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A B S T R A C T   

The shape design and optimization of bluff decks prone to aeroelastic phenomena require emulating the fluid- 
structure interaction parameters as a function of the body shape and the oscillation frequency. This is particu
larly relevant for long- and medium-span bridges equipped with single-box decks that are far from being 
considered streamlined and for other girder typologies such as traditional truss decks and modern twin- and 
multi-box decks. The success of aero-structural design frameworks, which are inherently iterative, relies on the 
efficient and accurate numerical evaluation of the wind-induced responses. This study proposes emulating the 
fluid-structure interaction parameters of bluff decks using surrogate modeling techniques to integrate them into 
aero-structural optimization frameworks. The surrogate is trained with data extracted from forced-vibration CFD 
simulations of a typical single-box girder to emulate the values of the flutter derivatives as a function of the deck 
shape and reduced velocity. The focus is on deck configurations ranging from streamlined to bluff cross-sections 
and on low reduced velocities to capture eventual aerodynamic nonlinearities. The girder cross-section geometry 
is tailored based on its buffeting performance. This design tool is fundamental to finding the optimum balance 
between the structural and aeroelastic requirements that drive the design of bluff deck bridges.   

1. Introduction 

Over the past three decades, the trend of designing and building 
long-span and super-long-span bridges has been on the rise worldwide. 
The Akashi Kaikyo Bridge in Japan (Kashima et al., 2001), the Xihoumen 
Bridge in China (Deng et al., 2021), and a more recently completed 1915 
Çanakkale Bridge in Turkey (Arıoğlu, 2021) with main span lengths of 
1991 m, 1650 m, and 2023 m, respectively, are a few notable examples 
of long and super-long span bridges. While longer spans are advanta
geous for traversing large water bodies with a single bridge construction 
project, the increasing span length also makes a bridge behave more like 
a slender, flexible structure with pronounced aerodynamic and aero
elastic loading and subsequent responses. Besides, medium-span 
cable-stayed bridges with span length of around 500 m is also very 
common in different parts of the world, such as the Constitution Bridge 
(540 m main span) in Cadiz, Spain (Díaz García et al., 2018); the Harbor 
Bridge (506 m) in Corpus Christi, USA (TxDOT, 2022); the Gordie Howe 
International Bridge (853 m) across the USA-Canada border (Martin 
et al., 2023) and the Cebu-Cordova Link Expressway (390 m) in the 
Philippines (Cruz et al., 2023). Some of these bridges (TxDOT, 2022; 

Cruz et al., 2023) are located in hurricane- and typhoon-prone regions 
and possess relatively bluff deck sections, which significantly impacts 
their aeroelastic behavior, making these strongly vulnerable to 
wind-induced instabilities and large aeroelastic responses. This situation 
is further exacerbated by climate change (Orcesi et al., 2022a, 2022b), 
which has resulted in the increase in both frequency and intensity of 
severe windstorms, typhoons, and hurricanes in the past few years, 
affecting critical infrastructure systems such as bridges (Nasr et al., 
2020). Thus, it is of paramount importance to provide due consideration 
to the aerodynamic aspect of streamlined and bluff bridge decks in 
addition to meeting the structural load demands before finalizing the 
design of medium- and long-span bridges. 

