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Abstract

Microbial phototrophic communities dominated early Earth and
thrive to this day, particularly in extreme environments. We
focus on the impact of diel oscillations on phototrophic biofilms,
especially in hot springs, where oxygenic phototrophs are
keystone species that use light energy to fix carbon and often
nitrogen. They exhibit photo-motility and stratification, and alter
the physicochemical environment by driving O,, CO2, and pH
oscillations. Omics analyses reveal extensive genomic and
functional diversity in biofilms, but linking this to a predictive
understanding of their structure and dynamics remains chal-
lenging. This can be addressed by better spatiotemporal res-
olution of microbial interactions, improved tools for building and
manipulating synthetic communities, and integration of empir-
ical and theoretical approaches.
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Introduction

“These microscopic organisms form an entire wortd composed of
species, families and varieties whose history, which has barely
begun to be written, is already fertile in prospects and findings of
the highest importance.” Louis Pasteur In a paper read to
the Académie de Médecine (March 1878).

Phototrophic (light-dependent) microbial communities
were major life forms on early Earth [1]. Today, colorful,
stratified phototrophic biofilms (often called microbial
mats) thrive in extreme environments such as hot
springs, desert crusts, and hypersaline habitats [2].
Phototrophs play a crucial role by fixing carbon and often

nitrogen to support themselves and heterotrophs in the
community [3].

Microbial mats in hot springs around the world, partic-
ularly in Yellowstone National Park, USA, have been
studied extensively using traditional tools of environ-
mental microbiology such as microscopy, 16S rRNA
fingerprinting, and i situ measurements coupled with
enrichment and isolation of species. These studies
defined key and unique features of phototrophic bio-
films and fueled the discovery of novel microbial phyla
and enzymes [4]. High-throughput metagenomics tools
have revealed the unprecedented genetic and functional
diversity of the microbial world [2]. The ongoing chal-
lenge is to complement detailed profiles of communities
(“Who’s there?”) with an understanding of the interplay
between spatial architecture, dynamics of microbial ac-
tivity, and their metabolic interactions (“What are
they doing?”).

Phototrophic biofilms are subject to daily oscillations in
light energy input resulting in dynamic microbial in-
teractions. We need a systems-level and predictive un-
derstanding of how these microbial communities are
maintained under fluctuating conditions. This is
important from an ecological or evolutionary perspective
and can also inform the emerging field of synthetic
ecology. In this brief review, we focus on how diel light
dynamics influence spatial stratification and community
behaviors in phototrophic mats (primarily in hot
springs). Integration of /z situ microsensor data, meta-
omics analyses, and analyses of microbial isolates and
synthetic communities are providing new insights into
community function. We highlight how emerging tech-
niques with increased spatial resolution, advances in
laboratory manipulation of microbial communities, and
predictive mathematical models have a role in the future
of this field.

Dynamic features of phototrophic biofilms
Light controls biofilm structure

Light is a primary driver of spatial behaviors in photo-
trophic biofilms. Both light intensity and spectral qual-
ity change dramatically with depth in the biofilm due to
absorption by pigments such as chlorophylls, which peak
at 450 and 675 nm [5] (Figure 1a). Cyanobacteria that
contain chlorophyll # are found in the top millimeters of
biofilms in alkaline hot springs. At greater depths, they
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Structure and dynamics of high-temperature phototrophic mats in Yellowstone National Park. (a) Depiction of a 1 cm deep microbial mat in a hot
spring runoff channel at 65°C. The most abundant genera are labeled by depth with the major diagnostic chloropigment of the genus in brackets
(Pheo = Pheophytin, BPheo = Bacteriopheophytin, mBPheo-non Iso = methylated Bacteriopheophytin esterified with non-isoprenoid alcohol, Bpheo c-

phytol = Bacteriopheophytin esterified with phytol). Light attenuation of vai

rious wavelengths is indicated in the top right corner (B: blue, G: green, R: red,

