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Abstract

Drought	stress	is	a	key	limitation	for	plant	growth	and	colonization	of	arid	habitats.	We	
study	the	evolution	of	gene	expression	response	to	drought	stress	in	a	wild	tomato,	
Solanum chilense,	naturally	occurring	in	dry	habitats	in	South	America.	We	conduct	a	
transcriptome analysis under standard and drought experimental conditions to iden-
tify	drought-	responsive	gene	networks	and	estimate	the	age	of	the	involved	genes.	
We	 identify	 two	main	 regulatory	 networks	 corresponding	 to	 two	 typical	 drought-	
responsive	strategies:	cell	cycle	and	fundamental	metabolic	processes.	The	metabolic	
network	exhibits	a	more	recent	evolutionary	origin	and	a	more	variable	transcriptome	
response	than	the	cell	cycle	network	(with	ancestral	origin	and	higher	conservation	
of	the	transcriptional	response).	We	also	integrate	population	genomics	analyses	to	
reveal	positive	selection	signals	acting	at	the	genes	of	both	networks,	revealing	that	
genes exhibiting selective sweeps of older age also exhibit greater connectivity in the 

networks.	These	findings	suggest	that	adaptive	changes	first	occur	at	core	genes	of	
drought	response	networks,	driving	significant	network	re-	wiring,	which	likely	under-
pins	species	divergence	and	further	spread	into	drier	habitats.	Combining	transcrip-
tomics	and	population	genomics	approaches,	we	decipher	the	timing	of	gene	network	
evolution for drought stress response in arid habitats.

K E Y W O R D S

Atacama	desert,	drought	adaptation,	gene	network	evolution,	Selective	sweep,	transcriptome	
analysis,	wild	tomato
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1  |  INTRODUC TION

Drought stress is a major environmental constraint that negatively 

influences	 plant	 development	 and	 prevents	 plant	 growth,	 result-
ing	in	decreased	yield	in	agriculture	and	limiting	the	colonization	of	
arid	or	hyper-	arid	habitats	(Ciais	et	al.,	2005;	Juenger,	2013).	Plants	
respond to water insufficiency through multiple strategies under-
pinned	by	various	physiological	and	developmental	processes,	such	
as	storage	of	 internal	water	to	avoid	tissue	damage,	 increasing	the	
metabolic	activity	of	some	tissues	 (Rodrigues	et	al.,	2019)	and	tol-
erance	to	sustain	growth	processes	(Basu	et	al.,	2016).	Drought	re-
sponse	involves	numerous	quantitative	and	polygenic	traits	encoded	
in	(complex)	gene	regulatory	networks.	To	improve	crops	and	predict	
the evolutionary responses of plant species under the current and 

predicted	global	water	deficits,	it	is	thus	of	interest	to	pinpoint	and	
decipher	the	evolutionary	history	of	the	relevant	gene	networks	un-
derpinning	the	adaptation	of	wild	plants	to	arid	or	hyper-	arid	habi-
tats	(Gehan	et	al.,	2015).

Comparative	 transcriptomic	 analyses	 involving	 the	 inference	
of	 gene	 co-	expression	 patterns	 demonstrate	 that	 many	 gene	 co-	
expression	networks	(GCNs)	are	conserved	through	the	tree	of	life	
(Crow	et	al.,	2022;	Gerstein	et	al.,	2014;	Stuart	et	al.,	2003; Zarrineh 

et	 al.,	 2014).	 Physiological,	 structural	 and	 regulatory	 innovations	
to cope with drought stress have arisen throughout the history of 

plants,	many	of	them	even	predating	the	emergence	of	land	plants	
(Bowles	et	al.,	2021;	De	Vries	&	Archibald,	2018;	Jill	Harrison,	2017; 

Mustafin	et	al.,	2019;	Wang	et	al.,	2020).	Several	conserved	GCNs	
underlie fundamental biological processes such as protein me-
tabolism,	 cell	 cycle,	 photosynthesis	 or	 wood	 formation	 (Ficklin	 &	
Feltus,	2011;	Stuart	et	al.,	2003;	Zinkgraf	et	al.,	2020).

A	key	question	in	functional	and	evolutionary	genomics	is	thus	
to	link	GCN	long-	term	evolution	with	the	(relatively)	short-	scale	pro-
cesses of population adaptation and lineage divergence in order to 

assess	the	relative	importance	of	contingency,	exaptation	and	evo-
lution	of	novel	 genes	 (duplication	and	neofunctionalization)	 in	 the	
colonization	of	novel	habitats.	Two	main	hypotheses	are	formulated.	
First,	 highly	 conserved	 sub-	networks	 (so-	called	 hubs	 or	 kernels)	
evolve under strong purifying selection to ensure the functional-
ity	of	 the	GCNs	 (Josephs	et	al.,	2017;	Mähler	et	al.,	2017;	Masalia	
et	al.,	2017;	Papakostas	et	al.,	2014).	Thus,	genetic	variation	is	only	
found	in	(less	connected)	genes	at	the	periphery	of	the	GCNs,	these	
genes	being	the	targets	of	positive	selection	(Erwin,	2020;	Flowers	
et	al.,	2007;	Kim	et	al.,	2007;	Luisi	et	al.,	2015).	However,	this	argu-
ment	is	likely	to	apply	when	the	novel	habitats	may	not	differ	much	
from	the	original	one	(in	terms	of	climate,	soil,	etc.)	so	that	only	minor	
adjustments	 in	 the	 GCNs	 are	 enough	 to	 provide	 adaptation.	 This	
also	aligns	with	the	so-	called	developmental	systems	drift	hypoth-
esis	 (DSD;	 True	&	Haag,	2001).	DSD	predicts	 that	GCN	 re-	wiring	
would	 only	 occur	 at	 ‘flexible’	 (sub-	)modules	 as	 the	 accumulation	
of	neutral	variation	would	keep	the	network	function	intact	until	a	
new	unique	viable	function	(phenotype	or	developmental	pathway)	
appears.	Second,	despite	the	general	belief	that	genes	with	higher	
connectivity	 evolve	 at	 a	 slower	 rate,	 there	 is	 also	 evidence	 that	

changes	in	central	genes	(with	higher	connectivity)	can	be	respon-
sible	for	the	short-	term	adaptive	response	(Jovelin	&	Phillips,	2009; 

Luisi	et	al.,	2015)	and	promote	re-	wiring	of	the	GCN	(Koubkova-	Yu	
et	al.,	2018).	Thus,	highly	connected	genes	may	be	targets	of	positive	
selection	 during	 environmental	 change,	 even	 though	 these	 genes	
experience	 purifying	 selection	 in	 stable	 environments	 (Hämälä	
et	al.,	2020).	In	this	latter	case,	we	expect	a	correlation	between	the	
age of the positive selection events and the connectivity of a gene 

in	a	GCN	network,	but	the	absence	of	such	a	correlation	under	the	
first hypothesis.

To	test	these	two	hypotheses,	we	quantify	the	selective	forces	
(positive	vs.	purifying	selection)	acting	on	different	components	of	
the	networks	(hub	vs.	peripheral	genes)	across	wild	tomato	species	
adapted	 to	 contrasting	 drought	 conditions.	Wild	 tomatoes,	 and	S. 

chilense	 in	particular,	are	good	models	of	interest	as	their	diversifi-
cation correlates with exploring wide environmental gradients along 

the	 Pacific	 coast	 of	 South	 America	 (Haak	 et	 al.,	 2014;	 Nakazato	
et	al.,	2010).	Wild	tomato	species	and	relatives	such	as	S. chilense,	
S. pennellii and S. sitiens	are	well-	established	systems	to	study	tol-
erance	 strategies	 to	 survive	 in	 extreme	 environments	 (Barrera-	
Ayala	et	al.,	2023;	Blanchard-	Gros	et	al.,	2021;	Bolger	et	al.,	2014; 

Kashyap,	 Prasanna,	 et	 al.,	 2020;	 Martínez	 et	 al.,	 2014;	 Molitor	
et	al.,	2024;	Tapia	et	al.,	2016).	Since	the	divergence	(with	possible	
recurrent	gene	flow)	from	its	sister	species	S. peruvianum	(found	at	
low	altitudes	in	Peru)	approximately	500	Kya	(Städler	et	al.,	2008),	
S. chilense	 has	 colonized	 and	 adapted	 to	 very-	dry-	to-	arid	 environ-
ments	of	Southern	Peru	and	Northern	Chile	 (up	 to	 the	margins	of	
the	Atacama	desert)	(Böndel	et	al.,	2015).	Populations	of	S. chilense 

are	challenged	by	prolonged	drought	periods	 (including	 in	 the	pu-
tative	 region	of	species	origin,	near	 to	population	LA1963),	with	a	
gradient of the most severe drought conditions increasing towards 

occurring	in	the	southern	part	of	the	species	range	(Wei	et	al.,	2023).	
In	a	previous	study,	we	assayed	for	footprints	of	positive	selection	
in	30	fully	sequenced	genomes	of	S. chilense to identify candidate 

genes	underpinning	adaptation	across	the	species	range.	We	found	
genes with putative functions related to root hair development and 

cell	 homeostasis	 likely	 involved	 in	 drought	 stress	 tolerance	 (Wei	
et	al.,	2023).	Although	previous	empirical	studies	have	focused	on	a	
few	abiotic	stress	response	genes	(Böndel	et	al.,	2015,	2018;	Fischer	
et	al.,	2011,	2013;	Mboup	et	al.,	2012;	Nosenko	et	al.,	2016),	we	still	
lack	a	comprehensive	understanding	of	the	genomic	and	gene	path-
ways	(networks)	underpinning	adaptation	to	drought	in	S. chilense.

