plant function.
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in the climate system10,43, owing to their relatively high sensitivity to 
climatic variability44, and their extensive coverage, encompassing at 
least 40% of the land surface of the Earth. First, we examine observed 
and modelled trends of global sub-seasonal rainfall variability. Next, we 
evaluate plant responses to changes in rainfall frequency and intensity 
across ecosystems. We then discuss the ecohydrological mechanisms 
associated with larger rainfall pulses45 (single wet days or several con-
secutive wet days) and longer dry spells to reconcile differing plant 
responses to fewer, larger rainfall events. Finally, we identify key knowl-
edge gaps that must be addressed to better estimate plant responses 
to fewer, larger rainfall events.

Sub-seasonal rainfall changes
Rainfall trends in response to global temperature increases have pre-
viously been hypothesized to follow a ‘wet-get-wetter, dry-get-drier’ 
pattern, in which wet regions experience more rainfall and dry days expe-
rience less rainfall46. In principle, the Clausius–Clapeyron relationship  
predicts more rainfall over already-wet surfaces because warmer air 
increases atmospheric water vapour content46. Less rainfall in dry 
regions should also occur given less available surface moisture. How-
ever, this paradigm was later found to be an oversimplification and does 
not hold on average over land47–49. Instead, observed trends and model 
projections suggest that increasing global temperatures are causing 
shifts in sub-seasonal rainfall variability22,23 where wet days are less 
common but experience more intense rainfall on average across the 
globe24,42,50 (Fig. 2). Observations of daily-scale rainfall changes between 
1980 and 2020 (refs. 51–53) show that 36% of the global land surface has 
fewer, larger rainfall events; smaller fractions of the land surface show 
the other possible trend combinations (more, larger rainfall events; 
more, smaller rainfall events; fewer, smaller rainfall events) (Fig. 2a,b). 
As rainfall patterns are highly uneven in time — typically, more than half 
of the total yearly rainfall of a location occurs in the 12 wettest days of 
the year19 — the trend towards fewer, larger rainfall events will concen-
trate total rainfall into even fewer days19. CMIP6 projections from 28 
models suggest that these observed trends will continue23, with more 
spatially coherent trends toward fewer, larger rainfall events across 70% 
of the globe between 2020 and 2100 (Fig. 2c). Indeed, significant trends 
(P < 0.05) towards decreasing wet day frequency and increasing rainfall 
volumes on wet days are most common across global ecosystems as 
reflected in both observations and models (Fig. 2b,d).

Rainfall is increasing on wet days of all magnitudes, with the most 
extreme rainfall events increasing in intensity the most23,54. Accord-
ing to observations and models, the amount of rainfall on wet days is 
increasing by 1.6% and 1.3% per decade, respectively, with more global 
land area showing a statistically significant increase in wet day rainfall 
intensity than a statistically significant decrease (P < 0.05) (Fig. 2b,d). 
In locations with significant trends (P < 0.05) that have a mean wet 
day rainfall intensity of 6.4 mm per day, the mean wet day rainfall 
intensity is expected to have increased by 1.0 mm per day (+16%) by 
2100 under the representative concentration pathway 8.5 (RCP8.5) 
scenario in CMIP6 models. Such increases in wet day rainfall intensity 
are attributed to both thermodynamic changes and changes to atmos-
pheric circulation. Thermodynamic changes tend to increase daily 
rainfall intensity: for example, daily-scale rainfall depths increase with 
greater lower-tropospheric humidity55 as well as with more latent heat 
release during convection54,56. Weakening atmospheric circulation, 
such as weakening of the Hadley and Walker cells, mediates the global 
increase in daily rainfall intensity by causing both regional increases 
and decreases in wet day rainfall depths23,57–59. Increases in daily rainfall 

Introduction
Plants are an essential component of the climate system. Photosynthe-
sis is responsible for the largest flux of carbon on global land surfaces1 
and drives the terrestrial sequestration of ~25% of anthropogenic CO2 
emissions each year2. Plants also transpire moisture and thus contribute 
greatly to evapotranspiration3, which controls processes such as cloud 
formation4, surface temperatures5 and regional weather patterns6. Plant 
processes themselves also depend on environmental drivers such as 
rainfall, temperature, humidity, solar radiation and atmospheric car-
bon dioxide concentrations7,8,9. Therefore, plants modulate how water, 
carbon and energy cycles of Earth respond to climate variability1,10,11.

When considering what controls annually averaged plant function, 
decadal-to-centurial trends in the mean annual climate, such as soil 
moisture trends, can change the annually averaged photosynthesis 
and growth of plants7,12. Potentially even more important, interannual 
climate variability and extremes13,14 can also drive variations in annual 
averaged plant function15,16. These longer-timescale phenomena have 
been studied extensively7,12. However, variations in total annual rainfall 
often explain <50% of variability in annually averaged net primary 
production, even in water-limited ecosystems16–18. Because rainfall 
regimes tend to be highly uneven, with most rainfall concentrated in 
large events occurring on single wet days19,20, it is likely that shorter, 
sub-seasonal timescales of rainfall variability also control annually 
averaged plant responses21, thus influencing their mean trends and 
interannual variability.

Regardless of trends in annual rainfall amounts, rainfall is becom-
ing more extreme globally, with wet days becoming less frequent but 
experiencing higher rainfall intensity on these days22–24 (hereafter, 
‘fewer, larger rainfall events’ describe this change; we refer to ‘inten-
sity’ in daily units here20, acknowledging that it is common in hourly 
units). Increased rainfall depths on wet days typically result in more and 
deeper infiltration of water into the rootzone, at least during rainfall 
events25,26 (Fig. 1). By contrast, increased rainfall on wet days might 
also result in more water lost to runoff27, and the longer dry spells (also 
referred to as drydowns or interstorm periods)28–30 associated with 
fewer wet days can cause extended periods of low soil moisture, high 
vapour pressure deficit (VPD; also known as atmospheric aridity) and 
high incoming solar radiation31,32 (Fig. 1). With the opposing effects of 
higher intensity daily rainfall and longer dry spells, both the direction 
and magnitude of plant response to these sub-seasonal rainfall changes 
can vary across ecosystems33. Indeed, field experiments in tropical, 
temperate and dryland ecosystems have shown substantial but varying 
mean ecosystem carbon uptake responses (−30% to 30%) to temporal 
repackaging of wet days into fewer, larger rainfall events while holding 
seasonal or annual total rainfall constant34–37. These uncertainties must 
be reconciled as plant responses to sub-seasonal rainfall shifts might be  
creating feedbacks on the carbon cycle by altering global greening 
trends38 and interannual carbon cycle variability10,11.

In this Review, we summarize evidence for how fewer, larger rainfall 
events are influencing plants at annual timescales across low-latitude 
and mid-latitude regions, where plants respond more strongly to water 
availability7. Plant responses to fewer, larger rainfall events, which are 
sub-seasonal rainfall features (also referred to as rainfall intermit-
tency)39, are evaluated independently of longer-timescale rainfall vari-
ability trends29,40 (Box 1). Owing to their nonlinear responses to water 
availability, plants have been hypothesized to respond differently to 
rainfall variability in climatically dry and wet ecosystems33,41,42 and we 
evaluate these differences here. Distinguishing dry ecosystems from 
wet ecosystems serves to highlight the large role of dry ecosystems 
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intensity are occurring regardless of whether the land surface climate 
is dry or wet60,61 and are thus likely to impact all ecosystem types.

As rainfall depth increases on wet days, the number of dry days 
between rainfall events is lengthening47,62. According to observations 
and models, wet day frequency is decreasing by −0.6% and −0.8% 
median per decade, respectively, with more global land area having 
significant decreases in wet day frequency than increases (P < 0.05) 
(Fig. 2b,d). In locations with significant trends (P < 0.05), which have 
a mean annual count of 118 wet days, it is expected there will be an 
average of 13 fewer wet days (−11%) by 2100 under the RCP8.5 scenario 
in CMIP6 models. Dry spell lengthening is thought to be caused by 
increasing atmospheric static stability, which creates more resistance 
for convection initiation, although the exact causes of this change 
are unclear22. Regardless, an increase in rainfall on wet days under 
greater atmospheric humidity, concurrent with total annual rainfall 
having less consistent signs of trends, ultimately requires longer 
dry spells23,24.

