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The shape design and optimization of bluff decks prone to aeroelastic phenomena require emulating the fluid-
structure interaction parameters as a function of the body shape and the oscillation frequency. This is particu-
larly relevant for long- and medium-span bridges equipped with single-box decks that are far from being
considered streamlined and for other girder typologies such as traditional truss decks and modern twin- and
multi-box decks. The success of aero-structural design frameworks, which are inherently iterative, relies on the
efficient and accurate numerical evaluation of the wind-induced responses. This study proposes emulating the
fluid-structure interaction parameters of bluff decks using surrogate modeling techniques to integrate them into
aero-structural optimization frameworks. The surrogate is trained with data extracted from forced-vibration CFD
simulations of a typical single-box girder to emulate the values of the flutter derivatives as a function of the deck
shape and reduced velocity. The focus is on deck configurations ranging from streamlined to bluff cross-sections
and on low reduced velocities to capture eventual aerodynamic nonlinearities. The girder cross-section geometry
is tailored based on its buffeting performance. This design tool is fundamental to finding the optimum balance

between the structural and aeroelastic requirements that drive the design of bluff deck bridges.

1. Introduction

Over the past three decades, the trend of designing and building
long-span and super-long-span bridges has been on the rise worldwide.
The Akashi Kaikyo Bridge in Japan (Kashima et al., 2001), the Xihoumen
Bridge in China (Deng et al., 2021), and a more recently completed 1915
Canakkale Bridge in Turkey (Arioglu, 2021) with main span lengths of
1991 m, 1650 m, and 2023 m, respectively, are a few notable examples
of long and super-long span bridges. While longer spans are advanta-
geous for traversing large water bodies with a single bridge construction
project, the increasing span length also makes a bridge behave more like
a slender, flexible structure with pronounced aerodynamic and aero-
elastic loading and subsequent responses. Besides, medium-span
cable-stayed bridges with span length of around 500 m is also very
common in different parts of the world, such as the Constitution Bridge
(540 m main span) in Cadiz, Spain (Diaz Garcia et al., 2018); the Harbor
Bridge (506 m) in Corpus Christi, USA (TxDOT, 2022); the Gordie Howe
International Bridge (853 m) across the USA-Canada border (Martin
et al.,, 2023) and the Cebu-Cordova Link Expressway (390 m) in the
Philippines (Cruz et al., 2023). Some of these bridges (TxDOT, 2022;

* Corresponding author.

Cruz et al., 2023) are located in hurricane- and typhoon-prone regions
and possess relatively bluff deck sections, which significantly impacts
their aeroelastic behavior, making these strongly vulnerable to
wind-induced instabilities and large aeroelastic responses. This situation
is further exacerbated by climate change (Orcesi et al., 2022a, 2022b),
which has resulted in the increase in both frequency and intensity of
severe windstorms, typhoons, and hurricanes in the past few years,
affecting critical infrastructure systems such as bridges (Nasr et al.,
2020). Thus, it is of paramount importance to provide due consideration
to the aerodynamic aspect of streamlined and bluff bridge decks in
addition to meeting the structural load demands before finalizing the
design of medium- and long-span bridges.

The design of contemporary bridge decks involves dealing simulta-
neously with responses of structural and aeroelastic nature, hence
addressing the design problem from a holistic aero-structural perspec-
tive (Cid Montoya, 2024). This requires handling design requirements,
such as deck and tower displacements under live loads, stresses devel-
oped at the member level, and global aeroelastic responses, such as
buffeting-induced responses and flutter and aerostatic instability,
among others, that can involve contradictory design modifications.
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Besides their clear influence on the structural responses, deck shape
design modification impacts the aeroelastic responses by means of
changes in (a) the mechanical properties (e.g., natural frequencies,
mode shapes, etc.) and (b) the aerodynamic and aeroelastic character-
istics (e.g., force coefficients, flutter derivatives, admittance functions,
etc.). The direct relationship of the deck cross-section with most of the
critical bridge responses turns its definition into a fundamental step in
the bridge design characterized by its complexity due to the nonlinear
nature of bluff body aerodynamics and bridge aeroelasticity (Shiraishi
and Matsumoto, 1983; Lin et al., 2005; Kareem and Wu, 2013, 2015).
Besides shape modifications, the use of appendages, as well as passive
and active flow control methods, have also been proposed to mitigate
wind-induced responses (Xue et al., 2021; Wang et al., 2023). However,
shape modification remains one of the most cost-effective and functional
techniques to improve the aeroelastic performance of bridges compared
to adding appendages or countermeasures, which involve higher
installation and maintenance costs (Larsen and Wall, 2012).
Developing aero-structural bridge design tools requires the accurate
numerical evaluation of the shape-dependent wind-induced responses.
In order to overcome the traditional heuristic-based sequential analysis
(Chen and Duan, 1999; Cid Montoya et al., 2018a proposed a numerical
methodology based on the combination of surrogate models, computa-
tional fluid dynamics (CFD) simulations of the bridge aerodynamics, and
the quasi-steady theory (QST). The QST (Scanlan, 1987; Chen and
Kareem, 2002; Tubino, 2005) permits the approximation of
fluid-structure interaction parameters such as flutter derivatives and
admittance functions by using the force coefficients and their slopes,
reducing the CFD simulations’ computational burden because only static
simulations are needed. This approach shows a good performance for
streamlined geometries at high reduced velocities (Chen and Kareem,
2003; Wu and Kareem, 2013), which is adequate for the evaluation of
ultimate limit states such as flutter instability or buffeting response at
high wind velocities. However, a major shortcoming of the QST model is
its inability to take into account the fluid memory effect (Chen and
Kareem, 2003; Wu and Kareem, 2013; Kavrakov and Morgenthal, 2017)
in the aerodynamic characterization of flow. In other words, the QST
model assumes that the structure is oscillating with such low frequencies
that the fluid particle interacting at the frontal end of the structure (deck
section) passes around the deck and through to the wake region on the
downstream side even before the structure could respond to the flow
field (which is applicable for cases when the reduced velocity U* — ).
These assumptions make the QST approach suitable for application in
the higher reduced velocity ranges, and that too mostly for streamlined
deck sections. As the deck section becomes bluffer, which may be
necessary in certain instances to enhance the mechanical properties of
the bridge to account for certain bridge loading conditions, the QST
model shows poor performance (Diseth et al., 2011). The shortcomings
of the QST model were first highlighted by Diana et al., 1993, when
comparing the aeroelastic analyses of the Humber bridge to full-scale
monitoring data (Bocciolone et al., 1992). Similarly, the manifestation
of the poor performance of QST model in the severe underestimation of
the stability limit of the Hardanger bridge in Norway was emphasized by
Qiseth et al., 2010, thus leading the authors to conclude that the tradi-
tional QST was inadequate to model the self-excited forces in coupled
flutter or buffeting response analysis when compared to full bridge
monitoring measurements. In addition, the QST model is not suited for
application in bridge typologies other than the streamlined single-box
decks such as the twin-box decks of the Xihoumen bridge (Deng et al.,
2021) or Stonecutters bridge (Hui and Wong, 2009) and truss bridges
like the Akashi Kaikyo bridge (Kashima et al., 2001), Verrenzano bridge
(Kinney et al., 1966), and Golden Gate bridge (Ludke, 2013). The effect
of gap-width on the aerodynamic behavior of twin-box decks and sub-
sequent responses is detailed in Kwok et al., 2012; Laima and Li, 2015,
and the limitations of the QST model for application in bluff decks and
twin-box decks are highlighted in Febo and D’Asdia, 2010; Nieto et al.,
2020. Similarly, in the case of truss bridges, the estimated flutter
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derivatives from the QST formulation show relevant variations in
magnitude when compared to the experimental results as reported by
Russo et al., 2023 for the Akashi-Kaikyo bridge. Hence, it can be inferred
that the QST model fares from poor performance when applied to
twin-box (or multi-box) decks and truss bridges, and thus, a more
elaborate extraction of aeroelastic parameters obtained from an actual
fluid-structure interaction study is necessary for buffeting analysis and a
better estimation of flutter stability limits.

In addition, the QST assumes frequency independence (Lazzari,
2005) in aeroelastic loading of bridge decks (i.e., the flutter derivatives
are independent of the frequency of oscillation of the deck). However,
the fundamental mechanism driving the phenomenon of aeroelastic
flutter is the addition of flow energy into the structural system, leading
to the increase in total potential energy of the structure, which ulti-
mately leads to instabilities and, thus, divergent oscillations (Dyrbye
and Hansen, 1997; Abbas et al., 2017). Alternately, the flow energy
derived from the aerodynamic forces (harmonically oscillating with a
specific frequency) under a certain condition of phase lead/lag relation
with the structural motion starts feeding energy to the structural system
leading to flutter instability (Dyrbye and Hansen, 1997). This un-
derscores the necessity to consider the frequency-dependent aeroelastic
loading (Lazzari et al., 2004; Diana et al., 2013a, 2013b) in the pre-
liminary design of medium and long-span bridges. For that purpose,
either free vibration (Sarkar et al., 1994; ITwamoto and Fujino, 1995;
Mannini, 2006; Argentini et al., 2022) or forced vibration (Matsumoto
et al., 1996; Neuhaus et al., 2009; Wu et al., 2020; Diana and Omarini,
2020) tests in the wind tunnel can be carried out to identify the flutter
derivatives. However, the necessity to conduct either the forced vibra-
tion or free vibration wind tunnel tests for multiple deck shape candi-
dates along the design process makes the experimental approach a costly
pursuit for design purposes, and its applicability is typically limited to
the validation of final designs and for addressing minor modifications
(Argentini et al.,, 2022). An alternative cost-effective approach to
expensive experimental testing is to solve the flow field around a
dynamically oscillating bridge deck numerically using the Navier--
Stokes’ (NS) equation with appropriate boundary conditions, which has
also gained popularity over the past few years (Frandsen, 2004; Selvam
et al., 2002; Sarki¢ et al., 2012; Brusiani et al., 2013; Sun et al., 2009;
Sarwar et al., 2008; Mannini et al., 2016; Fransos and Bruno, 2010).
With the aid of a numerically solved flow field obtained from CFD
simulation, the unsteadiness in the flow (or, alternately, the fluid
memory effect) can be properly accounted for in addition to the aero-
dynamic non-linearities. Thus, CFD simulations offer a cost-effective,
viable solution to experimental testing during the deck shape design
process. In this study, we adopt this approach in order to produce a fully
numerical design framework that permits the implementation of nu-
merical optimization algorithms to conduct the aero-structural design of
bridges. The accuracy of the numerical results obtained throughout CFD
simulations is guaranteed by performing multiple verification and
validation studies using experimental data. Then, once the CFD-based
design optimization is completed, a final experimental validation of
the optimized deck can be carried out as is customary in current engi-
neering practice.

On the other hand, adopting surrogate models for emulating aero-
dynamic parameters permits the creation of smooth response surfaces
(Forrester et al., 2008) that guarantee their continuity and differentia-
bility within the design space, which are fundamental properties for
their effective use in design frameworks such as those adopting
gradient-based optimization algorithms (Haftka and Giirdal, 1992;
Hernandez, 2010; Arora, 2011). A first contribution in this direction was
reported in Cid Montoya et al., 2018b, where a long-span bridge under
multiple displacements- and stress-related design constraints along with
a flutter instability design constraint was optimized by performing 3D
multi-mode flutter analyses. This study highlighted the importance of
the shape-dependent mechanical contribution of the deck to the
flutter-resistant design. One of the key conclusions of this investigation
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was the positive impact of increasing the deck depth for handling static
responses such as deck displacements and stresses, but also in increasing
the torsional natural frequency, which helped to increase the flutter
response. As a consequence, the optimization algorithm tried to increase
this value as much as possible, always reaching the maximum depth
allowed, i.e., the design variable upper bound formulated in the opti-
mization problem. Similar behavior was observed when conducting
bridge aero-structural optimization considering buffeting-induced ac-
celerations (Cid Montoya et al., 2022). These studies, including other
similar studies reported in the existing literature (Jaouadi et al., 2020;
Tinmitondé et al., 2022; Zheng et al., 2023), all rely on QST-based
formulation and aerostatic analyses for the surrogate modeling frame-
work and thus suffer from the limitations of QST-based formulation as
highlighted in the previous paragraphs.

Indeed, in some design scenarios, the optimum design with the best
combination of the aerodynamic and mechanical properties to fulfill all
structural and aeroelastic requirements may be within the design
domain where the QST formulation shows an acceptable performance.
However, further increasing the deck depth, which is a very efficient
way to increase the torsional and vertical stiffness, may lead to bluff
deck designs for which the hypothesis of the QST will not hold. This
design challenge is conceptually sketched in Fig. 1. This can be the case
of medium and not-that-long span bridges, as well as other typologies
commonly adopted for long- and super-long span bridges, such as truss
decks or multi-box decks, where the QST formulation does not provide
enough accuracy for being used in the wind-resistant design without ad
hoc corrections (Qiseth et al., 2010; Nieto et al., 2020).

Hence, to perform the aerodynamic and aero-structural design of
decks considering design domains involving both streamlined and bluff
geometries, as well as considering other scenarios where the QST does
not hold, such as low reduced velocities, the aeroelastic characterization
of the bridge deck must be advanced to avoid the limitations and as-
sumptions of the QST, such as frequency independence. Thus, in this
study, we propose an improved framework based on the direct calcu-
lation of the 18 flutter derivatives (Chen et al., 2002; Chowdhury and
Sarkar, 2004) using dynamic CFD simulations to directly train the
aeroelastic emulator with the fluid-structure interaction parameters as a
function of the deck shape and the reduced velocity. Therefore, the
methodology adopted is conceived to explore wide shape design do-
mains that include streamlined and bluff deck cross-sections, hence
allowing designers and design optimization algorithms to accurately
transition back and forward from streamlined to bluff deck
cross-sections. With this aim, a kriging surrogate (Krige, 1951; Sacks
etal., 1989) is trained to emulate the flutter derivatives of the bridge as a
function of the shape and reduced velocity. Force-vibration simulations
(Sarkié¢ et al., 2012, 2015; Nieto et al., 2015; Mannini et al., 2016; Zhuo
et al., 2022) are used to obtain the time history of aeroelastic forces for
further computation of flutter derivatives as per procedures outlined in
Xu et al., 2014.
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The design framework proposed in this study is introduced in Section
2 and each step is discussed in detail, including the fundamental aero-
dynamic and aeroelastic formulations for flutter and buffeting analyses,
and the surrogate modeling technique adopted. The details about the
single-box deck adopted as an application example, which is based on
the experimental CRIACIV (Inter-University Research Centre on Build-
ing Aerodynamics and Wind Engineering) section from Mannini et al.,
2010, are discussed in depth in Section 3, including the definition of
design domain, design variables, sampling plan, and the design of ex-
periments. Section 4 is devoted to the full description of the computa-
tional modeling aspects adopted for the CFD simulation, including the
spatial discretization of the computational domain, and the different
verification and validation studies carried out for aerostatic (in the form
of time-averaged force coefficients vs. angle of attack) and aeroelastic
(flutter derivatives vs. reduced velocity) analyses. The response surfaces
of the shape- and frequency-dependent emulator obtained from the
kriging surrogate model for all the 18 flutter derivatives are reported in
Section 5, whereas Section 6 discusses the influence of the
shape-dependent flutter derivatives on the bridge aeroelastic responses.
Given that the focus of this piece of research is the nonlinear behavior of
the self-excited forces that typically occurs at low reduced velocities,
buffeting will be the aeroelastic response under study in order to analyze
the response in the three degree-of-freedom independently and to study
the response at different reduced velocities. The buffeting responses are
later used for tailoring the bridge deck, showing the methodology’s
effectiveness. Finally, Section 7 summarizes the key conclusions drawn
from the different analyses covered in this study and discusses future
lines of research.

