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Abstract—Open radio access network (O-RAN) slicing allows
the flexible control of network components and resources to
satisfy the ever increasing demand of mobile applications. To
optimize service provisioning, efficient management of limited
radio resources is challenging due to the orchestration among
network slices in the long-timescale and the slice configurations
according to the mobile user (MU) statistics in the short-
timescale. In this paper, we first propose a novel meta Markov
decision process framework to mathematically formulate the
problem of two-timescale radio resource management (RRM) in
O-RAN slicing. The original RRM problem is then decoupled
into a long-timescale master problem and a short-timescale
subproblem, which are solved by a hierarchical reinforcement
learning (RL) mechanism. Our proposed hierarchical RL mech-
anism includes a deep RL algorithm, solving the optimal long-
timescale RRM policy, and a linear-decomposition based meta-
RL algorithm, solving the optimal short-timescale RRM policy.
Numerical experiments verify the theoretical analysis and show
that our proposed hierarchical RL mechanism outperforms the
most representative state-of-the-art baselines.

Index Terms—O-RAN, spectral efficiency, two-timescale opti-
mization, hierarchical RL, meta-learning.

I. INTRODUCTION

Future wireless networks are expected to provide pervasive
connectivity for a wide variety of mobile applications with
diverse quality-of-service (QoS) and quality-of-experience re-
quirements. To meet such a trend, the next-generation radio
access network (RAN) architecture will be built upon the
advances in softwarization and programmability. This brings
the opportunity to slice the RAN functionalities, which are
tailored to satisfy the specific requirements [1]. Under the open
RAN (O-RAN) framework [2], RAN slicing is fully supported
by disaggregating the hardware from the software to allow
flexible control across the network components. As shown in
Fig. 1, the O-RAN is split into central unit (CU), distributed
unit (DU) and radio unit (RU) implementing different protocol
stacks that are coordinated by a RAN intelligent controller
(RIC). In O-RAN slicing, the RIC consists of a non-real-
time RIC and a real-time RIC, which deploy, respectively,
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Fig. 1. Two-timescale resource efficiency slicing in O-RAN, where 7' is the
length of an episode, while y9 and b9t are the slice-level action during each
episode g € IN and the user-level actions at each time slot ¢.

the slice-level orchestration and the fine-grained user-level
configurations [3].

In order to optimize service provisioning, radio resource
management (RRM) in O-RAN slicing is challenging:

o The limited spectrum has to be efficiently utilized among
the network slices as well as the mobile users (MUs) in
a network slice;

¢ The strict QoS requirements for the MUs are guaranteed
by the service agreement [4];

o The traffic from MUs exhibits highly dynamic spatial and
temporal variations.

In the literature, there exist some related efforts. For example,
in [3], Puligheddu et al. proposed a greedy approximation
algorithm to solve the problem of semantic flexible O-RAN
slicing. In [5], D’Oro et al. designed low-complexity solutions
to support the real-world applications of intelligence orches-
tration in O-RAN slicing. In [6], Thaliath et al. derived a
long short-term memory (LSTM) based predictive resource
provisioning scheme for O-RAN slicing with the purpose
of QoS protection. In [7], Rezazadeh et al. put forward a
federated deep RL approach, which adapts the RRM policy
to the long-term traffic dynamics in O-RAN. In [8], Lacava
et al. combined the random ensemble mixture and the state-
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of-the-art convolutional neural network into an intelligent
user-specific O-RAN traffic steering framework for optimal
handover. In [9], Abedin et al. employed a two-sided matching
game and an actor-critic model to solve the RRM problem
under varying O-RAN traffic.

However, the flexibility in O-RAN slicing makes the RRM
even more challenging. Different from the real-time (or near
real-time) user-level radio resource configurations, the slice-
level radio resource orchestration is usually performed in
the long-timescale (i.e., non-real-time), resulting in a two-
timescale optimization problem in O-RAN slicing [10]. In
our priori work [11], we formulated the network slicing as
a Markov decision process (MDP) and adopted a deep RL al-
gorithm to identify the optimal RRM policy. The performance
is constrained due to the simplification of the user-level RRM
in the short-timescale using a round-robin policy [12]. In this
work, we concentrate on investigating the two-timescale RRM
in O-RAN slicing. Attacking such a stochastic optimization
problem is challenging since the radio resource has to be
simultaneously adapted to different traffics in different time-
scales [13].