The sub-seasonal rainfall changes described do occur among 
spatially heterogeneous annual rainfall amount trends22,47 (Fig. 2). 
Observations from 1980 to 2020 show that annual rainfall amounts are 
changing by a median magnitude of 0.8% per decade, but with incon-
sistent direction of change across ecosystems (Fig. 2b). Compared with 
observational data, CMIP6 projections show a smaller median magni-
tude for the change in annual rainfall amounts (0.6% per decade), but a 
more widespread occurrence of significant trends (Fig. 2d). Although 
there is a tendency towards increasing annual rainfall amount, this 
trend is not as globally consistent as the trend towards fewer, larger 
rainfall events (Fig. 2b).

Plant response to rainfall variability
Plant responses to changes in rainfall frequency and intensity are 
assessed using many different approaches, including field manipulation 
experiments26,35,37,63–76, observation-driven approaches with regional 
or global data sets32,77–86, minimalist analytical process models39,87–89 
and numerical terrestrial biosphere process models25,90–93. These 
approaches aim to determine how plants and ecosystems will respond 
to a future climate with fewer, larger rainfall events in the context of 
constant annual rainfall amounts. Each approach has advantages and 
disadvantages and the complementary use of different approaches 

is required to best understand global plant responses to fewer, larger 
rainfall events (Fig. 3).

Types of evidence
Field manipulation experiments typically involve monitoring vegetated 
plots in rainout shelters where the timing and intensity of rainfall events 
are inversely altered, thereby keeping total rainfall amounts (annual 
or growing season) constant94,95. This approach arguably represents 
the smallest in situ spatial scale of inference, which allows for control 
over rainfall, soil and vegetation conditions (Fig. 3a). However, these 
experiments are expensive and thus have limited applicability for 
understanding global ecosystem behaviour.

Observation-driven approaches span large spatial scales (Fig. 3b) 
and apply statistical methods to satellite-based vegetation indices or 
tower-based carbon flux measurements to estimate how plants respond 
to variations in daily rainfall frequency and intensity. Such approaches 
benefit from vegetation observations that integrate over ecosystems 
and span regional-to-global scales. However, observation-driven 
approaches rely on uncertain statistical approaches to partition vegeta-
tion responses to rainfall variability. Additionally, if the observational 
record is short, this approach often relies on space-for-time substitu-
tions, which use an uncertain assumption that variations in vegetation 
behaviour across different regional or global locations can predict 
vegetation changes over time77.

Process models range from minimalist models that develop analyt-
ical representations of vegetation response to climate with the fewest 
parameterizations possible96,97 (Fig. 3c) to numerical, gridded dynamic 
vegetation models with interactive land surface hydrology schemes91 
(Fig. 3d). Minimalist models represent variability in daily-scale rainfall 
inputs using a stochastic process (parameterized by the mean wet day 
frequency and intensity) and propagate its effects across the soil–plant 
system through mass and energy balance equations that account for 
evapotranspiration, drainage and runoff 96–98 (Fig. 3c). Additional plant 
responses, such as photosynthesis, assimilation or growth, are then 
coupled to the soil moisture balance equations using soil moisture 
stress functions99–101. Although these models represent a simplification 
of natural processes, they provide a testbed to attribute drivers of the 
vegetation response to rainfall frequency and intensity. Numerical 
terrestrial biosphere process models include similar soil moisture 
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Fig. 1 | Fewer, larger rainfall events change 
hydrological conditions for plants. Changes in 
land surface hydrological conditions under higher 
daily rainfall intensity (left) and longer dry spells 
between wet days (right). For the larger rainfall 
event (left), the respective quantities are described 
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respective quantities are described in the context 
of their change under longer durations of dry spells 
between rainfall events. Changing sub-seasonal 
rainfall variability will alter plant-available soil 
moisture and atmospheric water stress.
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stress functions91; however, they have a higher specificity for climate 
and plant function in each model pixel and interaction across pix-
els, which provides scaled-up estimates of vegetation behaviour and 
their variations across space (Fig. 3d). Biosphere models additionally 
include soil moisture vertical distributions, atmospheric boundary 
layer characteristics, effects of VPD and light, seasonal phenology and 
tree–grass competition91. Nevertheless, their vegetation responses to 
the environment tend to be simplified, and attribution of outputs is 
more challenging than for minimalist models.

Overview of plant responses
Integrating data from the diverse approaches mentioned earlier 
provides an opportunity to assess the robustness of plant responses 

to fewer, larger rainfall events. Published studies were surveyed that 
used the aforementioned approaches to quantify the magnitude 
and sign of plant function responses to fewer, larger rainfall events 
(Supplementary Information). ‘Plant function’ is broadly defined 
here as comprising photosynthesis, greenness and growth — and 
in some cases plant water status and community composition. This 
synthesis indicates that plants have variable responses to fewer, 
larger rainfall events across vegetation types, global regions and 
approaches (Fig. 4a). Namely, plant function increases, decreases or 
remains approximately constant under fewer, larger rainfall events 
in 35% (±6%, referring to the bootstrapped standard deviation), 
42% (±6%) and 23% (±5%) of cases, respectively. Across approaches, 
fewer, larger rainfall events cause −28% to 29% (5th to 95th percentile) 

Box 1

The role of sub-seasonal rainfall variability across timescales
Although the focus in this Review is on less frequent but more 
intense rainfall events, these sub-seasonal rainfall features occur 
among and even influence rainfall variability and trends at other 
timescales246–249, making the study of these phenomena more 
impactful beyond these shorter timescales. Considering even 
shorter timescales, rainfall is intensifying at hourly timescales 
(diurnal variability)20 (see the figure). As such, these more intense 
hourly storms are partly driving wet days to experience more intense 
daily rainfall. Longer durations are occurring between these wet 
days, resulting in more consecutive dry days over a week to months. 
Changes in these daily-scale rainfall variations take place over days 
to weeks within a rainy season and thus form rainfall sub-seasonal 
variability (see the figure).

Rainfall can also change at longer timescales than those 
considered in this Review. These changes include rainfall seasonality 
(see the figure), which occurs over longer multimonth periods. 
Rainfall seasonality is intensifying globally with wetter wet seasons 
and drier dry seasons250 and more variability in the seasonal cycle 
year to year40,54. Annual and longer rainfall changes are also occurring 
including long-term trends in the mean annual rainfall amount 
and trends in the interannual variability of annual rainfall amount47 
(see the figure).

Nevertheless, these seasonal and annual rainfall amounts 
rely on sub-seasonal rainfall patterns; globally, 48% of the 
observed interannual rainfall variability is explained by sub-seasonal 
rainfall variability, in which wet day rainfall intensity and dry spell 
length (sub-seasonal characteristics) explain 31% and 17% of 
interannual rainfall variability, respectively251. Furthermore, increasing 
the intensity of the wet day with the greatest rain depth23,54, 
a sub-seasonal characteristic, tends to increase both wet season 
and annual rainfall totals40,239,251. Indeed, in many regions, wet years 
with higher annual rainfall amounts are often caused by a few large 
rainfall events within the year239. Therefore, sub-seasonal rainfall 
variability trends are likely partially driving rainfall trends at seasonal 
and interannual timescales.
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shifts in plant function (Fig. 4b), related mostly to responses of 
their above-ground plant biomass74 and above-ground net primary 
productivity26.

Despite annual and seasonal rainfall amounts generally having 
greater effects on plant function than daily rainfall frequency and 
intensity72,77,82, plant responses to fewer, larger rainfall events across 
global ecosystems are substantial (Fig. 4b). Above-ground plant 
responses (encompassing biomass, vegetation cover, primary produc-
tivity) to sub-seasonal rainfall variability are often found to be less than 
20% of the magnitude of plant responses to variations in total annual 
rainfall32,72,79,102. However, fewer, larger rainfall events change annually 
averaged plant function by an absolute median magnitude of 10% and 
35% at the 95th percentile (Fig. 4b). For context, these response magni-
tudes are generated from daily rainfall treatments on average ranging 
from daily rainfall depths of 7 mm to 27 mm and dry spell lengths of 8 
to 21 days, at least in the case of field manipulation experiments, and 
thus extreme rainfall scenarios were avoided in computing these mag-
nitudes. Indeed, findings of up to 35% changes in plant function with 

fewer, larger rainfall events suggest that sub-seasonal rainfall changes 
alone can greatly influence global ecosystems34,103.

