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ABSTRACT
This paper investigates the relationships between hyperparameters
of machine learning and fairness. Data-driven solutions are increas-
ingly used in critical socio-technical applications where ensuring
fairness is important. Rather than explicitly encoding decision logic
via control and data structures, the ML developers provide input
data, perform some pre-processing, chooseML algorithms, and tune
hyperparameters (HPs) to infer a program that encodes the decision
logic. Prior works report that the selection of HPs can signi�cantly
in�uence fairness. However, tuning HPs to �nd an ideal trade-o�
between accuracy, precision, and fairness has remained an expen-
sive and tedious task. Can we predict the fairness of HP con�guration
for a given dataset? Are the predictions robust to distribution shifts?

We focus on group fairness notions and investigate the HP space
of 5 training algorithms. We �rst �nd that tree regressors and XG-
Boots signi�cantly outperformed deep neural networks and support
vector machines in accurately predicting the fairness of HPs. When
predicting the fairness of ML hyperparameters under temporal dis-
tribution shift, the tree regressors outperform the other algorithms
with reasonable accuracy. However, the precision depends on the
ML training algorithm, dataset, and protected attributes. For ex-
ample, the tree regressor model was robust for training data shift
from 2014 to 2018 on logistic regression and discriminant analy-
sis HPs with sex as the protected attribute; but not for race and
other training algorithms. Our method provides a sound framework
to e�ciently perform �ne-tuning of ML training algorithms and
understand the relationships between HPs and fairness.

CCS CONCEPTS
• Software and its engineering! Extra-functional properties.
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ML Hyperparameters, Fairness, distribution shifts
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1 INTRODUCTION
Arti�cial intelligence (AI) has become an integral part of modern
software solutions that assist in socio-economic and legal-critical
decision-making processes such as releasing patients [24], iden-
tifying loan defaults [20], and detecting tax evasion [38]. Since
AI-driven software solutions are derived from prior experiences,
it is not surprising that they encode social biases in their decision
logic that may discriminate against vulnerable communities and
violate ethical and legal requirements.

Unfortunately, discriminatory software is a major threat to the
trustworthiness of automated decision-support systems, and fair-
ness defects are plentiful in real systems. Parole decision-making
software was found to harm black and Hispanic defendants by
falsely predicting a higher risk of recidivism than for non-Hispanic
white defendants [23]; Amazon’s hiring algorithm disproportion-
ately rejected more female applicants than male applicants [22];
and data-driven auditing algorithm selected black taxpayers with
earned income tax credit claims (EITC) at much higher rates than
other racial groups for an audit [38, 41]. As evidenced by these exam-
ples, resulting software may particularly disadvantage minorities
and protected groups and be found non-compliant with law such as
the US Civil Rights Act [6]. Therefore, helping programmers detect
and mitigate fairness bugs in social-critical data-driven software
systems is crucial to ensure inclusion in our modern, increasingly
digital society.

Recently, the software engineering community has made con-
centrated e�orts to improve fairness of data-driven software [5,
8, 9, 19, 39, 40, 45]. One area of focus is on establishing best prac-
tices for fairness of training data-driven software that involves
pre-processing [5], feature selection [45], and hyperparameter selec-
tion [9, 30, 40]. Speci�cally, hyperparameter tuning (or optimiza-
tion) is the process of tweaking the con�guration space of ML
training algorithms to infer an ML model, based on some valida-
tion dataset, that provides an ideal trade-o� between complexity
and performance. Some prominent examples of hyperparameters
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include l1 vs. l2 loss function in support vector machines, the max-
imum depth of a decision tree, and the number of layers/neurons
in neural networks.

Chakraborty et al. [9] were the �rst to observe the in�uence
of hyperparameter (HP) con�gurations and fairness. F������ [8]
searched the space of HPs to mitigate software discrimination.
P�������ML [40] found and localized discriminatory HPs in the
prevalent ML algorithms. While the critical role of HPs on fairness
is evident, exploring the space of HPs to develop fair ML software
is time-consuming and expensive due to the need to train the entire
model for any given con�guration. This paper investigates whether
a relationship between HPs of di�erent ML algorithms and fairness
can be learned via ML regression methods. If feasible, the models
can be used to predict whether a HP meets fairness requirements
before performing a (full) training cycle. Thus, it can signi�cantly
reduce the required computations of hyperparameter tuning.

As new data is typically acquired on an annual or periodic basis
and ML system evolves over time, it becomes imperative to monitor
how the fairness of a speci�c HP con�guration changes over time.
Hence, this paper also analyzes the robustness of fair con�guration
of HPs under temporal distribution shifts. We emphasize on time
distribution shifts and investigate when and how robustness is
a�ected or not. We pose the following research questions:

• Can we accurately predict group fairness of ML hyperparame-
ters for a given training dataset and protected attribute? what
is the performance of neural methods, support vectors, and
trees as the prediction methods?

• Can we predict the fairness of ML hyperparameters under the
temporal distribution shift of test data? which types of ML
algorithms are more robust to the shift?

To answer these research questions, we perform experiments
over the HP space of �ve popular ML algorithms (Decision Tree
Classi�er, Support Vector Machine, Logistic Regression Classi�er,
Random Forest, andDiscriminant Analysis) trained over four socially-
critical datasets (Adult Census, Compas Recidivism, Default Credit,
and Bank Marketing). To measure fairness, we use the average odd
di�erence (AOD) which is the average of di�erences between the
true positive rates and the false positive rates of two protected
groups (e.g., male vs. female).

We �rst use an evolutionary search algorithm to explore various
HP con�gurations and record the fairness of resulting models (over
some validation datasets) [40]. Then, we feed the collected datasets
of HPs (features) and fairness (outcome) to four ML regression
methods (Deep Neural Network, Support Vector Regressor, Tree
Regressors, and XGBoost) to learn a function from HPs to fairness.
To measure the accuracy of prediction models, we used four metrics
including the coe�cient of determination (known as '2 score).

Over a �xed training dataset, we observe that Tree Regressors
and XGBoost outperform other algorithms in accurately predicting
AOD fairness of ML hyperparameters for all �ve algorithms. In
40% of cases, they achieved '2 � 0.95, and only in 6.7% of cases,
the algorithms do not achieve a reliable accuracy (an '2  0.5).
Under the temporal distribution shifts, we observe that the preci-
sion depends on the training algorithm, dataset, and the protected
attribute. When there is one year shift (e.g., trained over the income
census 2014 and predicting for 2015), Tree Regressor and XGBoost

achieved high accuracy in 20% of benchmarks. We observed that
these cases are related to the HP space of Logistic Regression and
Discriminant Analysis with sex as the protected attribute; and the
precision is signi�cantly degraded for other training algorithms
and protected attributes like race.

In summary, our experiences provide a sound and robust frame-
work to systematically examine the in�uence of hyperparameters
over fairness. Our vision of usage describes how collecting and
training fairness characteristics of hyperparameters can help re-
duce the cost of training data-driven software solutions by avoiding
biased con�gurations and leveraging promising hyperparameters.
We also observe the di�culty of making such predictions in general,
and point out circumstances for successful usages and challenges
for future research.