The design of contemporary bridge decks involves dealing simulta
neously with responses of structural and aeroelastic nature, hence 
addressing the design problem from a holistic aero-structural perspec
tive (Cid Montoya, 2024). This requires handling design requirements, 
such as deck and tower displacements under live loads, stresses devel
oped at the member level, and global aeroelastic responses, such as 
buffeting-induced responses and flutter and aerostatic instability, 
among others, that can involve contradictory design modifications. 
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Besides their clear influence on the structural responses, deck shape 
design modification impacts the aeroelastic responses by means of 
changes in (a) the mechanical properties (e.g., natural frequencies, 
mode shapes, etc.) and (b) the aerodynamic and aeroelastic character
istics (e.g., force coefficients, flutter derivatives, admittance functions, 
etc.). The direct relationship of the deck cross-section with most of the 
critical bridge responses turns its definition into a fundamental step in 
the bridge design characterized by its complexity due to the nonlinear 
nature of bluff body aerodynamics and bridge aeroelasticity (Shiraishi 
and Matsumoto, 1983; Lin et al., 2005; Kareem and Wu, 2013, 2015). 
Besides shape modifications, the use of appendages, as well as passive 
and active flow control methods, have also been proposed to mitigate 
wind-induced responses (Xue et al., 2021; Wang et al., 2023). However, 
shape modification remains one of the most cost-effective and functional 
techniques to improve the aeroelastic performance of bridges compared 
to adding appendages or countermeasures, which involve higher 
installation and maintenance costs (Larsen and Wall, 2012). 

Developing aero-structural bridge design tools requires the accurate 
numerical evaluation of the shape-dependent wind-induced responses. 
In order to overcome the traditional heuristic-based sequential analysis 
(Chen and Duan, 1999; Cid Montoya et al., 2018a proposed a numerical 
methodology based on the combination of surrogate models, computa
tional fluid dynamics (CFD) simulations of the bridge aerodynamics, and 
the quasi-steady theory (QST). The QST (Scanlan, 1987; Chen and 
Kareem, 2002; Tubino, 2005) permits the approximation of 
fluid-structure interaction parameters such as flutter derivatives and 
admittance functions by using the force coefficients and their slopes, 
reducing the CFD simulations’ computational burden because only static 
simulations are needed. This approach shows a good performance for 
streamlined geometries at high reduced velocities (Chen and Kareem, 
2003; Wu and Kareem, 2013), which is adequate for the evaluation of 
ultimate limit states such as flutter instability or buffeting response at 
high wind velocities. However, a major shortcoming of the QST model is 
its inability to take into account the fluid memory effect (Chen and 
Kareem, 2003; Wu and Kareem, 2013; Kavrakov and Morgenthal, 2017) 
in the aerodynamic characterization of flow. In other words, the QST 
model assumes that the structure is oscillating with such low frequencies 
that the fluid particle interacting at the frontal end of the structure (deck 
section) passes around the deck and through to the wake region on the 
downstream side even before the structure could respond to the flow 
field (which is applicable for cases when the reduced velocity U* → ∞). 
These assumptions make the QST approach suitable for application in 
the higher reduced velocity ranges, and that too mostly for streamlined 
deck sections. As the deck section becomes bluffer, which may be 
necessary in certain instances to enhance the mechanical properties of 
the bridge to account for certain bridge loading conditions, the QST 
model shows poor performance (Øiseth et al., 2011). The shortcomings 
of the QST model were first highlighted by Diana et al., 1993, when 
comparing the aeroelastic analyses of the Humber bridge to full-scale 
monitoring data (Bocciolone et al., 1992). Similarly, the manifestation 
of the poor performance of QST model in the severe underestimation of 
the stability limit of the Hardanger bridge in Norway was emphasized by 
Øiseth et al., 2010, thus leading the authors to conclude that the tradi
tional QST was inadequate to model the self-excited forces in coupled 
flutter or buffeting response analysis when compared to full bridge 
monitoring measurements. In addition, the QST model is not suited for 
application in bridge typologies other than the streamlined single-box 
decks such as the twin-box decks of the Xihoumen bridge (Deng et al., 
2021) or Stonecutters bridge (Hui and Wong, 2009) and truss bridges 
like the Akashi Kaikyo bridge (Kashima et al., 2001), Verrenzano bridge 
(Kinney et al., 1966), and Golden Gate bridge (Ludke, 2013). The effect 
of gap-width on the aerodynamic behavior of twin-box decks and sub
sequent responses is detailed in Kwok et al., 2012; Laima and Li, 2015, 
and the limitations of the QST model for application in bluff decks and 
twin-box decks are highlighted in Febo and D’Asdia, 2010; Nieto et al., 
2020. Similarly, in the case of truss bridges, the estimated flutter 

derivatives from the QST formulation show relevant variations in 
magnitude when compared to the experimental results as reported by 
Russo et al., 2023 for the Akashi-Kaikyo bridge. Hence, it can be inferred 
that the QST model fares from poor performance when applied to 
twin-box (or multi-box) decks and truss bridges, and thus, a more 
elaborate extraction of aeroelastic parameters obtained from an actual 
fluid-structure interaction study is necessary for buffeting analysis and a 
better estimation of flutter stability limits. 