2. Aero-structural design via emulating shape- and frequency-
dependent flutter derivatives

Previous aero-structural design frameworks developed for bridges
with streamlined deck cross-sections resulted in effective and powerful
design tools for improving the wind-resistant design by reducing the
material volume while achieving the structural and aeroelastic safety
and serviceability specifications (Cid Montoya et al., 2018b, 2021, 2022;
Cid Montoya, 2024). Alternative frameworks were also developed by
Jaouadi et al., 2020; Tinmitondé et al., 2022; Zheng et al., 2023. A
commonality in all those reported studies, however, is the adoption of
the QST-based formulation and assumptions of frequency independence,
which confines the scope of shape design space strictly to streamlined
deck cross-sections and neglects the dependency of the aeroelastic forces
on the reduced velocity (U" = U/fB). This last consideration gains
importance when dealing with not-so-long spans, as the natural fre-
quencies are higher and, consequently, the reduced velocities are low.
According to Diana and Omarini, 2020, nonlinear frequency-dependent
effects are relevant when the reduced velocity is lower than
U’ < 10 - 15. The range of reduced velocities at which the QST holds

Baseline design

Cceptable
QST

perfonnance

l Unacceptable

QST
per: formance

Fig. 1. Conceptual illustration of the typical contradictory aerodynamic and mechanical contributions of deck shape modifications to the bridge aeroelastic responses
and the expected performance of the QST along classical shape design domains (based on Cid Montoya et al., 2018b).
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depends on the specific deck cross-sections, and other studies suggest
different ranges for the validity of the QST at low reduced velocities (see,
for instance, Diana et al., 2013a, b; Calamelli et al., 2024). To overcome
all the limitations posed by QST-based formulation within design
frameworks, this study proposes a QST-free aeroelastic surrogate-based
design methodology, which enables the exploration of a wide shape
design space comprising of both streamlined and bluff deck sections of
any deck typology and allows to account for the frequency-dependency
of the aeroelastic loading.

The proposed QST-free aeroelastic surrogate-based design frame-
work is described in Fig. 2 and comprises four key sequential modules
that permit the construction of an aeroelastic emulator to be imple-
mented in aero-structural design frameworks. The first step is the defi-
nition of the design variables and design parameters and their allowed
range of variation. The variables defining the cross-sectional dimensions
of the bridge that impact the aeroelastic response of the bridge, such as
the chord width, depth, fairing angle, etc., qualify under shape design
variables Sy, whereas the aeroelastic parameters, such as the reduced
frequency/velocity, fall under design parameters. While the distinction
between the shape design variables (derived from the deck cross-section
definition) and the design parameters (derived from aeroelasticity, i.e.,
oscillation frequency or wind velocity) may not be very distinct from a
purely mathematical standpoint in the surrogate training process, in a
truly physical and functionality sense, however, the variables that can
be controlled by the designer and/or is based on designer’s will qualifies
under design variables, whereas the design parameters encompass those
that are not generally controlled by the designer and rather represents
the different instances/possibilities exhibiting the dynamic interaction
of bridge deck with winds with variability in phase lead/lag relation
with the structural motion. Hence, the set of shape design variables
composes the design domain, while the set of aeroelastic parameters
originates the aeroelastic parametric domain. Therefore, the aeroelastic
emulator will be defined within a “surrogate domain” that comprises the
union of the design and parametric domains. From a designer’s
perspective, it would be compelling to define a large number of design
variables to achieve better designs; however, as the problem’s dimen-
sionality rises, so does the associated computational cost due to the so-
called ‘curse of dimensionality’ (Forrester et al., 2008). With the same
motivation and a view to minimize the computational burden, two
variables are chosen in this work: one shape design variable, which is the
deck depth (H) because of its ability to tailor the deck ranging from
streamlined to bluff geometries, hence S; = H, and one aeroelastic
design parameter, which is the reduced velocity (U*). Hence, the sur-
rogate domain is Z; = [S4, U’]. It is worth mentioning that the elimi-
nation of the QST applicability requirements enables the definition of
wider design domains only limited by engineering criteria and compu-
tational resources.

Once the design variables and parameters are identified and their
ranges are defined, the next step is to create an adequate sampling plan
that permits the effective exploration of the surrogate domain previously
defined. The sampling plan must be designed to seek an effective domain
exploration considering the particularities of the selected surrogate
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domain, such as eventual nonlinear aeroelastic behaviors. Further de-
tails are discussed in Sections 2.3 and 4.1.2. The next step in the
sequential process is to conduct dynamic CFD simulations to quantify
the aeroelastic response or fluid-structure parameters of interest as a
function of design variables and parameters at discrete observation
points. While the aeroelastic response of streamlined deck bridges can
be assessed with reasonable accuracy using only eight flutter de-
rivatives, i.e., the lift and moment flutter derivatives A} H; ,i =1, ...,4,
the aeroelastic responses of bluff deck bridges are impacted by the drag
flutter derivatives P}, as demonstrated in the analysis of some specific
bridges, such as the Akashi Kaikyo Bridge (Miyata et al., 1995) and the
Lions Gate Bridge (Jones et al., 2003), and in other research studies
(Singh et al., 1996; Chowdhury and Sarkar, 2003; Xu et al., 2016).
Hence, it is pivotal to emulate the full set of flutter derivatives to
properly model all aeroelastic effects in a design domain comprising
streamlined and bluff deck cross-sections. The CFD simulations required
to extract the 18 flutter derivatives throughout the forced vibration
technique can be carried out either in an uncoupled manner (one DoF
imposed at a time as considered in the current work or in Mannini et al.,
2016; Wang and Chen, 2022) or in a coupled manner (all the 3 DoFs
imposed at once as in Xu et al., 2014) at the discrete points defined in the
sampling plan. From the CFD simulations, the time history of aeroelastic
forces is obtained, to which either the Fast Fourier Transform (FFT)
(Mannini et al., 2016) or the least squares method (Xu et al., 2014) can
be applied to obtain the aeroelastic flutter derivatives. Since the pro-
posed numerical design methodology intends to advance current design
methods well established in the engineering practice, the boundary
conditions enforced on the CFD model should reflect the wind tunnel
testing conditions commonly adopted in the industry, and a represen-
tative subset of numerical results must be validated against experi-
mental measurements. Two levels of experimental validation for the
CFD results should be conducted in the context of the proposed QST-free
methodology: (1) time-averaged force coefficients and Strouhal
numbers as a function of the angle of attack obtained throughout static
CFD simulations and (2) time-variant aeroelastic force coefficients and
integrated values of the flutter derivatives as a function of the reduced
velocity obtained by dynamic CFD simulations. This is a fundamental
part of the proposed methodology that advances previous frameworks
based on the QST that only required static CFD simulations. Following
the aeroelastic evaluations carried out by the CFD simulations, the next
step is to train the surrogate model to build an aeroelastic emulator,
which comprises a smooth response surface of flutter derivatives satis-
fying the design requirements of differentiability and continuity over the
design space. From a mathematical black-box perspective, the QST-free
aeroelastic emulator of the self-excited forces .«/,, can be formulated as:
#(Sq,U ) =[A; H; ,P;] @
Where the input is the surrogate domain Z; = [Sq, U'] and the output is
the complete set of 18 flutter derivatives A;, H;, P;, wherei=1, ...,6, at
angle of attack @ = 0°. From the obtained response surfaces, either the
values of flutter derivatives can be used for design purposes adopting

1

Aeroelastic evaluation:
Dynamic CFD Simulations

Aeroelastic surrogate
model construction

Fig. 2. Proposed framework for creating a design-oriented QST-free aeroelastic emulator.
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traditional heuristic design approaches, or alternately, the surrogate
may be employed in the surrogate-based design optimization (SBDO)
process to obtain an optimal bridge deck shape design.

2.1. Aerodynamic and aeroelastic formulations

2.1.1. Aerodynamic force coefficients and Strouhal number

The aerodynamic force coefficients are the result of the integration of
the time-averaged pressures distribution and viscous stresses along the
deck perimeter caused by a constant wind without fluctuations on a
bridge deck that is assumed to be rigidly supported. The aerodynamic
steady forces are usually expressed in non-dimensional form (normal-
ized by the dynamic pressure 12 pU? and a representative dimension of
the deck) and are given by the expressions in Eq. (2). The Strouhal
number, which depends on the frequency of vortex shedding is calcu-
lated by the expression for S; in Eq. (2) below.

__ D __ L __ M g _JuH
"T1a "B " 12 pU”B 1o p?B* ™' U

(2

In Eq. (2), D and L are the drag and lift forces, respectively, whereas M is
the torsional moment acting on a unit of span length of the deck at a
particular angle of attack. Similarly, p represents the density of air, U
stands for the free-stream flow velocity and f, is the vortex shedding
frequency in Eq. (2). The chord width of the bridge deck is represented
by B whereas the depth of deck is represented by H. The sign convention
adopted for evaluating static aerodynamic force coefficients is shown in
Fig. 3.

2.1.2. Self-excited forces

Dynamically flexible medium- and long-span bridges oscillate under
the wind action and the structural motion of these structures in turn
induces aeroelastic forces on them, which are also called the motion-
induced or the self-excited forces. The self-excited forces acting on a
wind-sensitive structural system are usually expressed in the form of
aeroelastic coefficients called the aerodynamic flutter derivatives, which
are a set of nondimensional unsteady parameters that establish the re-
lationships between the self-excited forces and the deck displacements.
The flutter derivatives can be expressed in different notations such as the
most popular Scanlan notation (Scanlan and Tomko, 1971), PoliMi
(Politecnico di Milano) notation (Zasso, 1996), Kiissner notation (Sze-
chenyi, 1973), quasi-steady modified notation (Zasso, 1996), etc. In the
present work, the Scanlan notation and the PoliMi notation, which
provides a better resolution of flutter derivatives in the lower reduced
velocity range, are used, and discussed below.

(a) Scanlan Notation:

The aeroelastic self-excited forces induced on the deck section under
the wind action can be evaluated using the semi-empirical approach
proposed by Scanlan and Tomko, 1971. In this approach, the aeroelastic
forces on the deck section are related with the deck motion components
(displacements and rotations) via a first order linear approximation,
which can also be realized using a Taylor series expansion of aero-
dynamic forces around the respective motion component under

Fig. 3. Sign convention adopted for the force coefficients.
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consideration retaining the first order derivative while neglecting the
higher order derivative terms from the Taylor series. Two degrees of
freedom (corresponding to ‘pitch’ and ‘heave’) were considered in the
original formulation proposed by Scanlan and Tomko, 1971. Later, the
same formulation was extended to determine all the 18 flutter de-
rivatives by incorporating the third degree of freedom based on hori-
zontal oscillations of the deck section (Singh et al., 1996; Jain et al.,
1996). Based on the same formulation, the self-excited forces are given
by Eq. (3).

1 2g h Ba 2 h p 27+ P
L.=5pUB {KhH oKy + K2y + KH K HeD 4 KEHL
(3a)
Do = L8|k, PP 4 kP B k2P sa+K2PE L K.P; h+1<2p hl - (ap)
2 'u gt ‘B °B B

1 202 h
M, pUB {KhA U+KA U

+h P P
2 2 2
+K2A a0+ KA~ +KA KPA@}
(30)

In Eq. (3), the self-excited lift and drag force per unit length of span are
represented by Lg, and D, whereas the aeroelastic moment per unit span
length is represented by M. Similarly, Kp, K, and K, represent the
reduced frequency of oscillation corresponding to heave (h), pitch (),
and shove (p) degrees of freedom, which are defined by K, = 27/ U, K,
=21/ U', K, = 21/ U", respectively, where U* is the reduced velocity
associated with respective degrees of freedom. The reduced velocity U*
is defined as U* = 27U/ w, B, where x = h, a, p, denote the respective
motion components, and w, denotes the circular frequency associated

with the motion. Similarly, H, a and p, are the first order derivatives with
respect to time for the heave, pitch, and shove motion components
respectively. Finally, H;*, A;* and P;* (i = 1, 2, ...6) are the flutter de-
rivative values computed from the time history of aeroelastic forces. The
sign convention adopted for the aeroelastic forces and different degrees
of freedom for the dynamical system is shown in Fig. 4.

(b) PoliMi Notation:

The PoliMi notation for representing the flutter derivatives proposed
by Zasso, 1996 has some salient features and adds to the advantage from
other notations. This notation allows a quantitative comparison of
aerodynamic forces on the deck cross-section from the coefficient values
with no normalization factors and maintains the representation with
same intrinsic resolution at high and low reduced velocities (Zasso,
1996). The loss of resolution in the lower reduced velocity range for
flutter derivatives Az*, As*, Hz*, Hs* is commonly encountered in
Scanlan representation of flutter derivatives. However, when flutter
derivatives are expressed in PoliMi notation, distinct non-linear trends
of flutter derivatives as a function of reduced velocity can be observed.
In addition, the flutter derivatives expressed in PoliMi notation converge
towards that obtained from the QST exhibiting asymptotic trends
approaching a limiting value at higher reduced velocity range (more
distinctly observed for streamlined sections). The manifestation of such
a tendency serves as an additional verification for the computed flutter
derivatives using CFD simulations. Hence, the advantages offered by the
PoliMi notation are also utilized in this work while formulating the
sampling plan and training the surrogate model. In the PoliMi notation,

the self-excited forces are given by Eq. (4), where U, =L

T p
) UzB} (42)
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Fig. 4. Sign convention adopted for the aeroelastic forces and mo-
tion components.

h Bax . .t h .p . m p
+a3a+a42—U:;)2E7a5§+a62U;)2E (40)

1 ;
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As both the notations are used in different sections of the current
work, the conversion relation between the flutter derivatives expressed
in the Scanlan notation to the PoliMi notation and vice-versa are also
included and are given by Eq. (5) below.

H, = 5 hy; H,= 55 h,; Hy= <Z> hy (5a)

H, :% b, H,=-—h; H, :g K (5b)
1= @ A, = o5 % Ay = (2—”> a, (5¢)
R . U . R

A, = 5 44 Ag 5, % Ay = Phad (5d)
N U, . U, . U\? .

Plzfﬂpé Pzzfziﬂpﬂ P3:<ﬂ) D3 (5e)

P4:§p6? Psz_ﬂpl? P6:§P4 (50)

The key difference between the two notations is that the flutter de-
rivatives P;* and P4* refer to the lateral velocity/displacement whereas
ps5* and pe* refer to the same in PoliMi notation. Similarly, P5* and Pg*
refer to the vertical velocity/displacement in Scanlan notation whereas
p1* and p4* refer to the same in PoliMi notation.