2 BACKGROUND
We consider regression problem tasks where the target variable
is a group fairness metric, and features are the hyperparameter
variables of ML training algorithms. The values of hyperparameter
variables and target fairness variable are collected after running an
evolutionary hyperparameter optimization algorithm.
Fairness Notion. Fairness de�nitions are either concerned with in-
dividual fairness or group fairness. Examples of individual fairness
is fairness through awareness (FTA) [15] that requires two indi-
viduals with similar non-protected attributes are treated similarly,
regardless of their background. Group fairness requires the statistics
of ML outcomes for di�erent protected groups remain similar [21].
There are multiple metrics to measure group fairness. Among them,
equal opportunity di�erence (EOD) measures the di�erence between
the true positive rates (TPR) of two protected groups. Similarly,
average odd di�erence (AOD) is the average of di�erences between
the true positive rates (TPR) and the false positive rates (FPR) of
two protected groups [3, 8, 40, 45].
ML training process. In the data-driven paradigm, the ML pro-
grammers often provide input data and build an ML model using a
programming interface [42]. The interface interacts with the core
ML algorithms and builds di�erent ML models. At the heart of the
training process, tweaking HPs is particularly challenging since
they cannot be estimated from the input data, and there is no an-
alytical formula to calculate its values [25]. Examples of HPs are
tolerance of optimization in SVMs, maximum features to search in
random forests, and minimum samples in leaf nodes of decision
trees. We distinguish ML training HPs from model parameters that
are inferred automatically after training.
Related Work. There are multiple works that studied the in�u-
ence of HPs on fairness [8, 9, 40]. Evolutionary algorithms have
been signi�cantly used to optimize the HP search in the training
process [28, 32, 37, 44]. However, there are a few tools to perform
Pareto-optimal search in the space of HPs to infer an idea trade-o�
between fairness (e.g., EOD and AOD) and accuracy (e.g., F1 socre).
Parfait-ML [40] is a gray-box evolutionary search algorithm that
explores the training space of ML algorithms to manifest HPs that
minimize/maximize fairness within an acceptable range of accuracy
requirements. Given a training algorithm and a fairness-sensitive
dataset, Parfait-ML [40] generates a set of HPs that characterize the
Pareto-dominant curves of fairness and unfairness based on a group
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fairness metric such as EOD and AOD. All of these works focus
on either testing the space of HPs to �nd biased con�gurations or
mitigating biased ML models by carefully picking HPs. Instead, we
focus on learning the fairness characteristics of ML HPs in order to
improve the e�ciency and fairness of ML software development.

3 FAIRNESS OF ML HYPERPARAMETERS
While the relationships between ML hyperparameters and func-
tional metrics such as overall accuracy, precision, and F1 scores
have been well studied, the presence of fairness makes the hy-
perparameter tuning challenging. Our goal is to study whether a
relationship between hyperparameters and fairness can be learned
via regression ML methods.
The ML Paradigm. Machine learning software often deploys ma-
ture, o�-the-shelf ML libraries to learn various models from training
data. We can succinctly view a training problem as the problem of
identifying a mapping" : X ! Y from a set X of inputs to a set
Y of outputs by learning from a �xed dataset D = {(xi, yi)}#8=1 so
that" generalizes well to previously unseen situations.

The training process includes the setH of hyperparameters that
let the users de�ne the hypothesis class for the learning tasks. The
data-driven programs sift through the given dataset D to learn
an “optimal” value \ 2 ⇥⌘ and thus compute the learning model
"⌘ (\ |D) : X ! Y automatically. When D and \ are clear from
the context, we write"⌘ for the resulting model.

The �tness of a hyperparameter ⌘ 2 H is evaluated by comput-
ing the accuracy (ratio of correct results) of the model"⌘ on a val-
idation dataset D⇤. We denote the accuracy of a model" over D⇤

as �⇠⇠" . The dataset D⇤ is typically distinct from D but assumed
to be sampled from the same distribution. In the fairness-sensitive
applications, we also have fairness requirements. Let predicate
c : X ! {0, 1} be the input variables characterizing the protected
status of a data point x (e.g., race, sex, or age). Without loss of
generality, we assume there are only two protected groups: a group
with c (x) = 0 and a group with c (x) = 1. We also assume that the
predicate q : Y ! {0, 1} over the output variables characterizes a
favorable outcome (e.g., low re-o�end risk) with q (y) = 1.

Given D⇤ and " : X ! Y, we de�ne true-positive rate (TPR)
and false-positive rate (FPR) for the protected group 8 2 {0, 1} as

)%'" (8) =

�� {(x, y) 2 D⇤ : c (x) = 8,q (" (x)) = 1,q (y) = 1}
���� {(x, y) 2 D⇤ : c (x) = 8}

��
�%'" (8) =

�� {(x, y) 2 D⇤ : c (x) = 8,q (" (x)) = 1,q (y) = 0}
���� {(x, y) 2 D⇤ : c (x) = 8}

�� .

We use a prevalent notions of group fairness [3, 8, 45]: equal op-
portunity di�erence (EOD) of " against D⇤ between two groups is
⇢$⇡" =

��)%'" (0) �)%'" (1)
��, and average odd di�erence (AOD)

of" against D⇤ between two groups is

�$⇡" =
|)%'" (0) �)%'" (1) | + |�%'" (0) � �%'" (1) |

2
.

We notice that 0  ⇢$⇡"
2 R  1 and 0  �$⇡"

2 R  1, and
higher values of ⇢$⇡" and �$⇡" indicate low fairness.

The key idea behind hyperparameter optimization methods [8,
40] for fairness and accuracy is to search the space of hyperpa-
rameters and �nd hyperparameters that maximize fairness, while

making sure that the accuracy does not degrade below a given
threshold. To understand the e�ects of hyperparameters on fair-
ness, these methods also allow us to �nd hyperparameters that
minimize fairness. The both sets of hyperparameters that manifest
maximum and minimum fairness values provide us with representa-
tive samples to systematically investigate the relationships between
hyperparameters and fairness.

A fairness trace F of anML training algorithm" is characterized
by the tuple (D,H ,⇧, � ) where D is the training dataset,H is the
hyperparameter, ⇧ is a predicate over protected attributes, and
� 2 {⇢$⇡,�$⇡} is the group fairness metric of ML model "⇡

⌘
when trained over a dataset⇡ 2 D with the hyperparameter⌘ 2 H

and the protected attribute predicate ? 2 ⇧.

Given a set of fairness training set F , our goal is to infer a func-
tion �(l |⇡, ?) : H ! [0, 1] with di�erent hypothesis classes of
l (e.g., linear, tree, and neural network regressors) over fairness
training traces F that generalizes well to the testing traces F⇤,
i.e., learn fairness as a function of hyperparameters for a �xed
dataset ⇡ 2 D and protected predicate ? 2 ⇧. We call � and �F
HP prediction algorithm and model, respectively.

From the practical point of view, it is not only important that
fairness of hyperparameters of ML training algorithms can be pre-
dicted for a speci�c task at a speci�c time; but also whether a similar
relationship can be learned under distribution shifts (e.g., under
covariate shift [26, 43] when the feature distributions are di�erent).
One speci�c type of shifts is temporal distribution shifts where our
goal is to evaluate whether the predictionmodel is robust to the tem-
poral changes. In other words, we study the accuracy of �⇡0!⇡: ,
that is to evaluate the ML prediction algorithm �(l |⇡0, ?), trained
with the base dataset at the time unit 0, with the dataset⇡: , sampled
after : units of time (e.g, after : year).