In addition, the QST assumes frequency independence (Lazzari, 
2005) in aeroelastic loading of bridge decks (i.e., the flutter derivatives 
are independent of the frequency of oscillation of the deck). However, 
the fundamental mechanism driving the phenomenon of aeroelastic 
flutter is the addition of flow energy into the structural system, leading 
to the increase in total potential energy of the structure, which ulti
mately leads to instabilities and, thus, divergent oscillations (Dyrbye 
and Hansen, 1997; Abbas et al., 2017). Alternately, the flow energy 
derived from the aerodynamic forces (harmonically oscillating with a 
specific frequency) under a certain condition of phase lead/lag relation 
with the structural motion starts feeding energy to the structural system 
leading to flutter instability (Dyrbye and Hansen, 1997). This un
derscores the necessity to consider the frequency-dependent aeroelastic 
loading (Lazzari et al., 2004; Diana et al., 2013a, 2013b) in the pre
liminary design of medium and long-span bridges. For that purpose, 
either free vibration (Sarkar et al., 1994; Iwamoto and Fujino, 1995; 
Mannini, 2006; Argentini et al., 2022) or forced vibration (Matsumoto 
et al., 1996; Neuhaus et al., 2009; Wu et al., 2020; Diana and Omarini, 
2020) tests in the wind tunnel can be carried out to identify the flutter 
derivatives. However, the necessity to conduct either the forced vibra
tion or free vibration wind tunnel tests for multiple deck shape candi
dates along the design process makes the experimental approach a costly 
pursuit for design purposes, and its applicability is typically limited to 
the validation of final designs and for addressing minor modifications 
(Argentini et al., 2022). An alternative cost-effective approach to 
expensive experimental testing is to solve the flow field around a 
dynamically oscillating bridge deck numerically using the Navier-
Stokes’ (NS) equation with appropriate boundary conditions, which has 
also gained popularity over the past few years (Frandsen, 2004; Selvam 
et al., 2002; Šarkić et al., 2012; Brusiani et al., 2013; Sun et al., 2009; 
Sarwar et al., 2008; Mannini et al., 2016; Fransos and Bruno, 2010). 
With the aid of a numerically solved flow field obtained from CFD 
simulation, the unsteadiness in the flow (or, alternately, the fluid 
memory effect) can be properly accounted for in addition to the aero
dynamic non-linearities. Thus, CFD simulations offer a cost-effective, 
viable solution to experimental testing during the deck shape design 
process. In this study, we adopt this approach in order to produce a fully 
numerical design framework that permits the implementation of nu
merical optimization algorithms to conduct the aero-structural design of 
bridges. The accuracy of the numerical results obtained throughout CFD 
simulations is guaranteed by performing multiple verification and 
validation studies using experimental data. Then, once the CFD-based 
design optimization is completed, a final experimental validation of 
the optimized deck can be carried out as is customary in current engi
neering practice. 