The magnitude of above-ground plant response to fewer, larger 
rainfall events varies across climate gradients (Fig. 4b). Magnitudes of 
response are mixed in dry ecosystems (annual rainfall < 500 mm) and 
show a 0% median response (based on the subset with reported response 
magnitudes), although responses are most commonly positive in these 
ecosystems (Fig. 4c). By contrast, plant responses show a 17% median 
decrease in transitional ecosystems (annual rainfall 500–750 mm) and 
a 12% median decrease in wet ecosystems (annual rainfall > 750 mm) 
(Fig. 4b). Note that dry ecosystems are defined here as those receiving 
<500 mm of annual rainfall consistent with dryland ecological defini-
tions104, although we acknowledge that other dryland definitions exist 
based on metrics that include energy availability43.

The largest absolute magnitude responses to fewer, larger rainfall 
events based on the synthesis here occur in regions with a transitional 
climate. In these transitional regions, the absolute median magnitude 
plant response is 25% (±5%), which is larger than both drier (4 ± 5%) 

Observations (1980–2020)a b

c dModel projections (2020–2100)

Frequency↓ Intensity↓

Sp
at

ia
l p

ro
ba

bi
lit

y 
de

ns
ity

 fu
nc

tio
n

Sp
at

ia
l p

ro
ba

bi
lit

y 
de

ns
ity

 fu
nc

tio
n

Observation-based normalized trend (% per year)

Total annual rainfall (% area)

Wet day frequency
(% area)

Wet day intensity
(% area)

–11% +15%

Total annual rainfall (% area)
–16% +31%

–20% +12%

Wet day frequency
(% area)

Total annual Frequency Intensity

–35% +15%

–10% +21%

Wet day intensity
(% area)

–4% +49%

Frequency↓ Intensity↑
Frequency↑ Intensity↓
Frequency↑ Intensity↑

Frequency↓ Intensity↓
Frequency↓ Intensity↑
Frequency↑ Intensity↓
Frequency↑ Intensity↑

120

100

80

60

40

20

0
–15 –10 –5 0 5 10

CMIP6 normalized projected trend (% per decade)
–6 –2 2 4 6–4 0

15

140

800

600

400

200

0

Fig. 2 | Global trends in daily rainfall event frequency and intensity on 
vegetated land surfaces. a, The rainfall event frequency and intensity direction 
of the trend, based on the median trends across three observation-based 
products (1980–2020)51–53 (Supplementary Information). Pixels are binned 
based on whether more than half of the data sets show that median wet day 
frequency trend is increasing (more) or decreasing (fewer), as well as whether the 
median wet day rainfall intensity is increasing (larger) or decreasing (smaller). 
Significance is determined if at least one (slash hatching) or both (stippling) 
of the individual wet day frequency and wet day rainfall intensity trends are 
significant across more than half of the data sets (using Mann–Kendall trend 
tests; P < 0.05). b, Global spatial distributions of ensemble mean normalized 

trends (in percent-change units) across three observation-based data sets for 
each individual metric: wet day frequency, total annual rainfall and wet day 
rainfall intensity. Only regions within −60° to 60° latitude are included. Using 
Mann–Kendall trend tests, statistically significant (P < 0.05) trends are reported 
as percent land area of increases and decreases for annual rainfall amounts, wet 
day frequency and wet day rainfall intensity. Percent areas are means across the 
data sets. c, Same as panel a but using CMIP6 projections from a 28-member 
model ensemble with daily data under the RCP8.5 scenario244,245 (Supplementary 
Table 1). d, Same as panel b but using CMIP6 projections. Note that the axes limits 
in panels b and d are different. Observations and model projections suggest that 
rainfall events are becoming less frequent but more intense.
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and wetter regions (11 ± 4%). There is supporting regional evidence 
from numerical biosphere models that the highest plant sensitivi-
ties to fewer, larger rainfall events occur in transitional, sub-humid 
environments90,91. By contrast, although not captured in our over-
all synthesis, the highest plant response magnitudes are sometimes 
found in the driest environments102, with a decreasing plant response 
to sub-seasonal rainfall variability as mean annual rainfall increases 
based on regional observations32,83, a minimalist analytical model87 and 
a field experiment altering annual rainfall amounts at a single site105.

Above-ground plant responses appear to vary across vegetation 
types. Among wet ecosystems that have similar mean annual rainfall 
conditions, grasslands have an approximately twofold-greater absolute 
magnitude response to fewer, larger rainfall events (median change 
of 16 ± 5%) than wet forests (median change of 9 ± 3%). However, small 
sample sizes limit comparison with shrubs and other vegetation types.

Although below-ground plant responses are evaluated less often 
than above-ground plant responses35,37, root systems appear to shift 
deeper with fewer, larger rainfall events. Field experiments have 
shown that fewer, larger rainfall events increase overall below-ground 
growth and root–shoot ratios of grasses and forbs by 20% and 33%, 
respectively106. Similarly, there is some evidence of opposing root 
responses in different soil layers, with grass root biomass increases in 
deep soil layers under extreme rainfall pulses107, but fine root growth 
decreases in shallow layers with fewer, larger rainfall events67,71,108. As 
with above-ground plant responses, below-ground plant biomass 
does not always change in response to fewer, larger rainfall events109,110.

Contrasting plant responses in dry and wet ecosystems
Consistent with an earlier hypothesis42, plant responses to fewer, larger 
rainfall events tend to change from dry to wet ecosystems. Plants in 
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Fig. 3 | Approaches to understand plant response to fewer, larger 
rainfall events. a, Basic descriptions, advantages and disadvantages of 
field manipulation experiments. Field manipulation experiments typically 
include vegetated plots with rainfall altered artificially by irrigating the plots 
in prescribed sequences (such as with higher water additions over a given 
day, but with longer intervals between irrigation) while preventing ambient 
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daily rainfall frequency and intensity. c, As in panel a, but for minimalist process 
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dry ecosystems generally show more positive but also more variable 
responses to fewer, larger rainfall events, whereas wet ecosystem plants 
show mainly negative responses33,111 (Fig. 4).

Previous syntheses of field experiments suggest that plants in dry 
ecosystems tend to show increased plant function under fewer, larger 
rainfall events33,41,111. However, the typical dry ecosystem response 
appears more mixed when also including satellite observations in our 
synthesis (Fig. 4). According to the field experiments, plants in dry 
ecosystems increase or do not change their above-ground biomass 
(AGB)71, gross primary production (GPP)70 and net primary produc-
tion (the net carbon balance of GPP and plant respiration)26,112 (Fig. 4a) 
and in some cases even where no mean GPP response occurs, GPP 
still shows shifts in the timing of its seasonal cycle70. Similarly, mod-
elled dry ecosystem AGB25,39,88 and GPP91 mainly increase under fewer, 
larger rainfall events. However, satellite-based observations show 
mixed responses to fewer, larger rainfall events in dry ecosystems, 
with satellite-based vegetation greenness staying constant84 or even 
declining81,83. Although the median magnitude response of dryland 
plants to fewer, larger rain events is 0%, the range of responses is wide 
with 90% confidence bounds extending from −11% to 27% (Fig. 4b). 
Plants in dry ecosystems increase, decrease or maintain function under 
fewer, larger rainfall events in 46% (±9%), 20% (±8%) and 33% (±7%) of 
cases, respectively (Fig. 4c).