() Quasi-Steady Theory (QST) formulation:

The quasi-steady theory (Scanlan, 1988) is a modeling scheme for
wind-induced loads in which the interaction of flow with the bridge at
the current time instant is mapped to the state at infinite time neglecting
the wake effect on the downstream end of the deck (Wu and Kareem,
2013). A more in-depth discussion of the quasi-steady theory can be
found in Tubino (2005). To perform a standard frequency domain
analysis, the quasi-steady load model is linearized (Salvatori and
Spinelli, 2007; Lazzari, 2005), which upon further simplification and
comparison with Scanlan’s semi-empirical relations yields a relationship
connecting the flutter derivatives with mean aerostatic force coefficients
and their slopes. The flutter derivatives based on QST model are given by
Eq. (6), where K = f],—” is the reduced frequency of oscillation.
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(6)
Similarly, Cpg-,Cpo-andCyo- are the mean drag, lift and moment
coefficients respectively at 0° angle of attack whereas C;,‘Oc,

CLOO andc;v,yog are the slopes of the mean drag, lift, and moment co-
efficients respectively. The coefficients y,,p;,4p are the aerodynamic
centers, which represent the distance between the elastic center of the
cross section and the distances between the point of application of the
aerodynamic forces expressed as a fraction of the section width B and are
defined by pu,=A;/H,, py=A}/H;, up=py (Chen and Kareem, 2002).
Alternately, Diana et al. (1993) have proposed that the aerodynamic
centers can be determined from the ratio of flutter derivatives defined by
fa = A, /Ay, uy= —H,/H;, up = P,/P}, obtained from the wind tunnel
tests at the highest reduced velocity where the QST holds true. However,
as no information exists about the flutter derivatives beforehand in the
frame of standalone application of QS formulation, so, in this work, the
aerodynamic centers inferred from the QS approximation of the flutter
derivatives A}, H;, A, and H, as proposed by Larose and Livesey (1997)
is used to determine the aerodynamic centers. The remaining flutter
derivatives such as the H;*, A;* and P;* (i = 4, 6) are 0 in the QST
formulation. The application of QST-based formulation in the case of
streamlined decks can be found in Larose and Livesey, 1997; Borri and
Costa, 2004; Febo and D’Asdia, 2010; Cid Montoya et al., 2020.

2.1.3. Buffeting forces

The buffeting wind loads per unit length of bridge, due to the tur-
bulent velocity fluctuations, defined by u = u,e2¥* and w = wye?¥ ¢,
(Diana et al., 2020a) is given by Eq. (7), where u and w are the turbulent
fluctuations at a given time instant whereas u, and w, are the amplitudes
of the harmonic fluctuation components in the horizontal and vertical
directions respectively.

| N

Db*épU B()(Du EJFZDW T )7 (7a)
1 o/ u «w

Lb—EIJU B()(Lu ot g >7 (7b)
1 . ou . W

My =2 pU%B (30, 5+ 5 ) 79

Similarly, ¥p., Xpws X1u> Xiw> X X @€ the aerodynamic admittance
functions, which are a function of the deck cross-section and can be
determined through experimental measurement or numerical simula-
tions. Further details about buffeting analysis and determination of
aerodynamic admittance functions can be obtained from Larose, 1999;
Zasso et al., 2013; Diana et al., 2013a, b.

The goal of this work is to model the nonlinear behavior of the self-
excited forces with a focus on the low reduced velocities. In order to
simplify the interpretation of the results, the admittance functions will
be calculated using the Davenport admittance (Davenport, 1963), hence
avoiding the nonlinearities coming from the buffeting loads part. This
approach was also used in the activities of the IABSE Task Group 3.1.
(Diana et al., 2020a, 2020b). Hence, the admittance functions will be
calculated as per Eq. (8), where A(f*) is the davenport admittance
(Davenport, 1963). A decay factor of 7 is used to be on the conservative
side when performing the buffeting-resistance deck shape tailoring.
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2.2. CFD modeling formulation

2.2.1. Static simulation

Flow around the bridge deck is modeled by incompressible Unsteady
Reynolds Averaged Navier-Stokes (URANS) equations with k-w SST
turbulence model (Mannini et al., 2010, 2016; Fransos and Bruno, 2010;
Brusiani et al., 2013; Alvarez et al., 2018). A 2D flow is considered in a
rectangular domain inside of which the deck of bridge is modeled.

The governing fluid flow equations are given by Egs. (9) and (10) for
the static case (stationary deck section).

an

a—Xi—O 9
oU; oU P 0 [ (0U OU\  —
/’E+/’Uja—xj— 0—xl+0_xj {M(a—x]Jra—xl) puiuj:| 10

In Egs. (9) and (10), U; is the mean velocity of flow, P is the mean

pressure, y is the molecular dynamic viscosity of fluid, u is the fluctu-
ating component of velocity, S; is the mean strain rate tensor and x;
represents the spatial coordinates of the fluid domain in 2D cartesian
frame. In the URANS approach, the averaging operator defined in Eq.
(11) is applied on the Navier-Stokes (NS) equation, which represents the
average of many statistically identical realizations of flow variables at a
certain time (Ferziger and Peric, 1996).

N
1 P(xt)
l ; 11

@(x.t) = lim

After applying the averaging operator on the NS equation, some
additional terms appear due to the non-linearity of convection term in
NS equation leading to the classical closure problem. The residual term

- pruj obtained after the averaging procedure is called the Reynolds
stress tensor, which is equated to the mean velocity gradient using the
classic Boussinesq hypothesis to close the system of equation. After some
mathematical simplification and substitutions, the specific Reynold’s

stress tensor is obtained as follows:
, 2
7y =205 3 koy (12)

For incompressible flow, the second term in Eq. (12) is usually
combined with the pressure gradient term of NS equation resulting in a

turbulent pressure field, i.e.,p < p + (2/3 k) ; here, p = P/ p is the ki-

nematic pressure field. The only remaining unknown in the system of
equation is the turbulent kinematic viscosity 9, which is obtained by
solving the transport equation of k and w. The details about the k-w SST
turbulence model along with all the model coefficients used in the
transport equations can be obtained from Menter et al., 2003.

2.2.2. Dynamic simulation

For the determination of self-excited forces to compute the flutter
derivatives, forced harmonic oscillations are imposed on the deck sec-
tion using the Arbitrary Lagrangian Eulerian (ALE) formulation (Donea
et al., 2004). The imposed motion for pitching, heaving, and shoving are
applied by a = a, sin(wt), h = h, sin(wt), and p = p, sin(wt) respec-
tively. The amplitudes of the imposed motions a,, h,, and p, are selected
by mimicking the common engineering practice for extracting the flutter
derivatives. The flutter derivatives dependency on the vibration ampli-
tude, which is important to accurately predict VIV responses (Wang and
Chen, 2022), is not addressed in this investigation. In this work, only one
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degree of freedom (DoF), i.e., either ‘pitch’, ‘heave’, or ‘shove’ DoF is
imposed at a time as shown in Fig. 5. For imposing the motion, the mesh
of the domain is adjusted in each time-step by moving the boundaries of
the deck section. The conservation of mass and momentum for the
motion-imposed deck system is given by Eqgs. (13) and (14), where Uy; is
the grid velocity in the ith direction.

ou - 1) _, a3
6xi
ou, U~ Uy) 0P 0 _—
R e A A CLNET) o

The mesh motion is implemented using a second-order quasi-tetra-
hedral Finite Element method (Jasak and Tukovic, 2007). The governing
equation for mesh motion is given by Eq. (15), in which the Laplace
equation for mesh node displacement vector (u) is solved with a variable
diffusivity (7).

V.(yVu) =0 (15)

The variable diffusivity is computed using the quadratic inverse
distance method, in which the amplitude of imposed motion at the
oscillating boundary gets diffused to the rest of the domain following an
inverse proportionality relation on the square of the distance of a cell
from the moving boundary. After obtaining the time history of aero-
elastic forces, the values of flutter derivatives are computed using the
method of least squares (Xu et al., 2014).

2.3. Surrogate modeling

In engineering design problems, often, a situation is encountered in
which it is difficult to ascertain the exact functional dependence of the
key response variables of interest subject to a given input and/or a set of
input variables. Due to the inherent complexity involved in the physical
process (either experiment or numerical simulation), a set of discrete
observations and samples often becomes the only alternative to explore
and gain valuable insights into the functional dependence between the
variables in certain cases (Forrester et al., 2008). Applying the same
philosophy to bridge aeroelasticity, the aerodynamic/aeroelastic re-
sponses subject to either the changes in the flow/aerodynamic condi-
tions and/or the structural parameters (such as due to the different
shapes, sizes, structural properties, etc.) would require an enormously
large set of experiments or numerical simulations to be carried out as the
relationship between the aeroelastic response of bridge deck subject to
several aerodynamic and structural constraints usually exhibits highly
non-linear relationships. In such a scenario, a surrogate model (which is
an approximating function to the real function describing the relation-
ship between the response variable and the design variables/-
parameters) becomes an easy-to-evaluate and computationally efficient
alternative to a plethora of physical/computational experiments.

The fundamental requirement for implementing surrogate models in
design frameworks based on gradient-based optimization algorithms is
that the response surface describing the relationship between the
response variable (aerodynamic/aeroelastic response within the current
scope of work) and the design variables/parameters is continuous,
smooth, and differentiable over the design space. The next important
consideration in surrogate modeling is the quality of the space explo-
ration, which consists of the necessity to sample a high enough number
of discrete observations of the response with an efficient distribution
along the design domain that guarantees that the set of observations
provides an accurate and sufficient representation of the real response in
the design domain for its intended use. For that purpose, different
sampling techniques are available such as the full-factorial sampling
plan, Latin hypercube sampling plan, space-filling Latin Hypercube
sampling plan, to name a few. Each of these techniques has its own
strengths and drawbacks, as discussed in McKay et al. (1979), Sacks
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Shoving Motion

Fig. 5. Schematic representation of a deck cross-section subjected to forced vibration and oscillating in different (torsional, vertical, and lateral) vibration modes.

etal. (1989), Olsson et al. (2003), Picheny et al. (2010), and Yondo et al.
(2018). For instance, the full factorial sampling plan provides a uniform
level of accuracy throughout the design space with the uniformly spread
point distribution on its input variable axes but results in the overlap of
sample points when projected onto its constituent axes. The Latin hy-
percube sampling technique ensures a stratified distribution of sample
points in each of the dimensions; however, it still might suffer the
drawback of not fulfilling the space-filling criteria. The space filling
Latin hypercube sampling could be an alternative to satisfy the
space-filling criteria, but its computational complexity may rise very
rapidly as the size of sampling plan (or the number of sampling points)
increases. The choice of a specific sampling plan suited for a particular
problem is generally an open issue. In the context of wind engineering
problems, the computational extraction of fluid-structure interaction
parameters is typically conditioned to its later interpretation and vali-
dation with wind tunnel tests, which requires comparisons changing
only one variable, e.g., flutter derivatives as a function of the reduced
velocity, while the other variables are unchanged (ceteris paribus). In
this context, full factorial sampling stands as a very suitable alternative
for engineering interpretation and systematic analysis (Cid Montoya
et al., 2023). Further details about the full factorial sampling strategy
adopted in this investigation are described in Section 3.3.

Once the dimensionality of the problem is ascertained (based on the
number of design variables and design parameters) and an appropriate
sampling plan has been worked out, the next step is to determine the
responses (the output of the emulator, i.e., the flutter derivatives in the
current scope of work) via dynamic CFD simulations. Once these re-
sponses are available for every design included in the sampling plan, the
next step is to train the surrogate model. The Kriging surrogate model
(Krige, 1951; Sacks et al., 1989), which is a popular choice in
surrogate-based optimization problems, is chosen for this task as it
guarantees that all the responses of the samples are contained in the
response surface. This is a key advantage in problems where the
computation of the responses for each sample has a high computational
burden, as it is the case for dynamic CFD simulations. Previous appli-
cations in the bridge engineering field for emulating bridge deck force
coefficients can be found in Cid Montoya et al., 2018a; Kusano et al.,
2020; Nieto et al., 2020; Xu et al., 2020; Li et al., 2021. The kriging

emulator fAk(x) is made of a regression model or trend function k(x)"p
and a stationary Gaussian process error model &(x) that corrects the
trend function:

fex)=k(x)"p +e(x) 16)

Another key assumption in the Kriging model is that the observed
responses are the realization of random variables from a stochastic

process in which the random variables are correlated to each other
through the basis function defined in Eq. (17).
P
> a7n

In Eq. (17), k is the number of design variables, the vector x® is the it
sample and Y(x?) is the observed response of the i sample. Similarly,
(1)
g
are model parameters obtained maximizing the likelihood of the vector
of observed data y. Further details about the Kriging surrogate model

can be obtained from Forrester et al., 2008.
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2.4. Buffeting analysis

Buffeting is commonly a governing load in the wind-resistant design
of bridges. Depending on the characteristics of the incoming flow in
terms of the magnitude of the variations of the mean velocity and angle
of attack as a function of time, different modeling approaches can be
implemented, ranging from linear frequency domain methods (Cheynet
et al., 2016; Diana et al., 2020b; Cid Montoya et al., 2020) to nonlinear
time-domain methods (Chen and Kareem, 2002; Diana et al., 2010;
Diana and Omarini, 2020; Barni et al., 2022). In this study, a synoptic
wind scenario is used for analyzing the impact of deck shape modifi-
cations on the bridge’s self-excited forces and its impact on the buffeting
response. In this context, a linear frequency domain analysis is sufficient
to obtain an accurate response (Diana et al., 2023).

2.4.1. Multi-mode buffeting response

Under the action of turbulent winds, the bridge is subjected to three
main wind-induced forces, viz. (a) mean aerodynamic forces on the deck
submerged in the flow (b) self-excited forces due to the structural mo-
tion and (c) buffeting forces due to the turbulent velocity fluctuations.
The mean aerodynamic forces acting on the deck are defined in Eq. (2),
whereas the aeroelastic forces are given by Eq. (3). Since the RMS of the
accelerations of the bridge deck is considered for buffeting response
evaluation, the effect of mean aerodynamic forces can be neglected, and
the equation of motion can be written as:

M + (C — Cee )t + (K — K )Ju=f" 18)

Either the frequency domain or the time domain buffeting analysis
(Strgmmen, 2010; Caracoglia and Jones, 2003; Diana et al., 2023) can
be adopted for multi-mode buffeting response evaluation. However,
frequency domain analysis is relatively more efficient compared to time
domain analysis from a computational perspective, which makes it very
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suitable for design purposes when dealing with synoptic winds.

2.4.2. Frequency domain buffeting analysis

The buffeting response of a bridge deck, when expressed in physical
coordinates S,, as the matrix of power spectral density (PSD) of the
displacements is given by:

S, = PHO'S, dH " ®" (19)
In Eq. (19), ® is the modal matrix normalized to the mass, H is the

impedance matrix of the system at a given frequency and Sy, is the matrix
of PSDs of the buffeting forces. The matrix Sy, is defined by:
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In Eq. (20), x, represent the admittance functions, Synq(f*) is the cross-
power spectrum matrix of the incoming turbulence whereas S, Sy, Sww
and S, are the different components of the wind spectrum that is
multiplied by the space coherence function (Davenport, 1967). The root
mean square (RMS) of the buffeting responses given by rrys = [Urns,
Wrums, Ormsl, which are the RMS of lateral, vertical, and torsional dis-

placements and the RMS of accelerations rrys = {ﬁws,ﬁms, éRMS:| , are

obtained from the PSD matrix of displacements S; for each node of the
deck and wind velocity and are given by:

S / S,df and s = | / 16748, df @1
0 0

Further details about the procedure of frequency domain buffeting
analysis can be obtained from Hui et al., 2005; Zhu and Xu (2005); Diana
et al., 2020a; Diana et al., 2020b, and the references cited therein.