On the other hand, adopting surrogate models for emulating aero
dynamic parameters permits the creation of smooth response surfaces 
(Forrester et al., 2008) that guarantee their continuity and differentia
bility within the design space, which are fundamental properties for 
their effective use in design frameworks such as those adopting 
gradient-based optimization algorithms (Haftka and Gürdal, 1992; 
Hernández, 2010; Arora, 2011). A first contribution in this direction was 
reported in Cid Montoya et al., 2018b, where a long-span bridge under 
multiple displacements- and stress-related design constraints along with 
a flutter instability design constraint was optimized by performing 3D 
multi-mode flutter analyses. This study highlighted the importance of 
the shape-dependent mechanical contribution of the deck to the 
flutter-resistant design. One of the key conclusions of this investigation 
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was the positive impact of increasing the deck depth for handling static 
responses such as deck displacements and stresses, but also in increasing 
the torsional natural frequency, which helped to increase the flutter 
response. As a consequence, the optimization algorithm tried to increase 
this value as much as possible, always reaching the maximum depth 
allowed, i.e., the design variable upper bound formulated in the opti
mization problem. Similar behavior was observed when conducting 
bridge aero-structural optimization considering buffeting-induced ac
celerations (Cid Montoya et al., 2022). These studies, including other 
similar studies reported in the existing literature (Jaouadi et al., 2020; 
Tinmitondé et al., 2022; Zheng et al., 2023), all rely on QST-based 
formulation and aerostatic analyses for the surrogate modeling frame
work and thus suffer from the limitations of QST-based formulation as 
highlighted in the previous paragraphs. 

Indeed, in some design scenarios, the optimum design with the best 
combination of the aerodynamic and mechanical properties to fulfill all 
structural and aeroelastic requirements may be within the design 
domain where the QST formulation shows an acceptable performance. 
However, further increasing the deck depth, which is a very efficient 
way to increase the torsional and vertical stiffness, may lead to bluff 
deck designs for which the hypothesis of the QST will not hold. This 
design challenge is conceptually sketched in Fig. 1. This can be the case 
of medium and not-that-long span bridges, as well as other typologies 
commonly adopted for long- and super-long span bridges, such as truss 
decks or multi-box decks, where the QST formulation does not provide 
enough accuracy for being used in the wind-resistant design without ad 
hoc corrections (Øiseth et al., 2010; Nieto et al., 2020). 

Hence, to perform the aerodynamic and aero-structural design of 
decks considering design domains involving both streamlined and bluff 
geometries, as well as considering other scenarios where the QST does 
not hold, such as low reduced velocities, the aeroelastic characterization 
of the bridge deck must be advanced to avoid the limitations and as
sumptions of the QST, such as frequency independence. Thus, in this 
study, we propose an improved framework based on the direct calcu
lation of the 18 flutter derivatives (Chen et al., 2002; Chowdhury and 
Sarkar, 2004) using dynamic CFD simulations to directly train the 
aeroelastic emulator with the fluid-structure interaction parameters as a 
function of the deck shape and the reduced velocity. Therefore, the 
methodology adopted is conceived to explore wide shape design do
mains that include streamlined and bluff deck cross-sections, hence 
allowing designers and design optimization algorithms to accurately 
transition back and forward from streamlined to bluff deck 
cross-sections. With this aim, a kriging surrogate (Krige, 1951; Sacks 
et al., 1989) is trained to emulate the flutter derivatives of the bridge as a 
function of the shape and reduced velocity. Force-vibration simulations 
(Šarkić et al., 2012, 2015; Nieto et al., 2015; Mannini et al., 2016; Zhuo 
et al., 2022) are used to obtain the time history of aeroelastic forces for 
further computation of flutter derivatives as per procedures outlined in 
Xu et al., 2014. 