In line with the above discussions, this work first estab-
lishes a novel meta-MDP framework, within which the user-
level configurations in the short-timescale are conditioned on
the slice-level orchestration in the long-timescale. Then the
original RRM problem is decoupled into a long-timescale
master problem and a short-timescale subproblem. To find
the optimal RRM control policy, the single-agent deep actor-
critic algorithm [14] and the meta-RL [15] together form an
innovative hierarchical deep RL mechanism, which is another
major contribution from this work. To our best knowledge, this
work is among the first that comprehensively study the two-
timescale RRM in O-RAN slicing. The rest of the paper is
organized as follows. In the next section, we elaborate on the
system model and the assumptions. In Section III, we propose
a novel meta-MDP framework and mathematically formulate
the two-timescale optimization problem of RRM in O-RAN
slicing. In Section IV, we present in details the proposed
hierarchical deep RL mechanism. In Section V, we verify
our theoretical analysis by numerical experiments. Finally, we
draw conclusions in Section VI.

II. SYSTEM MODEL AND ASSUMPTIONS

As depicted in Fig. 1, this work considers an O-RAN
architecture, under which a set I of MUs with different
QoS requirements are served by a set J of different network
slices. All network slices share a frequency band of bandwidth
W, which is equally divided into a total of /N sub-bands.
We denote K; as the set of MUs belonging to a network
slice 7 € J with the corresponding QoS criteria defined by
(Rj,Lj), where R; and L, are the minimum data rate and the
maximum latency requirements. We assume that U;c 7K; = K
and K NIC; =0, V)" # j (j/ € J). The O-RAN deploys a
two-timescale RRM scheme. In the long-timescale, the rApp
orchestrates the limited resource among the network slices. In
the short-timescale, the xApp configures each network slice

based on the MU statistics. The time horizon consists of an
infinite number of slots, each of which is of duration 7.

Without loss of generality, we assume that the sub-band
orchestration is performed every T' (1" > 2) time slots, which
constitute an episode. We designate by y? the number of sub-
bands dedicated to each network slice 7 € J during each
episode g € IN,.. In each network slice 7, yf sub-bands are
then mapped to the MU traffic across each of 7" time slots. Let
bg T denote the number of sub-bands that are allocated to each
MU ke Kjattimeslott € T = {1,--- , T} during episode g,
which is upper bounded by B;. Over the infinite time horizon,
a time slot ¢ in an episode g can be interchangeably indexed
by (g—1)-T +t as well. To ensure resource isolation among
the network slices, one sub-band can be allocated to at most
one MU at a time slot, indicating that

>y <N\VgeNy, ()
jeTJ
S v <ylVie T Vge N VT 2)
keK;

Moreover, a MU maintains a local queue to buffer the arrived
but not yet transmitted traffic data. To ease the following
analysis, we assume that new traffic arrives only at the end
of a time slot and no new traffic data will be accepted until
the local queue is empty.

For each MU k£ € K; in a network slice j € J, we let
qj k be the queue length at the beginning of each time slot ¢
during each episode g, while let dg ,i € D; and a k be the
initial data size and the correspondlng arrlval time of the traffic
buffered in the queue at the end of the time slot, where D; is

a finite space. With w - W allocated bandwidth, the
achievable data rate can be calculated as

; gt _ .
0, if Wi = 0;

ot
— ) otherwise,

where P is the transmit power of the MUs and o is the noise
power spectral density, while h;” € H is the channel gain with
‘H denoting a finite space. Then the local queue dynamics can
be expressed by

st $] 01T 5]

i = )
d;]li7 lf%k—(g—l)~T—|—t;
max{q;’; - 71;‘]:;’0}’ if aj,k (g—1)- T+t and

q]g':;z > 0;
0, otherwise,

where |-] is the ﬂoor operator For the buffered traffic in
the local queue (i.e., q b 0), the accumulated experienced
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latency until the end of the current time slot can be accordingly
obtained as follows

b
Gy = 5)

o [ B4t 255 o

l; +7 if 7%, = 0;
J,k ) ik 5

TH1-t T+1-t gt

g—| TE=L | =147 (o .

l; kL ] == + mm{jﬁ;’:,r}, otherwise.
: <

T+1 bt 1+TLT+1 t]

, it is straight-

V'~ 0in (5). To
make the notation consistent, we particularly set a?’i =0

Note that if ¢’ L= dg L
LT+1 tJ t—1+T- LT+17

forward to have l?

and l? i = 0 when the current local queue is empty.