3. Application case
3.1. Baseline geometry

The reference geometrical cross-section considered in this work is
inspired by the Sunshine Skyway bridge in Florida (Shahawy and
Arockiasamy, 1996a, 1996b). Due to the popularity and ubiquity of this
type of section in medium-span bridges in different parts of the world,
several studies have been carried out to develop a better understanding
of the wind loading on this type of section. For instance, the peak ver-
tical displacement of the Farg bridge (resembling the cross-section used
in this work) obtained through full-scale monitoring showed good
agreement with that predicted from the quasi-steady approach (Petersen
et al., 1987). Similarly, the comparison of the mid-span deflection of the
prototype Sunshine Skyway bridge showed a very good agreement when
compared with the results obtained from section model tests and full
bridge model tests (Davenport and King, 1982a, 1982b). Further details
about the full-scale monitoring of bridges and comparison with experi-
mental and analytical approaches can be obtained from Larose et al.,
1992. In addition, the details of the sectional model tests and full
aeroelastic model tests carried out for the Prospect Verona bridge (with
similar cross-section) in Maine is well documented in King et al., 2005.
All these studies highlight the importance of this type of cross-section in
medium-span bridges, thus leading to the motivation for its selection as
an application case in this work.

Iow X Blw
Iow Xw  Bluw
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The baseline geometry comprises the single box deck as shown in
Fig. 6. Although the selection of this deck section as the baseline ge-
ometry is inspired by the Sunshine Skyway bridge, it is worth pointing
out that the bottom edge corners of the Sunshine Skyway bridge are
made sharp using acrylic blocks whereas in the current work, a small
radius of curvature (R = 0.05B) is provided. This is done to make the
computational studies carried out in this work consistent with the
experimental studies conducted in the experimental CRIACIV section at
the Inter-university Research Center on Building Aerodynamics and
Wind Engineering, Boundary Layer Wind Tunnel, Prato, Italy. During
the fabrication process, a slight degree of roundness was introduced in
the deck section bottom corners (marked by ‘e’ and ‘f* in Fig. 6) due to

(20)

the bending of aluminum sheets (Mannini et al., 2010). The degree of
roundness (whether perfectly sharp or with a slight curvature) strongly
influences the flow separation, attachment, and re-attachment points
and subsequently the Strouhal number. Experimental tests carried out at
the Western Ontario Wind Tunnel Laboratory, Canada (Davenport and
King, 1982b ; Ricciardelli and Hangan, 2001) on similar deck section
(but with sharp bottom corners) revealed positive lift force at zero de-
grees angle of attack (AoA) and demonstrated earlier stall whereas that
from the experimental CRIACIV section (with a slight curvature) yielded
negative lift force on the section at 0° AoA with a delayed stall. CFD
studies carried out by Mannini et al., 2010; Fransos and Bruno, 2010
later confirmed that a small degree of curvature introduced at the bot-
tom corners of the deck section makes a more realistic idealization of the
actual CRIACIV section, thus leading to better agreement in the flow
field and force coefficients. Since most of the validation aspects of the
CFD model employed in this work is based on the experimental CRIACIV
section and computational studies from Mannini et al., 2010; Fransos
and Bruno, 2010; Mannini et al., 2016, a small radius of curvature (R =
0.05B) is introduced at the bottom corners in the baseline geometry as
well as any other candidate design within the shape design domain
adopted.

3.2. Surrogate domain: design and parametric domains

Aiming at avoiding the curse of dimensionality issues discussed in
Section 2, a judicious choice of shape design variables and parameters is
necessary while still ascertaining the required degree of accuracy to be
achieved from the metamodel. Accordingly, two variables, viz. (a) depth
of deck (H) and (b) reduced velocity (U*) are chosen as shape design
variable and aeroelastic parameter respectively, which makes the
dimensionality of the surrogate modeling problem as 2. However, the
methodology presented in this investigation can be extended by adding
more shape design variables, such as the deck width (see, for instance,
Cid Montoya, 2024), corner angles (Jiang et al., 2020), the position of
appendages (Cid Montoya et al., 2023), and others, which may entail a
higher computational burden to properly explore the design domain.
The next step is the definition of the bounds of the surrogate domain
5 = [Sq,U"] in which a set of discrete observations are taken to learn
about the behavior of the responses.

The design domain is defined by setting lower and upper limits to the
only shape design variable adopted, the deck depth H. As shown in
Fig. 6, the profile of deck bounded by the letters ‘a - k’ defines the shape
of the baseline geometry with deck depth of Hy = 0.1556B, where B =
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Fig. 6. Deck cross-section of the baseline geometry (gray) including the upper and the lower bounds of the selected shape design domain.

36 m, is considered in the current work. The baseline design, or initial
design (Hp), corresponds to the deck cross-section geometry of the
Sunshine Skyway Bridge, as previously discussed in Section 3.1. The
lower bound and the upper bounds of the design domain with deck
depths Hpi, = 0.0879B and Hy,q = 0.2232B respectively, are obtained
by shifting the positions of ‘e’ and ‘f* vertically upwards leading to more
streamlined geometrical sections than the baseline geometry as well as
downwards leading to relatively bluffer ones. This information is also
reported in Table 1. It should be noted that the radius of curvature (R =
0.05B) is maintained for any candidate design within the shape design
domain.

On the other hand, the parametric domain consists of setting upper
and lower bounds to the reduced velocity U*. The domain adopted is U*
= [2.0, 20.0], seeking the reproduction of eventual nonlinear aeroelastic
features at low reduced velocities, typically occurring for reduced ve-
locities lower than 10 (Diana and Omarini, 2020), and also aiming at
capturing the flutter derivative values at large reduced velocities, in
order to cover the complete range usually required for aeroelastic
analyses.

3.3. Domain exploration: sampling plan

Once the design domain is defined, the next step is to create a sam-
pling plan to evaluate the responses of interest (18 aerodynamic flutter
derivatives in the current scope of work) at discrete sample points
residing in the n-dimensional surface/plane formed by the design vari-
ables/parameters, where n is the dimensionality of the problem. The
classical full factorial sampling plan combined with some applied en-
gineering judgement is adopted in this work. Engineering judgement is
applied in the sense that the projection of sampling points on the H/B-
axis is uniform in order to explore the entire design domain with a
uniform sample density. However, the projection on the U* axis is non-
uniform with larger number of points (4) stacked towards the lower
bound of reduced velocity range (ie, 2.0 < U* < 10.0) in order to
capture eventual aerodynamic nonlinearities, while only 3 points are
considered towards the upper bound (10.0 < U* < 20.0), since it is

Table 1

expected that the flutter derivatives tend to exhibit an asymptotic
behavior at large reduced velocities when represented as a function of
U* in PoliMi notation. Hence, the resulting samples for the reduced
velocity are U* = [2.0, 3.0, 5.0, 6.5, 10.0, 15.0, 20.0]. The sampling plan
adopted is represented in the U*-H/B plane as shown in Fig. 7. Table 1
reports some geometrical characteristics of the 7 shape designs adopted
for the full factorial sampling plan, where Hoge_scate T€Presents the
dimensional properties of the CFD/experimental model deck section
whereas the Hsunshine Skyway-scale Tepresents the dimensional properties of
the Sunshine Skyway bridge, 5H is the relative variation in depth of deck
with respect to that of the baseline geometry and 6 is the corner angles
(refer Fig. 6) of the geometry samples.

3.4. Numerical evaluation of the samples

The next step is to carry out dynamic CFD simulations for each of the
sample points as defined in the sampling plan to obtain the time history
of aeroelastic forces. After obtaining the time history, all the 18 flutter
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Fig. 7. Sampling plan over the surrogate domain in the U*-H/B plane.

Details of the deck depth (H) and corner angles (6) for all the 7 shape designs included in the sampling plan, including the initial design (H,), the lower bound design

(Hpmin), and the upper bound design (Hpqy)-

Design H/B Hpodel-scate () Hsunshine skyway-scate (1) SH (%) 0()

1 (Hmin) 0.0879 0.03955 3.164 —43.50 21.78
2 0.1104 0.04970 3.976 —29.00 28.05
3 0.1330 0.05985 4.788 —14.50 33.66
4 (H,) 0.1556 0.07000 5.600 0.00 38.63
5 0.1781 0.08015 6.412 14.50 43.00
6 0.2007 0.09030 7.224 29.00 46.82
7 (Hmax) 0.2232 0.10045 8.036 43.50 50.17
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derivatives of a given geometrical section can be determined. It can be
inferred from the sampling plan in Fig. 7 that there are 7 geometries in
total and 7 distinct reduced velocities are considered, which results in a
test grid of 49 cases. Since, these 49 cases are carried out for each of the 3
degrees of freedom (DoF), i.e., pitch, heave, and shove motion, the total
budget of the CFD simulations is 147 to determine the full set of 18
flutter derivatives for all the 7 geometries and reduced velocities defined
in the sampling plan.

The chosen domain comprises of a combination of more streamlined
and bluffer geometries as compared to the baseline geometry, which also
tend to exhibit fairly different and contrasting aerodynamic behavior.
This allows some degree of flexibility to the designer to play with the
deck section properties and decide whether to improve the aerodynamic
characteristics or to improve the structural stiffness by varying the
sectional depth based on the local wind climate. Similarly, the consid-
eration of a wide range of reduced velocities, comprising of low reduced
velocities where non-linear features are typically present and high
reduced velocities exhibiting where an asymptotic trend approaching
the QST values is expected can also be appreciated, permitting a wide
exploration of the aeroelastic phenomena.

4. CFD simulations
4.1. Computational modeling

4.1.1. Spatial discretization of the computational domain

The overall computational domain is a rectangle as shown in Fig. 8.
The entire domain is divided into different regions with varying levels of
mesh refinement to capture the important flow features, vortices, and
the wake on the downstream side of the deck, which has a significant
impact on the flow-induced aerodynamic forces. The key dimensional
parameters of the computational domain, which is very similar to that in
Fransos and Bruno, 2010, are reported in Table 2. An attempt is made to
discretize the computational domain as efficiently as possible with
adequate refinement level while still maintaining the Control Volume
(CV) cells count as low as possible to reduce the overall computational
cost/burden of simulation. Accordingly, the entire domain is divided
into 5 regions, viz. Region A, B, C, D, and E. The overall length of the
computational domain in the horizontal and the vertical direction are
Dx = 38.5B and Dy = 27.0B respectively. Similarly, the rectangular
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Table 2
Region wise distribution of CV cells in the computational domain along with
max/min sizes in the medium mesh.

Region Min. Size (m) Max. Size (m) Growth Rate Num. of Cells
A 0.0008 0.0090 0.009144 247,589

B 0.0080 0.0250 0.015750 7,516

C 0.0250 0.1000 0.057500 3,219

D 0.0100 0.2000 0.045000 21,089

E 0.1500 0.4000 0.060000 3,718

refinement region within the domain is located at a distance of Ax = Ay
= 8.5B from the inlet boundary in the horizontal and from the bottom
face in the vertical direction. All the relevant dimensions of the
computational domain including the refinement regions expressed in
terms of the deck width (B) are shown in Fig. 8.

Region A is the rectangular buffer region surrounding the deck sec-
tion, in which important flow-critical phenomena such as the flow
separation, attachment, and re-attachment takes place. The growth rate
of cells within Region A is limited to about 0.09%, which provides a very
finely resolved buffer region for flow-critical phenomena in the
boundary layer. The region lying next to the Region A is Region B, which
acts as a buffer region for capturing the wake formed on the downstream
end of the deck. The growth rate of the CV cells within Region B is about
1.57%, which is coarser than Region A but still adequately fine to cap-
ture the vortex shedding on the downstream end. The region adjoining
Region B is the wake refinement region designated as Region C, which
serves two essential purposes, i.e., (a) to capture the separated shear
layers from the surface of the deck which is then transported along the
flow and gets dissipated on the downstream side including the wake
formed behind the deck, and (b) to gradually increase the grid size while
progressing ahead in the downstream side of the deck. The region lying
exterior to the boundary layer, wake buffer, and wake refinement region
is the Region D, whose primary purpose is to serve as a medium for
smooth transition from a very finely resolved Region A, B and C to a
relatively coarse CV cells distribution in Region D. Finally, Region E
defines the overall extent of the computational domain which is located
far away from the deck section, the boundary layer and wake refinement
regions whose primary objective is to provide a freestream flow condi-
tions and to minimize the effect of imposed boundary conditions on the
flow around the deck. The details about the spatial discretization of
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Fig. 8. Discretization of the computational domain with refinement regions for the baseline geometry (H/B = 0.1556).
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computation domain including the wake buffer and wake refinement
region for the baseline geometry, the lower and the upper bound shape
designs, and the corner details are shown in Fig. 9. Further details about
the region wise distribution of control volume cells including the
maximum, the minimum cell sizes, their growth rate, and total region-
wise cell count for the baseline geometry is presented in Table 2.

It is worth highlighting that a special care has been taken for the
spatial discretization of the domain, especially the boundary layer, wake
buffer and wake refinement regions. A target y* value of 1 (i.e., y* ~ 1)
is sought after in the first layer of CV cells around the deck perimeter.
The distribution of the y* values around the deck perimeter is shown in
Fig. 10, in which it can be observed that the y* values around the deck
perimeter remains less than 1 largely, exceeds 1 only at a few points and
exceeds 2 at even fewer points. It should be noted that the plotted y™*
around the deck correspond to the time-averaged values over one
complete cycle of harmonically fluctuating aerodynamic forces. While
computing the time-averaged y* values over the full cycle, the y* dis-
tribution corresponding to 105 different time steps used to discretize a
full cycle were averaged in time to obtain the plotted values.

Further details about the mean and the maximum y* of CV cells
around the deck perimeter including the number and percentage of cells
with y* > 1 and y" > 2 for the medium mesh considered in the current
work is reported in Table 3. However, it is pointed out that the metrics
presented in Table 3 correspond to that at the final timestep (att =1 s) of
simulation using the medium mesh as opposed to an average over the
full 1 cycle as presented in Fig. 10.
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The comparison of mesh resolution considered in this work to that
present in the contemporary literature reveals that the percentage of
cells with y* > 2 is around 3.6% (Alvarez et al., 2019) whereas the same
metric in current work is about 1.0%. Hence, this comparison provides
an additional verification about the adequacy of mesh resolution pur-
sued in the current piece of research.

4.1.2. Parametrization of the computational domain for deck shape
tailoring

A parametrized semi-automated workflow was developed for the
generation of any design candidate geometry needed in the sampling
plan and in future design-oriented frameworks. In order to obtain a mesh
for any geometry with the required depth of deck and refinement level,
at first, the profile of the deck cross-section is created from nine control
points, resembling the experimental CRIACIV section with R/B = 0.
Among the nine control points, the two bottom edge corner points are
shifted vertically up or down to obtain more streamlined geometries or
bluffer geometries as compared to the baseline geometry configuration.
Then, a small radius of curvature, R = 0.05B is introduced at the two
bottom corner points resulting in the curved arcs (arcs ‘d-e’ and ‘f-g’;
refer Fig. 6), which is the final profile of deck used in the CFD simula-
tion. Once the deck outline with curved bottom edges is obtained, the
coordinates of the boundary layer are then determined by uniformly
projecting the deck outline outwards by a distance of B/45. Then,
different refinement regions as highlighted in Fig. 8 are created with the
maximum, the minimum cell size, and the growth rate of cells

Fig. 9. Spatial discretization of the computational domain with refinement details for the baseline geometry (H/B = 0.1556), the lower bound design (H/B =

0.0899), the upper bound design (H/B = 0.2232) including the corner details.
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Fig. 10. Distribution of time-averaged y™ over a full cycle around the perimeter of deck cross-section. The red marker represents the maximum y* around the
deck perimeter.