4 LEARNING FAIRNESS FUNCTIONS
Our goal is to infer l of HP prediction algorithms � to accurately
predict the fairness of ML algorithm con�gurations. There are many
di�erent ML algorithms that can be used to solve the inference
problem. After some initial experimentation, we focus on four types
of l with the following prediction algorithms:
1) Deep Neural Network (DNN). We primarily work with feedfor-
ward neural networks with ReLU activation units. A feedforward
neural network is characterized by its number of hidden layers,
the input and output dimensions, and the number of neurons in
each layer. Each hidden layer 8 implements an a�ne mapping )8
that takes outputs of the previous layer and applies a linear func-
tion using its weights along with ReLU activation function (f).
The function 5N : RF0 ! RF# +1 implemented by DNN N is
�l = ):+1 � f �): � f � · · ·)2 � f �)1 .
2) Support Vector Regression (SVR). SVR follows the same principles
as a support vector machine (SVM) that aims to infer the parameters
of a hyperplane that separate data points of di�erent class labels
with an error margin. Since � is a regression task, we change the
objective to infer a hyperplane that can predict target outcomes
within a tolerance margin [11], i.e., to minimize 1

2 | |l
2
| | subject to

|� � l .H � 1 |  n .
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3) Tree Regressor (TR). The algorithm uses an ensemble method
where it trains a number of regression trees in parallel [27]. At the
inference time, the output is the mean of predicted outcomes from
each regression tree.
4) XGBoost (XGB). This algorithm is similar to the Random For-
est Regressor, but rather than an ensemble method, it uses tree
boosting techniques [17] that start from a single leaf and iteratively
add branches to the tree until the performance is not improving.
XGBoost [10] is a special tree boosting algorithm that scales the
training process via sparse data analysis and approximating train-
ing. XGBoost has been shown to signi�cantly outperform other
tree boosting techniques [4].

Our goal is to compare the performance of di�erent hypothesis
classes of HP prediction algorithms. If feasible, the models can be
used as a part of data-driven software developments to predict the
fairness of a selected HP without requiring a full training cycle. In
summary, our goal is to study the feasibility of training regression
models to predict the fairness of ML hyperparameters in two levels: i)
�xed dataset over a protected attribute and ii) temporal distribution
shifts between training and test data.

5 EXPERIMENTS
We �rst give background on ML training algorithms and their
hyperparameters. Then, we overview training datasets used to infer
ML models and evaluate their fairness. Subsequently, we introduce
ML prediction algorithms (regressors) that are used to learn the
fairness models of hyperparameters. Finally, we discuss research
questions and perform experiments to evaluate the performance of
di�erent algorithms under di�erent circumstances.
ML Training Algorithms. We consider 5 di�erent ML training
algorithms provided by scikit-learn, a popular ML library. The fol-
lowing is an overview of these algorithms:
A) Decision Tree (DT) algorithm [33] is a supervised learning algo-
rithm to infer tree classi�ers. During training, the DT algorithms
use information theoretic measures, known as impurity, to decide
which feature (node) and values (edges) to split upon. The �nal
level of the tree contains leaf nodes that decide the outcome labels.
We consider the following HPs: max_depth, min_samples_split,
min_samples_leaf, and min_weight_fraction_leaf (numerical); and
Criterion, splitter, and max_features (Categorical).
B) Logistic Regression (LR) infers the parameters of sigmoid func-
tions to map data into a likelihood score of receiving a particular
label. We use an implementation from scikit-learn [35] that has the
following hyperparameters: tol, C, intercept_scaling, max_iteration,
and l1_ratio (numerical); and solver, penalty norm, dual_prime
formulation, �t_intercept, and multi_class (Categorical).
C) Support Vector Machine (SVM) learns a hyperplane of lower
dimensions to separate the data of high-dimensional spaces on
the basis of their class labels. The scikit-learn implementations of
SVM algorithms [36] include the following hyperparameters: tol,
C, and intercept_scaling (numerical); and penalty, loss, degree,
�t_intercept, and class_weight (Categorical).
D) Random Forest (RF) is an ensemble learning algorithm that �ts a
number of trees and takes the expected outcomes of these trees to
make a prediction. We used an implementation from scikit-learn
with the following hyperparameters: max_depth,min_samples_split,

min_samples_leaf, min_weight_fraction_leaf, n_estimators, and
max_samples (numerical); and criterion, max_features, oob_score,
and warm_start (Categorical).
E) Discriminant Analysis (DA) de�nes a smooth classi�er where the
data �ts a Gaussian prior to inferring a posterior for each class la-
bel [34]. The scikit-learn implementations of DA algorithms include
the following hyperparameters: tol, and reg_param (numerical);
and linear(0)_quadratic(1), solve_Linear, Shrinkage_Linear, compo-
nent, store_covariance, and type_dataset (Categorical).
Fairness-Sensitive Training Datasets.We consider 4 fairness-
critical datasets from the literature of ML fairness to infer ML
classi�ers using the ML training algorithms [1, 8, 18, 40]. Table 1
shows these datasets with di�erent protected attributes that form 6
training tasks. Adult Census Income [12] (⇠4) is a binary classi�-
cation dataset that predicts whether an individual has an income
over 50 a year. Sex and race are two protected attributes for this
dataset. COMPAS Software (⇠>) [31] is a dataset in the criminal
justice domain that classi�es defendants into high- or low-risks
for re-o�ending (i.e., risk of recidivism). We consider sex and race
as the protected attributes. German credit data (⇠A ) [13] predicts
whether an individual might have bad credit in assessing a loan
default. Sex is the protected attribute. Bank Marketing [14] is a
dataset in the advertisement applications to predict the likelihood
that an individual will be a subscriber.
Training ML prediction algorithms.We use P�������ML [40]
to generate a dataset of HP values (as feature variables) and AOD
fairness values (as the target variable). Given a ML training algo-
rithm (e.g., decision tree) and a fairness-sensitive dataset (e.g., Adult
Census); we run P�������ML for four hours and record all the HPs
as well as the AOD fairness of the corresponding ML model. Given
the HP traces of each ML training algorithm and fairness-sensitive
training datasets; we leverage the ML prediction algorithms to train
ML regressors that can accurately predict the fairness of a HP con-
�guration. To train those models, we did standard hyperparamter
tuning to obtain the following predictive models:
1. Deep Neural Network (DNN). We consider prevalent deep neural
network architecture from the fairness literature with 4 hidden
layers, each with 32 neurons [16, 29, 47]. We implemented DNN
using the TensorFlow library, version 2.14.0, where we used “mean
squared error” (MSE) as the loss function and Adam for optimiza-
tion. We infer the parameter of DNN after 50 epochs (batch size of
64). 2. Support Vector Regression (SVR). We consider di�erent classes
of SVR for learning fairness functions. After initial experimenta-
tion and �ne-tuning over SVR, LinearSVR, and NuSVR algorithms;
we consider NuSVR as the core SVR algorithm from scikit-learn,
version 1.2.2, with the following con�guration: “rbf” as the kernel,
“auto” as gamma for kernel coe�cient, and 10,000 for the maximum
number of iterations.
3. Tree Regressor (TR). We consider the implementation of random
tree regressors from scikit-learn, version 1.2.2, where after initial
experiments, we set the algorithm with 100 tree estimators each
with a maximum depth of 35 nodes throughout the experiments.
4. XGBoost (XGB) We consider the implementations from XGB����
library [10], using version 2.0.2. After initial exploration, we set the
max. depth of each tree to 30.
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Table 1: Fairness-sensitive datasets used as the training of ML algorithms.