In contrast with plants in dry ecosystems, plant function in wet 
ecosystems primarily decreases with fewer, larger rainfall events 
(Fig. 4). GPP92, AGB90, carbon assimilation87 and normalized difference 
vegetation index81 all decrease under fewer, larger rainfall events in the 
majority of cases across regional observations and models. Negligible 
plant responses to fewer, larger rainfall events do occur in some wet 
ecosystems, but are infrequent83,113. Field manipulation experiments in 
wet ecosystems have shown decreased carbon fluxes with these rain-
fall regime shifts72,114, although these have been limited to sub-humid 
biomes (500–1,000 mm of yearly rainfall) with short-statured vegeta-
tion. Overall, plants in wet ecosystems have a median response magni-
tude of −12% with wide-ranging responses with 90% bounds of −33% to 
27% (Fig. 4b). These plants show decreased function under fewer, larger 
rainfall events in 51% (±9%) of cases, while increasing and maintaining 
function in 28% (±8%) and 20% (±7%) of cases, respectively (Fig. 4c). 
Therefore, contrasting directions of dry and wet ecosystem responses 
to fewer, larger rainfall events indicate that differences between these 
ecosystems cause their behaviour to diverge and that global vegeta-
tion responses to changing rainfall sub-seasonal variability are likely 
variable.

Differences in vegetation types do not appear to explain plant 
response differences across dry and wet ecosystems. Both trees and 
grasses in wet ecosystems show typically negative responses to fewer, 
larger rainfall events, at a 57% (±19%) and 57% (±13%) rate, respectively 
(Fig. 4d). Additionally, grass responses differ substantially across dry 
and wet ecosystems; dry ecosystem grasslands have less common 
negative responses (17 ± 9%) than wet grasslands (57 ± 13%) (Fig. 4d), 
suggesting that local mean rainfall rates have a greater influence on 
the frequency of negative responses than vegetation type does. Dry 
ecosystem grasslands also have a smaller response to fewer, larger 
rainfall events (median change of 2 ± 4%) than wet ecosystem grass-
lands (median change of 16 ± 5%). Thus, vegetation types are not likely 
to be the main drivers of differences between dry and wet ecosystems.

The transition to more positive plant responses to fewer, larger 
rainfall events in dry ecosystems is not captured by observation-driven 
approaches. According to observation-driven approaches, 50% of the 

dry and wet ecosystems studied showed negative plant responses to 
fewer, larger rainfall events (Fig. 4). The lack of changes in plant func-
tion between dry and wet ecosystems in observation-based data is likely 
a consequence of observation-driven approaches using space-for-
time substitutions that assume spatial variations in mean vegetation 
responses and wet day frequency can predict plant function variations 
in time77,80. Within this approach, a wide range of climates are often con-
sidered, including tropical forests77, in determining a single, overarch-
ing plant response across all considered regions. The influence of wet 
ecosystems incorporated into the space-for-time substitutions might 
therefore dominate the overall response when evaluating dry ecosys-
tems. Nevertheless, the wide range of wet ecosystems considered77 
support the idea that negative plant responses to fewer, larger rainfall 
events are occurring in wet ecosystems (Fig. 4a,e).

Assessing long-term plant responses
Sustained changes to fewer, larger rain events over decadal or longer 
periods might include additional, large plant responses beyond those 
considered in our synthesis. Most analyses considered in our sum-
marized insights (Fig. 4) mainly only reflect rapid plant physiological 
responses115. This is because most field manipulation experiments are 
typically short in length, between 1 and 6 years long116,117, and many 
modelling approaches implicitly assume that the composition of the 
plant community and its sensitivity to climate is constant. Sustained 
climatic changes over multiple decades will likely result in slower plant 
responses, including mortality, plant acclimation, evolutionary adap-
tation and species turnover115,118–120. The complexity of slower plant 
responses is highlighted more generally by the hierarchical response 
framework, which poses that slower responses to chronic resource 
alterations (such as fewer, larger rainfall events) can occur after a delay 
and might have the largest cumulative impacts on ecosystem function-
ing over time119. Such climate disequilibria, in which the ecosystem 
response does not keep pace with rainfall changes, are now recognized 
as among the greatest sources of uncertainty in projecting the response 
of plant function to climate change115.

Although the majority of field experiment lengths have been too 
short to observe the extent of plant responses to long-term processes, 
shorter term (sub-decadal scale) plant responses across different spe-
cies at experimental sites can provide insights into slower plant commu-
nity changes. First, there is evidence that fewer, larger rainfall events can  
shift community composition. For example, large rainfall pulses can wet  
deeper soil layers where shrub rootzones extend and substantially 
increase their above-ground and below-ground growth, which pro-
motes the replacement of herbaceous plants with woody plants71,73,121. 
Second, there are species-specific differences in responses to fewer, 
larger rainfall events that can influence community composition. 
For example, grasses and forbs in the same site can have distinct 
responses70,122,123. Different grass species within the same site can also 
have disproportionate responses in the same direction26 or even in 
opposite directions35,108. Therefore, fewer, larger rainfall events can 
shift community composition (such as woody encroachment) and 
consequently, owing to differences in species response, change the 
response of the whole ecosystem124–126.

Although considering rainfall changes at longer timescales than 
sub-seasonal scales here, some decade-long field experiments have 
detected slow plant responses. For example, shifts in grass community 
composition, including their species diversity and dominant plant 
functional types, have been tracked over several decades under rainfall 
and temperature changes127,128. A 13-year drought experiment found 
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tree sensitivity to drought decreased over the experiment, suggest-
ing acclimation129. In one case evaluating the effects of fewer, larger 
rainfall events, a shift from grass to forb cover occurred after a 10-year 
lag130. Moreover, lagged effects might occur where fewer, larger rainfall 
events can initially generate more vegetation growth, but the increased 
growth and thus water demand leaves the ecosystem more vulnerable 
to extreme water deficits (referred to as structural overshoot)131,132. 
The timescales of slow acclimation and species responses are uncer-
tain and likely widely varying119, although the pace of plant species 
compositional changes seems to lag by decadal timescales119,133.

Finally, although the focus of this Review is plant responses to 
changes in daily rainfall frequency and intensity, we note that plant 
responses to fewer, larger rainfall events will interact with other 
longer-term climatic changes. Increasing atmospheric CO2 concentra-
tions are expected to reduce stomatal conductance across ecosystems 
with more plant carbon uptake per unit loss of water through transpi-
ration, or higher water use efficiency134,135. The consequent changes in 
plant sensitivity to water availability owing to these CO2 fertilization 
effects might differentially alter plant responses to larger rain pulses 
and longer dry spells136. Furthermore, increasing air temperature and 
VPD are expected to have the opposite effect to increasing CO2 on 
plants in that they are expected to cause a reduction in plant growth 
and greater water stress during drydown periods31,137.

Plant–soil mechanisms under variability
Larger rainfall events and longer dry spells have complex and oppos-
ing influences on plant function. Therefore, to explain complex plant 
responses to fewer, larger rainfall events (Fig. 4), it is important to 
understand how plants respond to more intense daily rainfall and longer 
dry spells and specifically the impact on water flow through the soil–
plant–atmosphere continuum138. Subsequently, we discuss mechanisms 
through which the soil–plant–atmosphere system responds to larger 
rainfall pulses and longer dry spells, as well as how the mechanisms 
explain variable plant responses to fewer, larger rainfall events (Fig. 4).

Impact of larger rainfall pulses on the soil–root system
The impact of more intense rainfall pulses on plants depends on the 
degree to which this rainfall infiltrates into the soil, how this infiltra-
tion alters the vertical distribution of soil moisture relative to the  
rooting profile and whether soil moisture is increased above thresholds 
for root water uptake (it also depends on the sensitivity of the plant 
function to soil moisture increase; see the following section).