The design framework proposed in this study is introduced in Section 
2 and each step is discussed in detail, including the fundamental aero
dynamic and aeroelastic formulations for flutter and buffeting analyses, 
and the surrogate modeling technique adopted. The details about the 
single-box deck adopted as an application example, which is based on 
the experimental CRIACIV (Inter-University Research Centre on Build
ing Aerodynamics and Wind Engineering) section from Mannini et al., 
2010, are discussed in depth in Section 3, including the definition of 
design domain, design variables, sampling plan, and the design of ex
periments. Section 4 is devoted to the full description of the computa
tional modeling aspects adopted for the CFD simulation, including the 
spatial discretization of the computational domain, and the different 
verification and validation studies carried out for aerostatic (in the form 
of time-averaged force coefficients vs. angle of attack) and aeroelastic 
(flutter derivatives vs. reduced velocity) analyses. The response surfaces 
of the shape- and frequency-dependent emulator obtained from the 
kriging surrogate model for all the 18 flutter derivatives are reported in 
Section 5, whereas Section 6 discusses the influence of the 
shape-dependent flutter derivatives on the bridge aeroelastic responses. 
Given that the focus of this piece of research is the nonlinear behavior of 
the self-excited forces that typically occurs at low reduced velocities, 
buffeting will be the aeroelastic response under study in order to analyze 
the response in the three degree-of-freedom independently and to study 
the response at different reduced velocities. The buffeting responses are 
later used for tailoring the bridge deck, showing the methodology’s 
effectiveness. Finally, Section 7 summarizes the key conclusions drawn 
from the different analyses covered in this study and discusses future 
lines of research. 

2. Aero-structural design via emulating shape- and frequency- 
dependent flutter derivatives 

Previous aero-structural design frameworks developed for bridges 
with streamlined deck cross-sections resulted in effective and powerful 
design tools for improving the wind-resistant design by reducing the 
material volume while achieving the structural and aeroelastic safety 
and serviceability specifications (Cid Montoya et al., 2018b, 2021, 2022; 
Cid Montoya, 2024). Alternative frameworks were also developed by 
Jaouadi et al., 2020; Tinmitondé et al., 2022; Zheng et al., 2023. A 
commonality in all those reported studies, however, is the adoption of 
the QST-based formulation and assumptions of frequency independence, 
which confines the scope of shape design space strictly to streamlined 
deck cross-sections and neglects the dependency of the aeroelastic forces 
on the reduced velocity (U* = U/fB). This last consideration gains 
importance when dealing with not-so-long spans, as the natural fre
quencies are higher and, consequently, the reduced velocities are low. 
According to Diana and Omarini, 2020, nonlinear frequency-dependent 
effects are relevant when the reduced velocity is lower than 
U* < 10 – 15. The range of reduced velocities at which the QST holds 

Fig. 1. Conceptual illustration of the typical contradictory aerodynamic and mechanical contributions of deck shape modifications to the bridge aeroelastic responses 
and the expected performance of the QST along classical shape design domains (based on Cid Montoya et al., 2018b). 
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depends on the specific deck cross-sections, and other studies suggest 
different ranges for the validity of the QST at low reduced velocities (see, 
for instance, Diana et al., 2013a, b; Calamelli et al., 2024). To overcome 
all the limitations posed by QST-based formulation within design 
frameworks, this study proposes a QST-free aeroelastic surrogate-based 
design methodology, which enables the exploration of a wide shape 
design space comprising of both streamlined and bluff deck sections of 
any deck typology and allows to account for the frequency-dependency 
of the aeroelastic loading. 

The proposed QST-free aeroelastic surrogate-based design frame
work is described in Fig. 2 and comprises four key sequential modules 
that permit the construction of an aeroelastic emulator to be imple
mented in aero-structural design frameworks. The first step is the defi
nition of the design variables and design parameters and their allowed 
range of variation. The variables defining the cross-sectional dimensions 
of the bridge that impact the aeroelastic response of the bridge, such as 
the chord width, depth, fairing angle, etc., qualify under shape design 
variables Sd, whereas the aeroelastic parameters, such as the reduced 
frequency/velocity, fall under design parameters. While the distinction 
between the shape design variables (derived from the deck cross-section 
definition) and the design parameters (derived from aeroelasticity, i.e., 
oscillation frequency or wind velocity) may not be very distinct from a 
purely mathematical standpoint in the surrogate training process, in a 
truly physical and functionality sense, however, the variables that can 
be controlled by the designer and/or is based on designer’s will qualifies 
under design variables, whereas the design parameters encompass those 
that are not generally controlled by the designer and rather represents 
the different instances/possibilities exhibiting the dynamic interaction 
of bridge deck with winds with variability in phase lead/lag relation 
with the structural motion. Hence, the set of shape design variables 
composes the design domain, while the set of aeroelastic parameters 
originates the aeroelastic parametric domain. Therefore, the aeroelastic 
emulator will be defined within a “surrogate domain” that comprises the 
union of the design and parametric domains. From a designer’s 
perspective, it would be compelling to define a large number of design 
variables to achieve better designs; however, as the problem’s dimen
sionality rises, so does the associated computational cost due to the so- 
called ‘curse of dimensionality’ (Forrester et al., 2008). With the same 
motivation and a view to minimize the computational burden, two 
variables are chosen in this work: one shape design variable, which is the 
deck depth (H) because of its ability to tailor the deck ranging from 
streamlined to bluff geometries, hence Sd = H, and one aeroelastic 
design parameter, which is the reduced velocity (U*). Hence, the sur
rogate domain is D s = [Sd, U*]. It is worth mentioning that the elimi
nation of the QST applicability requirements enables the definition of 
wider design domains only limited by engineering criteria and compu
tational resources. 