Dataset |Instances| |Features| Protected Groups Outcome Label
Group1 Group2 Label 1 Label 0

Adult Census 48, 842 14 Sex-Male Sex-Female High Income Low IncomeIncome (Ce) Race-White Race-Non White

Compas Software (Co) 7, 214 28 Sex-Male Sex-Female Did not Reo�end Reo�endRace-Caucasian Race-Non Caucasian
German Credit (Cr) 1, 000 20 Sex-Male Sex-Female Good Credit Bad Credit
Bank Marketing (Ba) 45, 211 17 Age-Young Age-Old Subscriber Non-subscriber

Evaluation of the HP Prediction Algorithms. Our next goal is
to evaluate the accuracy of the model in predicting the AOD bias
of HPs. The �rst metric is the loss function, which calculates the
�tness of our predictions compared to the actual AODs. This loss
function is commonly Mean Square Error (MSE).

To evaluate the accuracy of our models over the testing data, we
use three primary metrics: the Root Mean Square Error (RMSE),
Relative Root Mean Square Error (Relative RMSE), and Coe�cient
of Determination ('2). Since the metrics are highly correlated, we
will focus on '2 as our main metric. Let = be the number of (testing)
samples, ˆ�$⇡8 be the predicted fairness from the ML prediction
algorithm, �$⇡8 be the observable (ground truth) fairness for the
8-th data point, and �$⇡ =

Õ=
8=1 (�$⇡8 )

= be the average of the AOD
values.

• Relative RMSE. The Relative Root Mean Square Error is equal
to the RMSE divided by the average ¯�$⇡ value of our dataset
(lower values show a better �t):

'4;0C8E4 '"(⇢ =
1

�$⇡
⇤

sÕ=
8=1 (

ˆ�$⇡8 ��$⇡8 )2

=

• The coe�cient of determination ('2). This is the main eval-
uation metric in our experiments. This statistic measures how
well the data �ts our trained ML prediction model. The following
is the formula for the '2 (higher values show a better �t):

'2 = 1 �
Õ=
8=1 (�$⇡8 � ˆ�$⇡8 )

2

Õ=
8=1 (�$⇡8 ��$⇡)2

This value can normally range from 0 to 1: if the '2 value is 1,
then we have perfectly predicted the output values whereas a
lower value casts doubts on the validity of the trained models.
In many practical situations, we depend on a single threshold
that informs us if our '2 value is reasonable. We report '2 values
above 0.95, 0.8, and 0.5; and consider values below 0.0 as an
invalid prediction model.

Baseline Model.We also consider a basic simple prediction model
to understand the precision of models. In particular, we use the
average AOD of all samples, i.e., �$⇡ to predict AOD of any HP
values. We expected that our trained ML prediction models perform
(signi�cantly) better than this naive predictor.
Research Questions. We pose the following research questions:

• RQ1. Can we accurately predict the fairness of ML hyperparam-
eters? What is the performance of di�erent classes of predictors?

• RQ2. Can we predict the fairness of ML hyperparameters under
temporal distribution shift of dataset?

Technical Details. We implemented our experiments using a cloud
server machine with Intel(R) Xeon(R) CPU @ 2.20ghz. The system
has 12.7 GB RAM, and the disk space is 225.8 GB. Throughout this
paper, we repeated experiments 10 times eachwith di�erent random
seeds. We report both the average and the standard deviation over
10 repeated experiments. The replication package is available
at link.

RQ1: the relationship between hyperparameters
and fairness (�xed dataset)
To study the RQ1, we use 30 di�erent benchmarks: ML hyperpa-
rameters of 5 training algorithms, trained over 6 di�erent fairness-
sensitive tasks (e.g., Decision Tree over Census dataset with Sex;
Decision Tree over Census with Race, etc.).

Table 2 presents the performance of various ML prediction algo-
rithms (DNN, SVR, TR, and XGB). These algorithms are assessed
based on their ability to learn the relationship between hyperparam-
eters and fairness across the 30 scenarios. For each ML prediction
algorithm, we evaluate its performance using three key metrics:
Root Mean Square Error (RMSE), Relative RMSE, and the coe�cient
of determination ('2). Additionally, we compare these results with
baseline performance, speci�cally in terms of Relative RMSE. It’s
important to note that an ML prediction algorithm is not deemed
competitive if its Relative RMSE exceeds that of the baseline. Fur-
thermore, in our assessment criteria, any '2 values below 0.5 are
not considered competitive.

In Table 2,we present the results of our analysis, which include
both the average values and standard deviations from 10 repeated
experiments for each of the 30 benchmarks. In our experiments,
we use unique splits of training and testing fairness traces with a
ratio of 80% training and 20% testing ratio. The results are reported,
with the standard deviations enclosed in parentheses alongside the
averages for each benchmark and ML prediction algorithm. We
compare the results based on these averages and the range of two
standard deviations; and deem a method outperforms another if
the average is not within two standard deviations.

We highlight the best '2 result as well as those within 2 standard
deviations of the best result. For example, in the Random Forest case,
trained over the Credit dataset with Sex as the protected attribute,
the Tree Regressor algorithm has outperformed all other methods
in predicting the AOD fairness of Random Forest hyperparame-
ters whereas in the benchmark with the SVM algorithm trained
over Census with Sex; DNN, Tree Regressor, and XGBoost have
all achieved similar performance to predict AOD fairness of SVM
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Figure 1: Computation Complexities of Tree Regressor vs. XGBoost. Each plot shows one ML training algorithm (Decision Tree
Classi�er in the left, Logistic Regression in the center, and Support Vector Machine in the right).

Table 2: (RQ1) Comparisons between di�erent ML prediction algorithms (DNN, SVR, TR, and XGB) in learning fairness of
hyperparameters for a given ML training algorithm, dataset, and protected attribute. The numbers show the average of 10
repeated experiments wherein the standard deviations are reported in the parenthesis (NV shows '2  0.0).

Algorithm Dataset Prot. Baseline D��� N����� N������ S������ V����� R��������� T��� R�������� XGBoost
Rel. RMSE '2 Rel. RMSE '2 Rel. RMSE '2 Rel. RMSE '2

Decision
Tree

Census sex 0.444 (0.013) 0.366 (0.018) 0.316 (0.057) 0.387 (0.012) 0.237 (0.034) 0.157 (0.014) 0.875 (0.018) 0.164 (0.012) 0.863 (0.016)
race 0.610 (0.029) 0.607 (0.032) 0.003 (0.099) 0.624 (0.037) NV 0.233 (0.033) 0.849 (0.045) 0.230 (0.029) 0.853 (0.042)

Compas sex 0.273 (0.004) 0.115 (0.014) 0.820 (0.050) 0.239 (0.035) 0.219 (0.234) 0.057 (0.003) 0.956 (0.005) 0.058 (0.003) 0.954 (0.005)
race 0.347 (0.003) 0.141 (0.013) 0.832 (0.031) 0.278 (0.012) 0.358 (0.055) 0.068 (0.004) 0.962 (0.005) 0.066 (0.004) 0.964 (0.005)

Credit sex 2.219 (0.036) 1.260 (0.077) 0.676 (0.045) 2.317 (0.185) NV 0.694 (0.026) 0.902 (0.008) 0.712 (0.031) 0.897 (0.010)
Bank age 4.008 (0.658) 4.034 (0.621) NV 3.848 (0.675) 0.076 (0.073) 2.168 (0.533) 0.706 (0.070) 2.039 (0.466) 0.734 (0.084)