The infiltration of rainfall pulses in general depends on modulat-
ing factors such as soil texture, antecedent soil moisture, topography 

and vegetation cover (Fig. 5a). Infiltration is greatest and deepest with 
coarser soils139,140, initially moderately dry soils141–143 and less-sloped 
surfaces71. Vegetation can both increase infiltration, owing to roots 
creating soil macropores45,144, or decrease infiltration owing to 
interception of rainfall by the vegetation canopy, which can be rap-
idly evaporated145. Overall, with larger rainfall events, infiltration is 
expected to increase25,70,146 owing to both higher rainfall volumes and 
globally reduced interception because vegetation tends to intercept 
proportionally more rainfall under smaller rainfall events145,147. Smaller 
rainfall pulses infiltrate less because of increased soil evaporation and 
interception relative to rainfall. However, more intense rainfall on 
wet days can cause increased runoff, for example, when the sub-daily 
rainfall intensity (mm h−1) is greater than the infiltration rate or when 
high antecedent soil moisture inhibits new infiltration142,143,148. In dry 
ecosystems, runoff might be less pronounced because wet thresholds 
are only exceeded briefly during larger rainfall events42,107 and often 
result in lateral redistribution of rain water to surrounding soil and 
plants149–151. Furthermore, deep drainage can limit how much infil-
trated water remains in the rootzone. Larger rainfall events increase 
deep drainage more in wet ecosystems25,27 with only marginal changes 
in dry ecosystems where deep drainage is often negligible, regardless 
of soil texture27,139,152.

For plants to respond to an increase in infiltrating water from larger 
rainfall pulses, soil moisture increases must overlap with the rooting 
profile153. Across wet and dry ecosystems, large rainfall events increase 
rootzone soil moisture154 and at greater depths (>50 cm) than small 
rainfall events, which might infiltrate only into the top few centimetres 
of soil70,122,155 (Fig. 5a). Ecosystems with woody plants, which tend to have 
deeper rooting156,157, can disproportionately benefit from larger rainfall 
events that increase deeper rootzone soil moisture25,88,158. Rooting dis-
tributions themselves sometimes change from larger rainfall events: 
for example, below-ground biomass can increase by 20–30% in dry and 
wet grasslands106,107, although it often does not change34,71,109,110. Despite 
the observations mentioned earlier, there is a lack of evidence that 
any specific rooting strategies consistently benefit more from larger 
pulses. This might be because both soil texture and climate modulate 
the interaction between soil moisture and rooting distribution. For 
example, finer soils benefit shallower rooting systems because a larger 
rainfall pulse is less able to penetrate deeper into the rootzone, and the 
finer soil is able to retain moisture longer159. This case might only benefit 
plants in wet ecosystems, where the retained soil moisture is lost less 
to soil evaporation than in dry ecosystems, as suggested under the 
inverse texture hypothesis104,160. Under this hypothesis, root systems 
in dry ecosystems are likely better served by coarser soils as deeper 

Fig. 4 | Synthesis of plant responses to fewer, larger rainfall events. a, Plant 
response to fewer, larger rainfall events by approach type, which evaluates the 
direction of photosynthesis and/or growth. Each row denotes the results from 
one study, corresponding to the citation number in the references. These studies 
were selected using a Google Scholar search of keywords and resulted in 38 
studies that evaluated 72 unique sites (Supplementary Information). Horizontal 
lines denote the range of mean annual rainfall values over which the study was 
conducted and over which the response was determined. Symbols denote the 
mean annual rainfall of the study domain and which vegetation types dominate 
the site. The vertical dashed line denotes the defined transition between dry 
and wet ecosystems at 500 mm of annual averaged rainfall. b, Annual-scale 
plant response magnitudes to an expected shift to fewer, larger rainfall events 
on a percent-change basis. Only data from 25 of the 38 studies shown in panel a 

that explicitly report magnitudes of photosynthesis or growth responses are 
included. The corresponding mean annual rainfall value is the mean of that 
reported in panel a. c, Percentage of studies in panel a showing positive, negative 
or no plant response to fewer, larger rainfall events within each mean annual 
rainfall bin. If the site spans a mean annual rainfall gradient that is less than 
1,000 mm, then it is included in a bin based on its average of its annual rainfall 
span (location of the symbol in panel a). d, Similar to panel c but directions of 
responses are determined for different vegetation types. Only those with at least 
five data points are plotted. e, Experiment locations, with dots denoting those 
that took place at a specific location; those with a continent or country name refer 
to those taking place over a large area within that location. Plants in dry and wet 
ecosystems diverge in their response to fewer, larger rainfall events.
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infiltration in coarse soils will reduce the amount of water lost owing 
to high surface soil evaporation rates.

For a plant to respond to a larger rainfall pulse, the rootzone soil  
moisture needs to increase above a threshold161,162. Plants have  
soil moisture thresholds; for example, the wilting point roughly defines 
the threshold below which plant hydraulic transport capability is 
impaired163 and plants are less able to draw soil water164 (Fig. 5b). There 
are also soil moisture thresholds above the wilting point (called ‘critical 
thresholds’), below which plants show water-limited behaviour and 
above which plants show energy-limited behaviour100,165,166 (Fig. 5b). Dry 
ecosystems typically spend more time in water-limited regimes between 
the critical threshold and the wilting point42,167, and larger wet day soil 
moisture increases therefore would lead to a greater increase in photo-
synthesis and growth given the nonlinear relationship between these 
plant functions and soil moisture164,166,168. In wet ecosystems, plants spend 
more time in energy-limited regimes above the critical, water-limitation 
threshold and thus larger rain pulses are typically less ecologically 
advantageous167. There is evidence that even-wetter soil moisture thresh-
olds exist beyond the critical threshold, above which water-logging cre-
ates anoxic rootzone conditions42, and thus much larger rainfall pulses 
would reduce plant function169. Soil texture modulates all of the above 

thresholds and plants are ultimately sensitive to the soil water potential, 
which integrates both soil moisture and soil texture170.

Impact of larger rainfall pulses on above-ground plant 
function
Plants have varying sensitivities to soil moisture and thus varying 
sensitivities to larger rainfall pulses. In response to larger moisture 
pulses, most plants increase water status, stomatal conductance, 
carbon uptake, transpiration and growth171–175. To predict how plants 
will respond to larger rainfall events, it is key to understand how 
plants respond to large rainfall events in the present climate, as a proxy 
for rain pulses that would be more common in a future climate107,176. Her-
baceous plants — especially in dry ecosystems — appear to be propor-
tionally more responsive to large moisture pulses, with high-magnitude 
and long-duration plant responses over several days to weeks, even 
while soil moisture is drying45,168,173,177–180. As an example of this dry eco-
system plant pulse response, FLUXNET sites near Tucson, Arizona, have 
shown that the average GPP in dryland grasses and shrubs increases 
over several days following large rainfall events (>75th percentile)181,182 
(Fig. 6a,b). Dryland grasses can grow for several-week periods after 
these large rainfall pulses during the growing season107,183, suggesting 
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Fig. 5 | Mechanistic drivers of plant function under fewer, larger rainfall 
events. a, Mean annual soil–plant–atmosphere response to fewer, larger 
rainfall events. Each box denotes a different state or flux impacted by fewer, 
larger rainfall events. ‘Dry’ and ‘wet’ designations for each factor refer to dry 
and wet ecosystems. ‘+’, ‘−’ and ‘N’ symbols represent that the respective factor 
increases, decreases or does not change with fewer, larger rainfall events, 
respectively, based on previous findings. The ‘?’ symbol indicates that a low 
amount of evidence supports the indicated change (supported by only one or 

two studies). Drivers relating more to the wet day rainfall pulse are concentrated 
on the left and those related more to the dry spell are concentrated on the right. 
b, Effect of the nonlinear relationship between soil moisture and photosynthesis 
on plant responses to fewer, larger rainfall events. c, Summarized response 
of annual mean soil moisture and driving mean hydrological flux changes in 
dry and wet ecosystems under fewer, larger rainfall events. Both the nonlinear 
photosynthesis–soil moisture relationship and annual mean soil moisture 
changes can explain differences in plant responses to fewer, larger rainfall events.
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long-lasting effects on plant function caused by large rainfall pulses. 
This behaviour has been termed the pulse-reserve paradigm, under 
which rainfall events cause dry ecosystem plants to grow, store carbo-
hydrates into reserves and then downregulate photosynthesis until the 
next rainfall event104,139,184. According to near-daily satellite observations 
of the vegetation water content, these multiday plant responses are 
globally widespread across water-limited ecosystems185,186.