Once the design variables and parameters are identified and their 
ranges are defined, the next step is to create an adequate sampling plan 
that permits the effective exploration of the surrogate domain previously 
defined. The sampling plan must be designed to seek an effective domain 
exploration considering the particularities of the selected surrogate 

domain, such as eventual nonlinear aeroelastic behaviors. Further de
tails are discussed in Sections 2.3 and 4.1.2. The next step in the 
sequential process is to conduct dynamic CFD simulations to quantify 
the aeroelastic response or fluid-structure parameters of interest as a 
function of design variables and parameters at discrete observation 
points. While the aeroelastic response of streamlined deck bridges can 
be assessed with reasonable accuracy using only eight flutter de
rivatives, i.e., the lift and moment flutter derivatives A*

i , H*
i , i = 1, …,4, 

the aeroelastic responses of bluff deck bridges are impacted by the drag 
flutter derivatives P*

i , as demonstrated in the analysis of some specific 
bridges, such as the Akashi Kaikyo Bridge (Miyata et al., 1995) and the 
Lions Gate Bridge (Jones et al., 2003), and in other research studies 
(Singh et al., 1996; Chowdhury and Sarkar, 2003; Xu et al., 2016). 
Hence, it is pivotal to emulate the full set of flutter derivatives to 
properly model all aeroelastic effects in a design domain comprising 
streamlined and bluff deck cross-sections. The CFD simulations required 
to extract the 18 flutter derivatives throughout the forced vibration 
technique can be carried out either in an uncoupled manner (one DoF 
imposed at a time as considered in the current work or in Mannini et al., 
2016; Wang and Chen, 2022) or in a coupled manner (all the 3 DoFs 
imposed at once as in Xu et al., 2014) at the discrete points defined in the 
sampling plan. From the CFD simulations, the time history of aeroelastic 
forces is obtained, to which either the Fast Fourier Transform (FFT) 
(Mannini et al., 2016) or the least squares method (Xu et al., 2014) can 
be applied to obtain the aeroelastic flutter derivatives. Since the pro
posed numerical design methodology intends to advance current design 
methods well established in the engineering practice, the boundary 
conditions enforced on the CFD model should reflect the wind tunnel 
testing conditions commonly adopted in the industry, and a represen
tative subset of numerical results must be validated against experi
mental measurements. Two levels of experimental validation for the 
CFD results should be conducted in the context of the proposed QST-free 
methodology: (1) time-averaged force coefficients and Strouhal 
numbers as a function of the angle of attack obtained throughout static 
CFD simulations and (2) time-variant aeroelastic force coefficients and 
integrated values of the flutter derivatives as a function of the reduced 
velocity obtained by dynamic CFD simulations. This is a fundamental 
part of the proposed methodology that advances previous frameworks 
based on the QST that only required static CFD simulations. Following 
the aeroelastic evaluations carried out by the CFD simulations, the next 
step is to train the surrogate model to build an aeroelastic emulator, 
which comprises a smooth response surface of flutter derivatives satis
fying the design requirements of differentiability and continuity over the 
design space. From a mathematical black-box perspective, the QST-free 
aeroelastic emulator of the self-excited forces A se can be formulated as: 