Table 3

Mean and maximum y " values for CV cells around the deck perimeter at @ = 0° in the medium mesh. y; is the height of the first layer cells in the BL, Np; is the number of
layers of hexahedral cells in BL, yp; is the thickness of the BL, Ny is the number of cells around the deck perimeter, y* is the mean y™ value at the last time step (t =1 s),
Max. y" is the maximum value of y“ att=1s,%y" >1and % y* > 2 indicates the percentage of cells with y* value greater than 1 and 2 respectively, BL cells indicates
the number of hexahedral cells in the boundary layer.

Fineness y1/B Ng YpL/B Ny y* Max. y* %y >1 %yt >2 BL cells
Medium 6.67 x 107° 50 0.022 1595 0.71633 2.37909 10.41 1.00 79,750
parametrized for each region to control the mesh refinement level in amplitude of vibration imposed in the pitching motion is 2° whereas in
each region independently. Likewise, the number of divisions along the the heaving and shoving motion are each 0.009 m in the respective di-
deck perimeter is also parametrized to control the cell aspect ratio in the rections, which corresponds to a non-dimensional amplitude of 0.128H,

1% layer hexahedral cells in the boundary layer while that in the normal as used in the study by Mannini et al. (2016).
direction (to deck edges) is governed by the target y* value. Hence, this
parametrization strategy enables (1) a precise control on the number of 4.1.4. Numerical schemes and solution algorithms
cells and the cell aspect ratio in the boundary layer including mesh The second order accurate Finite Volume Method (FVM) is used for
refinement levels and (2) the ability to control the key mesh parameters the discretization of the governing pde’s into a linear system of equa-
for creating meshes for different deck shape designs in a semi-automated tions. The convection term of the NS equation is discretized using the
fashion. second order linear upwind scheme that requires the gradient of velocity
to be specified. Similarly, the diffusion term in the NS equation is dis-
4.1.3. Boundary conditions cretized using the Gauss linear corrected scheme, in which the viscosity
The flow and boundary conditions imposed on the CFD model should is linearly interpolated across the control volume cells and a non-
reflect the experimental wind tunnel testing conditions so that a one-to- orthogonal correction factor is applied to account for non-
one comparison could be made while comparing the CFD datasets with orthogonality in non-orthogonal meshes. For the computation of sur-
the experimental datasets. Accordingly, at the inlet, Dirichlet boundary face normal gradient scheme, which is important to solve the Laplacian
condition is specified with a uniform inlet velocity (U) of 20 m/s in the in the diffusion term of NS equation, corrected scheme is chosen, that
positive x-direction while a Neumann boundary condition is specified applies an explicit non-orthogonal correction factor to maintain the
for pressure. At the outlet, Dirichlet boundary condition is specified for second order accuracy. The pressure gradient term is approximated
pressure with a value of P = 0 while the normal gradient of velocity is using the central differencing scheme and the solution advances in time
specified to be zero. The top and the bottom wall are set as slip walls using the second order accurate backward scheme with an adaptive
while the boundary of the deck section is treated as a no-slip wall. The timestep size such that the maximum Courant number is 1. The pressure-
free-stream turbulent kinetic energy (k) to be specified at the inlet is velocity coupling is done using the PISO algorithm using 2 outer
determined considering a turbulence intensity (I) of 1% using Eq. (22). corrector loops (also known as the PIMPLE algorithm). The pressure
The turbulent kinematic viscosity is computed from the internal field correction equation is solved using the PCG iterative solver while the
after solving the transport equations of k and . momentum equation and the transport equations for k and w are solved
ko = 3(U1)? 22) using the preconditioned bi-conjugate gradient (PBiCG) solver. The
© pressure correction equation is solved 3 times in the inner loop with 2
Similarly, the free stream specific dissipation rate is computed using additional non-orthogonal correctors. An under-relaxation factor of 0.5
the eddy-viscosity ratio of unity in Eq. (23) and the specific dissipation is used for the pressure field while a factor of 0.7 is chosen for the ve-
rate at the walls is computed using Eq. (24). locity, k and o fields.
0 :/’kJ<&> ' (23) 4.2. Verification and validation of static CFD simulation
HO\H
4.2.1. Spatial verification of the entire computational domain
Oall = 1067'/2 (24) The verification studies of the CFD solution are used to assess
P whether the conceptual model from continuum mechanics/mathematics

is solved correctly using discrete mathematics that is embodied in the
form of a computer code (Oberkampf and Trucano, 2002; AIAA
G-077-1998, 2002). The process of discretization occurs with respect to
space and time. In the context of space, the discretization of the gov-
erning partial differential equations (PDE’s) on a finite volume mesh

In Eq. (23), p is the molecular dynamic viscosity of fluid (air) whereas y,
is the turbulent dynamic viscosity. Similarly, y, is the distance of the
centroid of the 1% CV cell from the wall, v is the kinematic viscosity of
air, and # = 0.075 in Eq. (24). For the dynamic CFD simulations, the
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inherently introduces some spatial discretization error in CFD solution.
Thus, it is important to conduct mesh convergence studies to ensure that
the solution obtained from the CFD simulation is mesh independent.
Accordingly, a mesh verification study was carried out using three
different meshes, viz., Coarse, Medium, and Fine mesh for a static bridge
deck (baseline geometry) at 0° angle of attack. The total number of
control volume cells in the computational domain, the time-averaged
force coefficients, the standard deviations, and the Strouhal number
obtained from the three meshes is reported in Table 4. The integrated
time-averaged force coefficients, the standard deviations, and the
Strouhal number are calculated using a suitable length of the time his-
tory of aerodynamic forces once the flow attains a statistically steady
state.

As it can be observed in Table 4 that the time-averaged force co-
efficients and the standard deviations obtained from 3 different meshes
converge towards the same value (differing only in the 3rd or the 4th
significant digit), which testifies that the obtained solution from CFD
simulation is mesh independent. Hence, for all the further studies, the
medium mesh is used unless otherwise stated.

4.2.2. Spatial verification of the boundary layer computational domain

Usually, the verification studies reported in the literature are done to
check the adequacy of the spatial and the temporal resolution chosen for
the CFD simulations. However, from some prior physical understanding
of the problem, it has been observed that small vortical structures may
form around the periphery of the deck section under the action of the
wind. In the event that the cell aspect ratio of the hex-dominant cells in
the boundary layer is too large, the mesh would fail to resolve the ve-
locity gradients close to the wall, which in turn would lead to the failure
of mesh in resolving the vortical structures in the periphery of the deck
section. The failure to account for these vortical structures affects the
aerodynamics of the deck section leading to inaccuracies in the calcu-
lated time-averaged force coefficients from aerostatic analyses and other
subsequent analyses up to the computation of flutter derivatives. For an
accurate depiction of the integrated time-averaged force coefficients on
the deck section, the boundary layer formed around the deck is the most
critical region from spatial discretization and CFD modeling point of
view. This is because the solved pressure field and the shear stress in
these CV cells (especially the 1% layer cells) are used for the computation
of integrated time-averaged force coefficients in each time-step (in
either the aerostatic or the aeroelastic analyses). Thus, to ensure that the
small vortical structures including the velocity gradients both in the
direction of flow as well as the flow normal direction are captured well,
another sensitivity study was carried out considering the mean cell
aspect ratio of the 1° layer cells in the boundary layer.

For that purpose, three different simulations were carried out for the
static deck (baseline geometry) at 0° angle of attack with the medium
mesh (as described in Section 4.2.1) by varying the cell aspect ratio
around the deck perimeter. The number of hex-dominant cells in the 1%
layer cells of the boundary layer for different cell aspect ratio cases
including the time-averaged force coefficients, Strouhal number, and the
standard deviation values are listed in Table 5. Since, the values of the
time-averaged force coefficients, the standard deviations, and the
Strouhal number tend to converge towards the same value (only with
subtle variations) in Table 5, thus, this sensitivity study with respect to
the cell aspect ratio serves as an additional confirmation that the spatial
discretization considered in Section 4.2.1 provides adequate spatial
resolution to capture all the relevant flow structures. Unless otherwise
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stated, the medium mesh with cell aspect ratio, AR ~ 20 is considered for
all the simulations, analyses, and results presented in the subsequent
Sections.

4.2.3. Temporal verification

In addition to spatial discretization errors, there is a possibility of
error being introduced in the CFD solution if the temporal resolution
chosen for the simulation is not adequate. In other words, if the time-
step size is too large in an unsteady problem, the solution becomes
prone to errors as all the relevant transient flow phenomena are not
resolved due to the lack of adequacy of temporal resolution. This applies
for both the implicit scheme and the explicit time schemes; for implicit
schemes, the solution may still be obtained but with inaccuracies while
for the explicit schemes, the solution often becomes unstable and di-
verges beyond a certain time-step size (when the courant number ex-
ceeds unity). Hence, as per the AIAA G-077-1998, 2002
recommendations, it is a common practice to conduct a set of simula-
tions with varying time-step size to ascertain that the solution remains
stable and consistent even when the time-step size is varied, which
would ensure the adequacy of the temporal resolution of the CFD
solution.

The flow of wind over the deck section considered in the current
work is an unsteady problem. So, the flow evolves over the computa-
tional domain from one time step to another. As the flow evolves over
time, it is necessary to also ensure that the solution remains both stable
and is unaffected by the time step size. Thus, three different simulations
were carried out for a static deck (baseline geometry) at 0° angle of
attack with the medium mesh (as described in Section 4.2.1) by varying
the courant number (i.e., Co = 0.5, 1.0 and 2.0) as listed in Table 6. The
integrated time-averaged force coefficients, the standard deviation
values, and the Strouhal number reported in Table 6 are computed using
a suitable length of time history once the flow attains a statistically
steady state. From Table 6, it can be again observed that the time-
averaged force coefficients including the standard deviations, and the
Strouhal number converge towards the same value (only with subtle
variations), thus, it is concluded that the final solution is independent of
the time step size testifying the adequacy of the temporal resolution
considered in this work. For all the further analyses, the medium mesh as
described in Section 4.2.1 with courant number of Co =1 is used unless
otherwise stated.

4.2.4. Validation of time-averaged force coefficients and Strouhal number

In addition to the verification studies, it is also critically important to
validate the computational simulation results with experimental data-
sets or analytical solutions such as the thin airfoil theory (Theodorsen,
1934). Since analytical solutions to complex engineering problems that
we encounter in real-life can rarely be found, usually the computational
simulation datasets are compared/validated using the experimental
datasets. As per the AIAA Guide for verification and validation of CFD
simulations (AIAA G-077-1998, 2002), validation is the process of
determining the degree to which a model is accurate representation of
the real world from the perspective of the intended use of the model. For
measuring the accuracy of the representation (computational simula-
tion) of the real world, AIAA Guide recommends a systematic compar-
ison of CFD results with the experimental data, while also underscoring
the fact that all experimental data contain bias and random errors and
the comparison of CFD results does not necessarily imply that the
experimental data has higher accuracy. Hence, for the purposes of

Table 4

Comparison of time-averaged force coefficients, standard deviations, and Strouhal number between three different meshes at & = 0°.
Mesh No. of Cells Cp Cy Cm St Co C Cu
Coarse 244,071 0.0675 —0.1186 0.0956 0.2833 0.00061 0.04861 0.01019
Medium 283,131 0.0676 —0.1197 0.0953 0.2847 0.00059 0.04792 0.01006
Fine 365,965 0.0677 —0.1193 0.0953 0.2855 0.00060 0.04857 0.01014
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Table 5
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Comparison of time-averaged force coefficients, standard deviations, and Strouhal number for the medium mesh at three different aspect ratio of boundary layer cells

and at @ = 0°.

Aspect Ratio No. of BL cells Cp Cr Cu S Cp C Cu
~ 10 3,070 0.0675 —0.1066 0.0957 0.2844 0.00063 0.05035 0.01055
~ 20 1,595 0.0676 —0.1197 0.0953 0.2847 0.00059 0.04792 0.01006
~ 27 1,284 0.0668 —0.0990 0.0969 0.2812 0.00064 0.05065 0.01065
Table 6
Comparison of time-averaged force coefficients, standard deviations, and Strouhal number for the medium mesh at three different Courant numbers and at a = 0°.
Co dt Cp Cp Cm St ED EL EM
0.5 4,525 x 10°° 0.0676 —0.1231 0.0953 0.2911 0.00059 0.04786 0.01005
1.0 8.875 x 10°° 0.0676 -0.1197 0.0953 0.2912 0.00059 0.04790 0.01005
2.0 1.737 x 107° 0.0675 —0.1152 0.0953 0.2906 0.00056 0.04782 0.01003
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Fig. 11. Comparison of force coefficients and Strouhal number at different angles of attack from current CFD simulations and published literature: (a) Mean Cp vs a,

(b) Mean Cj, vs a, (c) Mean Cy; vs a, and (d) S; vs a.

validation, the integrated time-averaged force coefficients, and the
Strouhal number is plotted as a function of the angle of attack in Fig. 11
and compared with the experimental as well as computational datasets
available in the published literature (Mannini, 2006; Mannini et al.,
2010; Fransos and Bruno, 2010). From the set of considered references,
Mannini, 2006 pertains to the experimental datasets obtained from the
CRIACIV wind tunnel facility at the University of Florence whereas the
datasets pertaining to Mannini et al., 2010; Fransos and Bruno, 2010, are
the datasets obtained from CFD simulation on the deck section same as
what is chosen for the current work.

From Fig. 11, it can be observed the time-averaged force coefficients
from current simulation exhibits a very good agreement with the
computational datasets but shows some degree of variability (especially
the drag coefficient curve and the Strouhal number curve) when
compared with the experimental datasets. With regards to the drag co-
efficient curve, it is believed that a rougher surface of the deck sectional
model used in the wind tunnel facility could have led to a higher value of

mean drag coefficient in the CRIACIV section whereas the surface of deck
section considered in the current simulation is smooth, leading to a better
match with the numerical data reported by Mannini et al., 2010; Fransos
and Bruno, 2010. Additionally, it is reported that the Strouhal number for
the CRIACIV section is taken as the average of result at different Reynolds
numbers in the range of 0.75 x 10° < Re < 8.1 x 105, and some level of
uncertainty was noticed in the hot-wire anemometer measurements
(Mannini et al., 2010). It is believed that a lack of perfect parity in the flow
conditions and the geometry conditions such as the degree of roundedness
of the bottom edge corners and the wall roughness is the reason for
variability between the experimental datasets and the CFD results from
the current work and those reported in the literature.