In contrast with plants in dry ecosystems, plants in wet ecosys-
tems show a weaker response to large rainfall pulses than those in dry 
ecosystems187. They behave similarly in response to rainfall pulses of dif-
ferent sizes and are about half as likely to respond to a rainfall event176,185. 
Figure 6a,b shows an example of plant response to rainfall in a wet eco-
system, with data collected in a forested ecosystem in Indiana. In these 
wet ecosystem cases, plant function increases are usually rapid and occur 
within a day following the large pulse (Fig. 6c). Ultimately, smaller plant 
responses to wet days, especially large rain pulses, in wet ecosystems over 
dry ecosystems suggest that overall plant function would be less likely to 
increase in wet ecosystems under fewer, larger rainfall events (Fig. 4c).

Several factors modulate plant sensitivities to rainfall pulses. 
Phenology changes sensitivities to pulses within and across seasons, 
with the highest sensitivity to rainfall pulses often occurring early in 
the growing season107,154,188,189. Additionally, drier antecedent soil can 
increase plant sensitivities to soil moisture, as demonstrated by data 
showing that larger plant hydraulic and photosynthesis responses 
occur after rainfall pulses on initially drier soils139,188. As such, longer 
dry intervals between rain events dry the soil more and might increase 
plant sensitivity to the larger rainfall pulse. Finally, increases in limiting 
nutrients could increase plant sensitivity to rainfall pulses190. However, 
changes in nutrients are inconclusive under fewer, larger rainfall events 

with foliar nitrogen increasing in one case37 and soil inorganic nitrogen 
available for plant use decreasing in another case191.

Most minimalist and numerical process models use soil moisture 
stress functions to connect soil moisture to plant function96,192 (Fig. 6d). 
Within these modelling frameworks, a large rainfall pulse wets the 
surface, translates into a same-day carbon uptake response, and then 
plant function synchronously reduces as soil moisture declines. Soil 
moisture stress functions might thus better emulate wet ecosystem 
responses, which tend to respond synchronously with soil moisture 
(Fig. 6b). However, stress functions across the available model frame-
works would not integrate the observed, several-day-to-week plant 
responses of dry ecosystems, especially under large rain events that 
are becoming more common. An observed hysteresis in dry ecosystem 
plant responses occurs in which responses decouple from soil mois-
ture and plant function progressively increases while soil moisture 
simultaneously declines179,185,193,194 (Fig. 6d). As a result of not capturing 
the multiday extent of dry ecosystem plant responses, models might 
underestimate the magnitude of dry ecosystem plant responses to 
larger storms under fewer, larger rainfall events.

Impact of longer dry spells on the soil–plant–atmosphere 
continuum
In post-rainfall dry spells, soil moisture decreases195, VPD increases30 and 
downwelling surface solar radiation increases with cloud dissipation167 
until the next rainfall event. These processes cause drying throughout 
the soil–plant–atmosphere continuum30 and such drying will continue 
during longer dry spells.

Although the effects of dry spell length on plants are not well stud-
ied, fundamental insights about plant responses to longer dry spells can 
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(GPP) in response to a single rainfall event (one wet 
day or collection of wet days). Only large rainfall 
pulses are considered (>75th percentile pulse sizes). 
Field observations are from FLUXNET at a dry, 
grassland site in Tucson, Arizona (US-SRG; mean 
annual rainfall is 420 mm)181 and a wet, forested 
ecosystem in Indiana (US-MMS; mean annual 
rainfall is 1,032 mm)187. Values are normalized 
median percentile rates of change; for example, 
the value at day 1 is the day 1 value minus day 0 
value. b, Same as panel a but GPP cumulative 
responses are based on the rate of change in 
panel a (Supplementary Information). c, Schematic 
of observed and modelled GPP following a rainfall 
event for wet (solid) and dry (dashed) ecosystems, 
as captured in panels a and b. The hypothesized, 
modelled (red) response is also shown. d, Quantities 
in panel c plotted as a function of soil moisture. 
Arrows represent the direction of movement along 
the relationship in time for dry ecosystems, showing 
a hysteresis. These GPP–soil moisture relationships 
are considered as soil moisture stress functions. Dry 
and wet ecosystem plants have different responses 
to individual wet days, which modelled stress 
functions might not capture.
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be gained from drydown and drought experiments196, which show loss 
of soil water potential reduces leaf water potential and increases risk of 
xylem embolism197. Drier leaf conditions, higher VPD and sometimes 
extended light availability reduce stomatal conductance198. Conse-
quently, photosynthesis and growth decrease30,199,200, and the risk of 
mortality increases201. However, roots can also grow during dry spells175. 
These plant behaviours tend to nonlinearly correlate with soil moisture, 
and thus thresholds are key to the plant stress response during inter-
storm drying periods. During the transition from wetter to drier soil 
conditions, a switch from energy-limited to water-limited evaporation 
results in a depletion of plant water storage30. Continuous reductions in 
conductance, photosynthesis and growth can then occur with drying166. 
With further drying, drier thresholds (such as the wilting point) are 
crossed, resulting in xylem embolism, leaf loss and mortality199,202.

Despite greater wetting and cooling associated with larger rain-
fall events, the associated longer dry spells generally result in more 
plant stress during interstorm periods. Fewer, larger rainfall events are 
associated with at least 10% higher mean annual VPD and downwelling 
surface shortwave radiation, as determined from field experiments and 
observation-driven studies32,80,106 (Fig. 5a). Although such mean annual 
climate responses do not isolate effects caused by dry spells only, these 
effects indicate greater transpiration stress during dry spells. The 
increased mean aridity and light conditions probably occur because the 
cooling effects of a larger rainfall event are offset by the warming associ-
ated with the corresponding longer dry spell, especially amplified, at 
times, by land–atmosphere feedbacks30,167. Furthermore, fewer, larger 
rainfall events are associated with increased soil moisture variability, 
meaning that more frequent extreme dryness is experienced during 
the longer dry spells regardless of the mean soil moisture change34,42.

Several plant attributes can help to maintain or mitigate loss of func-
tion under longer dry spells. The deep rooting profiles of shrubs and trees 
are advantageous during longer dry spells because shallow soil layer 
moisture is depleted by dry conditions before deep moisture45,106,122,203. 
Additionally, plants can better mitigate stress during longer dry spells 
if they have photosynthetic adaptations — for example, plants with C4 
photosynthesis and CAM photosynthesis137,204,205 — or if they actively 
transport soil water vertically from wet to dry layers using their root 
systems as a drought adaptive strategy via hydraulic redistribution206.

The role of soil moisture in plant behaviour between dry and 
wet ecosystems
The diverse approaches assessed in Fig. 4 have provided a means to 
gain consensus on shifts in plant behaviour under fewer, larger rainfall 
events and, by deduction from differences in methodologies207, have 
helped to identify the relationship between soil moisture and plant 
function as a major factor explaining contrasting plant responses in 
dry and wet ecosystems.

Field manipulation experiments generally alter soil moisture with-
out the concurrent changes in solar radiation and VPD that would natu-
rally occur between wet and dry days34,35,73,146,208–210. Under fewer, larger 
rainfall events, the transition from positive to negative plant responses 
from dry to wet ecosystems in these experiments supports similar 
patterns seen in models and observations (Fig. 4), which consider 
influences of other factors. This similarity between these approaches 
thus indicates a large role of soil moisture alone in influencing plant 
responses to sub-seasonal rainfall variability34,42. The transition to 
fewer, larger rainfall events decreasing plant function from dry to wet 
ecosystems was also reproduced in a greenhouse experiment211, further 
supporting a strong role for soil moisture.

Relatively simple minimalist models support the notion that the 
overall response of vegetation to fewer, larger rainfall events is strongly 
dependent on the relationship between plant function and soil mois-
ture. According to these models, annual rainfall amounts alone are 
insufficient to explain observed annual mean plant responses, as rain-
fall event frequency and intensity are also needed to explain biomass 
accumulation89. A switch to increased biomass in dry ecosystems with 
fewer, larger rainfall events was also captured from coupling minimal-
ist models to a growth model that contains a soil moisture threshold 
for growth39,89. Using this growth model, fewer, larger rainfall events 
resulted in occasional exceedance of the soil moisture threshold, which 
triggered intermittent growth; by contrast, this threshold was never 
crossed and no growth occurred when rainfall was distributed more 
evenly across many smaller storms. As such, according to these mod-
els, the plant response to sub-seasonal rainfall variability is influenced 
by the plant function–soil moisture relationship and its soil moisture 
thresholds. The transition between dry and wet ecosystem behaviour is 
captured across these approaches that both do and do not consider fac-
tors other than soil moisture (for example, light, atmospheric aridity), 
suggesting that soil moisture is a dominant and consistent driver under 
fewer, larger rainfall events91.