IR: near-infrared). Adapted from [9]. (b) Depiction of community activities and gas levels associated with them over a diel cycle in a Yellowstone hot spring
mat using microsensor, metabolomic, and transcriptomic data [10,13,15,16] and Shelton et al. in prep. (¢) Depiction of a colony of Synechococcus moving
towards white light (top). A magnified view of individual cells with their recent movement history indicated by tracks (middle). Average speeds of
phototactic cells from two species (Syn OS-A and Syn OS-B’) of Synechococcus under dynamic illumination conditions (from dark to light to dark)

(bottom) [29].

have adapted to utilize near-infrared light by synthe-
sizing chlorophyll f [6]. Anoxygenic phototrophs
containing bacteriochlorophyll # (peak absorption at 800
and 870 nm) and heterotrophs also coexist at this depth
[5,7,8]. Mass spectrometry (MS) imaging of pigments
has been used to spatially map the transitions from
oxygenic Synechococcus sp. to anoxygenic phototrophs
such as Roseiflexus sp., Chloracidobacterium sp., and Chlor-
offexus sp. with increasing depth within an alkaline hot
spring mat. Unlike hyperspectral imaging and fluores-
cence microscopy, this technique can identify a variety
of biomolecules, and revealed that cyanobacteria nearest
the surface synthesized more monounsaturated glyco-
lipids to cope with high light [9].

Diel regulation of photosynthesis and metabolic
processes

Optimal growth in phototrophic biofilms, where light
intensity can fluctuate from limiting to damaging, re-
quires regulation of the photosynthetic apparatus or
movement into a suitable light environment (see

motility section). Using RT-qPCR on time series sam-
ples from microbial mats has demonstrated that cyano-
bacteria regulate their gene expression such that
transcripts for photosynthesis-related proteins rise at
dawn, are maximal at midday, and decline over the af-
ternoon [10]. Anoxygenic phototrophs, which can use
infrared light for photosynthesis, transcribe light-
harvesting genes at night [11,12]. Enzymes required
for metabolic processes such as respiration and
fermentation also exhibited diel oscillations with peaks
in the afternoon and night, respectively [7,13]. Although
a few studies have extended these gene-specific obser-
vations by conducting metatranscriptomic studies of
phototrophic biofilms over a diel cycle [12], disen-
tangling the interactions between community members
and regulation of diel processes remains a challenge. Our
knowledge of global transcriptional regulators has been
primarily based on lab-based studies with model
cyanobacteria. The cyanobacterial circadian clock con-
trols entrainment by linking oscillations to photosyn-
thesis through metabolic processes rather than direct
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entrainment by light using sensory photoreceptors, as is
more common in eukaryotic organisms [14]. Whether
circadian clocks are common regulatory systems in other
phototrophs has not been demonstrated, nor is there a
complete understanding of how cell division and repli-
cation are regulated in these communities and if they
are coordinated in response to diel oscillations in all taxa.

Light-driven O, dynamics

Oscillations in light intensity drive oscillations in
photosynthetic O, production, which peaks around
midday, creating hyperoxic conditions in the mat, low
CO; levels, and resultant high pH [15] (Figure 1b).
Hyperoxia increases photorespiration and glycolate
excretion by cyanobacteria, which is taken up by fila-
mentous anoxygenic phototrophs [16]. In the afternoon
and night, the microbial mat becomes increasingly
anoxic as O, consumption by aerobic respiration sur-
passes oxygenic photosynthesis. As O, drops further,
cyanobacterial fermentation of stored glycogen releases
ethanol and organic acids such as lactate, formate, and
acetate [16]. Expanding on earlier work using oxygen
microsensors, Kuhl et al. used a novel Oj-sensitive
nanoparticle paint to record O, dynamics in a beach rock
biofilm with high spatial resolution and calculate rates of
respiration and photosynthesis [17]. Cyanobacteria also
release organic carbon as extracellular polysaccharides,
which can be available for uptake by other organisms.
Still, nano-scale secondary ion mass spectrometry
(Nano-SIMS) measurements have shown that a large
proportion is re-assimilated [18].