Therefore,	 we	 identify	 drought	 stress-	responsive	 gene	 co-	
expression	 networks	 by	 combining	multiple	 analyses	 of	 transcrip-
tome data of S. chilense	and	focusing	on	two	networks	 involved	 in	
cell	cycle	and	metabolic	processes.	Furthermore,	we	infer	the	evo-
lutionary	 processes	 at	 these	 two	 networks	 across	 three	 different	
evolutionary	 levels	 (tree	of	 life/plants,	species	and	populations)	by	
calculating	 transcriptome	 indices,	 which	 indicate	 the	 evolutionary	
age	and	sequence	divergence	of	the	genes	 involved	in	drought	re-
sponse.	We	then	analyse	the	timing	of	the	emergence	of	adaptive	
variation	 in	 the	 identified	 drought-	responsive	 genes	 of	 these	 net-
works	and	the	correlation	to	gene	connectivity.
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2  |  MATERIAL S AND METHODS

2.1  |  Plant material and drought stress experiment

Seeds	 of	 Solanum chilense	 accession	 no.	 LA1963	 were	 acquired	
from	 the	Tomato	Genetics	Resource	Center	 (TGRC),	University	 of	
California	 at	 Davis.	 Seeds	 were	 soaked	 in	 50%	 household	 bleach	
(2.7%	 sodium	 hypochlorite)	 for	 30 minutes	 and	 rinsed	 thoroughly	
with	water	according	to	instructions	provided	by	TGRC.	The	rinsed	
seeds	were	sown	into	pots	containing	sterilized	soil	with	perlite	and	
sand	 (1:2)	and	grown	under	 standard	controlled	conditions,	 show-
ing	 optimal	 growth	 in	 previous	 studies	 (22C	 day/20C	 night,	 16 h	
light/8 h	dark	photoperiod;	Böndel,	2014;	Gao	et	al.,	2015;	Kashyap,	
et al. 2020a;	Blanchard-	Gros	et	al.,	2021;	Kahlon	et	al.,	2023).	On	the	
24th	day	after	sowing,	88	plants	were	randomly	distributed	into	two	
groups and watered with a sufficient volume to reach the bottom 

of	containers	(30–40 mL).	The	first	group	of	plants	was	maintained	
under normal watering conditions and watered with a sufficient vol-
ume	of	water	(50–55 mL)	on	4,	7	and	11 days	after	the	start	of	the	
experiment.	A	moderate	water	 stress	 regime	was	 imposed	on	 the	
second	 group	 of	 plants	 by	 stopping	 irrigation	 for	 7 days,	 followed	
by	 re-	watering	with	 25 mL	 of	 water.	 On	 day	 12,	 newly	 expanded	
leaf	(1–1.5 cm	length)	and	shoot	apices	with	immediately	surround-
ing	leaf	primordia	(shoot	apices	and	P1-	P5	leaf	primordia)	from	each	
group	were	dissected	carefully	using	razor	blades	and	immediately	
grounded	 into	 fine	 powder	 in	 liquid	 nitrogen	 for	 RNA	 extraction.	
Four	groups	of	biological	replicates	 (viz.	control_leaf,	drought_leaf,	
control_shoot	apex	and	drought_shoot	apex)	were	used	for	all	RNA-	
Seq	experiments	 from	each	 tissue	 type.	Each	 leaf	 and	 shoot	apex	
sample replicates included the pooled tissues from five and six 

plants respectively.

2.2  |  RNA extraction and cDNA library 
construction

Libraries were constructed and named as follows: leaves under con-
trol	(optimal	watering)	condition	(CL-	A	to	D),	shoot	apices	under	con-
trol	condition	(CSA-	E	to	H),	leaves	under	drought	condition	(DL-	I	to	
L)	and	shoot	apices	under	drought	condition	(DSA-	M	to	P).	Tissues	
were	lysed	using	zircon	beads	in	a	lysate-	binding	buffer	containing	
sodium	dodecyl	sulphate.	mRNA	was	isolated	from	200 μL of lysate 

per	 sample	 with	 streptavidin-	coated	 magnetic	 beads	 for	 indexed	
non-	strand-	specific	 RNA-	Seq	 library	 preparation	 according	 to	 the	
method	described	by	Kumar	et	al.	(2012):	1 μL	of	12.5 μM	of	5-	prime	
biotinylated	polyT	oligonucleotide	and	streptavidin-	coated	magnetic	
beads	 were	 used	 to	 capture	 mRNA	 and	 isolate	 captured	 mRNAs	
from	the	lysate	respectively.	An	equal	amount	of	mRNA	from	each	
experimental	 group	was	 used	 to	 construct	 16	 libraries.	 The	 rapid	
version	of	RNA-	sequencing	method	(Townsley	et	al.,	2015)	was	used	
for library construction. Each sample was barcoded using standard 

Illumina	adaptors	1–16	to	allow	up	to	16	samples	to	be	pooled	in	one	
sequencing	 lane	on	 Illumina	HiSeq4000.	The	 libraries	were	eluted	

from	the	pellet	with	10 μL	of	10 mM	Tris	(pH 8.0)	and	pooled	as	de-
scribed	 by	Kumar	 et	 al.	 (2012).	Quantification	 and	 quality	 assess-
ment	 of	 resulting	 libraries	were	 performed	 on	 Fragment	Analyzer	
(FGL_DNF-	474-	2-		 HS	 NGS	 Fragment	 1-	6000 bp	 Mthds)	 and	 se-
quenced	using	the	Illumina	HiSeq	4000	platform	to	generate	100 bp	
single-	end	 reads	 at	 the	 Vincent	 J.	 Coates	 Genomic	 Sequencing	
Facility	at	UC	Berkeley.

2.3  |  Transcriptome and genome data 
processing and mapping

For	 the	 transcriptome	 data,	 the	 adapters	 were	 removed	 from	
raw	 reads	 by	 two	 consecutive	 rounds	 using	 BBDuk	 v38.90	
(Bushnell,	2014).	Two	sets	of	parameters	were	used	in	two	rounds	
respectively:	first	round	‘ktrim = r	k = 21	mink = 11	hdist = 2	tpe	tbo	
minlength = 21	trimpolya = 4’;	second	round	‘ktrim = r	k = 19	mink = 9	
hdist = 1	 tpe	 tbo	 minlength = 21	 trimpolya = 4’.	 Then,	 low-	quality	
reads	 were	 also	 removed	 with	 BBDuk	 using	 parameters	 ‘k = 31	
hdist = 1	qtrim = lr	 trimq = 10	maq = 12	minlength = 21	maxns = 5	zi-
plevel = 5’.	The	clean	 reads	of	each	sample	were	mapped	to	 the	S. 

chilense	reference	genome	(Silva	Arias	et	al.,	2023)	using	BBMap	in	
BBTools.	 The	 SAM	 files	were	 then	 converted	 and	 sorted	 to	BAM	
files	 using	 Samtools	 v1.11	 (Wysoker	 et	 al.,	 2009).	 The	 number	 of	
reads	mapped	to	each	gene	was	counted	via	featureCounts	v2.0.1	
in	each	sample	(Liao	et	al.,	2014).	The	gene	expression	level	was	nor-
malized	using	the	transcripts	per	kilobase	million	(TPM)	method	to	
eliminate	the	differences	between	samples	(Wagner	et	al.,	2012).

The	relationships	among	transcriptome	samples	were	evaluated	
using	the	TPM	values.	The	correlation	coefficient	between	two	sam-
ples was calculated to assess repeatability between samples using 

Pearson's	test.	Principal	component	analysis	 (PCA)	was	performed	
using the prcomp()	function	in	R	(R	Core	Team,	2023)	based	on	TPM	
values.

Complementarily,	to	assess	the	generality	of	our	results,	we	also	
analysed drought and control transcriptomic samples of S. pennelliii 

(PRJEB5809;	Bolger	et	al.,	2014)	and	S. lycopersicum	(PRJNA812356;	
Yang	et	al.,	2022)	(Dataset	S1)	to	compare	to	our	transcriptomic	anal-
yses and assess the generality of our results.

2.4  |  Identification of differentially expressed 
genes and gene co- expression analysis

Differential expression analysis of groups among the different con-
ditions	 and	 tissues	 was	 performed	 using	 the	 DESeq2	 R	 package	
(Love	et	al.,	2014).	The	raw	read	counts	were	inputted	to	detect	dif-
ferentially	expressed	genes	(DEGs).	Genes	meeting	the	joint	criteria	
of p-	value ≤.001,	 absolute	 value	 of	 log2FoldChange ≥1	 and	 a	 false	
discovery	rate	(FDR)	adjusted	p ≤ .001	were	classified	as	DEGs.