Contrasting key soil–plant mechanisms in dry and wet 
ecosystems
We argue that the differing plant responses to fewer, larger rainfall 
events in dry and wet ecosystems can be explained, primarily, by the 
nonlinear relationship between plant function and soil moisture and 
by differing mean annual soil moisture changes.

Plant hydraulic and photosynthetic functions tend to have a non-
linear sigmoidal relationship with soil moisture164,166,185 (Fig. 5b). For 
most plants, low sensitivity to soil moisture occurs either at a very 
dry state below the wilting point threshold164,212,213 (Fig. 5b) or under a 
wet, energy-limited regime where radiation and aerodynamic consid-
erations limit plant function (Fig. 5b). Higher plant sensitivity to soil 
moisture is experienced in the intermediate, water-limited regime. This 
relationship between plant function and soil moisture is well known to 
hold at annual timescales214,215 and also occurs at daily timescales165,185.

Dry ecosystems spend more time in the water-limited regime216,217. 
As such, a larger rainfall pulse greatly increases dry ecosystem plant 
function, either because conditions remain water-limited and more 
pulsed soil moisture directly results in greater plant function or 
because conditions are initially very dry and soil moisture is increased 
above very dry thresholds (wilting point)188 (Fig. 5b). Additionally, 
plants in dry environments tend to be more sensitive to soil moisture 
and larger rain events than in wet environments, both because of their 
more water-limited conditions on average and because dry ecosystem 
plants tend to be relatively more sensitive to water in dry conditions 
than wet ecosystem plants176,218,219 (Fig. 6). Furthermore, plant function 
decreases owing to longer dry spells might be limited in dry ecosys-
tems; in dry ecosystem plants, mean plant water potentials increase up 
to 25% with fewer, larger rainfall events, implying that plant function 
loss is limited under very dry conditions relative to gains from larger 
moisture pulses37,146.

By contrast, wet ecosystems spend more time energy-limited than 
dry ecosystems216,217. Therefore, with longer dry spells, wet ecosystem 
plants can experience continuous losses of function with drying into 
the water-limited regime. Furthermore, benefits from larger pulses 
are limited by energy and moisture increases only lead to marginal 
plant function increases166 (Figs. 5 and 6). Indeed, wet ecosystem plant 
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responses to rainfall pulses are weaker than those of plants in dry 
ecosystems, even in comparatively dry conditions176,218,219 (Fig. 6). Very 
wet ecosystems might not respond to rainfall changes at all if dry spells 
are not long enough to dry soil moisture below moisture thresholds.

Because dry and wet ecosystems exist on different endpoints of 
the nonlinear relationship between soil moisture and plant function 
(Fig. 5b), they exhibit different response functions to rainfall variability. 
Ultimately, we argue that this nonlinearity largely dictates the oppos-
ing directions of response to fewer, larger rainfall events, as is broadly 
observed (Fig. 4) — specifically, a net loss for wet ecosystem plant 
function and typically a net gain or a net balance in dry ecosystems. 
This nonlinearity might be largely responsible for any non-zero plant 
function changes under fewer, larger rainfall events; indeed, a linear 
relationship between plant function with soil moisture would result in 
no change in plant function if the larger rainfall event is balanced by 
an equivalent soil moisture reduction from the longer dry spell. This 
non-zero response to an input variance owing to the nonlinearity of 
the response function is referred to as Jensen’s inequality214,220. Fur-
thermore, the nonlinearity between plant function and soil moisture 
captures the soil water bucket model paradigm, which argues that 
fewer, larger rainfall events will provide a net benefit for dry ecosystem 
plants because larger rainfall events result in more frequent increases of 
soil moisture above dry moisture thresholds, and a net decrease in plant 
function in wet ecosystems with more frequent moisture decreases 
into stress during the longer dry spells42.

Differences in mean annual soil moisture response to fewer, large 
rainfall events can also partly explain diverging dry and wet ecosystem 
plant responses (Fig. 5c). In dry ecosystems, mean annual shallow 
rootzone soil moisture (0–20 cm) typically increases in response to 
fewer, larger rainfall events26,71,221,222, which would increase mean plant 
function. This increased mean soil moisture in dry environments is 
supported by fewer, larger rainfall events increasing infiltration25,26, 
reducing soil evaporation25,222, reducing interception loss145,147 and 
causing no change in deep drainage27,152,223, as determined from diverse 
approaches (Fig. 5a,c). By contrast, wet ecosystems show decreased 
mean annual shallow rootzone soil moisture under fewer, larger rain-
fall events37,91,94,110,224, as supported by increased deep drainage25,27 
and increased runoff with larger rainfall pulses22,27,42, also determined 
from diverse approaches (Fig. 5c). Antecedent soil moisture probably 
controls these differences; on average, dry environments have initially 
drier surfaces that allow more infiltration than wet environments on 
average during a larger rainfall event141–143. Deeper rootzone soil mois-
ture (<20 cm) also increases in dry ecosystems with fewer, larger rainfall 
events70,71,85,122 and with some evidence for increases in wet ecosystems 
as well42,73. In regions within or in proximity to high elevations225 or 
high latitudes, moisture storage in snowpack can buffer soil moisture 
changes in the context of fewer, larger rainfall events by delivering 
one or several large, prolonged moisture pulses to the soil when snow 
melts, although it is unclear how this will change soil moisture means 
in the context of fewer, larger rainfall events.

Summary and future perspectives
Across global observations and CMIP6 model projections of rainfall, 
rainfall events are becoming less frequent, but more intense in many 
regions, fundamentally altering how moisture is available to plants. 
Mean plant responses to fewer, larger rainfall events range between 
−28% and 29% and the high magnitude of responses suggests that fewer, 
larger rainfall events might substantially alter plant function trends 
and, by extension, the carbon cycle1. Across diverse approaches, fewer, 

larger rainfall events mostly decrease wet ecosystem plant responses, 
while causing positive-to-neutral responses in dry ecosystems. We 
argue that the nonlinear relationship between plant function and soil 
moisture largely drives the contrast in plant responses between dry and 
wet ecosystems, as controlled by mechanisms during rainfall pulses 
and dry spells. Mean soil moisture changes under fewer, larger rainfall 
events also modulate the different responses.

Several critical knowledge gaps emerge that require investiga-
tion. First, the magnitude of plant response to fewer, larger rainfall 
events should be determined across the globe. Trends towards fewer, 
larger rainfall events are more globally consistent than trends in 
annual rainfall amounts (Fig. 2), suggesting that sub-seasonal rainfall 
changes might confer spatially prevalent plant function changes. 
Global determination of plant response will require estimating relative 
plant response uncertainties across the different observation-based 
and modelling-based approaches. Second, plant responses to fewer, 
larger rainfall events must be projected into the future such that their 
influence on the land carbon sink can be quantified, including on the 
mean land carbon sink, global carbon uptake interannual variability 
and greening and browning trends1,10,38. To achieve this, trend differ-
ences between rainfall observation records and model projections 
must be reconciled (Fig. 2). This objective also motivates multidecadal 
field and observation records to assess the role of slower ecosystem 
changes such as acclimation and species turnover. Third, to better 
predict diverging plant responses to fewer, larger rainfall events across 
global climate gradients, further investigation is needed into which 
mechanisms dominate plant responses, and under what contexts. Many 
investigations quantify mean plant responses but do not determine 
underlying driving hydrological and physiological conditions; for 
example, although soil moisture threshold behaviour was proposed 
as a major driver of plant function under fewer, larger rainfall events 
with a soil water bucket model paradigm42, only the soil moisture mean 
responses have been investigated. As such, it should be quantified 
whether fewer, larger rainfall events change the proportion of a year 
that plants spend below or above soil moisture thresholds (such as, time 
spent above the wilting point or in water limitation versus energy limita-
tion)70,216 (Fig. 5b). Additionally, the consequences of plant response to 
individual rainfall pulses on annual mean observed and modelled plant 
responses should be investigated (Fig. 6). Finally, further work is also 
required to understand below-ground plant responses and interactions 
with soil microbial communities and nutrients226.