Major anoxic/anoxygenic processes

Anoxygenic photosynthesis (AP) by Cyanobacteria and
Chloroflexota also contributes to diel changes in
phototrophic biofilms. Microsensor measurements of O,
and H,S and mathematical modeling in a cold sulfidic
spring indicated that oxygenic and anoxygenic photo-
synthesis - in cyanobacteria that could do both - could
regulate each other by converging on the plastoquinone
pool [19]. Chloroflexota in hot springs perform AP and
contribute to CO; fixation via the 3-hydroxypropionate
(3-OHP) pathway during the early morning hours, as
indicated by metatranscriptomics and 13C bicarbonate
incorporation in Chloroflexota 3-OHP enzymes [20,21].

Many Cyanobacteria in phototrophic mats can fix ni-
trogen, though the timing of peak activity varies be-
tween microbial mat types [3]. In hot springs dominated
by filamentous cyanobacteria (Mastigocladus sp.) with
specialized heterocysts that protect nitrogenase from
oxygen, maximal N, fixation occurs even under hyper-
oxic conditions in the early afternoon [22]. In mats with
abundant unicellular cyanobacteria, N fixation peaks in
the early morning or overnight when O, levels are low
[13,23]. Measurements of active nitrogen uptake using
Nano-SIMS and gene expression by RT-qPCR have
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revealed that genetic potential for N, fixation may not
be correlated with 7z situ activity and that Cyanobacteria
contributed more to N, fixation than sulfate-reducing
bacteria in a hypersaline mat [23]. Thus, an accurate
assessment of the dynamics of how microbial mats
respond to their environment will require a combination
of multiple techniques.

Light-driven motility in situ and in isolates
Phototrophic mats may be stratified, but they are not
static. Manipulatin% light intensity in a coastal mat from
75 to 1000 pmol/m“/s resulted in the downward migra-
tion of filamentous cyanobacteria by 0.25 mm, as
measured indirectly by oxygen evolution [24]. Cyano-
bacterial isolates from hot spring mats have different
optimum light intensities for growth and are found at
different depths [7,25]. Light-driven motility may alter
their light exposure to optimize photosynthesis while
avoiding high light stress. Our knowledge of photore-
ceptors and signal transduction cascades that control
phototactic responses is based on the behaviors of a few
model cyanobacteria [26]. However, recent exploration
with wild isolates demonstrates the diversity of photo-
responses [27]. For instance, motility analysis using
single-cell tracking algorithms revealed that two domi-
nant isolates (Synechococcus sp.) from Yellowstone hot
springs differed in their directions of phototaxis at
different light intensities and wavelengths (Figure 1c)
[28,29]. When these species were mixed together, they
developed reliable collective motility patterns that were
not entirely predictable from their individual behav-
iors [29].

Current challenges and new approaches
Techniques to improve the spatial resolution of
microbial interactions

Metagenomics provides abundant sequence data, but
lacks spatial information. Metagenomic plot sampling by
sequencing (MaPS-seq), which involves fixing a sample
in a gel matrix, cryo-fracturing it, encapsulating mi-
crobes from fractured particles into barcoded micro-
droplets, and sequencing the recombined pool, allows
spatial associations between species to be identified
[30]. Traditional microscopy approaches, by contrast,
have high spatial resolution but lack sequence-specific
information; fluorescence  sizu hybridization (FISH)
partially overcomes this by using fluorescent DNA
probes to locate microbes within complex biofilms.
Improvements to FISH to increase the number of
probes include 1) CLASI-FISH (combinatorial labeling
and spectral imaging-FISH) where species are identi-
fied by unique combinations of probes [31], and 2) par-
seqFISH (parallel sequential FISH) which uses sec-
ondary probes with reversible binding to allow sequen-
tial imaging of many transcripts [32]. Environmental
chemistry has been studied by mass spectrometry im-
aging to identify the locations of biomolecules and
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species in mats [33], Nano-SIMS and Raman micro-
spectroscopy with stable isotope probing (RMCS-SIP)
to visualize nutrient uptake and transfer between indi-
vidual cells [34,35], and luminescent sensor nano-
particles to provide spatiotemporal information of O,
levels (Figure 2) [17].