To	 identify	 the	 gene	 co-	expression	 networks,	 weighted	 gene	
correlation	network	analysis	(WGCNA)	was	constructed	using	TPM	
values	to	identify	specific	modules	of	co-	expressed	genes	associated	
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with	drought	stress	(Langfelder	&	Horvath,	2008).	We	first	checked	
for genes and samples with too many missing values using the 

goodSamplesGenes()	 function	 in	 the	WGCNA	R	 package.	We	 then	
removed	the	offending	genes	 (the	 last	statement	 returns	 ‘FALSE’).	
To	 construct	 an	 approximate	 scale-	free	 network,	 a	 soft	 threshold	
power of 5 was used to calculate the adjacency matrix for a signed 

co-	expression	 network.	 Topological	 overlap	 matrix	 (TOM)	 and	
dynamic-	cut	tree	algorithm	were	used	to	extract	network	modules.	
We	used	a	minimum	module	size	of	30	genes	for	the	initial	network	
construction and merged similar modules exhibiting >75%	similarity.	
To	discover	modules	significantly	related	to	drought,	module	eigen-
genes were used to calculate correlations across samples with dif-
ferent	conditions.	The	visualization	of	networks	was	created	using	
Cytoscape	v3.8.2	(Shannon	et	al.,	2003).

2.5  |  Identification of transcript factor families and 
transcript factor- binding sites

The	protein	sequences	were	obtained	from	the	reference	genome	
and	annotation	 ‘gff’	file	with	GffRead	(Pertea	&	Pertea,	2020)	and	
were	 used	 to	 identify	 transcription	 factors	 (TF)	 families	 using	 the	
online	 tool	 PlantTFDB	 v5.0	 (Guo	 et	 al.,	 2007).	 Furthermore,	 the	
upstream	2000 bp	 sequences	of	 the	 transcription	 start	 sites	 (TSS)	
were extracted as the gene promoter from the reference genome 

to	detect	transcription	factor-	binding	sites	(TFBS).	The	TFBS	data-
set of the related species S. pennellii was also downloaded from the 

Plant	 Transcriptional	 Regulatory	 Map	 (PlantRegMap,	 http:// plant 

regmap.	gao-		lab.	org/	)	 as	 background	 of	 TFBS	 identification	 (Tian	
et	al.,	2020).	Then,	the	TFBS	of	S. chilense was identified using the 

FIMO	program	 in	motif-	based	sequence	analysis	 tools	MEME	Suit	
v5.3.2	 (Bailey	 et	 al.,	2015).	 The	TFBS	was	 extracted	with	p < 1e-	5	
and q < .01.

2.6  |  Gene ontology (GO) analysis

We	first	constructed	the	dataset	of	assigned	GO	terms	for	the	pro-
tein	sequences	of	all	used	genes	by	PANTHER	v16.0	(Mi	et	al.,	2013).	
Then,	the	GO	enrichment	analysis	of	drought-	responsive	genes	was	
performed	using	clusterProfiler	v3.14.2	(Yu	et	al.,	2012).	Benjamini–
Hochberg	method	was	used	to	calibrate	P	value,	and	the	significant	
GO	terms	were	selected	with	p- value below .05.

2.7  |  Construction of phylostratigraphic map

We	 performed	 phylostratigraphic	 analysis	 based	 on	 the	 following	
steps.	First,	the	phylostrata	(PS)	were	defined	according	to	the	full	
linkage	of	S. chilense	 from	the	NCBI	taxonomy	database.	The	simi-
lar	PS	were	merged	and	finally,	18	PS	were	generated.	Second,	the	
protein	sequences	were	blasted	to	a	database	of	non-	redundant	(nr)	
proteins	downloaded	from	NCBI	(https:// ftp. ncbi. nlm. nih. gov/ blast/  

db/ )	with	a	minimum	length	of	30	amino	acids	and	an	E-	value	below	
10−6	using	blastp	v2.9.0	(Camacho	et	al.,	2009).	Third,	each	gene	was	
assigned	to	 its	PS	by	the	following	criterion:	 if	no	blast	hit	or	only	
one hit of S. chilense	with	an	E-	value	below	10−6	was	identified,	we	
assigned	the	gene	to	the	youngest	PS18.	When	multiple	blast	hits	
were	 identified,	we	 computed	 the	 oldest	 common	 ancestor	 (LCA)	
for	multiple	hits	using	TaxonKit	v0.8.0	(Shen	&	Ren,	2021)	and	then	
assigned	the	LCA	to	a	specific	PS.

2.8  |  Construction of divergence map

Following	four	steps,	we	performed	divergence	stratigraphy	analy-
sis	to	construct	a	sequence	divergence	map	of	S. chilense using the 

function divergence_stratigraphy()	of	the	R	package	‘orthologr’	(Drost	
et	al.,	2015).	 (1)	The	coding	sequences	for	each	gene	of	S. chilense 

and S. pennellii	 (NCBI	assembly	SPENNV200)	were	extracted	from	
their	reference	and	annotation	files.	 (2)	We	 identified	orthologous	
gene pairs of both species by choosing the best blast hit for each 

gene using blastp.	We	only	 considered	a	gene	pair	 as	orthologous	
when	 the	best	 hit	 has	 an	E-	value	below	10−6;	 otherwise,	 it	 is	 dis-
carded.	 (3)	Codon	 alignments	 of	 the	 orthologous	 gene	 pairs	were	
performed	using	PAL2NAL	(Suyama	et	al.,	2006).	Then,	 the	Ka/Ks	
values	 of	 the	 codon	 alignments	 were	 calculated	 using	 Comeron's	
method	(Comeron,	1995).	(4)	All	genes	were	sorted	according	to	Ka/
Ks	values	into	discrete	deciles	called	divergence	stratum	(DS).

2.9  |  Estimation of transcriptome age index and 
transcriptome divergence index

The	 transcriptome	 age	 index	 (TAI)	 was	 computed	 based	 on	 phy-
lostratigraphy	 and	 expression	 profile,	 which	 assigned	 each	 gene	
to different phylogenetic ages by identification of the homologous 

sequences	 in	 other	 species	 (Domazet-	Lošo	 et	 al.,	2007).	 The	 evo-
lutionary	age	of	each	gene	was	quantified	by	combining	its	PS	and	
expression	level	to	obtain	the	weighted	evolutionary	age.	Finally,	the	
weighted	ages	of	all	genes	were	averaged	 to	yield	TAI,	which	was	
defined	as	the	mean	evolutionary	age	of	a	transcriptome	(Domazet-	
Lošo	&	Tautz,	2010).	A	lower	value	of	TAI	described	an	older	mean	
evolutionary	age,	whereas	a	higher	value	of	TAI	denoted	a	younger	
mean evolutionary age implying that younger evolutionary genes 

were preferentially expressed in the corresponding sample or condi-
tion	(Domazet-	Lošo	&	Tautz,	2010;	Piasecka	et	al.,	2013).	The	tran-
scriptome	 divergence	 index	 (TDI)	 represents	 the	 mean	 sequence	
divergence	of	a	transcriptome	quantified	by	divergence	strata	(DS)	
and	 gene	 expression	 profile	 (Quint	 et	 al.,	 2012).	 The	 genes	 were	
assigned	 to	 different	 DS	 and	 then	 weighted	 by	 their	 expression	
level	to	yield	the	TDI.	A	lower	value	of	TDI	described	a	more	con-
served	transcriptome	 (in	 terms	of	sequence	dissimilarity),	whereas	
a	higher	value	of	TDI	denoted	a	more	variable	transcriptome.	Here,	
we	 calculated	 TAI	 and	 TDI	 profiles	 in	 different	 samples	 using	 the	
PlotSignature()	function	of	the	myTAI	R	package.
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2.10  |  Population genetics analysis and  
detection of positive selection on 

drought- responsive genes

Whole-	genome	 sequence	 data	 from	 six	 populations	 of	 S. chil-

ense	 (five	individuals	each)	previously	analysed	in	Wei	et	al.	 (2023; 

BioProject	 PRJEB47577)	 were	 used	 to	 calculate	 population	 ge-
netics	 statistics	 for	 coding	 and	 promoter	 region	 sequences	 for	 all	
genes	identified	in	the	GCNs.	Single	nucleotide	variants	(SNPs)	were	
based	 on	 the	 short-	read	 alignment	 to	 the	 new	 reference	 genome	
for S. chilense	 (Silva	Arias	et	 al.,	2023)	 using	 the	 same	methods	 in	
Wei	et	al.	 (2023).	Population	genetics	statistics,	namely	nucleotide	
diversity	 (π)	 and	 Tajima's	 D,	 were	 calculated	with	 ANGSD	 v0.937	
(Korneliussen	et	al.,	2014)	over	gene	and	promoter	 regions.	These	
statistics	were	first	calculated	per	site	in	gene	and	promoter	region,	
and	then	we	used	an	R	script	(https://	gitlab.	lrz.	de/	popul	ation_	genet	
ics/s.	chile	nse-		droug	ht-		trans	criptome)	 to	 obtain	 statistics	 for	 each	
gene	and	the	corresponding	promoter	regions	 in	bins	of	100 bp.	A	
PCA	on	SNP	data	from	30	whole	genomes	was	also	performed	using	
GCTA	v1.91.4	 (Yang	 et	 al.,	2011).	 The	 genetic	 structure	 inference	
was	performed	using	ADMIXTURE	v1.3.0	(Alexander	et	al.,	2009).