Logistic
Regression

Census sex 0.432 (0.008) 0.317 (0.072) 0.428 (0.304) 0.217 (0.008) 0.747 (0.016) 0.053 (0.008) 0.984 (0.005) 0.053 (0.008) 0.985 (0.005)
race 0.197 (0.010) 0.163 (0.037) 0.285 (0.333) 0.130 (0.016) 0.560 (0.086) 0.044 (0.023) 0.940 (0.059) 0.051 (0.026) 0.920 (0.076)

Compas sex 0.377 (0.002) 0.072 (0.016) 0.962 (0.019) 0.266 (0.005) 0.502 (0.018) 0.008 (0.001) 1.000 (0.000) 0.011 (0.001) 0.999 (0.000)
race 0.372 (0.004) 0.128 (0.039) 0.871 (0.084) 0.318 (0.008) 0.267 (0.045) 0.007 (0.002) 1.000 (0.000) 0.011 (0.002) 0.999 (0.000)

Credit sex 0.400 (0.001) 0.203 (0.022) 0.741 (0.064) 0.238 (0.005) 0.645 (0.017) 0.113 (0.004) 0.920 (0.006) 0.116 (0.004) 0.916 (0.006)
Bank age 0.679 (0.014) 0.469 (0.049) 0.515 (0.097) 0.402 (0.021) 0.646 (0.043) 0.172 (0.018) 0.935 (0.014) 0.182 (0.024) 0.926 (0.020)

Random
Forest

Census sex 0.220 (0.011) 1.375 (1.335) NV 0.210 (0.013) 0.081 (0.054) 0.055 (0.006) 0.935 (0.015) 0.057 (0.005) 0.931 (0.012)
race 0.160 (0.012) 2.547 (1.381) NV 0.162 (0.012) NV 0.093 (0.007) 0.657 (0.055) 0.095 (0.003) 0.637 (0.066)

Compas sex 0.046 (0.017) 0.074 (0.022) NV 0.050 (0.009) NV 0.026 (0.007) 0.567 (0.282) 0.022 (0.008) 0.708 (0.159)
race 0.042 (0.007) 0.130 (0.203) NV 0.049 (0.005) NV 0.019 (0.004) 0.807 (0.036) 0.021 (0.004) 0.739 (0.106)

Credit sex 0.625 (0.007) 0.536 (0.086) 0.246 (0.261) 0.614 (0.008) 0.034 (0.018) 0.317 (0.004) 0.743 (0.006) 0.338 (0.004) 0.708 (0.008)
Bank age 0.662 (0.118) 27.331 (25.2) NV 0.518 (0.061) 0.251 (0.466) 0.331 (0.054) 0.710 (0.126) 0.350 (0.064) 0.677 (0.139)

SVM

Census sex 0.828 (0.009) 0.275 (0.022) 0.889 (0.018) 0.293 (0.023) 0.874 (0.022) 0.244 (0.027) 0.912 (0.020) 0.267 (0.029) 0.895 (0.025)
race 0.733 (0.004) 0.378 (0.021) 0.733 (0.029) 0.399 (0.025) 0.702 (0.038) 0.355 (0.021) 0.764 (0.028) 0.381 (0.023) 0.729 (0.032)

Compas sex 0.178 (0.001) 0.088 (0.016) 0.751 (0.106) 0.162 (0.029) 0.151 (0.314) 0.066 (0.002) 0.864 (0.007) 0.069 (0.002) 0.850 (0.008)
race 0.069 (0.003) 0.063 (0.004) 0.161 (0.072) 0.129 (0.031) NV 0.049 (0.003) 0.496 (0.044) 0.052 (0.003) 0.431 (0.050)

Credit sex 0.449 (0.001) 0.043 (0.005) 0.991 (0.003) 0.181 (0.016) 0.835 (0.028) 0.018 (0.001) 0.998 (0.000) 0.021 (0.002) 0.998 (0.000)
Bank age 0.782 (0.052) 0.684 (0.035) 0.223 (0.089) 0.645 (0.039) 0.312 (0.070) 0.571 (0.050) 0.462 (0.062) 0.615 (0.039) 0.373 (0.071)

Discriminant
Analysis

Census sex 0.760 (0.005) 0.052 (0.009) 0.995 (0.002) 0.144 (0.006) 0.964 (0.003) 0.002 (0.000) 1.000 (0.000) 0.004 (0.000) 1.000 (0.000)
race 0.325 (0.012) 0.031 (0.007) 0.991 (0.004) 0.153 (0.015) 0.777 (0.028) 0.003 (0.001) 1.000 (0.000) 0.006 (0.001) 1.000 (0.000)

Compas sex 0.106 (0.002) 0.023 (0.013) 0.937 (0.090) 0.022 (0.002) 0.955 (0.008) 0.001 (0.001) 1.000 (0.000) 0.002 (0.000) 0.999 (0.000)
race 0.139 (0.004) 0.024 (0.006) 0.969 (0.014) 0.023 (0.002) 0.972 (0.006) 0.001 (0.001) 1.000 (0.000) 0.002 (0.000) 1.000 (0.000)

Credit sex 0.944 (0.005) 0.097 (0.009) 0.989 (0.002) 0.288 (0.007) 0.907 (0.005) 0.006 (0.003) 1.000 (0.000) 0.005 (0.003) 1.000 (0.000)
Bank age 0.369 (0.016) 0.186 (0.026) 0.742 (0.062) 0.260 (0.019) 0.499 (0.066) 0.023 (0.005) 0.996 (0.002) 0.027 (0.004) 0.994 (0.001)

hyperparameters. Overall, we highlight TR algorithms in 93.3% (28
out of 30 cases); XGB in 80% (24 out of 30); DNN in 6.6% (2 out
of 30); and SVR in 0.0% (0 out of 30). Note that in some cases the
'2 measure is the same on both algorithms (e.g., see Discriminant
Analysis benchmark with Compas dataset and Race); but if we look
at the Relative RMSEmeasure we can observe that a smaller value is
better. Therefore we can di�erentiate the best algorithm per dataset.
To precisely compare di�erent ML prediction algorithms, we report
the many cases when we have '2 values greater than a speci�c
threshold.
How many '2 values do we have more than 0.95? Both Tree
Regressor and XGBoost have 12/30 (40%) values exceeding this

threshold noting that the datasets in which '2 values exceed 0.95
are the same datasets for both algorithms. For the Deep Neural
Network model, we have 6/30 (20%) cases exceeding this threshold
including half of the previous datasets in TR and XGB. Finally, the
SVR method only has 3/30 (10%) values that have the '2 greater
than 0.95.
How many '2 values do we have more than 0.80? Tree Regres-
sor exceeds this threshold in 22/30 (73%) datasets, and XGBoost is
very close to it with 21/30 (70%) datasets meeting the 0.8 threshold.
For the Deep Neural Network, 11/30 (37%), close to half of the pre-
vious datasets meet the '2 threshold. Finally, the SVR method has
6/30 (20%) values that are greater than 0.8.
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Table 3: (RQ1) The performance of Tree Regressors when the
EOD fairness, instead of AOD, is used. The red fonts show
benchmarks when '2 is degraded whereas the bold fonts
show ones that '2 is increased.