IIT. NOVEL META-MDP FORMULATION

In this section, we first formulate the two-timescale RRM
as a meta-MDP, and then specify the long-timescale as well
as the short-timescale optimization objectives.

A. Novel Meta-MDP Framework

In the O-RAN under consideration, the two-timescale R-
RM for resource-efficient slicing falls into the realm of a
MDP with hierarchy [16], which motivates a novel meta-
MDP formulation. More specifically, at the beginning of each
time slot ¢ during each episode g, the global state can be
encapsulated as x9t = (X?:E :Vj € J,Vk € K;), where

x7 L= (h?}i, qjg’,z, l]g:;) € X is the local state of a MU k € K;
in a network slice j € J with & being a finite local state
space!. During each episode ¢, the long-timescale RRM policy
p selects the slice-level action y9 = ( Vj e J) ey
with a probability p(x9,y?), where x? = ( YVt eT).
At each time slot ¢, the short-timescale RRM pohcy o de-
termines the user-level action p(x9t|y?) = b9t £ (0%% ot
Vj € J,Yk € K;), which is conditioned on y9. Each
MU F realizes the immediate utility ;s (x] k,y;],bj’k) =
a; - ek (X3, yd, bT0) + Bj - sj.k(x%y, y?, b9 that measures
not only the spectral efficiency (SE)

v
ein (Xl W) = Gl g
0, otherwise,

but also the service level satisfaction rate (SLSR)

g,t gt _
5jk’< 7;@3/7737 )—
{ r9f >R } {19 oy
J j,k="d ; L9t s g9t .
AT, AR TG 2 g5 > 0;
0, otherwise.

(7

In (7), a; and ; are two constants. 1 is the indicator
function that equals 1 if the condition is met and otherwise, 0.
If the new traffic arrived at the end of the time slot is dropped,
we have /\q’k = 1, and otherwise, )\q’ = (. The mean data

T+ 7t T+
rate 7']; is given by 7, ’ dg L =il J/lgt

After performing b¥*% under xg ¢, the global state transits

IGiven the finite spaces # and Dj as well as the limited number N of
sub-bands, the local state space X is clearly finite.

to a subsequent global state with the following controlled
probability

Ip(xg+ | %] t+1-T| %] |xg, b% )

=11 11 IP( b TLth?,’,Z,bz;,i), ®)

JET keK;

where P(-) denotes the probability of an event.

B. Two-Timescale Optimization

During each episode g € IN,, the execution of a slice-
level action yY and a sequence {b%' : Vt € T} of user-
level actions leads to the discounted utility v(x?,y9) =
Srer Yyes Sher, (V11 - (i, y9, b1, where y €
(0,1) is the discount factor and (-)~* denotes the (¢t — 1)-th
power. Given the initial global state x!'! = x, the objective of
RRM in O-RAN slicing is to maximize the expected long-term
discounted utility

V(x,0,0) =Epp| > MU 0(x?y) x|, (9
g=1

where the expectation E,, ,, is taken with respect to the prob-
ability measure jointly induced by the long-timescale policy
p and the short-timescale policy ¢. (9) can also be termed
as the state-value function. Formally, the two-timescale RRM
optimization problem can be formulated as

max V(x, p,
nax V(x, p .<p) 10)
s.t. Constraints (1) and (2).

We rewrite V(x, p*, ¢*) as V(x), where the optimal long-
timescale RRM policy p* and the optimal short-timescale
RRM policy ¢* are the solution to (10).

IV. PROPOSED HIERARCHICAL RL FRAMEWORK
Solving the optimal RRM policies p* and ¢* in (10) is
challenging due to:

e The complex network dynamics statistics as in (8) is
infeasible in general;

o The obtaining of global states across an episode is im-
possible before selecting a slice-level action;

o The short-timescale RRM policy is conditioned on the
long-timescale RRM policy.

To address all these challenges, this section proposes a hier-
archical RL mechanism.