The	selective	sweeps	are	identified	based	on	the	whole-	genome	
SNPs	of	 population	C_LA1963.	 The	 sweep	 regions	 under	 positive	
selection were identified using the same pipeline as in our previ-
ous	study	(Wei	et	al.,	2023).	Based	on	neutral	simulations,	the	same	
thresholds	of	5.42	and	6.84	are	used	to	identify	selective	sweeps	for	
SweeD	and	OmegaPlus	respectively.	In	addition,	the	sweep	ages	are	
also	estimated	using	McSwan	(Tournebize	et	al.,	2019)	with	the	same	
parameters	as	in	Wei	et	al.	(2023).

2.11  |  Estimation of allele age

We	implemented	genealogical	estimation	of	variant	age	 (GEVA)	to	
date	 genomic	 variants	 at	 the	 drought-	responsive	 genes	 (Albers	 &	
McVean,	2020).	We	generated	 input	for	GEVA	using	a	recombina-
tion	rate	of	3.24 × 10−9 per site per generation based on the overall 

recombination density in S. lycopersicum	[1.41 cM/Mb]	(Anderson	&	
Stack,	2002;	Nieri	et	al.,	2017)	and	within	the	possible	range	of	rates	
used	in	Wei	et	al.	(2023).	We	used	a	population	size	(Ne)	of	20,000	
and	a	mutation	rate	of	5.1 × 10−9	per	bp	(Roselius	et	al.,	2005;	Wei	
et	al.,	2023),	and	then	relied	on	the	recombination	clock	to	estimate	
the	age	of	alleles	(tMRCA).

3  |  RESULTS

3.1  |  Drought experiments and transcriptome 
analyses

Plants of S. chilense	 growing	 under	 well-	watered	 or	 moderate-	
water-	stress	 regimes	 (hereafter,	control	and	drought)	 show	clear	

morphological differences during tissue collection. Plant growth 

and	ramification	are	boosted	in	well-	watered	groups,	while	plants	
under	 drought	 are	 smaller	 and	 slow	growing.	Hence,	 on	day	12,	
newly expanded leaf and shoot apices are collected for the ex-
pression	 analysis	 of	 stress-	responsive	 genes,	 and	 four	 biological	
replicates	are	used	for	all	RNA-	Seq	experiments	from	each	tissue	
type.

We	analyse	transcriptome	data	from	16	libraries	(4	for	control_
leaf,	4	for	drought_leaf,	4	for	control_shoot	apex	and	4	for	drought_
shoot	 apex),	 each	 library	 including	 5–6	 biological	 replicates	 per	
condition	and	tissue,	and	then	aligned	to	the	reference	genome	of	
S. chilense	(Dataset	S1).	A	total	of	27,832	genes	are	identified	to	be	
expressed	in	the	16	libraries	(Dataset	S2),	of	which	1536	genes	are	
uniquely	expressed	 in	drought	 conditions	and	1767	genes	 in	 con-
trol	conditions.	A	PCA	based	on	the	gene	expression	profiles	reveals	
consistent clustering primarily associated with the experimental 

conditions	 (control	 and	 drought)	 and	 secondarily	 with	 the	 devel-
opmental	 stages	 (leaf	 and	 shoot	 apex)	 (Figure 1a).	 PC1	 accounts	
for	28.17%	of	the	expression	variability	and	separates	the	libraries	
from	the	two	experimental	conditions,	indicating	transcriptome	re-
modelling between drought and control conditions. Libraries from 

different	 developmental	 stages	 are	 separated	 along	 the	 PC2	 axis	
(accounting	for	18.24%	of	the	variance),	supporting	tissue	age	tran-
scriptome	specificity.	Consistently,	the	transcriptome	similarity	and	
hierarchical	clustering	(Figure 1b)	analyses	also	group	the	transcrip-
tomes,	mainly	according	to	water-	deficit	intensity	rather	than	tissue	
type.

3.2  |  Identification of gene networks involved in 
drought stress

We	identify	three	sets	of	differentially	expressed	genes	(DEGs)	from	
three	drought/control	comparison	groups	(full	data	set,	only	leaf	and	
only	shoot	apex	tissues)	(Figure 2a; Dataset S3;	log2FoldChange ≥1,	
FDR	p ≤ .001).	A	 total	 of	 4905	DEGs	 are	 obtained,	 of	which	2484	
DEGs	 (1235	 up-	regulated	 and	 1249	 down-	regulated	 in	 drought	
transcriptome)	 are	 shared	 across	 the	 three	 comparison	 groups	
(Figure 2b).	We	deduce	that	these	shared	DEGs	correspond	to	a	core	
functional	drought-	responsive	network.

To	 construct	 the	 gene	 co-	expression	 networks	 (GCNs),	we	 do	
not	directly	use	the	identified	DEGs	in	WGCNA	because	it	would	vi-
olate	the	assumption	of	scale-	free	topology	upon	which	this	method	
relies.	Therefore,	a	set	of	16,181	of	all	expressed	genes	 is	used	as	
input	 for	 WGCNA,	 yielding	 a	 clustering	 into	 eight	 co-	expression	
modules	 named	 after	 different	 colours	 (genes	 in	 the	 grey	module	
have	 not	 been	 clustered	 in	 any	 module).	 The	 module	 sizes	 range	
from	183	to	5364	genes	 (Figure 2c; Dataset S4).	Among	the	 iden-
tified	co-	expression	modules,	the	blue	module	(3852	genes)	shows	
a significantly positive correlation with the control condition and a 

negative	correlation	with	the	drought	condition	(Figure 2c;	Kendall's	
test,	p = 2.20e-	11).	 In	contrast,	 the	 turquoise	module	 (5364	genes)	
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is significantly positively correlated with the drought condition and 

negatively	correlated	with	the	control	condition	(Figure 2c;	Kendall's	
test,	p = 2.34e-	13).	In	addition,	the	genes	within	blue	and	turquoise	
modules	 show	higher	 connectivity	 than	other	modules	 (Figure S1; 

Kolmogorov–Smirnov	test,	p = 2.41e-	17).

Next,	 we	 check	 the	 overlap	 between	 2484	 DEGs	 and	 co-	
expression	modules	to	confirm	that	blue	and	turquoise	modules	are	
associated with drought stress in S. chilense	(Table S1).	DEGs	share	
far	more	genes	with	the	blue	and	turquoise	modules	than	other	co-	
expression	modules	 (93%	of	DEGs	 are	 found	 in	 the	 blue	 and	 tur-
quoise	 modules).	 This	 confirms	 that	 blue	 and	 turquoise	 modules	
encompass	 two	 sets	 of	 co-	expressed	 drought	 stress-	responsive	
genes.	 The	 overlapping	DEGs	 and	module	 genes	 are	 extracted	 to	
constitute	 two	 high-	confidence	 subsets,	 the	 blue	 and	 turquoise	
modules,	comprising	1223	and	1079	genes	respectively.

3.3 | Regulatory functions in the identified GCNs are 
confirmed by predicted TF and TFBS interactions

To	independently	support	regulatory	relationships	among	genes	iden-
tified	in	the	two	co-	expression	networks,	we	identify	the	transcription	
factors	(TF)	and	transcription	factor-	binding	sites	(TFBS)	for	the	two	
high-	confidence	subsets	of	genes.	Therefore,	we	identify	the	TF	and	
their	TFBS	(Table S2)	and	hereafter	rename	these	sets	as	sub-	blue	(686	
genes)	and	sub-	turquoise	(948	genes),	respectively	 (Dataset	S5).	The	
genes	in	the	sub-	blue	and	sub-	turquoise	networks	not	only	show	spe-
cific	co-	expression	patterns	but	also	agree	on	predicted	TF	and	TFBS	
interactions.	The	co-	expression	network	reconstructed	for	the	set	of	
genes	of	the	sub-	turquoise	network	exhibits	higher	connectivity	than	
the	sub-	blue	network	(Figure S2;	Kolmogorov–Smirnov	test,	p = .002).

3.4  |  Identified GCNs in S. chilense are also found in 

S. pennellii and cultivated tomato

To	verify	the	robustness	of	these	two	drought-	responsive	networks	
across	different	tomato	species	 (and	thus	the	generality	of	our	re-
sults),	we	employ	the	same	pipeline	to	reconstruct	GCNs	from	tran-
scriptome data of S. pennellii	 (PRJEB5809;	Bolger	et	al.,	2014)	and	
S. lycopersicum	 (PRJNA812356;	 Yang	 et	 al.,	 2022)	 under	 drought	
conditions	 (Dataset	 S1).	 Those	 transcriptomes	 exhibit	 differences	
attributed	to	watering	conditions	 (Figure S3).	We	find	that	74%	of	
our	DEGs	(1837)	 in	S. chilense	overlap	with	the	combined	DEG	set	
of S. pennellii and S. lycopersicum	(Figure S4a,b).	The	GCNs	from	the	
combined transcriptome profiles of the two other tomato species 

consistently	 show	 the	 same	 two	GCNs	 (Figure 2c,	 Figure S4c),	 so	
that	576	(84%)	and	778	(82%)	genes	overlap	between	S. chilense and 

the	 other	 tomato	 species	 for	 the	 sub-	blue	 and	 sub-	turquoise	 net-
works,	respectively	(Figure S4d,e).	Furthermore,	nearly	60%	of	our	
two	drought-	responsive	network	genes	(sub-	blue	and	sub-	turquoise)	
also	 overlap	with	DEGs	 of	 drought	 transcriptomes	 of	 S. lycopersi-

cum	(Nicolas	et	al.,	2022).	These	overlap	rates	suggest	that	our	two	
drought-	responsive	networks,	albeit	found	using	transcriptomics	of	
one population of S. chilense,	are	present	and	perform	similar	func-
tions	in	different	tomato	species.	We	thus	focus,	thereafter,	on	the	
sub-	blue	(686	genes)	and	sub-	turquoise	(948	genes)	networks.