To address the key knowledge gaps discussed earlier, three emerg-
ing and related hypotheses require further investigation. In the first 
hypothesis (hypothesis I), plant responses to wet day frequency are 
non-monotonic because plant function is maximized at an optimum 
rainfall frequency. This hypothesized response to sub-seasonal rain-
fall variability contrasts with the monotonic increase of plant func-
tion with annual rainfall amounts215,227. Optimal rainfall frequency 
emerges from several minimalist models39,98,101,228 and field manipula-
tion experiments35–37,70,229 and is likely due to non-monotonic effects of 
wet day frequency and intensity. For example, negative plant responses 
can occur owing to small wet day rain depths decreasing root infiltra-
tion and leading to more soil evaporation, or owing to very large wet 
day rain depths causing water-logging101,228.

Addressing hypothesis I requires the determination of how plants 
respond to shifting wet day frequency and intensity. For example, an 
empirical relationship between plant function and rainfall frequency 
can be determined locally, or for specific biomes and climates at larger 
spatial scales. Such a plant response to rainfall frequency relationship 
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coupled with observed or projected changes in rainfall frequency can 
provide a means to predict the current and future terrestrial carbon 
cycle based on a change in sub-seasonal rainfall variability, at least in 
the near term.

In the second hypothesis (hypothesis II), the rainfall pulse domi-
nates dry ecosystem plant responses to fewer, larger rainfall events, 
whereas behaviour during the dry spell dominates wet ecosystem plant 
responses. Some evidence provides initial support for this hypothesis, 
including evidence gathered across local climate gradients85,230. 

Given the nonlinearity of plant responses to soil moisture (Figs. 5b 
and 6), dry ecosystem plants are highly sensitive to rainfall pulses, 
especially when soil moisture is increased from very dry conditions 
above a threshold that stimulates photosynthesis176,185. Conversely, 
plants in wet ecosystems show smaller function gains from wet days 
than those in dry ecosystems176. However, plant function in wet ecosys-
tems can decrease during dry spells during progressively increasing 
VPD167, declining soil moisture within a water-limited regime, or soil 
moisture loss below functional thresholds31,42. Similarly, soil moisture 
largely drives dry ecosystem plant function, whereas VPD, a cause of 
plant water stress during dry spells, disproportionately drives wet 
ecosystem plant function210,231–234.

Testing hypothesis II by determining which drivers dominate in 
different ecosystems will identify key mechanisms that can be used 
in models to predict plant responses to fewer, larger rainfall events. 
These experiments will help to identify why the response magni-
tudes of plants to fewer, larger rainfall events differ, with the largest 
responses observed in dry-to-transitional ecosystems. As less focus 
has been devoted to studying plant responses to dry spells, more inves-
tigation is required for understanding how VPD and incoming solar 
radiation (direct and diffuse) influence plant stress during different 
length dry spells. A focus on surface radiation and other atmospheric 
measurements would also help to interrogate plant behaviour across 
aridity gradients (and water and energy limitation) and move beyond 
a traditional focus on rainfall information.

In the third hypothesis (hypothesis III), the most extreme rainfall 
events within the year have an outsized influence on plant response 
to fewer, larger rainfall events235,236. Rainfall events can be defined as 
extreme compared with their historical time series237. These extreme 
rainfall events would have a proportionally larger impact where plants 
are more sensitive to rainfall pulses (Fig. 6). A challenge in addressing 
this hypothesis is the poorly understood ecosystem response mecha-
nisms under extremes237; for example, in many cases, a climate extreme 
does not translate to an extreme ecosystem response238.

Plants in dry ecosystems should respond more to more extreme 
rainfall events than they do in wet ecosystems21, given dry ecosystem 
plants’ higher magnitude and longer duration carbon uptake responses 
than in wet ecosystems21,84,183,239 (Fig. 6). By contrast, plants in wet 
ecosystems might have smaller responses to more extreme events 
because they are more energy-limited165 and less sensitive to rainfall 
pulse size176. In all cases, it is likely that more common, smaller rainfall 
events will still impact plants, especially if a substantial proportion 
of them are large enough to be ecologically relevant240. If evidence 
continues to support this hypothesis, it will be critical for models to 
properly integrate plant responses to extreme rainfall events to accu-
rately predict ecosystem carbon uptake mean and variability trends. 
Understanding and modelling the plant pulse response to individual 
wet days will be essential (Fig. 6).

Globally prevalent trends in sub-seasonal rainfall, as well as plant 
sensitivity to these changes, motivate the determination of how plants 
respond to rainfall event frequency and intensity. The −28% to 29% 
changes in annual mean plant function with fewer, larger rainfall 
events are likely substantially impacting seasonal weather patterns186, 
agricultural yields241 and the global carbon cycle, including greening 
trends38,242 and interannual carbon uptake variability10,243. Widespread, 
long-term monitoring of plant responses to fewer, larger rainfall events 
and improved understanding of plant pulse and dry spell mechanisms, 
especially within the context of several key hypotheses, are needed 
to quantify plant responses to sub-seasonal rainfall variability across 

Glossary

C4 photosynthesis
An evolutionary adaptation of 
photosynthesis occurring mainly in 
some grass and crop species under 
which photosynthesis is more efficient 
because photorespiration is largely 
avoided.

CAM photosynthesis
An evolutionary adaptation of 
photosynthesis occurring mainly in plant 
species in arid environments that allows 
them to save water by only exchanging 
gases with the atmosphere at night.

Community composition
The species types and their relative 
abundance within a defined ecosystem, 
here referring specifically to plants.

Clausius–Clapeyron 
relationship
A thermodynamic equation that 
describes the nonlinear increase of 
saturation vapour pressure, or the 
capacity of air to hold water, with 
increases in air temperature.

Hadley and Walker cells
Some of the largest organized 
circulations of air in the atmosphere of 
the Earth that contribute substantially 
to weather and climate patterns of the 
Earth.

Interception
Rainfall that is captured and stored by 
vegetation, even briefly, such that it is 
prevented from infiltrating into the soil 
or running off of the ground surface.

Normalized difference 
vegetation index
A commonly used satellite-based 
vegetation index that estimates 

greenness at the top of the 
vegetation canopy based on satellite 
measurements in the infrared portion of 
the electromagnetic spectrum.

Phenology
The annual cyclic nature of plant 
functioning, specifically referring to 
its periodic increase and decrease in 
functioning during similar months of 
each year.

Plant water status
A general indicator based on how 
much water is available for plants to use 
towards essential plant functions such 
as photosynthesis and transpiration.

Rainfall intensity
The rainfall rate or rainfall depth over 
a defined time period. The rainfall 
rate is often defined hourly across 
hydrological sciences, although it is 
designated to be daily in this Review.

Rooting profile
The distribution of the root volume of a 
plant across the soil depth.

Satellite-based vegetation 
indices
Vegetation metrics derived from 
satellite measurements that typically 
span large spatial extents, including 
vegetation areal cover, greenness, 
height, photosynthetic capacity, water 
content and others.

Soil moisture stress functions
An empirical relationship between 
decreasing soil moisture and decline in 
plant functions such as photosynthesis 
or transpiration.
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the globe, reduce the uncertainty of these plant responses and predict 
future plant and carbon cycle responses under shifting rainfall.

Data availability
CMIP6 rainfall projections can be obtained from https://cds.climate.
copernicus.eu. Observation-based rainfall data sets from MERRA, CPC 
and GPCC can be obtained from https://gmao.gsfc.nasa.gov/reanalysis/
MERRA-2/data_access, https://psl.noaa.gov/data/gridded/data.cpc.
globalprecip.html and https://psl.noaa.gov/data/gridded/data.gpcc.
html, respectively. FLUXNET observations can be downloaded from 
https://fluxnet.org.
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