A. Hierarchical Learning

By decoupling the RRM optimization problem formulated
in Section III-B, we obtain the long-timescale RRM master
problem and the short-timescale RRM subproblem.
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1) Long-timescale RRM: Given the short-timescale RRM
policy ¢, the long-timescale RRM optimization problem can
be formally reformulated as

max V(x, ple)

(11)
s.t. Constraint (1),

where we denote by x = x! the global states during the initial
episode and

o0

E,. Z(W)(g—l)T .

g=1

V(x, ple) = v(x?, y))Ix, el - (12)

It can be easily shown that (11) is a standard single-agent
MDP. However, the dimensionality of x¢ during each episode
g grows exponentially as 7' and |K| increase. We hence
propose to replace x9 with the historical traffic z9 = (z;’ :
Vj € J) and adopt a deep recurrent actor-critic algorithm

[17] to solve p*, where z} = (297171 7z:;?_l) with each

J
g—i __ 1 g—1i,t ; :
2 *W‘E:keicJ}teTqyk ,1 <i<1T-—1. Given

z' =z, we have V(x, plp) = V(z, plp).

Algorithm 1 Learning Long-Timescale RRM Control Policy

1: Initialize the deep actor network parameters 69 and the
deep critic network parameters ¢?, for g = 1.

2: for i € {1,--- , I} do

3:  Randomly select a slice-level action y* € ).

4. forteT do

5: Under Constraint (2), randomly choose a user-level
action b3}, Vj € J, Vk € K;.

6: end for

7: Obtain {2} : Vj € J} at the end of episode i.

8: end for

9: Obtain z9, for g = 1.

10: repeat

11: At the actor network, take z9 as the input and pick a
slice-level action y9 with a probability of pgs(2z9,y7).

12:  Implement ¢ from Algorithm 2, obtain z9*! at the end
of episode g and calculate Vo (297 [p).

13:  With LOSS?Act (69) and LOSSfCrItIC)((j)g), update
the deep actor and deep critic network parameters
according to (13) and (16), respectively.

14 Update the episode index g = g + 1.

15: until A predefined stopping condition is satisfied.

Specifically, we approximate the optimal long-timescale
RRM policy p* and V (z|p) = V(z, p*|¢), Vz, by a deep actor
network pg and a deep critic network V4 (z|p), where 6 and
¢ are the deep neural network parameters. After performing
a slice-level action yY under the observation z9 following the
long-timescale RRM policy pgs at each episode g, the training
of the deep actor network follows

9971 09 —ng - Vg, LOSS!, 1 (09),  (13)

where 79 is the learning rate, 689 is the deep actor network
parameters at episode g, while

LOSS{ s ctor) (07) = 0gs (2°|0) - In(pes (27, y))

+ v - pes(2?,y7) - In(pes (27, y79)), (14)

with 1 > 0 being a constant weight, ¢9 being the deep critic
network parameters at episode g, and
3o (27]9) = v(X?,¥%) + ()T - Vo (27 o)
— Vo (2]). (15)
With the loss function LOSST(, ;.1 (67) = (dg0 (29]¢))°, the
deep critic network parameters are updated according to

¢)q+l — d)(] + Nep v¢)7LOSS(Cr1t1C (d)q)a (16)

where 74 is the learning rate. The learning procedure can be
described as in Algorithm 1.

2) Short-timescale RRM: In a similar way, we reformulate
the short-timescale RRM optimization problem as

max V(x,
2x V( @If) an
s.t. Constraint (2),

given the long-timescale RRM policy p, where V(x, ¢|p) is
given by (18). With the slice-level action y = y? during any
episode g, the short-timescale RRM policy then straightfor-
wardly becomes an episodic single-agent MDP. Along with
the slice-level actions generated from the long-timescale RRM
policy, the short-timescale RRM optimization problem as
in (17) is a meta-MDP as discussed in Section III-A. Let
V(x|p) = V(x,¢*|p) and (19) define the optimal Q-function.
The optimal short-timescale RRM policy ¢* can then be
directly obtained from V(x|p) = maxp Q(x, b|p). To address
the extremely huge global state space, we leverage a deep
neural network to approximate the optimal Q-function. That
is, Q(x,bly) = Qus(x,bly), Vy € ), where ¥ denotes the
DQN parameters.