F I G U R E  1 Exploratory	analyses	of	RNA-	Seq	differential	
expression patterns in 16 libraries of Solanum chilense.	(a)	PCA	
reveals stronger clustering associated with the experimental 

conditions.	(b)	Heatmap	plot	of	sample	correlation	(Pearson's	test)	
and hierarchical clustering analysis based on Euclidean distance 

reveal	exact	drought	specificity.	The	colour	scale	indicates	
correlation coefficients from high values in red to low values in 

green.	RNAseq	libraries	abbreviations:	CL-	A	to	CL-	D,	leaves	in	
the	control	condition;	CSA-	E	to	CSA-	H,	shoot	apex	in	the	control	
condition;	DL-	I	to	DL-	L,	leave	in	drought	condition;	DSA-	M	to	
DSA-	P,	shoot	apex	in	drought	condition.

 1
3

6
5

2
9

4
x

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

1
/m

ec.1
7

5
3

6
 b

y
 U

n
iv

ersity
 O

f C
alifo

rn
ia, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

8
/1

0
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o
v

ern
ed

 b
y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



    |  7 of 17WEI et al.

3.5  |  Drought- responsive GCNs enrich for cell 
cycle and metabolic processes

We	assess	whether	the	two	identified	gene	networks	show	func-
tional	 differences.	 The	 gene	 ontology	 (GO)	 enrichment	 reveals	
that	the	sub-	blue	network	is	significantly	enriched	(p < .05)	 in	cell	
cycle	 biological	 processes,	 including	 replication	 and	modification	
of	 genetic	 information,	 ribosome	 production	 and	 assembly	 and	
cytoskeleton	 organization,	 among	 others	 (Figure 3a; Table S3).	
Conversely,	 the	 sub-	turquoise	 network	 is	 enriched	 in	 response	
to physiological and metabolic processes to water shortage and 

heat,	 including	 some	 metabolic	 processes,	 signal	 pathways	 and	
changes	of	stomata	and	cuticle,	among	other	processes	(Figure 3a; 

Table S3).	These	 functional	differences	suggest	 that	genes	 in	 the	
two	sub-	networks	are	activated	and	expressed	in	different	cellular	
compartments.	The	sub-	blue	network	genes	are	linked	to	key	com-
ponents	for	cell	division	processes,	such	as	nucleus	(including	nu-
cleolus),	chromosome,	nuclear	envelope	and	ribosome	(Figure 3b; 

Table S4).	 The	 sub-	turquoise	network	 is	 enriched	 in	 components	

related	to	cellular	processes,	such	as	metabolism,	membrane	com-
plexes	 and	 membrane	 structures	 (Figure 3b; Table S4).	 Indeed,	
modulation in the cell cycle and fundamental metabolism are two 

major	 response	 strategies	 to	 drought	 stress	 (Gupta	 et	 al.,	 2020; 

Nicolas	 et	 al.,	2022;	 Yang	 et	 al.,	2021).	We	 focus,	 thereafter,	 on	
these	 two	 sub-	networks,	 and	 therefore,	 the	 sub-	blue	 network	 is	
referred to as the cell cycle network	 and	 the	sub-	turquoise	as	 the	
metabolic network.

3.6  |  The transcriptome ages of genes in the 
metabolic GCN are younger than those in the cell 

cycle GCN

We	build	phylostratigraphic	profiles	for	all	genes	of	the	two	GCNs,	
summarizing	the	gene	emergence	in	18	stages	of	plant	evolution	
or	phylostrata	(PS):	PS1	representing	the	emergence	of	oldest	(an-
cestral)	genes	(at	the	time	of	the	first	cellular	organisms)	to	PS18	
for	 the	most	 recent	genes	 (present	only	 in	S. chilense).	The	PS18	

F I G U R E  2 Identification	of	drought-	response	networks	in	Solanum chilense.	(a)	Differentially	expressed	genes	(DEGs)	identified	from	
three	comparison	groups	from	left	to	right:	8	control	versus	8	drought	samples,	4	control	leaves	versus	4	drought	leaves	and	4	control	
shoot	apices	versus	4	drought	shoot	apices.	Red	indicates	significantly	upregulated	genes,	and	green	indicates	significantly	downregulated	
genes	between	control	and	drought	samples	using	fold	change	higher	than	2	(p ≤ .001).	(b)	Venn	diagram	representing	2484	shared	DEGs	
in	three	comparison	groups.	(c)	Correlation	between	samples'	expression	patterns	for	the	eight	co-	expression	modules.	A	vertical	dotted	
line	separates	control	and	drought	samples.	The	colour	scale	indicates	correlation	coefficients	from	positive	coefficient	in	red	to	negative	
coefficient	in	green.	No	correlation	is	indicated	in	white.

 1
3

6
5

2
9

4
x

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

1
1

1
/m

ec.1
7

5
3

6
 b

y
 U

n
iv

ersity
 O

f C
alifo

rn
ia, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [0

8
/1

0
/2

0
2

4
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n

 W
iley

 O
n

lin
e L

ib
rary

 fo
r ru

les o
f u

se; O
A

 articles are g
o
v

ern
ed

 b
y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



8 of 17  |     WEI et al.

shares	no	homologous	genes	with	any	other	 species	 in	 the	non-	
redundant	 protein	 databases	 of	 NCBI	 (Figure 4a,b; Dataset S6).	
Most	 genes	 in	 the	 two	GCNs	 (76.8%	 in	metabolic	 and	 65.5%	 in	
cell	 cycle	 network)	 are	 assigned	 to	 three	 main	 PS:	 cellular	 or-
ganisms	 (PS1),	 land	 plants	 (Embryophyta;	 PS5)	 and	 flowering	
plants	(Magnoliopsida;	PS8)	(Figure 4a).	This	implies	that	the	two	
drought-	responsive	GCNs	have	an	ancient	origin,	and	their	com-
ponents	have	remained	relatively	conserved.	While	most	drought-	
responsive	 pathways	 likely	 emerged	 during	 the	 colonization	 of	
land	 by	 plants	 (PS5),	 others	 could	 derive	 from	 exaptation	 pro-
cesses	from	GCNs	involved	in	the	core	cell	process	(PS1)	or	the	re-
productive	organ	differentiation	(PS8).	Interestingly,	the	cell	cycle	
network	 shows	 an	 older	 origin	 (43.7%	 of	 genes	 assigned	 to	 the	
PS1-	3),	while	the	metabolic	network	presents	a	larger	proportion	
of	genes	 (48.5%)	originating	 in	PS8	 (Figure 4a,b).	Under	drought	
conditions,	we	also	find	that	cell	cycle	network	genes	of	almost	all	
PS	ages	are	down-	regulated,	while	genes	of	the	metabolic	network	
are	up-	regulated	(Figure S5).

Furthermore,	we	estimate	the	age	of	cell	cycle	and	metabolic	
GCNs	using	the	transcriptome	age	index	(TAI).	A	higher	TAI	value	
implies that evolutionary younger genes are preferentially ex-
pressed	at	the	corresponding	condition/developmental	stage.	We	
observe	higher	TAI	values	in	drought	samples,	supporting	that	the	
drought-	responsive	 genes	 exhibit	 a	 younger	 transcriptome	 age	
than	 genes	 expressed	 under	 control	 conditions.	 Moreover,	 TAI	

values	of	 the	metabolic	GCNs	are	significantly	higher	than	those	
of	the	cell	cycle	(Figure 4c;	Kolmogorov–Smirnov	test,	p = 12.51e-	
7),	 supporting	 the	previous	 result	 that	 transcriptome	ages	of	 the	
genes	in	the	cell	cycle	are	older	than	that	of	the	metabolic	GCNs.	
We	do	not	find	a	significant	difference	in	TAI	values	between	con-
trol and drought samples based on 1000 randomly selected from 

non-	drought-	responsive	genes	 (Figure S6a;	Kolmogorov–Smirnov	
test,	p = .34),	while	in	cell	cycle	and	metabolic	networks,	the	mean	
evolutionary ages of the transcriptomes are significantly different 

between	drought	and	control	conditions	(Figure 4c;	Kolmogorov–
Smirnov	test,	p = .03).

The	 contributions	of	 the	different	PS	 to	 the	TAI	 profiles	 dif-
fer	 between	 the	 two	 networks	 (Figure 4d,e):	 early	 divergent	
genes	 (PS1	 to	PS7)	 show	more	constant	 transcriptome	age	 in	all	
conditions,	 and	 the	 genes	 found	 in	 PS1,	 PS5	 and	 PS8	 are	 likely	
important	 in	both	GCNs.	The	 late-	emerging	genes	 (PS8	to	PS18)	
increasingly contribute to the differential expression patterns be-
tween	control	and	drought	samples	with	age.	This	 indicates	that	
younger	 drought-	responsive	 genes	 are	 differentially	 expressed	
under	drought	stress	in	both	GCNs	(Domazet-	Lošo	&	Tautz,	2010; 

Piasecka	 et	 al.,	 2013).	 Remarkably,	 in	 contrast	 to	 the	 cell	 cycle	
network	genes	(PS9-	18,	Figure 4d,e),	the	youngest	genes	in	PS18	
present	 a	 higher	 contribution	 in	 the	metabolic	GCN,	 suggesting	
these	genes	are	likely	involved	in	S. chilense adaptation to drought 

conditions.