Nevertheless, it is also emphasized that the CFD datasets from cur-
rent study exhibit a very good agreement with the computational studies
from Mannini et al., 2010; Fransos and Bruno, 2010, which are based on
similar aerostatic analysis on the same deck section as considered in the
current work. Thus, it is concluded that the validation efforts pursued in
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this piece of research is in compliance with that published in the existing
literature on the same deck section. Finally, based on the collective
analysis of datasets in the validation plot (Fig. 11) by comparing the
results from k-w SST model from the current work with that from the
experimental CRIACIV section and CFD datasets from Mannini et al.,
2010; Fransos and Bruno, 2010, the following conclusions are drawn: (a)
the variation of mean drag coefficient as a function of the angle of the
attack is fairly captured as manifested by the concavity of the mean drag
coefficient curve (b) the linearity of the mean lift coefficient curve is also
captured well for the negative angles of attack and for lower values of
the positive angles of attack; however, the CFD model predicts an early
onset of stall for the deck section whereas in the experimental model, the
onset of stall on the positive angle of attack side is somewhat delayed (c)
the mean moment coefficient also exhibits a decent agreement with the
experimental curve except for an early prediction of the onset of stall as
compared to experiment, and (d) the Strouhal number curve exhibits
some degree variability when compared with the experimental datasets;
however, the uncertainties associated with the experimental measure-
ments including the CFD modeling assumptions and turbulence model,
all collectively might have a role to play in the observed variability.
Overall, on a holistic basis, the CFD model follows the trend of a
real-world physical measurement quite well and can reproduce the bulk
of the important flow features affecting the aerodynamics of the deck
system, thus, the CFD model is said to be validated.

4.2.5. Comparison of the flow field

An attempt to comparatively assess the extent of agreement between
the streamlines obtained from the current CFD simulation to that from
Mannini et al., 2010 is pursued in this Section. For that purpose, a sur-
face line integral convolution (surface LIC) plot is extracted from current
CFD simulation (corresponding to the baseline geometry at 0° AoA with
R = 0.05B) and is plotted in the background as shown in Fig. 12. On top
of the surface LIC plot, the digitized streamlines from Mannini et al.,
2010 (for the same geometry, AoA, and R/B ratio) is overlayed to yield
the plot in Fig. 12.

It should be noted that both the streamlines correspond to a time-
averaged flow field in which the time-averaging is carried out for the
full one complete cycle of harmonically oscillating aerodynamic forces.
The overlay analysis of the streamlines also reveals a fair agreement
between the streamlines obtained from the current CFD simulation to
that from Mannini et al., 2010 with some minimal differences. For
instance, the vortical structure formed on the left top edge in the current
CFD simulation is somewhat smaller as compared to that obtained from

Journal of Wind Engineering & Industrial Aerodynamics 252 (2024) 105769

Mannini et al., 2010. Except for this feature, the surface LIC plot ob-
tained from the current CFD simulation exhibits an overall good
agreement.

4.2.6. Analysis of the mean pressure distribution over the deck surface

The aerostatic mean pressure coefficient averaged over a full cycle of
harmonically oscillating aerodynamic forces is plotted over the surface
of the deck in Fig. 13. In this plot, the pressure coefficient values are
orthogonally projected from the surface of the deck in the outward or
the inward direction. In this Section, a one-to-one comparison of the
pressure distribution plot is not carried out as the mean pressure dis-
tribution plot in Mannini et al., 2010 consists of a deck section with a
sharp cornered edge (R/B = 0) with fairly different aerodynamic
behaviour.

4.3. Verification and validation of dynamic CFD simulation

4.3.1. Spatial verification based on sensitivity of self-excited forces

The key variables of interest in the dynamic CFD simulations are the
aeroelastic flutter derivatives, which are also used for comparison/
validation with existing literature in the following sections. Thus, an
additional set of verification studies was carried out for the dynamic
CFD simulation (in which a harmonic motion was imposed on the deck)
and is reported in this Section. As stated earlier, all the 3 DoFs are
imposed on the deck system in an uncoupled manner, i.e., the deck os-
cillates either in vertical, lateral, or the torsional mode at a time but not
concurrently. For the purposes of this verification study, three different
simulations were carried out with a motion-imposed deck section
oscillating in torsional mode of vibration with an amplitude of oscilla-
tion of 2° at reduced velocity (U* = 10.0).

The total number of CV cells including the aeroelastic flutter de-
rivatives obtained from three different meshes is listed in Table 7. From
Table 7, it can be again observed that the computed flutter derivatives
tend to converge towards the same value (only with subtle variations),
thus, it is concluded that a mesh-convergent solution is obtained justi-
fying the adequacy of the spatial resolution considered for dynamic CFD
simulations chosen for this work. For all further analyses, the medium
mesh as described in Section 4.2.1 with courant number of Co = 1, is
used unless otherwise stated. In addition, the time-history of aeroelastic
lift force obtained from the three meshes including the waveform of the
imposed rotation on the deck system is plotted in Fig. 14 (a), which
again exhibits a decent agreement in the time-history of aeroelastic lift
force from 3 different meshes.

|

Mean Wind Velocity (m/s)
00 10 20

= Digitized streamlines (Mannini et al., 2010)

Surface LIC Plot (Current simulation)

30 35.1

o

Fig. 12. Overlay analysis of digitized streamlines from Mannini et al., 2010 over the surface LIC plot from current static CFD simulation.
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Fig. 13. Distribution of time-averaged C, over a full cycle around the perimeter of deck cross-section.
Table 7
Comparison of the six flutter derivatives (A;*, H;*, P;*; i = 2, 3) obtained from the torsional mode of oscillation from three different meshes.
Mesh No. of Cells Hy* Hs* Ax* As* Py* P3*
Coarse 244,071 1.8955 —9.7744 —0.6178 2.8017 0.0672 0.1943
Medium 283,131 1.8615 —9.7932 —0.6190 2.7982 0.0635 0.1962
Fine 365,965 1.8911 —9.8040 —0.6198 2.7977 0.0644 0.1953
* *
(a) 2 (b) f
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Fig. 14. Comparison of time histories of aeroelastic lift coefficient: (a) from Coarse, Medium, and Fine meshes, and (b) at different Courant numbers (Co = 0.5, 1.0,

and 2.0).

4.3.2. Temporal verification based on sensitivity of self-excited forces

The governing partial differential equations in a dynamic CFD
simulation are also discretized with respect to time, so, using similar
arguments and reasoning as is included in Section 4.2.3, another tem-
poral verification study was carried out considering the torsional mode
of vibration of the deck section at U* = 10.0 with the oscillation
amplitude of 2° (same as in Section 4.3.1) with different courant
numbers and the medium mesh. Since, the solver chosen for this work is
‘pimpleFoam’, which has the provision to allow for adaptive time step
size depending upon the maximum Courant number (which in this case
is Co = 1), thus time step size might differ from one time step to another
as the simulation progresses. However, once the flow field is stabilized
with distinct periodically fluctuating aerodynamic forces in time, the
time step size is expected to be constant. Thus, the mean value of time
step size is computed after the flow field becomes steady and is reported

in Table 8 including the 6 flutter derivatives (A;*, H;*, P;*; i = 2, 3) that
are obtained from the torsional mode of vibration.

From Table 8, it can be again observed that the computed flutter
derivatives tend to converge towards the same value (only with subtle
variations) regardless of the time step size (or alternately the Courant
numbers), thus, it is concluded the temporal resolution provided by the
medium mesh at Co =1 is adequate for the current scope of work. For all
further analyses pertaining to dynamic simulations, the medium mesh at
Co =1 is used unless otherwise stated.

4.3.3. Validation of the aeroelastic lift coefficient time history

The flutter derivatives as a function of the reduced velocity (U*) are
considered for validation in this Section. For the validation of dynamic
CFD simulation, two metrics are essentially considered, i.e., (a) valida-
tion of the time history of aeroelastic lift coefficient force, reported in

Table 8
Comparison of the six flutter derivatives (A;*, H;*, P;*; i = 2, 3) obtained from the torsional mode of oscillation for medium mesh at three different Courant numbers
(Co).
Co dt H,* Hsz* Ag* Asz* Py* P3*
2.0 4,410 x 10°° 1.9316 —9.7793 —0.6145 2.7892 0.0674 0.2076
1.0 2.250 x 10°° 1.8615 —9.7932 —0.6190 2.7982 0.0635 0.1962
0.5 1.147 x 107° 1.8278 —9.8085 —0.6195 2.8010 0.0610 0.1878
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this Section and (b) validation of 8 flutter derivatives (A;*, H;*;i=1, 2,
3, 4) obtained from the torsional and vertical mode of vibration, which
is reported in the following Section. The time history of aeroelastic lift
coefficient corresponding to the torsional mode oscillating at a reduced
velocity of U* = 10.0 is extracted from Mannini et al., 2016 by digiti-
zation. Then, the time history of corresponding force coefficients (Ci qe)
obtained from current CFD simulation are overlayed one over the other
as shown in Fig. 15, where in the imposed harmonic motion on the deck
system is also plotted as a function of non-dimensional time (a vs t*). It is
important to note that the horizontal axis in Fig. 15 includes the
non-dimensional time (t*), which is related to the physical time (t) by t*
= Ut/B.

From Fig. 15, a good agreement can again be noticed between the
digitized time history of aeroelastic lift coefficient from Mannini et al.,
2016 and the current CFD datasets, thus validating the numerical
framework for dynamic simulation considered in this work. There are
variations between the two simulations in the overlap of the time his-
tories, which may be caused by differences in turbulence modeling ap-
proaches, space, and time discretization, among other reason.
Nevertheless, it will be demonstrated in the upcoming Section 4.3.4 that
the computed values of flutter derivatives using the same time history
exhibit a very good agreement between the numerical and the experi-
mental datasets available in the published literature. Thus, it is
concluded that the simulation framework presented in the current work
is able to reproduce the trend of real-world physical measurements, and
thus the model is considered to be validated.

4.3.4. Validation of flutter derivatives from torsional and vertical vibration
modes

The next metric used for validating the dynamic CFD simulation
framework is through the comparison of 8 flutter derivatives (A;*, H;*; i
=1, 2, 3, 4) as a function of reduced velocity (U*) obtained from the
torsional and the heaving modes of vibration with that from the
experimental CRIACIV section (Mannini, 2006) and the CFD datasets
from Mannini et al., 2016. In addition, the flutter derivatives obtained
from the Quasi-Steady Theory (QST) are also included in Fig. 16 for both
the computational datasets, i.e., the one obtained from static simulation
reported by Mannini et al., 2010 and the other obtained from static
simulations from the k-w SST model implemented in the current work.
The inclusion of the curves from QST serves two essential purposes (a)
these curves provide a baseline/reference for the trend of flutter de-
rivatives when plotted as a function of reduced velocity (U*) and (b)
these curves also helps to demonstrate the limitations of the QST-based
aero-structural design framework (i.e., how the flutter derivatives ob-
tained from QST tend to exhibit greater degree of variability at higher

0.8
—=== URANS LEA (R/B = 0.05), Mannini et al., 2016 | 3.0
0.6 - —— URANS kw-SST (R/B = 0.05), Current Work
—_——
0.4 1
s 0.2 1
~
Q
0.0 A
-0.2
-0.4 1
0.0 5.0 10.0 15.0 20.0 25.0 30.0
t*

Fig. 15. Comparison of time history of aeroelastic lift coefficient with respect
to non-dimensional time from the current dynamic CFD simulation and Mannini
et al., 2016.
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reduced velocities, when compared with the ones obtained from an
actual fluid-structure interaction study as proposed in this work). This
also underscores the necessity to train the aeroelastic emulator with the
flutter derivatives obtained from a real fluid-structure interaction for a
better prediction of the response surface.

The comparison of flutter derivatives A;*, Ax* Asz*, Hp* and Hs*
exhibits a very good agreement with the experimental datasets as can be
readily observed in Fig. 16. For H; *, the curve obtained from the current
CFD simulation seems to have shifted slightly upwards but still captures
the decreasing trend of H;* with increasing U* quite well. The flutter
derivatives A4* and Hy*, however, exhibit some degree of variability
when compared to the experimental datasets. But it is worth pointing
out that the same flutter derivatives A4* and H4* show a decent agree-
ment when the computational datasets from Mannini et al., 2016 are
taken into consideration, both of which are based on the URANS
framework. Regarding the variability with experimental datasets for A4*
and Hy*, it is emphasized in Mannini et al., 2016 that the experimental
A4* and Hy* are obtained from free vibration tests, which depend on the
modification of stiffness matrix of the structural system by the aero-
dynamic stiffness contribution, which is quite low and at the same time
uncertain. In addition, it has been observed that the flutter derivatives
obtained from free and forced vibration exhibit some degree of vari-
ability (Mannini, 2015). Due to these reasons, the variability in case of
A4* and Hy* may have been observed between the CFD datasets from
current simulation and that from Mannini, 2006. Even though there is
some degree of variability in the flutter derivatives A4*, Hy* and Hy *, the
other flutter derivatives exhibit a very good agreement overall and thus,
holistically analyzing the flutter derivatives trend, it is concluded that
the computational framework provides a good representation of
real-world physical experimentation.

5. Aerodynamic and aeroelastic properties in the design domain
5.1. Force coefficient trend in the design domain

The time-averaged force coefficients and their slopes at angle of
attack @ = 0° for 15 designs with an increasing non-dimensional deck
depth H/B are reported in Table 9. It is to be noted that the original
sampling plan consisted of 7 geometries in total, which are designated as
‘Original’ in Table 9 meaning those shape designs were part of the
original sampling plan designed to build the aeroelastic emulator (Sec-
tion 3.3) whereas the additional shape designs that were added later to
better understand the trend of the force coefficients and the slopes as a
function of the deck shape are designated as ‘Added’. In general, the
mean drag, lift, and moment coefficients increase with the increasing
depth, however, the lift coefficient curve exhibits some interesting
aerodynamic non-linearities. Similarly, the slopes of the drag and the
moment coefficient remains nearly constant with subtle fluctuations
whereas that of the lift coefficient exhibits a trend reversal of slope for
certain geometries such as in the range 0of 0.1217 < H/B < 0.1386. Thus,
the results indicate that the time-averaged aerodynamic force (espe-
cially the lift force) is far from being a linear function of the deck depth
in the design domain considered in this work. Further details are re-
ported in Section 6.1.

5.2. Flutter derivatives trend in the design domain

There are different notations for expressing the flutter derivatives
such as the Scanlan notation, the PoliMi notation, etc. However, as the
Scanlan formulation is still the most widely used notation for expressing
the flutter derivatives, the flutter derivatives for the 7 samples obtained
from the 3 DoFs (pitching, heaving, and shoving motion) are first
expressed as a function of reduced velocity in Scanlan notation in
Fig. 18. Later, the flutter derivatives are also expressed in the PoliMi
notation for all the 7 samples to highlight some salient features such as
the manifestation of distinct non-linearities in the lower reduced
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Fig. 16. Comparison of the flutter derivatives in Scanlan formulation based on the pitch and heave DoF from the current dynamic CFD simulation and published
literature (a) A7*, (b) Hy*, (c) A2%, (d) Hz*, (e) As*, (d) Hs*, () A4*, and (h) Hy*

velocity range as well as the peculiar asymptotic trends at higher Much of the discussion in the following paragraphs about the inter-
reduced velocity range. In addition to the flutter derivatives obtained pretation of the trend of flutter derivatives as a function of reduced
from current CFD simulations, the variation of flutter derivatives as a velocity for all the 7 samples is based on the following equations of the
function of reduced velocity from thin airfoil theory is also plotted in motion and how the obtained flutter derivatives modify the stiffness and
Fig. 18, which serves as an additional validation metric for the trend of the damping matrix of the structural system. With this aim, the equa-
flutter derivatives obtained from CFD simulations. tions of motion for the 3 DoF system (Holmes and Bekele, 2021) are
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Table 9
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Force coefficients and their slopes obtained for different deck geometries inside the design domain. Shape designs designated as ‘Original’ are part of the sampling plan
described in Section 3.3. The ‘Added’ shape designs facilitate the interpretation of the aerodynamic behavior in the design domain.