A se(Sd, U* ) =
[
A*

i , H*
i , P*

i
]

(1)  

Where the input is the surrogate domain D s = [Sd, U*] and the output is 
the complete set of 18 flutter derivatives A*

i , H*
i , P*

i , where i = 1, …,6, at 
angle of attack α = 0◦. From the obtained response surfaces, either the 
values of flutter derivatives can be used for design purposes adopting 

Fig. 2. Proposed framework for creating a design-oriented QST-free aeroelastic emulator.  
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traditional heuristic design approaches, or alternately, the surrogate 
may be employed in the surrogate-based design optimization (SBDO) 
process to obtain an optimal bridge deck shape design. 

2.1. Aerodynamic and aeroelastic formulations 

2.1.1. Aerodynamic force coefficients and Strouhal number 
The aerodynamic force coefficients are the result of the integration of 

the time-averaged pressures distribution and viscous stresses along the 
deck perimeter caused by a constant wind without fluctuations on a 
bridge deck that is assumed to be rigidly supported. The aerodynamic 
steady forces are usually expressed in non-dimensional form (normal
ized by the dynamic pressure 1 /2 ρU2 and a representative dimension of 
the deck) and are given by the expressions in Eq. (2). The Strouhal 
number, which depends on the frequency of vortex shedding is calcu
lated by the expression for St in Eq. (2) below. 

CD =
D

1 /2 ρU2 B
, CL =

L
1 /2 ρU2 B

, CM =
M

1 /2 ρU2 B2, St =
fvs H

U (2)  

In Eq. (2), D and L are the drag and lift forces, respectively, whereas M is 
the torsional moment acting on a unit of span length of the deck at a 
particular angle of attack. Similarly, ρ represents the density of air, U 
stands for the free-stream flow velocity and fvs is the vortex shedding 
frequency in Eq. (2). The chord width of the bridge deck is represented 
by B whereas the depth of deck is represented by H. The sign convention 
adopted for evaluating static aerodynamic force coefficients is shown in 
Fig. 3. 

2.1.2. Self-excited forces 
Dynamically flexible medium- and long-span bridges oscillate under 

the wind action and the structural motion of these structures in turn 
induces aeroelastic forces on them, which are also called the motion- 
induced or the self-excited forces. The self-excited forces acting on a 
wind-sensitive structural system are usually expressed in the form of 
aeroelastic coefficients called the aerodynamic flutter derivatives, which 
are a set of nondimensional unsteady parameters that establish the re
lationships between the self-excited forces and the deck displacements. 
The flutter derivatives can be expressed in different notations such as the 
most popular Scanlan notation (Scanlan and Tomko, 1971), PoliMi 
(Politecnico di Milano) notation (Zasso, 1996), Küssner notation (Sze
chenyi, 1973), quasi-steady modified notation (Zasso, 1996), etc. In the 
present work, the Scanlan notation and the PoliMi notation, which 
provides a better resolution of flutter derivatives in the lower reduced 
velocity range, are used, and discussed below.  

(a) Scanlan Notation: 

The aeroelastic self-excited forces induced on the deck section under 
the wind action can be evaluated using the semi-empirical approach 
proposed by Scanlan and Tomko, 1971. In this approach, the aeroelastic 
forces on the deck section are related with the deck motion components 
(displacements and rotations) via a first order linear approximation, 
which can also be realized using a Taylor series expansion of aero
dynamic forces around the respective motion component under 

consideration retaining the first order derivative while neglecting the 
higher order derivative terms from the Taylor series. Two degrees of 
freedom (corresponding to ‘pitch’ and ‘heave’) were considered in the 
original formulation proposed by Scanlan and Tomko, 1971. Later, the 
same formulation was extended to determine all the 18 flutter de
rivatives by incorporating the third degree of freedom based on hori
zontal oscillations of the deck section (Singh et al., 1996; Jain et al., 
1996). Based on the same formulation, the self-excited forces are given 
by Eq. (3). 