F I G U R E  3 Gene	ontology	(GO)	term	enrichment	in	the	cell	cycle	and	metabolic	drought	response	networks.	(a)	Top	20	terms	of	biological	
process.	(b)	Top	20	terms	of	cellular	component.
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3.7  |  Genes of the metabolic GCN show more 
recent divergence and weaker purifying selection 

than the cell cycle GCN

A	total	of	10	divergence	strata	(DS)	are	constructed	from	the	tran-
scriptome	differentiation	index	(TDI)	based	on	the	sequence	diver-
gence between S. chilense and S. pennellii	(Figure 5a,	S7;	Dataset	S6).	
The	distributions	of	the	Ka/Ks	ratio	per	gene	for	both	GCNs	indicate	
the	action	of	purifying	selection,	which	confirms	the	conservation	
of	most	drought-	responsive	genes	at	 the	 species	 level.	Consistent	
with	 the	 phylostratigraphic	 patterns	 (PS,	 see	 above),	 the	 strength	
of	purifying	selection	at	the	cell	cycle	GCN	(Ka/Ks = 0.279 ± 0.333)	
is	 higher	 than	 at	 the	 metabolic	 GCN	 (Ka/Ks = 0.329 ± 0.331)	
(Kolmogorov–Smirnov	 test,	 p = 2.34e-	11;	 Figure 5a; Table S5).	 In	
addition,	 higher	 TDI	 values	 are	 observed	 in	 the	 drought	 samples	
(Figure 5b),	 suggesting	 that	 the	 drought-	responsive	 genes	 exhibit	
a more conserved transcriptome profile under control compared 

to	drought	conditions	(Kolmogorov–Smirnov	test,	p = .004).	No	sig-
nificant difference is found between control and drought samples 

based	 on	 1000	 random	 genes	 (Kolmogorov–Smirnov	 test,	 p = .17;	
Figure S6b).	This	result	supports	that	different	selection	pressures	

act	on	two	GCNs	across	conditions.	In	accordance	with	the	TAI	re-
sults,	the	metabolic	GCN	appears	to	exhibit	a	higher	transcriptome	
divergence	than	the	cell	cycle	GCN	(Figure 5b;	Kolmogorov–Smirnov	
test,	p = 2.25e-	7).	Moreover,	the	low	TDI	in	the	cell	cycle	GCN	and	
larger	TDI	differences	between	drought	and	control	transcriptomes	
also	suggest	that	cell	cycle	regulation	is	likely	an	ancestral	strategy	
of	stress	response	(pre-	speciation	of	S. chilense).	The	transcriptome	
of	the	cell	cycle	GCN	may	have	been	evolving	and	changing	in	older	
times	to	reach	a	conserved	structure	in	recent	times,	while	the	meta-
bolic	GCN	may	appear	to	have	experienced	changes	and	re-	wiring	in	
recent times.

The	contributions	of	the	low-	divergence	DS	classes	(low	Ka/Ks	
in	DS1	to	DS5)	in	the	cell	cycle	GCN	(~ 50%	of	the	genes)	are	larger	
than	 in	 the	metabolic	GCN	 (DS1	 to	DS5	about	30%),	 especially	 in	
DS1	(lowest	Ka/Ks	ratio;	Figure 5c,d).	This	 indicates	that	purifying	
selection	 is	 pervasive	 in	 genes	 of	 the	 cell	 cycle	GCN.	 In	 contrast,	
the	metabolic	GCN	genes	show	about	70%	contributions	in	high	DS	
(higher	Ka/Ks	ratio	in	DS6	to	DS10),	especially	in	DS10	(highest	Ka/
Ks	ratio),	 indicating	that	genes	in	the	metabolic	GCN	evolve	under	
weaker	 purifying	 selection	 and/or	 recent	 evolutionary	 changes	
occurred.

F I G U R E  4 Transcriptome	age	index	(TAI)	profiles	of	cell	cycle	and	metabolic	networks.	(a)	Phylostratigraphic	map	of	two	networks	and	
phylogeny used in the search for the evolutionary origin of Solanum chilense	genes.	Numbers	in	parentheses	denote	the	number	of	genes	
assigned	to	each	phylostratum	(PS)	in	cell	cycle	and	metabolic	network	respectively.	(b)	Gene	ratio	in	each	PS	for	two	networks.	(c)	TAI	
profiles	of	two	networks	in	control	samples	(grey	background)	and	drought	samples	(white	background).	(d)	TAI	contributions	split	according	
to	different	PS	in	the	cell	cycle	network.	A	vertical	dotted	line	separates	control	and	drought	samples.	(e)	TAI	contributions	split	according	to	
different	PS	in	the	metabolic	network.
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3.8  |  Comparative analysis reveals stronger 
positive selection signals in metabolic GCN genes 

compared to cell cycle GCN

We	also	study	the	selective	forces	acting	on	the	identified	drought-	
responsive	GCNs	at	the	population	level.	We	first	investigate	the	
effects	of	these	drought-	responsive	genes	on	population	structure	
using	 whole-	genome	 sequences	 of	 six	 S. chilense populations 

(three	 central	 populations:	 C_LA1963,	 C_LA3111,	 C_LA2931;	
two	south	coast	populations:	SC_LA2932,	SC_LA4107;	one	south	
highland	 population:	 SH_LA4330;	 five	 plants	 each)	 analysed	 in	
Wei	et	al.	(2023).	Here,	we	aligned	to	the	reference	genome	of	S. 

chilense,	and	we	identified	45,208,263	high-	quality	SNPs,	of	which	
111,606	SNPs	are	found	in	genes	of	the	cell	cycle	GCN	and	167,334	
SNPs	 in	 genes	 of	 the	 metabolic	 GCN.	 We	 confirmed	 that	 the	
overall	population	structure	between	the	whole-	genome	data	and	
drought-	responsive	genes	follows	the	results	 in	Wei	et	al.	 (2023)	
(Figure S8a,c).	However,	the	structure	exhibited	by	drought	genes	
shows	 (1)	 stronger	 differentiation	 among	 populations	 for	 the	
central	 region	 and	 SH_LA4330	 and	 (2)	 weaker	 differentiation	
between	the	two	south	coastal	populations	(SC_LA2932	and	SC_
LA4107)	(Figure S8b,d).	Moreover,	the	two	SC	populations	showed	
clearer structure and a higher proportion of variance elucidated in 

PCA	conducted	with	whole-	genome	SNPs	aligned	to	the	S. chilense 

reference	 (Figure S8a),	 contrasting	with	 findings	 from	 alignment	
to the S. pennellii	 reference	 (see	 Figure 1c	 in	Wei	 et	 al.,	 2023).	
This	discrepancy	likely	stems	from	the	enhanced	precision	in	read	
mapping	 and	 SNP	 calling	 between	 populations	 when	 employing	
the S. chilense reference genome.

Focusing	on	the	genetic	diversity	of	population	C_LA1963,	we	
find	that	the	mean	nucleotide	diversity	(π)	per	gene	does	not	differ	
between	the	two	GCNs	(Figure S9a; Table S5;	Kolmogorov–Smirnov	
test,	p = .15)	and	the	π	values	of	the	promoter	regions	(2 kb	upstream	
of	the	transcription	initiation	site)	are	significantly	higher	than	those	
of	 the	 coding	 regions	 (Figure S9a; Table S5;	 Kolmogorov–Smirnov	
test,	p = .03)	for	both	GCNs.	This	result	suggests	that	the	selective	
constraints	 in	promoter	regions	may	be	more	relaxed,	which	could	
partly	 explain	 why	 certain	 transcription	 factors	 (TF)	 can	 bind	 to	
multiple	 genes	 in	 the	GCNs	 (Table S2).	 TFs	 are	 indeed	 conserved	
at	the	coding	sequence	level,	especially	at	the	functional	domains.	
Still,	a	higher	amount	of	polymorphism	of	TF	binding	sites	in	the	pro-
moter	can	indicate	complex	and	diverse	regulation,	for	example,	in	
response	to	stressful	conditions	(Sato	et	al.,	2016;	Spivakov,	2014).	
Also,	considering	that	the	affinity	of	the	TFs	for	promotors	is	associ-
ated	with	smaller	regions	(boxes),	we	perform	an	additional	analysis	
of	the	nucleotide	diversity	by	bins	(100 bp),	which	shows	no	differ-
ence	between	 the	 two	GCNs	 (Figure S9a; Table S5).	Furthermore,	
the	genes	for	the	metabolic	GCN	show	lower	Tajima's	D	values	than	

F I G U R E  5 Transcriptome	divergence	
index	(TDI)	profiles	of	cell	cycle	and	
metabolic	networks.	(a)	Distribution	of	
Ka/Ks	ratio	of	genes	in	two	networks	
respectively.	(b)	TDI	profiles	of	two	
networks	in	control	samples	(grey	
background)	and	drought	samples	(white	
background).	(c)	TDI	contributions	split	
according	to	different	DS	in	cell	cycle	
network.	A	vertical	dotted	line	separates	
control	and	drought	samples.	(d)	TDI	
contributions split according to different 

DS	in	the	metabolic	network.
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those	 of	 the	 cell	 cycle	 GCN	 (Figure S9b; Table S5;	 Kolmogorov–
Smirnov	test,	p = .04),	suggesting	possible	recent	positive	selection	
pressure	in	the	metabolic	GCN.