Design Sample H/B Cpo Cro Cumo° C’D o C;_ . C;VI o
1 Original 0.0879 0.028 -0.216 0.029 —0.164 4.630 1.515
2 Added 0.0992 0.032 —0.184 0.046 —0.125 4.541 1.549
3 Original 0.1104 0.037 —0.133 0.060 —0.093 4.977 1.593
4 Added 0.1217 0.043 -0.120 0.071 ~0.011 4.367 1.551
5 Added 0.1274 0.047 —0.142 0.075 0.062 3.263 1.491
6 Original 0.1330 0.050 —0.147 0.079 0.028 3.847 1.526
7 Added 0.1386 0.055 -0.148 0.083 —0.007 4.759 1.559
8 Added 0.1443 0.059 —0.141 0.088 —0.037 5.725 1.584
9 Original 0.1556 0.068 —0.120 0.095 —0.027 6.409 1.571
10 Added 0.1668 0.077 —0.095 0.103 —0.037 7.357 1.559
11 Original 0.1781 0.086 ~0.071 0.112 —0.074 7.693 1.558
12 Added 0.1894 0.094 —0.052 0.119 —0.100 7.777 1.541
13 Original 0.2007 0.103 —0.030 0.128 —0.119 7.872 1.516
14 Added 0.2119 0.110 ~0.001 0.136 -0.173 8.248 1.501
15 Original 0.2232 0.116 0.035 0.144 —0.288 8.888 1.502
presented below in Eq. (25). the trend transition from linear, in the case of streamlined geometries, to
. . ) e e parabolic, for bluffer geometries, which is very clear when representing
X+ 20, 0xX + WX = PP + Pya + Pya + P,p + Psh + Pgh (252) them in PoliMi notation (See Fig. 19). Another important flutter deriv-
- ) , o . . o . 25D ative is A;, which plays a critical role in stall flutter when it changes its
=H H,a + H. H, H.p + H, . . o . .
Y+ 2nywyy + @y x 1+ Hya o Haa o+ Hyh + Hsp + Hep (25b) sign from negative to positive. In the current study, A, varies non-lin-
B ) , e N . L, early as a function of U* and it remains negative for the tested range of
a+20,0,0 + 0,0 = Ah+ Aya + Aza + Ash + Ap + Agp (25¢) 2.0 < U* < 20.0 for all the 7 shape designs. However, it is worth pointing

In Eq. (25), wx, wy, and o, are the undamped circular frequencies of the
system in the respective motion, whereas 7,, 17,, and 7, are defined by
N, = wx/2m, ny, = wy/2m, and n, = w,/2x, respectively. In addition, the
contribution of the full set of 18 flutter derivatives to the aerodynamic
stiffness and damping matrices and to the aeroelastic forces linking the
structural displacement and velocity is depicted in Fig. 17.

It can be observed in Fig. 18 that the flutter derivatives A7, H; and H,
exhibit a tentatively linear trend with respect to the reduced velocity
(U*) for the 7 shape designs. More specifically, the flutter derivative A}
(which physically implies the aerodynamic damping contribution to the
aeroelastic moment due to deck velocity in the heaving direction) at
higher U* range exhibits a drop in the slope for the bluffer section as
compared to relatively streamlined ones but the magnitude of A] re-
mains positive for all the deck sections. Such trend indicates that the
effective damping of the aero-structural system in the heaving motion
would be more reduced for streamlined sections. The flutter derivative
H; (which implies the aerodynamic damping contribution to the aero-
elastic lift force due to structural velocity in the heaving direction) in-
creases in absolute value (remains negative though) with increasing U*,
which for the bluffer sections is slightly faster than those compared to
relatively streamlined sections as indicated by steeper slopes. The
physical interpretation of such trend signifies that the negative H;, when
transported to the left-hand side of Eq. (25), would increase the overall
damping in the direction of heaving motion. It is also worth mentioning
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that the slope of A; gradually decreases as the sections become bluffer
(with lower negative values) as compared to more streamlined sections.
For the flutter derivative H, (which implies the aerodynamic damping
contribution to the aeroelastic lift force due to the rate of change of a),
the slope is negative and H, is also negative for the lower U* range.
However, as U* increases, the slope gradually tends to O for the
streamlined sections. For the bluffer sections, H, remains very close to
0 in the lower U* range but the slope starts increasing rapidly as the
value of U* increases. The implication of such behavior in H, is that the
bluffer sections at higher U* are more susceptible to the aeroelastic
instability. The flutter derivative A; exhibits some difference in the
trend for the streamlined and bluffer sections at higher U* as compared
to the lower U* range. In the lower U* range, the change in Aj across the
different values of U* is marginal although at higher U* range, the slope
for the streamlined sections is greater than the bluffer ones meaning the
aerodynamic stiffness contribution to the aeroelastic moment due to the
pitching motion increases faster for the thinner sections as compared to
the bluffer ones in the higher U* range. H, exhibits a non-linear (almost
parabolic variation) trend with increasing U*. In the lower U* range, the
change in H; is marginal from one geometry to another and across the
different U* values. However, as the value of U* increases, H3 takes a
slightly higher negative values for the bluffer sections as compared to
the streamlined ones. The values of A}, are observed to be fairly close to
zero indicating only a feeble contribution of the heaving motion to the
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Fig. 17. Demonstration of the contribution of the full set of 18 flutter derivatives to the aerodynamic stiffness and damping matrix linking the structural velocity and

displacement in the respective degree of freedom.
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Fig. 18. Comparison of flutter derivatives (A;*, H;* P;*;i=1, 2, 3, 4, 5, 6) in Scanlan formulation as a function of U* for all the 7 designs used in the sampling plan.

aeroelastic moments. It should be noted that A, exhibits somewhat stark
differences to that obtained from the thin airfoil theory as opposed to the
general good agreement observed for Al-* s H; ,wherei=1, 2, 3. In case of
H,, the values remain close to 0 or a slightly positive value across the
range of U* for the most streamlined section. However, as the degree of
bluffness of the section increases, H, takes higher values with a negative

21

sign with increasing U*. For the bluffest section, the slope is the greatest
as compared to the relatively streamlined ones. This trend of H, in-
dicates that the overall stiffness of the system gets reduced for the
streamlined sections whereas the opposite effect is observed for the
bluffer ones. Also, the trend of H, complies well with that obtained from
thin airfoil theory with the streamlined sections bearing closer proximity
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Fig. 19. Comparison of flutter derivatives (a;*, h;* p;*;i=1, 2, 3, 4, 5, 6) in PoliMi formulation as a function of U* for all the 7 designs used in the sampling plan.

to the thin airfoil as compared to the bluffer ones.

Another important flutter derivative that contributes to the diagonal
term of the aerodynamic stiffness matrix is the P]. Except for a slight
non-linearity for the bluffer sections in the lower U* range, which is very
clear when represented using the PoliMi notation (refer Fig. 19), P;
increases in magnitude (with a negative sign) almost linearly with
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increasing U* and the rate of increase for the bluffer sections is relatively
swifter as compared to the streamlined ones. For P, as U* rises, the
streamlined sections tend to exhibit a drop in the value of P, towards the
negative side whereas the bluffer sections exhibit a trend reversal in that
the P}, rises swiftly to positive values as U* increases. For Pj, the most
streamlined section exhibits a gradually increasing magnitude with
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negative sign at higher U* range while the intermediate geometries (H/
B =0.1104 to H/B = 0.1556) almost remain stagnant at around P; = 0 or
a slightly positive value. However, as the section gets bluffer, P; in-
creases with a sharp slope and rises swiftly with increasing U*. P, ex-
hibits some non-linear trend in the lower U* range, which is more
conspicuously visible for the bluffest section. P, also exhibits a sta-
tionary trend with increasing U* but exhibits an increase in the
magnitude across all the ranges of U* with increase in the depth of the
section. The flutter derivative P, exhibits an increasing trend with
increasing U* for all the sections; however, P5 increases in a linear
manner for the streamlined sections whereas for the bluffer ones, it in-
creases sharply and then later assumes a rough asymptotic trend around
a particular value, which is higher for the bluffer sections. Similarly, the
flutter derivative P, increases in magnitude with a negative sign with
increasing U* with greater slope for higher H/B section ratios. For the
thinner sections, Py assumes a small positive slope and positive values.
In general, it can be seen that the absolute value of all P; flutter de-
rivatives at all reduced velocities increases with the level of bluffness
(H/B), which confirms the pivotal role of the drag flutter derivatives in
the aeroelastic responses of bluff deck bridges (Miyata et al., 1995; Jones
et al., 2003) and the importance of emulating these parameters as a
function of the deck shape and reduced velocity during the
aero-structural design and optimization of bridges.

Similarly, the flutter derivative Hy increases in magnitude with a
negative sign for the relatively streamlined sections with increasing U*.
However, for the bluffer ones, the magnitude of Hy decreases and tends
to approach towards O at higher U*. On the other hand, some non-
linearity is observed in the trend of Hy in the lower U* range. For the
thinner sections, Hy, is negative at lower U*, which increases to take 0 or
a small positive value at higher U* (such as U* = 20.0). It is also
observed that for streamlined geometries Hy assumes a roughly
asymptotic trend approaching towards a constant value as U* increases.
However, this behavior is not very distinct and seems to have been
delayed for the bluffest section. The flutter derivative A; on the other
hand increases in magnitude with negative sign with the increasing U*
in almost a linear manner. For the bluffer section, A; takes higher values
as compared to the thinner sections. Finally, A; increases in magnitude
with positive values with increasing U* for all the shape design candi-
dates except for H/B = 0.2232, which exhibits negative values and
decreasing trend with increasing U*.

In Fig. 18 and also while discussing the trend of flutter derivatives
above, it is observed that several flutter derivatives such as the A}, A;,
H,, H;, P, and P, show marginal or almost no variation in their mag-
nitudes across the different values of U* in the lower reduced velocity
range when represented using the Scanlan notation. This is because the
Scanlan formulation does not provide an adequate resolution and tends
to obscure the non-linearities in the lower reduced velocity range (Zasso,
1996) because the different flutter derivative terms in Scanlan notation
are already factored in by K or K2 (where x = h, p, a, are the reduced
frequencies associated with respective motions) depending upon the
motion component or its velocity. However, their PoliMi counterparts
do not fare from this poor resolution and exhibit interesting non-linear
trends in the lower reduced velocity range while also demonstrating
an asymptotic trend converging towards a constant value in the higher
U* range. This behavior is more distinctly visible for relatively stream-
lined sections at high reduced velocities which complies well with the
QST assumptions.

Hence, the full set of all the 18 flutter derivatives for the 7 samples as
a function of reduced velocity is also plotted in PoliMi notation and is
presented in Fig. 19. One of the key observations in PoliMi notation is
that the flutter derivatives a; *, ag*, as*, as*, all h;*’s and all p;*’s attain a
nearly constant value in the higher reduced velocity range, which is
more distinctly visible for the streamlined geometries as compared to
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the bluffer ones in which the trend seems to have been slightly delayed
due to subtle non-linearities in the curve. The relatively streamlined
geometries comply readily with the asymptotic trend whereas the
bluffer sections tend to approach towards the asymptotic trend (e.g., a; *,
as*) in some cases, although sometimes at higher reduced velocities,
whereas in a few others even tend to digress from the asymptotic trend
(az*, hy*, hs*). Another notable feature of the flutter derivatives in
PoliMi notation is the nonlinear trend in the lower reduced velocity
range, which is visible in as* h;*, and hs*. Additionally, a striking
feature of the trend in the PoliMi notation is the manifestation of distinct
peaks in the lower reduced velocity range (such as for ag* at U* = 5.0 for
the geometries bluffer than the baseline geometry). Similar peaks were
observed for some flutter derivatives in Zasso, 1996, and it was
concluded that the peaks are due to the effect of vortex shedding. Such
phenomenon is observed for a small range of reduced velocities in the
lower reduced velocity region.

It must be highlighted that in order to guarantee an accurate simu-
lation of the VIV response, the non-linearities caused by the deck motion
amplitude must be considered to reproduce the complex mechanism
occurring in the lock-in region properly. In this context, Wang and Chen
(2022) have demonstrated that the steady vortex-induced vibration
amplitude of a deck can be very well predicted by forced vibration CFD
simulations and have found the results from CFD in good agreement
with the wind tunnel tests. Other studies that have contributed to this
direction include Tamura (1999), Noguchi et al. (2020), and Alvarez and
Nieto (2024). While the present study is focused on emulating the
self-excited forces as a function of the deck shape and reduced velocity,
the numerical design methodology can be enhanced by adding these
considerations when the design path requires an accurate simulation of
the bridge amplitude-dependent response.

5.3. Performance of the QST formulation in estimating the flutter
derivatives

In this Section, the limitation of the QST-based framework and the
necessity for a more general and a versatile framework is substantiated
with the help of flutter derivatives obtained from an actual fluid-
structure interaction and using the quasi-steady theory. To demon-
strate the limitations of the QST-based framework, the flutter derivatives
(A}, H;;i=1,2,3)at U = 20.0 obtained from the quasi-steady theory
and an actual fluid-structure interaction via dynamic CFD simulations is
plotted for all the 7 shape designs in Fig. 20.