Algorithm Dataset Prot. Base. T��� R��������
'2

Decision
Tree

Census sex 0.518 (0.018) 0.882 (0.015)
race 0.691 (0.034) 0.868 (0.038)

Compas sex 11.910 (1.950) 0.674 (0.100)
race 13.114 (2.590) 0.560 (0.109)

Credit sex 2.309 (0.042) 0.897 (0.008)
Bank age 4.083 (0.696) 0.689 (0.074)

Logistic
Regression

Census sex 0.480 (0.013) 0.983 (0.007)
race 0.191 (0.009) 0.930 (0.070)

Compas sex 1.198 (0.009) 0.999 (0.000)
race 1.913 (0.038) 0.999 (0.000)

Credit sex 0.489 (0.002) 0.925 (0.006)
Bank age 0.735 (0.013) 0.933 (0.014)

Random
Forest

Census sex 0.322 (0.014) 0.955 (0.010)
race 0.211 (0.014) 0.711 (0.044)

Compas sex 18.002 (7.909) 0.553 (0.339)
race 19.452 (5.010) 0.823 (0.047)

Credit sex 0.748 (0.011) 0.608 (0.012)
Bank age 0.761 (0.123) 0.692 (0.104)

SVM

Census sex 0.744 (0.013) 0.869 (0.018)
race 0.705 (0.015) 0.602 (0.048)

Compas sex 1.185 (0.018) 0.813 (0.011)
race 1.708 (0.071) 0.539 (0.035)

Credit sex 0.460 (0.001) 0.998 (0.000)
Bank age 0.909 (0.058) 0.495 (0.067)

Discriminant
Analysis

Census sex 0.889 (0.007) 1.000 (0.000)
race 0.338 (0.010) 1.000 (0.000)

Compas sex 11.644 (1.304) 0.980 (0.013)
race 13.242 (1.015) 0.992 (0.015)

Credit sex 1.000 (0.008) 1.000 (0.000)
Bank age 0.519 (0.026) 0.997 (0.001)

Comparing the ML prediction algorithms using a di�erent
fairness notion.We also perform experiments to understand the
e�cacy of algorithms to predict a di�erent notion of fairness than
AOD. Speci�cally, we consider the equal opportunity di�erence
(EOD), the true positive rate di�erences between two protected
groups, as the target variable of our training tasks. Since Tree Re-
gressor has achieved the highest performance; we are only training
Tree Regressors models to predict EOD fairness.

Table 3 shows the results of experiments. In 19/30 cases (63.3%);
we observe that TR shows a similar performance when used to
predict EOD, instead of AOD. We observe that in 7/30 cases (23.3%),
the performance of TR (based on '2) is degraded: TR predicts AOD
more accurately than EOD. When we closely examine these cases,
we observe that 4 cases out of 7 involve the COMPAS dataset. We
revisited the training datasets for COMPAS and noted that the
di�erence in true positive rates between two groups are zero for
many examples, while this is not the case for false positive rates
that contribute to AOD. We conjecture that this is the main reason
behind the di�culty in learning EOD, compared to AOD. In 4/30
cases (13.3%), TR predicts EOD more accurately than AOD.
Comparing the computational complexity of ML prediction
algorithms. While we observe that Tree Regressor slightly out-
performs XGBoost in the accuracy of predicting fairness of ML
hyperparameters; we observed that XGBoost is signi�cantly faster,
meaning that it trains ML prediction models in relatively less run-
ning time. Figure 1 shows the computation times of training with
TR vs. XGB over three ML training algorithms (DT, LR, and SVM),
noting that the results are similar for the other two algorithms (RF
and DA). In each plot (corresponds to one ML training algorithm),
we have di�erent datasets with a protected attribute and the size

of fairness traces used to train the regression models. As the size
grows, the XGBoost algorithm signi�cantly scales better.

Performance of fairness models across multiple releases of
the same dataset.We aim to evaluate the performance of our fair-
ness models across various releases of the same dataset. Speci�cally,
we focus on the Census dataset, collecting its 2014, 2015, and 2018
versions. Each release is treated as an individual dataset, and we
apply the experimental setup from RQ1 to these experiments.

The results of this analysis, detailed in Table 4 follow the same
structure as in Table 2. When assessing the e�cacy of predicting
AOD from hyperparameters, the Tree Regressor exhibited better
performance, achieving the best performance in 100% cases (30
out of 30 cases). XGB also demonstrated similar performance with
97% in 29 out of 30 cases. Conversely, both DNN and SVR failed to
achieve notable performance in any instance. The results suggest
that DNN, SVR, TR, and XGB could achieve a '2 score over 0.95 in
10% (3 out of 30), 10% (3 out of 30), 47% (14 out of 30 cases), and
40% (12 out of 30) respectively while considering cases with '2 0.8
and higher, these percentages are 33% (11 out of 30), 30% (9 out of
30), 93% (28 out of 30 cases), and 93% (28 out of 30).

Comparing the performance on the protected attributes Sex
and Race, a clear preference for the Sex attribute emerges in our
analysis. Speci�cally, 60% (9 out of 15) of the datasets showed better
performance with Sex as the protected attribute. Breaking it down
by algorithm: all three Decision Tree datasets (2014, 2015, and
2018) performed better with Race, while Logistic Regression and
Discriminant Analysis datasets uniformly favored Sex (3/3 in both
cases). In the Random Forest datasets, one out of three showed
better performance with Sex, and in the SVM datasets, two out of
three favored Sex. This trend indicates a higher value for the Sex
attribute in the majority of the cases.

Answer RQ1: Our experiences show that Tree Regressor and
XGBoost achieve the highest accuracy in predicting AOD fairness
of HPs, with Tree Regressor slightly outperforming XGBoost.
However, XGBoost scales better to larger datasets, and learns
the fairness functions faster. When a di�erent fairness notion is
used, we observe that Tree Regressor achieved similar or better
performance. We also �nd that the results are consistent in mod-
eling the fairness of HPs across multiple releases of the same
dataset where TR and XGB accurately model fairness in 100%
and 97% cases.

RQ2: the relationship between hyperparameters
and fairness over temporal data distribution shift
In this study, we shift our focus to understanding the robustness
of our predictive models in predicting the fairness of HPs under
temporal distribution shifts. This analysis helps us to validate if
our predictive models, which estimate the fairness of ML systems
based on speci�c hyperparameter con�gurations, can maintain
their accuracy over time as data characteristics change and ML
system evolves. It is essential to assess whether the fairness of
these algorithms remains consistent over time, and identify if there
are systematic biases introduced due to changes in the underlying
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Table 4: Di�erent versions of income census datasets that are released in 2014, 2015, and 2018.

Algorithm Dataset Prot. Baseline DNN SVM TR XGB
'2 '2 '2 '2

Decision
Tree

2014
Sex

0.672 (0.030) 0.372 (0.043) 0.287 (0.033) 0.845 (0.043) 0.835 (0.045)
2015 0.651 (0.022) 0.649 (0.041) 0.079 (0.020) 0.933 (0.015) 0.923 (0.019)
2018 0.979 (0.049) 0.657 (0.033) 0.279 (0.033) 0.932 (0.015) 0.932 (0.015)
2014

Race
0.374 (0.007) 0.386 (0.081) 0.108 (0.043) 0.940 (0.015) 0.936 (0.011)

2015 0.481 (0.008) 0.664 (0.038) 0.611 (0.021) 0.940 (0.012) 0.937 (0.018)
2018 0.365 (0.015) 0.454 (0.084) 0.166 (0.026) 0.936 (0.012) 0.907 (0.017)

Logistic
Regression

2014
Sex

0.706 (0.015) 0.946 (0.032) 0.930 (0.008) 0.988 (0.006) 0.985 (0.007)
2015 0.616 (0.008) 0.946 (0.017) 0.933 (0.014) 0.992 (0.002) 0.992 (0.002)
2018 0.813 (0.036) 0.910 (0.038) 0.801 (0.038) 0.989 (0.008) 0.990 (0.007)
2014