We	further	find	significant	but	opposite	correlations	between	π 

or	Tajima's	D	and	the	contributions	of	the	different	DS	for	the	two	
GCNs	 (Figure S10; Table S6).	The	cell	 cycle	GCN	shows	a	positive	
correlation	of	the	different	DS	with	π	and	Tajima's	D	(Figures S10a,c),	
indicating	that	DS	with	high	contribution	(see	DS1	in	Figure 5c)	show	
high	nucleotide	diversity.	 In	contrast,	 a	negative	correlation	 is	ob-
served	between	the	contribution	of	each	DS	and	π	or	Tajima's	D	in	
the	metabolic	network	(Figures S10b,d).	Hence,	DS	with	high	contri-
bution	(see	DS10	in	Figure 5d)	shows	low	nucleotide	diversity	and	
low	Tajima's	D	in	the	metabolic	network.	So,	it	appears	likely	that	the	
metabolic	genes	may	be	under	positive	selection,	underpinning	the	
recent evolution of the drought response transcriptome.

3.9  |  The high correlation between the timing of 
adaptation and gene connectivity suggests strong 

network re- wiring during colonization to dry habitats

To	 investigate	 drought-	responsive	 genes	 that	 have	 potentially	 un-
dergone a shift in selection regime in S. chilense,	we	identify	candi-
date genes under positive selection and estimate the age of selective 

sweep	using	the	whole-	genome	SNPs	of	the	population	C_LA1963	
and the S. chilense	 reference	 genome	 (see	Methods).	 In	 total,	 284	
candidate	 genes	 from	 492	 selective	 sweep	 regions	 are	 obtained	
using	the	same	pipeline	previously	used	(Wei	et	al.,	2023).	The	num-
ber of candidate genes is more than three times that of the previous 

studies	(86	sweep	genes)	based	on	the	S. pennellii	reference	genome,	
and	these	selective	sweeps	cover	79%	of	the	putatively	selected	re-
gions	in	C_LA1963	previously	obtained	in	Wei	et	al.	(2023).	We	find	
17	and	31	drought-	responsive	genes	in	the	cell	cycle	and	metabolic	
networks,	respectively,	in	the	list	of	candidate	genes	under	positive	
selection	(Dataset	S7).

To	 address	 the	 role	 that	 (putatively)	 positively	 selected	 genes	
may	play	within	the	drought-	responsive	networks,	we	compare	the	
connectivity	of	these	genes	in	the	two	GCNs.	In	the	metabolic	GCN,	
the	 connectivity	 of	 positively	 selected	 genes	 (mean	 connectivity	
0.50 ± 0.11)	 is	 significantly	 higher	 than	 other	 drought-	responsive	
genes	 (mean	 connectivity	 0.43 ± 0.13)	 (Figure S11a;	 Kolmogorov–
Smirnov	 test,	p = .028),	but	no	such	difference	 is	observed	 for	 the	
cell	cycle	network	(Figure S11a;	Kolmogorov–Smirnov	test,	p = .58).	
The	connectivity	of	positively	selected	genes	of	the	metabolic	net-
work	(0.50 ± 0.11)	is	much	higher	than	those	from	the	cell	cycle	net-
work	(0.43 ± 0.083)	(Figure 6a;	Kolmogorov–Smirnov	test,	p = .0028).	
These	results	suggest	that	highly	connected	(likely	more	pleiotropic)	
genes	in	the	metabolic	GCN	may	have	facilitated	the	species	coloni-
zation	into	dry	habitats	(Hämälä	et	al.,	2020)	and	that	the	two	net-
works	underwent	different	evolutionary	selective	pressures	during	
the species divergence of S. chilense.

Finally,	we	compare	the	age	of	the	selective	sweep	at	the	candi-
date	genes	of	the	two	GCNs.	We	find	that	sweep	ages	at	the	cell	cycle	

genes	(34.74 ± 13.11	kya)	are	significantly	younger	than	at	sweeps	in	
the	metabolic	network	(39.10 ± 12.61	kya;	Figure 6b;	Kolmogorov–
Smirnov	test,	p = .016).	This	supports	drought-	responsive	GCNs	as	an	
important	mechanism	underlying	the	recent	local	adaptation	or	(re)
colonization	(Raduski	&	Igić,	2021;	Wei	et	al.,	2023).	Interestingly,	we	
find a significant positive correlation between the age of the sweep 

and	gene	connectivity	for	both	GCNs	(Figure 6c–e).	In	other	words,	
selective	sweeps	appear	first	at	more	connected	genes	and,	subse-
quently,	at	less	connected	genes,	during	the	history	of	colonization/
adaptation	of	arid	habitats.	To	our	knowledge,	this	is	the	first	report	
of a correlation between the age of a selective sweep and the gene 

connectivity	in	a	network.	We	support	this	conclusion	by	revealing	
a	 positive	 correlation	 between	 the	 tMRCA	 of	 drought-	responsive	
genes	 and	 gene	 connectivity	 (Pearson's	 cor = .72,	 p = 4.28e-	6).	 In	
contrast,	 this	 correlation	 is	 low	 for	drought-	responsive	genes	out-
side	sweep	regions	(Pearson's	cor = .32,	p = .14).	Our	results	support	
the	hypothesis	of	polygenic	adaptation	in	GCNs	where	the	positive	
selection	acts	first	on	core	genes	(with	high	connectivity	and	more	
pleiotropic	effects)	of	networks	and	subsequently	on	the	peripheral	
genes	(less	connectivity	and	less	pleiotropic	effects).

4  |  DISCUSSION

This	 study	 identifies	 two	 drought-	responsive	 GCNs	 by	 analysing	
gene expression profiles of plants growing under control and drought 

conditions.	Two	GCNs	involved	in	cell	cycle	and	metabolic	biological	
processes	are	detected,	and	their	structural	relevance	is	supported	
by	 TF/TFBS	 predictions.	 These	 networks	 represent	 two	 different	
strategies	 for	drought	 response	 (Danilevskaya	et	al.,	2019;	Farooq	
et	al.,	2009).	We	then	demonstrate	that	the	cell	cycle	network	is	evo-
lutionary	 older,	 and	more	 conserved	 than	 the	metabolic	 network.	
Despite	 the	 ancient	 history	 of	 these	 two	GCNs,	we	 further	 show	
that	both	GCNs	contribute	to	different	extents	to	contemporary	ad-
aptation	processes	 to	arid	habitats.	The	 joint	 analyses	of	genomic	
and	transcriptomic	data	indicate	that	(1)	at	the	transcriptome	level,	
metabolic	GCNs	present	higher	evolvability,	especially	with	younger	
selection	events	linked	to	response	to	drought	environment,	(2)	cell	
cycle	GCN	is	less	evolvable	and	(3)	both	networks	still	present	sig-
nals of evolution under positive selection in core elements of the 

GCN,	while	peripheral	genes	of	the	network	can	be	involved	in	ad-
aptation	at	later	(more	recent)	stages	of	the	colonization	processes.

4.1  |  Drought tolerance is mediated by the 
regulation of cell proliferation and metabolism

When	roughly	defining	organ	development	into	cell	proliferation	and	
differentiation,	water	deficit	 is	a	 limiting	factor	for	both	processes	
(Alves	&	Setter,	2004;	Verelst	et	al.,	2013).	Drought	stress	reduces	
the cell cycle's activity and thus slows plants' growth and develop-
ment.	The	down-	regulated	genes	we	find	in	the	cell	cycle	network	
likely	indicate	that	the	expression	of	genes	related	to	the	cell	cycle	
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is suppressed by drought stress to possibly restrict cell division in 

S. chilense.	The	reduction	in	cell	number	due	to	mild	drought	stress	
is also found in A. thaliana	 (Skirycz	&	 Inzé,	2010).	This	means	that	
the cell cycle response to drought may directly and indirectly impact 

the	general	physiology	of	plants.	Conversely,	the	changes	in	funda-
mental	metabolic	 activity	may	 be	 a	 faster	 and	 a	 flexible	 drought-	
responsive	strategy	(Harb	et	al.,	2010).	Plant	water	shortage	is	first	
reflected	in	changes	in	metabolic	processes,	such	as	accelerating	the	
catabolism	of	macromolecules	to	regulate	the	penetration	of	tissues,	
maintaining physiological water balance or slowing down metabo-
lism	to	reduce	energy	and	water	consumption	 (Gupta	et	al.,	2020; 

Reddy	et	al.,	2004).	In	addition,	several	signalling	pathways	related	
to	the	metabolic	gene	network	have	also	been	demonstrated	to	be	
involved	in	the	response	to	drought	stress.	For	example,	the	abscisic	
acid	 (ABA)	 signalling	 pathway	 regulates	 the	 response	 to	 dehydra-
tion	and	optimizes	water	utilization	(Harb	et	al.,	2010;	Wilkinson	&	
Davies,	2010).	Although	these	two	GCNs	correspond	to	two	differ-
ent	drought	response	strategies,	they	are	not	 isolated	but	 interact	

with	one	another	 in	 a	 time-	dependent	manner.	Water	deprivation	
and	heat	 first	change	 the	metabolic	processes,	 leading	 to	stomata	
closure,	which	leads	to	the	cell	cycle	network	being	affected	under	
prolonged	water	deficit.	 In	 return,	 the	 increased	or	decreased	cell	
cycle gene expression affects the further physiology and metabo-
lism	 of	 the	 plant	 (Gupta	 et	 al.,	2020).	 Indeed,	 drought-	responsive	
strategies regulating the cell cycle appear to be activated later 

than	metabolism	processes,	as	glucose	metabolism	rapidly	 follows	
drought	stress.	In	contrast,	the	accumulation	of	amino	acids,	a	cru-
cial	part	of	 the	cell	cycle	response,	 is	 later	 initiated	 in	response	to	
drought	(Fàbregas	&	Fernie,	2019).