It can be readily inferred from Fig. 20 that all the flutter derivatives
(Af, Hf ;i=1, 2, 3) exhibit a bifurcating tendency for the bluffer sections,
which indicates that the QST-based framework is not suitable for bluff
deck sections, which are prone to massive flow separations. Although for
the streamlined sections, the two curves (i.e., the one obtained from
dynamic CFD simulations and from the QST) tend to converge towards a
similar value in case of Hl (i =1, 2, 3); however, the discrepancy be-
tween the flutter derivatives obtained from dynamic simulation and QST
is clearly visible for A; (i = 1, 2, 3). This observation suggests that the
application of QST-based framework to even the most streamlined sec-
tion in the current scope of work yields inaccuracies as is the case for A;
(i =1, 2, 3). Besides, another important observation from the plots in
Fig. 20 is that flutter derivatives obtained from the QST formulation
always results in an over-prediction of the absolute magnitude of the
flutter derivatives A; (i = 1, 2, 3) and H; (i = 1, 3). This observation
indicates that the QST formulation over-predicts the aeroelastic loads in
this application case in the higher reduced velocity range and the extent
of over-prediction rises with the degree of the bluffness of the section,
which compromises the aeroelastic performance of any deck designed
using the QST formulation. Hence, the necessity to opt for a more gen-
eral and a versatile aero-structural design framework as proposed in this
work is justified based on the observations above.
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6. Emulation of aerodynamic and self-excited forces
6.1. Emulating shape-dependent force coefficients and slopes

The time-averaged integrated force coefficients and their slopes can
be used for estimating the aerodynamic admittance functions, as
described in Section 2.1.3. Hence, the data reported in Section 5.1. is
used to build a steady aerodynamic surrogate model .75 to emulate the
variation of the time-averaged integrated force coefficients and their
slopes with regards to the deck shape S;. The input of this steady
aerodynamic surrogate is the deck shape, and the output are the
frequency-independent force coefficients and their slopes, which can be
formulated as:

75(Sq¢) = [Cpo-, Cros» Cuoe, C’D,O“ ,Cro, Cuo] (26)

Fig. 21 shows the aerodynamic response curves obtained in the design
domain. In general, it is inferred that the mean static wind loads on the
shape design candidates increase with the increase in the depth of the
deck section. This is due to variation in the formation, distribution, and
the size of different vortical structures formed in the vicinity of the deck
section resulting in different aerodynamic loads. However, an interesting
observation from the curvesin Fig. 21 isalso that the variation of mean lift
force is not quite linear as demonstrated by a distinct peak for 0.11 < H/B
<0.13in Fig. 21 (a). Similarly, the non-linearity in the trend of slopes of
the lift coefficient is again distinctly visible for the shape design candi-
dates with H/B ratios in the range of 0.12 < H/B < 0.14. Thus, the curves
suggest that it is of critical importance to properly account for the aero-
dynamic non-linearities while assessing the wind loads on different shape
design candidates because some of the shapes in the nearby range might
satisfy the buffeting and other aeroelastic design requirements and
specifications very well, however, a few design sections might still fail the
design requirements and specifications due to the appearance of sudden
aerodynamic non-linearities for certain designs.
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Fig. 22. Response surface of the flutter derivatives (A;* Az* As*, a;*, ax* asz*) for the design domain 7;.

notation to highlight the non-linear behavior at low reduced velocities.
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6.2. Emulating shape- and frequency-dependent flutter derivatives

Based on the discussions in Section 2.3 and 3.2, a simulation test grid
of 7 x 7 x 3 (i.e., no. of geometries x no. of reduced velocities x DoF)
resulting in a total of 147 simulations were carried out to obtain the time
history of aeroelastic forces. As already stated, the aerodynamic flutter
derivatives were computed from the time history of aeroelastic forces
using the method of least squares and the flutter derivatives are pre-
sented in the form of a response surface, which is a multi-variate func-
tion of deck shape (H) and the reduced velocity (U*). The flutter
derivatives in both the Scanlan and PoliMi notations are presented in
Fig. 22 for A;”s, where i = 1, 2, 3. Similar conclusion as highlighted in
Section 4.4 are revealed by the response surfaces of flutter derivative in
Fig. 18, i.e., the variation in the magnitude of flutter derivatives across
different reduced velocities fades away in the lower reduced velocity
range while the same when plotted in PoliMi notation demonstrates
interesting non-linearities as observed for ai*’s, wherei=1, 2, 3. Similar
conclusions hold true for other flutter derivatives as well such as the H; ’s
and h;’s, where i = 1, 2, 3. The response surfaces for the flutter de-
rivatives Po*, P3*, Ps*, A4*, Hy*, P~ and As*, Ag*, H5*, Hg*, P1*, P4* are
presented in Figs. 24 and 25 respectively. The Kriging surrogate is able
to provide smooth, continuous and differentiable response surfaces for
the 18 flutter derivatives even in regions of the surrogate domain
showing high level of non-linearities (see Figs. 22 and 23), which is a
fundamental feature for the implementation of the aeroelastic surrogate
into aero-structural design optimization frameworks.

7. Buffetting response analysis and deck shape tailoring

The impact of deck shape modifications on the bridge aeroelastic
performance is studied in this section by comparing the buffeting
response obtained along the shape design domain under turbulent syn-
optic winds. The buffeting analysis is conducted in the frequency
domain, as discussed in Section 2.4. Frequency domain analysis

0.18 01 0
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Fig. 24. Response surface of the flutter derivatives (P2*, P3* Ps*, A4* H4* Pg*) for the design domain 7, represented using the Scanlan notation.

considers the frequency dependency of the fluid-structure interaction Hence, frequency domain analysis is a good alternative to studying the
parameters, namely the flutter derivatives and admittance functions, buffeting response of bluff decks with nonlinear aerodynamics under
which permits taking into account their non-linear features. However, it synoptic winds where the variations in the angle of attack and mean
does not consider their sensitivity to the time-variant angle of attack. velocity are negligible. The test case adopted consists of a 1-node 3-DoF
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Fig. 26. Schematic representation of the 1-node 3-DoF system with variable depth and under the action of turbulent wind used as a demonstration example for the
wind-resistant design of the deck.

system with a variable depth, as shown in Fig. 26. Changes in the deck influence of nonlinear features at low reduced velocities on the buffeting
depth impact the aerodynamic and aeroelastic properties. Aiming at response at a mean wind velocity of Upeqn = 40 m/s. The resulting
focusing on this effect and for the sake of simplicity, the mechanical reduced velocities associated with the lateral, vertical, and torsional
properties are kept constant, adopting the values reported in Table 10. natural frequencies reported in Table 10 are U;', =719, V, =4.64, and

However, it must be noted that deck shape modifications notably in-
fluence the natural frequencies and mode shapes due to variations in the
translational and torsional moments of inertia and mass moments of
inertia. This data was taken from the mechanical and dynamic proper-
ties of the Miradoiros Bridge (Baldomir et al., 2010; Cid Montoya et al.,
2018a), a cable-stayed bridge project with a main span of 658 m. The
aerodynamic dimensions adopted for the deck are 22 m chordwise width
and 1 m spanwise length. These parameters were selected to boost the

V, = 2.40, respectively. These values are clearly in the low reduced
velocity range, where more nonlinear features can be observed in the
flutter derivatives, as shown in Fig. 19. Slight changes in the natural
frequencies lead to variations in the reduced velocities that can cause
drastic changes in the flutter derivatives. For instance, the value of the
A for deck cross-section with high depth is very sensitive to changes in
U’ in the region U’ = [3, 7.5], as can be anticipated from Figs. 18 and 19,
which has an impact on the buffeting response.

Table 10 7.1. Synoptic wind modeling

Structural data used for the 1-node 3-DOF deck structural system used as a

demonstration example for the wind-resistant design of the deck. The buffeting analysis considers a turbulent synoptic wind, assuming
Quantity Description Value negligible variations in the angle of attack and mean wind velocity. The

wind is modeled adopting a turbulence intensity of I, = ¢,,/U = 0.07 in

K[[Tr/;lg /m] xz:g;r;ﬁ::;g t::er unit of length ii-3656.80 the horizontal flow direction while a turbulence intensity of I, = 6,,/U
fy [Hz] Lateral structural eigenfrequency 0.253 = 0.03 in the vertical direction. The integral length scales in the hori-
f= [Hz] Vertical structural eigenfrequency 0.392 zontal and vertical direction are L, = 200 m and L,, = 20 m, respectively.
fo [Hz] Torsional structural eigenfrequency 0.758 The Von Karman spectrum (Von Karman, 1948) is adopted for the di-
E[-] Damping ratio (for all modes) 0.015

agonal terms (Sy, and S,,) of the cross-power spectrum matrix, while
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the off-diagonal terms are equated to 0. The air density is taken as p =
1.22 kg/m°. These reference values are based on previous studies, for
instance, Diana et al., 2020a; Patruno and Ricci, 2017.

7.2. Buffeting response trends in the shape design domain

The PSD of lateral, vertical, and torsional accelerations of the 1-node
3-DoF system described above are presented in Fig. 27 (a), (b), and (c),
respectively. These PSDs were calculated using the aeroelastic surrogate
model to emulate the 18 flutter derivatives for each deck design
candidate. The torsional response is expressed as the equivalent vertical
displacement of the deck side edge as Z,; = 6B/2. The three responses
are monomodal functions, given the simplicity of the 1-node 3-DoF
system. However, the effect of the buffeting forces and aeroelastic forces
as a function of the deck shape is evident.

Fig. 27 (d), (e), and (f) show the RMS of acceleration of the lateral,
vertical, and torsional responses calculated following the procedure
described in Section 2.4.2. Using surrogate-based design methods per-
mits the calculation of continuous, smooth, and differentiable response
surfaces or curves, which facilitates design tasks and permits the
implementation of gradient-based optimization algorithms. It can be
seen the growing trend of the lateral and vertical responses as the depth
of the cross-section increases. However, variations in the torsional
response are minimal throughout the entire design domain. The RMS of
accelerations are typically adopted as the acceptance criteria in stan-
dards and project specifications. The limit values prescribed in the
Messina Bridge Project (Stretto di Messina, 2004) are Urmsmax =
0.15m/s%, Wrmsmax = 0.25m/s?, and Zegrusmax = 0.125m/ s2. We
adopt the same values here to conduct the buffeting-resistant design of
the deck. The buffeting response of the deck is calculated using the
aeroelastic surrogate reported in Section 6 for the emulation of the
flutter derivatives and also the QST formulation (Eq. (6)). These results
are shown in Fig. 27 (d), (e), and (f) as black and blue solid lines,
respectively. The impact of the flutter derivatives on the buffeting
response, even at not that high wind velocities, and the relevance of
adopting the adequate modeling scheme, i.e., the aeroelastic surrogate
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for bluff deck design, can be clearly seen for each buffeting response. In
fact, Fig. 27 (e) shows that the errors in the assessment of the RMS of
vertical accelerations increase as the section becomes bluffer. This can
be anticipated by analyzing the differences in the flutter derivatives
reported in Fig. 20, particularly for H;*. On the other hand, the differ-
ences for the A;* are not that large, which results in a torsional response
with slight differences, as shown in Fig. 27 (f). The lateral response re-
ported in Fig. 27 (d) shows a very good agreement due to the similitude
reported in Fig. 18 for the P;*, which has a key role on the lateral
damping as explained in Fig. 17, obtained using either the AS or QST
approaches.

7.3. Buffering-resistant design: deck shape tailoring

Deck shape modifications are very effective in mitigating buffeting-
induced responses. Imposing a maximum response for the three de-
grees of freedom as described in Section 6.2. leads to the definition of the
feasible design domain, which is graphically sketched in Fig. 28. This
design is conditioned by the local climate (wind modeling), shape-
dependent mechanical properties, and shape-dependent aerodynamic
and aeroelastic properties. As shown in Fig. 27 (d), (e), and (f), the
limitation is not active for the lateral and torsional responses. However,
the limitation in the vertical response of Wrysmax = 0.25 m/s?, condi-
tions the feasible design domain. Hence, values of H/B > 0.143 lead to

AS-based feasible \\
design domain

QST-based feasible
design domain

Lower bound
, H/B=0.143

/
7" Unfeasible design
domain

Upper bound

Fig. 28. Buffeting-resistant deck shape tailoring. Comparison of the feasible
design domains obtained using the Aeroelastic Surrogate (AS)-based approach
(green) and the QST-based approach (orange and green), and the unfeasible
design domain (red).
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Fig. 27. Buffeting response of the 1-node 3-DoF system under a turbulent synoptic wind with a mean velocity of Upeq, = 40 m/s. Subplots (a), (b), and (c) show the
PSD of the lateral, vertical, and torsional degree-of-freedom for the seven samples used in the sampling plan (see Section 3.3.) using the Aeroelastic surrogate (AS)

reported in Section 6. In subplots (d), (e), and (f), the RMS of accelerations as a function of the deck depth calculated using the AS and the QST are compared with the
thresholds imposed as acceptance criteria, which permits the identification of the feasible and unfeasible design domain regions.
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RMS of vertical accelerations higher than the maximum values adopted,
which makes this region of the design domain unfeasible, as shown in
Fig. 27. A different feasible design domain would be obtained if other
mechanical properties, wind conditions, or limit values were adopted.
Moreover, it is also important to highlight the role of the fluid-structure
interaction modeling approach. Adopting the QST formulation instead
of the proposed aeroelastic surrogate to estimate the flutter derivatives
can cause drastic changes in the feasible design domain. Fig. 27 also
shows in blue the buffeting response calculated using the QST and the
resulting new feasible design domain corresponding to H/B < 0.163,
which is also plotted in Fig. 28. It is important to remark that all deck
shape designs between H/B = 0.143 and 0.163 surpasses the vertical
threshold when performing the buffeting analysis with the AS. In
particular, if the design obtained using the QST-based approach is
selected (H/B 0.163), the actual vertical buffeting acceleration
calculated using the AS would be Wrys = 0.33 m/s, which would clearly

surpass the imposed threshold of Wrysmax = 0.25 m/s?. Consequently,
the results obtained using the QST are not conservative for this case and
can clearly pose a risk for the obtained designs. Hence, the definition of
the feasible design domain, including bluff geometries at low reduced
velocities, can only be defined by directly extracting the shape- and
frequency-dependent flutter derivatives, hence avoiding the limitations
of the QST formulation. This methodology opens the door to imple-
menting aero-structural optimization frameworks to optimize the deck
shape design of long-span bridges, considering flutter and buffeting re-
sponses effectively and accurately.

8. Concluding remarks

The self-excited forces of bluff decks present multiple nonlinearities
that must be properly modeled to conduct the shape design and opti-
mization of a deck cross-section accurately. This study proposes an
aeroelastic surrogate to emulate the frequency-dependent self-excited
forces for the shape design and optimization of bridge decks, including
streamlined, bluff, and any other geometry or typology where the ac-
curacy of the QST may be compromised, such as in truss and twin-box
decks. Detailed verification and validation studies based on wind tun-
nel data of the static and dynamic CFD simulations were conducted to
evaluate the performance of 2D URANS with the Menter’s kw-SST tur-
bulence model in a single-box bluff deck similar to the Sunshine Skyway
bridge deck. The deck depth was systematically changed in order to
understand and model its impact on the self-excited forces. Numerical
simulations of forced vibrations in the three degrees of freedom
permitted the extraction of the 18 flutter derivatives, which are required
for modeling the aeroelastic response of bluff decks properly. This was
done for multiple deck designs at several reduced velocities to collect
enough information to build a comprehensive emulator. A special focus
was set on the low reduced velocities range to capture potential non-
linearities by increasing the number of samples in that region of the
domain. Then, a kriging surrogate was trained using the CFD datasets to
produce an emulator that provides the values of the 18 flutter de-
rivatives for a given shape and reduced velocity value. The computed
response surfaces were analyzed using Scanlan’s and PoliMi’s formula-
tions in order to properly visualize the nonlinear features and the
asymptotic behavior at high reduced velocities which is imposed by the
level of bluffness of the deck cross-section. As expected, notable differ-
ences were found with the flutter derivatives obtained using the QST
formulation. The potential impact of these differences on a bridge
aeroelastic response and wind-resistant design was analyzed by
computing the buffeting response of a 1-node 3-DoF structural system
with variable deck depth. The remarkable differences found in the H;*
flutter derivatives, particularly for the bluffer geometries, led to drastic
changes in the calculated RMS of buffeting vertical accelerations. This
fact clearly impacts the eventual deck shape tailoring, seeking to keep
those accelerations below a prescribed acceptance criteria threshold.
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Hence, the use of the proposed aeroelastic emulator in wind-resistant
design frameworks involving non-streamlined deck cross-sections is
fundamental for accurately balancing the contradictory design demands
posed by the structural and aeroelastic requirements. Future research
will delve into the implementation of the developed QST-free aeroelastic
emulator into aero-structural optimization frameworks considering full
bridge models, multiple design variables to simultaneously optimize the
deck, cable-supporting system, and towers design, and multiple design
constraints of structural and aeroelastic nature to control all relevant
wind-induced responses.
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