Race
0.144 (0.004) NV 0.371 (0.062) 0.830 (0.016) 0.807 (0.027)

2015 0.136 (0.008) 0.382 (0.221) 0.688 (0.070) 0.890 (0.031) 0.898 (0.026)
2018 0.161 (0.005) 0.265 (0.171) 0.445 (0.048) 0.719 (0.044) 0.665 (0.055)

Random
Forest

2014
Sex

0.098 (0.008) NV 0.435 (0.100) 0.865 (0.028) 0.862 (0.038)
2015 0.197 (0.006) 0.105 (0.425) 0.708 (0.046) 0.967 (0.020) 0.966 (0.014)
2018 0.188 (0.006) 0.102 (0.227) 0.631 (0.059) 0.918 (0.041) 0.925 (0.040)
2014

Race
0.170 (0.011) NV 0.688 (0.040) 0.951 (0.012) 0.940 (0.025)

2015 0.238 (0.009) 0.449 (0.133) 0.588 (0.087) 0.968 (0.004) 0.966 (0.009)
2018 0.151 (0.016) NV 0.064 (0.367) 0.873 (0.082) 0.863 (0.109)

SVM

2014
Sex

0.632 (0.019) 0.813 (0.027) 0.770 (0.031) 0.962 (0.008) 0.954 (0.009)
2015 0.546 (0.014) 0.807 (0.029) 0.792 (0.031) 0.956 (0.010) 0.945 (0.016)
2018 0.937 (0.026) 0.654 (0.024) 0.570 (0.027) 0.813 (0.020) 0.800 (0.037)
2014

Race
0.206 (0.003) 0.537 (0.048) 0.554 (0.039) 0.750 (0.032) 0.707 (0.041)

2015 0.257 (0.007) 0.714 (0.035) 0.700 (0.054) 0.870 (0.027) 0.853 (0.041)
2018 0.691 (0.017) 0.699 (0.042) 0.694 (0.052) 0.841 (0.026) 0.830 (0.029)

Discriminant
Analysis

2014
Sex

0.730 (0.005) 0.996 (0.001) 0.972 (0.004) 1.000 (0.001) 1.000 (0.001)
2015 0.741 (0.007) 0.995 (0.002) 0.984 (0.002) 1.000 (0.000) 1.000 (0.000)
2018 0.706 (0.006) 0.995 (0.003) 0.968 (0.009) 0.999 (0.001) 1.000 (0.001)
2014

Race
0.102 (0.003) 0.865 (0.024) 0.879 (0.007) 0.997 (0.002) 0.996 (0.001)

2015 0.131 (0.002) 0.919 (0.012) 0.913 (0.009) 0.999 (0.000) 0.999 (0.000)
2018 0.112 (0.005) 0.868 (0.041) 0.889 (0.012) 0.999 (0.000) 0.999 (0.000)

Table 5: One-year data shift: training with income census 2014 and testing with 2015 one.

Algorithm Dataset Prot. Baseline DNN SVM TR XGB
'2 '2 '2 '2

Decision
Tree

Census 2014! Census 2015 Sex 1.306 (0.036) NV NV NV NV
Census 2015! Census 2014 0.565 (0.006) NV NV NV NV
Census 2014! Census 2015 Race 0.523 (0.008) NV NV NV NV
Census 2015! Census 2014 0.355 (0.005) NV NV NV NV

Logistic
Regression

Census 2014! Census 2015 Sex 0.690 (0.012) 0.933 (0.021) 0.861 (0.012) 0.979 (0.002) 0.978 (0.002)
Census 2015! Census 2014 0.645 (0.007) 0.912 (0.024) 0.802 (0.016) 0.971 (0.010) 0.968 (0.009)
Census 2014! Census 2015 Race 0.138 (0.008) 0.082 (0.323) NV 0.617 (0.037) 0.523 (0.062)
Census 2015! Census 2014 0.143 (0.004) NV 0.235 (0.055) 0.519 (0.041) 0.510 (0.045)

Random
Forest

Census 2014! Census 2015 Sex 0.335 (0.007) NV NV NV NV
Census 2015! Census 2014 0.196 (0.008) NV NV NV NV
Census 2014! Census 2015 Race 0.237 (0.010) NV NV 0.385 (0.066) 0.312 (0.076)
Census 2015! Census 2014 0.213 (0.015) NV NV NV NV

SVM

Census 2014! Census 2015 Sex 0.639 (0.018) 0.590 (0.092) 0.422 (0.053) 0.538 (0.067) 0.526 (0.071)
Census 2015! Census 2014 0.568 (0.017) 0.497 (0.068) 0.332 (0.086) 0.679 (0.036) 0.636 (0.051)
Census 2014! Census 2015 Race 0.260 (0.007) 0.448 (0.044) 0.278 (0.086) 0.414 (0.052) 0.346 (0.060)
Census 2015! Census 2014 0.204 (0.003) NV NV NV NV

Discriminant
Analysis

Census 2014! Census 2015 Sex 0.714 (0.006) 0.983 (0.004) 0.971 (0.003) 0.989 (0.000) 0.988 (0.000)
Census 2015! Census 2014 0.760 (0.007) 0.975 (0.005) 0.959 (0.004) 0.987 (0.001) 0.987 (0.001)
Census 2014! Census 2015 Race 0.130 (0.002) 0.513 (0.055) 0.613 (0.053) 0.583 (0.024) 0.585 (0.027)
Census 2015! Census 2014 0.105 (0.003) 0.262 (0.079) 0.306 (0.044) 0.368 (0.032) 0.376 (0.032)

data distributions that degrade the performance of our predictive
models. To do so, we focus on several Census dataset released
in 2014, 2015, and 2018. This choice was motivated by the need
to understand how the data may re�ect social and demographic
shifts over these years and how it can impact the predictability
of fairness models based on a hyperparameter setting. We utilize
three releases of the Census dataset (2014, 2015, and 2018) and two
protected attributes (Race and Sex) to analyze di�erent temporal
shifts. Analyzing these scenarios aims to give insights into the
robustness of fairness models facing distribution changes in the
test data. To do so, we learn a fairness model on one distinct release
of Census and then evaluate the performance of this model by
testing it on another distinct release.

Evaluating the robustness of fairness models in one year
shift. In this experiment, we consider two consequent years (2014,
and 2015) of Census dataset releases to evaluate the robustness
of fairness models in minimal distribution shifts. Table 5 shows
the results of this analysis. The structure of this table is similar
to Table 2 except for the column 30C0B4C that shows the scenario
of temporal distribution in the dataset. For example, Census 2014
! Census 2015 in column 30C0B4C shows that we �rst train the
fairness model of di�erent hyperparameter con�gurations on the

2014 release of the Census dataset then the 2015 release is used as
the prediction dataset to evaluate the performance of the fairness
model. The results in Table 5 show that the Tree Regressor followed
by XGBoost outperforms other algorithms. However, we observed
a signi�cant reduction in cases with '2 greater than 0.95 (only 4 out
of 20 cases while in 40% (8 out of 20 cases) the prediction models
failed to achieve positive '2 scores when training and testing data
distributions di�er.

The results also show that when sex is the protected attribute,
the Tree Regressor and XGBoost fairness models trained on the
fairness traces of Logistic Regression and Discriminant Analysis
robust against a one-year distribution shift in data achieving a
minimum performance of 97% in those cases.