Bringing the mat community into the lab

A complementary approach to studying microbial com-
munities 7 situ is to query synthetic communities under
controlled conditions (synthetic ecology) (Figure 2).
Strain isolation relies on selective growth conditions or
physical separation [36]. Recent developments in
growth-based selection include microfluidics-based or
membrane-based culturing to increase throughput via
miniaturization [36]. In terms of physical separation,
live-FISH using fluorescent DNA probes and
fluorescence-activated cell sorting (FACS) can separate
cells based on 16S rRNA sequence, while Raman-
activated cell sorting (RACS) of deuterium-labeled
cells has been used to separate active from inactive
cells [37,38]. Genome-informed media optimization
techniques and curated online databases of media and
culturing techniques can inform strain isolation and
maintenance [39,40]. Certain microbes, such as anam-
mox bacteria, are particularly difficult to isolate; how-
ever, stable enrichment cultures have proven valuable
for uncovering their physiology [41]. Community gene
editing tools such as species-targeted antibiotic resis-
tance markers could improve isolation efforts by selec-
tion [42]. In simplified heterotrophic biofilms,
fluorescent reporter genes have been used for under-
standing swarming, spatial segregation, and transcrip-
tional responses to dynamic changes in pH [43,44].

Figure 2

Targeted gene knockouts and mutant screens have also
been used to better understand polysaccharide secre-
tion and motility, activities that impact community as-
sembly and structure [45,46]. Progress is also being
made in non-model organisms, such as thermophiles,
using thermostable Cas-9 variants [47].

Integrating experiments and models

Developing mathematical models can help capture the
dynamic interactions in phototrophic biofilms (Figure 2).
This will be improved through data sharing by experi-
mentalists (e.g., curating data on Github, Kaggle, or
Figshare), developing universal data and metadata stan-
dards [48], and by modelers creating user-friendly in-
terfaces for exploring model predictions (such as on
Rshiny or Python Dash). Several mathematical models
with applications in predicting phototrophic biofilm
function have been developed. A genome-scale metabolic
model and flux-balance analysis was used to predict
growth and photosynthetic rates of two cyanobacteria
exposed to different light spectra with reasonable accu-
racy and suggested how the changing activity of electron
transport components would facilitate spectral acclima-
tion [49]. Menon et al. (2021) compared the use of
cellular automaton, reaction-diffusion, and active-matter
models for modeling the movement of cyanobacterial
populations [50]. They highlight the advantages of
active-matter models in capturing both direct intercel-
lular interactions via pili and indirect interactions through
secreted compounds. Other types of individual-based
models, such as rough surface patch models, have been
used to predict the physical, chemical, and biological
conditions in desert biocrusts over a diel cycle [51].
Despite needing to use multiple parameters from other
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Evolving technologies for studying phototrophic biofilms. Left: various measurement methods used to interrogate what organisms are present (blue)
and their activity in situ (red), with increasing spatiotemporal resolution from left to right. Right: methods used to cultivate and interrogate organisms
enriched and isolated from biofilms. Bottom: recommendations for improving the use of mathematical models in biofilm systems.
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microbial systems, the model predictions of O,, CO,, and
pH dynamics as a function of time and depth agreed
quite well with measurements from several independent
studies on desert biocrusts [51]. We expect that the
combination of data-rich omics and imaging technologies
with mathematical models will increasingly be applied to
microbial mat communities.

Conclusion

Our understanding of spatiotemporal dynamics and in-
teractions in phototrophic biofilms has benefitted from
observations and measurements z sizu. To develop a
systems-level understanding of these fascinating and
environmentally important communities, deploying new
imaging and omics technologies, developing synthetic
communities, and combining these results with math-
ematical modeling will be critical. Coupling improved
situ understanding of diel dynamics in microbial mats to
bulk genomics data could also lead to a greater appre-
ciation of the role of microdiversity, horizontal gene
transfer, and predators (including viruses) in microbi-
al communities.
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