For each slice-level action y € )/, let O-)q;t be the pertained
replay memory at the beginning of each time slot ¢ during each
episode g. Each experience in the replay memory includes the
current global state x, the selected user-level action b, the sum
of realized utilities of all MUs dej Zke)c ujk(x,y,b),
and the subsequent global state x’. Then the DQN parameters
are updated by minimizing the loss function given by (20),
where 99% and 99" are the DQN parameters at a time slot
t during each episode g and at a certain previous time slot,
while Of,’t is a randomly sampled mini-batch. We then obtain
the meta-training rule of the DQN parameters,

9oL F =T 5] ot @h
+ 7719 . Vﬁgat Z LOSquQN) ("-997t‘y) ’

yey

where 1 is the learning rate. However, the user-level action
space explodes with even a small number of MUs.
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Vi, 9lp) = Epg | 30D (0O ITHILST S g (x0h 0001 ) Ix,p

(18)
g=1teT JET keK;
oo
Q(x,blp) = ZZ o DTHEL NS (X0  b0L) BN = byp (19)
g=1teT JET kK,
2
LOSSthQN)( ly) = Eggtcogt SO wik(Xim yis bik) 7 max Qo (X', by) — Qpat (x, bly) (20)

JjeT kek;

B. Linear Decomposition

From the centralized short-timescale RRM, the user-level
actions are executed within each network slice, which moti-
vates us to linearly decompose the Q-function,

Q(x,bly) = > Q;(x;,b;ly;), (22)
Jj€T
where x; = (x5 : Yk € Kj), bj = (b : Vk € K;) and

y; are, respectively, the state, the user-level action and the
slice-level action of network slice j at each current time slot,
while Q;(x;,b,|y;) is defined to be the per-slice Q-function
for each network slice j € J that satisfies

Qi (x5, b5ly;) = Y k(XU bsik)
keK;

+7- Z ]P
where x); = (x]

g Yk € Kj) and b = (V) : Vk € K;) are
the state and the user-level actions at the subsequent time slot.
From the previous discussions, the definition of an identical
utility function for MUs in the same network slice indicates
the homogeneity during the sub-band allocation and the traffic
data transmission, which inspires us to further decompose each
per-slice Q-function into a series of per-user Q-functions

(23)

|XJ7 Hta;XQ](X b/|yJ)
J

Q;(x5,b5ly5) = D> Qjk(Xjkbjklys) (24)
keK;
where
Q) k(X150 k|Y5) = 1)k (X5, ¥, bjik) +
(25)

Y D P (Kl ks ) - miax Qg (s bl )
g,k

’
Xk

We emphasize that given the slice-level action, the user-level
action of each network slice at each time slot is determined
S0 as to maximize the per-slice Q-function.

Based on (24), training a common DQN for the MUs in the
same network slice can be a promising alternative, instead of

training a separate DQN for each MU. For each MU k € K;
in each network slice ;7 € J, we approximate the per-user
Q-function by Q; k(Xj,k: bjkly;) = Qu, (Xj,k: b klY;)s VX5,
Vb, 1 and Vy;, where 19; is the associated DQN parameters.
Accordingly, a replay memory (99 ’ is maintained for each
network slice j and is updated w1th the most useful experience
picked from the most recent interactions between MUs and
O-RAN [18]. A most useful experience can be from the MU
that achieves the largest immediate utility. The meta-training
process follows

g+| & | t+1-T| %
ﬂj LTJ |_TJ — 19?7t (26)
+119 - Vg Y LOSST(non (97 1ys)

Yi

where we express the loss function LOSSY’ fDQN) (ﬂ?’t|yj) by
(27) with (’)]g-”; being a randomly sampled mini-batch. In brief,
the process of learning short-timescale RRM control policy
is summarized as in Algorithm 2, where ¢ € (0,1) is the

exploration probability.

V. NUMERICAL EXPERIMENTS

In this section, we numerically evaluate the proposed hi-
erarchical RL mechanism for two-timescale RRM in O-RAN
slicing by conducting experiments with TensorFlow. To imple-
ment our proposed hierarchical RL mechanism, Algorithms 1
and 2 are applied to iteratively update the long-timescale and
the short-timescale RRM control policies.