Evaluating the robustness of fairness models for a longer
temporal shifts. To assess the robustness of our fairness mod-
els under conditions of increased temporal distribution shift, our
experiment extends the time period from one year to three and
four years. We utilize three versions of the Census datasets from
2014, 2015, and 2018, focusing on sex and race as the protected
attributes. The goal of this experiment is to predict the fairness of
the 2018 Census dataset using fairness models that were trained
on earlier versions, speci�cally the 2014 and 2015 Census datasets.
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Table 6: Three to four years data shift: training with census income 2014/15 and testing with 2018.

Algorithm Dataset Prot. Baseline DNN SVM TR XGB
'2 '2 '2 '2

Decision
Tree

Census 2014! Census 2018 Sex 0.891 (0.032) NV NV NV NV
Census 2015! Census 2018 0.694 (0.004) NV NV NV NV
Census 2014! Census 2018 Race 0.370 (0.015) NV NV NV NV
Census 2015! Census 2018 0.348 (0.014) NV NV NV NV

Logistic
Regression

Census 2014! Census 2018 Sex 0.740 (0.019) 0.933 (0.031) 0.810 (0.027) 0.961 (0.010) 0.958 (0.011)
Census 2015! Census 2018 0.691 (0.017) 0.913 (0.027) 0.768 (0.036) 0.954 (0.011) 0.952 (0.012)
Census 2014! Census 2018 Race 0.305 (0.013) NV NV NV NV
Census 2015! Census 2018 0.292 (0.012) NV NV NV NV

Random
Forest

Census 2014! Census 2018 Sex 0.319 (0.018) NV NV NV NV
Census 2015! Census 2018 0.188 (0.006) 0.004 (0.181) NV 0.648 (0.094) 0.658 (0.061)
Census 2014! Census 2018 Race 0.211 (0.013) NV NV NV NV
Census 2015! Census 2018 0.303 (0.014) NV NV NV NV

SVM

Census 2014! Census 2018 Sex 0.919 (0.018) NV NV NV NV
Census 2015! Census 2018 0.817 (0.010) NV NV 0.069 (0.042) 0.103 (0.040)
Census 2014! Census 2018 Race 0.658 (0.013) 0.011 (0.052) NV 0.026 (0.031) 0.108 (0.039)
Census 2015! Census 2018 0.651 (0.014) 0.085 (0.053) 0.076 (0.028) 0.024 (0.050) NV

Discriminant
Analysis

Census 2014! Census 2018 Sex 0.713 (0.007) 0.986 (0.003) 0.968 (0.008) 0.990 (0.001) 0.990 (0.001)
Census 2015! Census 2018 0.743 (0.008) 0.970 (0.008) 0.960 (0.009) 0.985 (0.002) 0.985 (0.002)
Census 2014! Census 2018 Race 0.247 (0.005) NV NV NV NV
Census 2015! Census 2018 0.265 (0.006) NV NV NV NV

This approach allows us to evaluate how robust our models are
against changes over time and maintain their accuracy in predicting
fairness in di�erent temporal contexts. Table 6 shows the results
of these experiments, and the structure of the table is similar to
Table 5. The results suggest that increasing the time interval of
the distribution shift further increases the number of cases that
failed to achieve positive '2 scores with 60%(12 out of 20 cases)
compared to 40% in one-year shifts. However, Tree Regressor and
XGBoost fairness models showed strong robustness in Logistic Re-
gression and Discriminant Analysis cases when sex is the protected
attribute. Overall, Tree Regressor and XGBoost achieved the best
performance in 4 out of 20 cases (20%) with the '2 scores higher
than 0.95. When comparing the results in Table 5 to the results
of one-year shift in Table 5 over the Tree Regressor, Logistic Re-
gression benchmark with Census 2014 ! Census 2015 achieved
'2 of 0.979 while it achieved '2 of 0.961 with only 0.018 loss in its
performance under a four year shift (Census 2014 ! Census 2018).

Answer RQ2: Our results show that temporal distribution shifts
can reduce the performance of our prediction models. We ob-
served that not all models are robust to shifts. However, in 20%
of the cases, the HP prediction models remain robust against the
temporal shift even on datasets with four years of gaps between
training and test data. Speci�cally, we found that the HPs of
Logistic Regression and Discriminant Analysis are more robust
to the distribution shift when the protected attribute is sex.

6 DISCUSSION
Limitation. The input dataset is arguably the main source of dis-
crimination in data-driven software, however, it is known that the
training process may amplify or suppress the present discrimina-
tory instances [46]. In this work, we focus on the training process
and study relationships between ML hyperparameters and fairness.
Our approach can serve as a mitigation strategy to avoid biased
hyperparameter con�gurations and pick promising ones for full
training. However, our approach alone cannot eliminate all possible
fairness bugs. Our approach also requires a diverse set of hyper-
parameters and their fairness characteristics using an automated
�ne-tuning algorithm. We rely on P�������ML [40] to generate
such traces, but P�������ML relies on heuristics to generate a di-
verse set of con�gurations and is not guaranteed to always �nd
interesting hyperparameters in a given time limit (4 hours in this
work). In addition, we only use two group fairness metrics (�$⇡

and ⇢$⇡). These metrics do not consider the distribution of di�er-
ent groups and may deem software fair, while it might still harm a
vulnerable community or minority group. In general, coming up
with a suitable fairness de�nition is an open challenge.

Threat to Validity. To address the internal validity and ensure our
�nding does not lead to an invalid conclusion, we follow established
guidelines [2] and repeat every experiment 10 times and report both
the average and standard deviations. We deem a result signi�cant
if it does not overlap with any other methods within 2 standard
deviations that imply 95% con�dence in the results. However, this
requirement might be conservative, instead, non-parametric meth-
ods and e�ect sizes can be used to alleviate the conservativeness of
our comparisons [7].

To ensure that our results are generalizable and address exter-
nal validity, we perform our experiments on the hyperparameter
space of �ve popular ML training algorithm from scikit-learn li-
brary over six fairness-sensitive applications that have been widely
used in the fairness literature. To learn the prediction model of
ML hyperparameters for fairness, we used four algorithms from
TensorFlow, XGBoost, and scikit-learn library. However, it is an
open problem whether these libraries, algorithms, and applications
are su�ciently representative and expressive to cover challenging
fairness scenarios and train complex models.

Usage Vision. We envision software and AI engineers using our
framework in the training process of data-driven (ML) software
development. Speci�cally, in the cross-validation stage, the users
can query the ML prediction models with a hyperparameter con-
�guration and receive its prediction of fairness. This avoids the
need for training the entire model with a biased hyperparameter,
improves the e�ciency of the training process, and saves compu-
tational resources. We left further study on the amounts of cost
reductions as an interesting future work.

7 CONCLUSION
The ML hyperparameters play an in�uential and challenging role
in the accuracy, robustness, and fairness of data-driven software.
To understand and optimize tuning hyperparameters for fairness,
we propose a data-driven framework based on regression methods
to predict the fairness of ML hyperparameters. We showed that this
task is feasible for a �xed dataset with a speci�c protected attribute;
hence, it helps the developers save computational resources during
the training by avoiding biased hyperparameters. We showed that
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generalizations under (temporal) distribution shift are feasible, but
such generalizations are limited to certain classes of ML algorithms,
training datasets, and protected attributes.

There are multiple exciting future directions. One direction is
to leverage multi-objective algorithms to learn the frontiers of
accuracy vs. fairness in the ML hyperparameter space. Similarly,
we can leverage such functions to learn the prediction models for
multiple fairness metrics such as EOD, AOD, and statistical parity.
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