4.2  |  Rewiring of ancient GCNs drives recent 
adaptation to dry environments

The	 phylostratigraphic	 analysis	 supports	 that	 the	 majority	 of	
drought-	responsive	 genes	 in	 S. chilense evolved during the 

F I G U R E  6 Drought-	responsive	genes	
under positive selection in population 

C_LA1963.	(a)	The	connectivity	of	
drought-	responsive	genes	under	positive	
selection	in	the	two	networks	(b)	The	
age	of	selective	sweep	of	drought-	
responsive genes under positive selection 

in	the	two	networks.	(c)	The	correlations	
between connectivity and the sweep 

age	of	drought-	responsive	genes	under	
positive	selection	in	the	two	networks.	
(d)	The	visualization	of	the	cell	cycle	
network	includes	643	genes	with	a	
weighted correlation greater than 0.65 

between	them.	(e)	The	visualization	of	
the	metabolic	network	includes	937	
genes with a weighted correlation greater 

than	0.65	between	them.	Red-	to-	orange	
coloured	dots	denote	drought-	responsive	
genes	under	positive	selection,	and	the	
red-	to-	orange	scale	denotes	the	ages	
of	selective	sweeps.	The	location	of	the	
dots	closer	to	the	centre	of	the	networks	
indicates genes exhibiting higher 

connectivity.
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early-	to-	intermediate	stages	of	plant	evolutionary	history,	which	is	in	
agreement with the time of origin of multiple abiotic response genes 

studied in Arabidopsis thaliana	(Mustafin	et	al.,	2019).	The	emergence	
of	 a	 majority	 of	 drought-	responsive	 genes,	 therefore,	 coincides	
with	the	periods	of	divergence	among	major	plant	groups	(land	and	
flowering	 plants),	 which	 are	 marked	 by	 frequent	 whole-	genome	
duplication	events	that	trigger	gene	family	expansions,	gene	neo-		and	
sub-	functionalization	 and	 genome	 reorganization	 processes	 (Clark	
&	Donoghue,	 2018;	Wang	et	 al.,	2012).	 These	 genomic	processes	
likely	 contributed	 to	 the	enrichment	of	drought-	responsive	GCNs.	
For	instance,	fundamental	morphological	traits	involved	in	drought	
responses,	 such	 as	 stomata,	 are	 present	 in	 the	 ancestral	 land	
plants.	However,	stomatal	genes	existed	prior	to	the	divergence	of	
land plants and underwent multiple duplications during evolution. 

Additionally,	 the	stomata	response	to	environmental	cues,	such	as	
humidity,	 light,	 CO2	 and	 phytohormones,	 such	 as	 ABA,	 is	 widely	
distributed	and	may	be	ancestral	to	land	plants	(Clark	et	al.,	2022).	
Therefore,	we	propose	 that	our	 two	drought-	responsive	networks	
were primarily established during or shortly after the divergence of 

land	plants	and	have	subsequently	undergone	expansion.
Previous	studies	show	that	TAI	and	TDI	profiles	across	embryo-

genesis,	seed	germination	and	transition	to	flowering	in	A. thaliana 

exhibit	an	 ‘hourglass	pattern’	 (older	and	conserved	transcriptomes	
are	 preferentially	 active	 at	 the	 mid-	development	 stages)	 (Drost	
et	al.,	2016;	Quint	et	al.,	2012).	However,	our	TAI/TDI	profiles	 for	
the two developmental stages remain stable for a given condition 

(Figures 4c and 5b).	The	similarity	of	TAI/TDI	values	between	de-
velopmental	 stages	 (Figures 4c and 5b)	may	 be	 certainly	 because	
our	analyses	 focused	on	 two	modules	 (co-	expressed	genes)	highly	
correlated with the differential expression between drought and 

control	conditions	 (Figure 2b; Table S1).	Therefore,	developmental	
stage-	specific	 response	 genes	 are	 likely	 underrepresented	 in	 the	
two	analysed	networks.	We	speculate	 that	although	abiotic	stress	
response	regulatory	networks	are	primarily	composed	of	highly	an-
cient	and	conserved	elements	across	 species	 (Chen	&	Zhu,	2004),	
networks	can	change	expression	patterns	to	respond	rapidly	to	envi-
ronmental changes and thus allow the exploration of new ecological 

niches.

Extensive	network	re-	wiring	in	relatively	recent	and	short	time-
frames	has	been	found	in	maize	and	tomato	in	response	to	domes-
tication	 (Koenig	 et	 al.,	 2013;	 Swanson-	Wagner	 et	 al.,	 2012).	 It	 is,	
therefore,	not	surprising	to	find	signs	of	adaptive	variation	 in	core	
elements	of	rather	conserved	regulatory	networks	related	to	adap-
tation	processes	 to	 arid	habitats.	While	 the	genetic	 (and	morpho-
logical)	divergence	of	the	S. chilense	marginal	southern	populations,	
southern	coastal	and	highland,	is	recent	but	substantial	(Raduski	&	
Igić,	2021),	drought	adaptation	is	an	ancestral	and	widespread	char-
acteristic of S. chilense populations. It is congruent with theoretical 

results	showing	that	gene	networks	with	higher	mutation	sensitivity	
can	facilitate	local	adaptation,	increase	gene	expression	variance	and	
underlie accelerated range expansion processes across abiotic envi-
ronmental	gradients	(Deshpande	&	Fronhofer,	2022).	Our	results	in-
deed	indicate	that	changes	at	central	genes	(with	higher	connectivity)	

can	be	responsible	for	the	short-	term	response	to	selection	(Jovelin	
&	Phillips,	2009;	Luisi	et	al.,	2015)	and	promote	re-	wiring	of	the	gene	
network	(Koubkova-	Yu	et	al.,	2018),	a	critical	process	for	adaptation	
to	 contrasting	 habitats	 and	 lineage	 divergence.	 Complementarily,	
our	 empirical	 approach	 shows	 two	 regulatory	 networks	 with	 dif-
ferent evolutionary trends and exhibiting different gene expression 

responses.	One	GCN	would	exhibit	a	 faster	and	more	variable	 re-
sponse	 (metabolic),	while	 the	other	would	exhibit	a	 later	 (delayed)	
but	more	constitutive	response	(cell	cycle)	to	drought.	Despite	the	
differences	in	gene	age	and	variation	between	the	networks,	our	re-
sults	show	that	both	GCNs	have	undergone	sufficient	changes	lead-
ing	to	their	 re-	wiring	during	the	divergent	process	of	S. chilense in 

dry	habitats	in	South	Peru	and	North	Chile.	Nevertheless,	genes	in	
the	metabolic	network	show	more	recent	evolution,	with	new	gene	
members appearing in S. chilense,	concomitantly	with	more	variable	
expression in the drought transcriptome.

4.3  |  Limitations and further work

A	limitation	of	our	gene	expression	study	is	that	our	transcriptomic	
analyses	are	based	on	 few	 individuals	 from	a	 single	 location	 (near	
the	putative	region	of	origin	of	the	species;	Wei	et	al.,	2023),	while	
variability in gene expression and phenotypic response has been ob-
served	between	different	populations	(Fischer	et	al.,	2013;	Mboup	
et	al.,	2012;	Nosenko	et	al.,	2016).	 Further	expression	 studies,	 in-
cluding	multiple	plants	from	various	 locations,	would	be	helpful	to	
verify	 that	 the	 identified	GCNs	are	 also	present	 and	expressed	 in	
other	populations	and	study	the	possible	variation	 in	southern	(di-
vergent)	 populations.	However,	 as	most	 genes	we	 find	 in	 the	 two	
CGNs	also	 show	expression	differences	 in	 response	 to	drought	 in	
other	 tomato	 species,	 our	 results	 are	 likely	 representative	 of	 the	
CGN	evolution	across	the	whole	range	of	S. chilense.	Finally,	we	refer	
the	reader	to	our	previous	study	(Wei	et	al.,	2023),	where	we	discuss	
possible limitations of our population genetics analyses due to using 

plant	material	 from	 the	TGRC	 (Tomato	Genetics	Resource	Center,	
UC	Davis,	USA).	To	conclude,	we	suggest	that	conducting	sampling	
and	experimental	work	in	the	field	is	necessary	to	improve	the	reso-
lution	of	transcriptome	and	genomic	studies,	and	better	assess	phe-
notypic differences between organs and stages of development.
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