A. Experimental Configurations

In experiments, we setup an O-RAN that covers a 300 x 300
m? square area. There are a number 600 of MUs subscribed
to a set J = {1,2,3} of three network slices, which support,
respectively, voice over LTE, enhanced mobile broadband
and ultra-reliable low latency communications services. The
frequency bandwidth is W = 10 MHz and the total number
of sub-bands is N = 50. The MU configurations and the
traffic models follow our prior work [11]. During the meta-
DQN training, we collect 5000 interaction experiences for
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(03"

,t _
LOSS] (pan) vi) = E@;“ cog,.

VY

uj e (X5, Y bje) + 7 - max Q.o (X 1o 1 ly5) — Qe (X555 05 k[y5)

(27)
bk

Algorithm 2 Learning Short-Timescale RRM Control Policy

1: Initialize the replay memory {(’);.’”; 1 Yy;,Vj € J}, and
the DQN parameters {19?’t :Vj e J} and {19?3 = 192” :
VieJ} forg=1andt=1.

2: repeat

3:  Select a slice-level action yY from Algorithm 1.

4. forteT do

5: In each network slice j € 7, observe the local states

{x?:}i : Vk € K;}, and choose b?’t that maximizes
ke, Qﬂ_j,t (xj:,i, b?:,i ly7) with a probability of 1—e
or randomly choose a user-level action bg,ﬁ with a
probability of €, Vk € K;.

6: Update the replay memory {O?”;j t Yy, Vi€ J}
from the most recent interaction experiences.

7: With {Oi’; 1 Vy;,Vj € J} sampled from {Of; :
Vy;,VjeJ }, update meta-DQN parameters accord-
ing to (26).

: Regularly reset {19§’i = ﬂ?’t :VjeJ}h
9:  end for
10:  Update the episode index g = g + 1.
11: until A predefined stopping condition is satisfied.

TABLE I
PARAMETER VALUES IN EXPERIMENTS.

[ Parameter [ Value || Parameter | Value |
1 10 P 30 dBm
B 10, Vj T 0.5 ms
o 0.01, V) T 2000
B; 1, Vj o? —174 dBm/Hz
s 0.005 5 0.9

each replay memory, while each mini-batch consists of 2000
randomly sampled experiences. Other key parameter values
are listed in Table I.

B. Results and Discussions

For performance comparisons, we simulate two represen-
tative baselines, namely, soft actor-critic with LSTM (SACL)
[17] and deep recurrent Q-network (DRQN) [19]. Implement-
ing the baselines, the sub-band allocation in each network slice
during an episode adopts the round-robin policy to ensure
the fairness among the MUs. Fig. 2 illustrates, respectively,
the average utility, SE and SLSR performance across the
learning episodes. We can observe from Fig. 2(a) that our
proposed hierarchical RL process converges after around 5000
episodes and outperforms the SACL and DRQN baselines.
Figs. 2(b) and 2(c) further demonstrate the achieved SE
and SLSR from all mechanisms. The superior average SE

performance validates that our proposed mechanism adapts the
limited number of sub-bands to the varying traffic requests of
MUs in three network slices from not only the long-timescale
but also the short-timescale. This also tells that the round-
robin policy for sub-band allocation during an episode does
not sufficiently optimize the SE. Even though our proposed
mechanism obtains the best SLSR performance, the average
SLSR performance from all three mechanisms deteriorates
as the learning progresses. The reason can be that given the
weight value settings, all the three mechanisms sacrifice the
SLSR performance while concentrating on maximizing the
expected long-term SE.

VI. CONCLUSIONS

In this paper, we focus our efforts on investigating the RRM
for resource-efficient slicing in O-RAN. Accounting for the
traffic dynamics, we propose to formulate the problem of two-
timescale RRM as a meta-MDP. The objective is to maximize
the expected long-term utility over the infinite time horizon,
where an immediate utility at each time slot measures not
only the SE, but also the SLSR. By decoupling the meta-
MDP into the long-timescale master problem and the short-
timescale subproblem, we obtain a hierarchical RL mechanism
to solve the optimal slice-level and user-level RRM control
policies. Numerical experiments confirm that our proposed
hierarchical RL mechanism significantly outperforms the most
representative baselines in terms of SE and SLSR.
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