Lse =
1
2

ρU2B
[

KhH*
1
ḣ
U

+ KαH*
2
Bα̇
U

+ K2
αH*

3α + K2
hH*

4
h
B

+ KpH*
5
ṗ
B

+ K2
pH*

6
p
B

]

(3a)  

Dse =
1
2

ρU2B
[

KpP*
1
ṗ
U

+ KαP*
2
Bα̇
U

+ K2
αP*

3α + K2
pP*

4
p
B

+ KhP*
5
ḣ
B

+ K2
hP*

6
h
B

]

(3b)  

Mse =
1
2

ρU2B2
[

KhA*
1
ḣ
U

+ KαA*
2
Bα̇
U

+ K2
αA*

3α + K2
hA*

4
h
B

+ KpA*
5
ṗ
B

+ K2
pA*

6
p
B

]

(3c)  

In Eq. (3), the self-excited lift and drag force per unit length of span are 
represented by Lse and Dse whereas the aeroelastic moment per unit span 
length is represented by Mse. Similarly, Kh, Kα and Kp represent the 
reduced frequency of oscillation corresponding to heave (h), pitch (α), 
and shove (p) degrees of freedom, which are defined by Kh = 2π/ U*, Kα 

= 2π/ U*, Kp = 2π/ U*, respectively, where U* is the reduced velocity 
associated with respective degrees of freedom. The reduced velocity U* 
is defined as U* = 2πU/ ωx B, where x = h, α, p, denote the respective 
motion components, and ωx denotes the circular frequency associated 
with the motion. Similarly, ḣ, α̇ and ṗ, are the first order derivatives with 
respect to time for the heave, pitch, and shove motion components 
respectively. Finally, Hi*, Ai* and Pi* (i = 1, 2, …6) are the flutter de
rivative values computed from the time history of aeroelastic forces. The 
sign convention adopted for the aeroelastic forces and different degrees 
of freedom for the dynamical system is shown in Fig. 4.  

(b) PoliMi Notation: 

The PoliMi notation for representing the flutter derivatives proposed 
by Zasso, 1996 has some salient features and adds to the advantage from 
other notations. This notation allows a quantitative comparison of 
aerodynamic forces on the deck cross-section from the coefficient values 
with no normalization factors and maintains the representation with 
same intrinsic resolution at high and low reduced velocities (Zasso, 
1996). The loss of resolution in the lower reduced velocity range for 
flutter derivatives A2*, A3*, H2*, H3* is commonly encountered in 
Scanlan representation of flutter derivatives. However, when flutter 
derivatives are expressed in PoliMi notation, distinct non-linear trends 
of flutter derivatives as a function of reduced velocity can be observed. 
In addition, the flutter derivatives expressed in PoliMi notation converge 
towards that obtained from the QST exhibiting asymptotic trends 
approaching a limiting value at higher reduced velocity range (more 
distinctly observed for streamlined sections). The manifestation of such 
a tendency serves as an additional verification for the computed flutter 
derivatives using CFD simulations. Hence, the advantages offered by the 
PoliMi notation are also utilized in this work while formulating the 
sampling plan and training the surrogate model. In the PoliMi notation, 
the self-excited forces are given by Eq. (4), where U*

ω = U*

2π. 

Lse =
1
2

ρU2B
[

−h*
1
ḣ
U

− h*
2
Bα̇
U

+ h*
3α + h*

4
π

2 U*2
ω

h
B

− h*
5
ṗ
U

+ h*
6

π
2 U*2

ω

p
B

]

(4a)  

Dse =
1
2

ρU2B
[

−p*
1
ḣ
U

− p*
2
Bα̇
U

+ p*
3α + p*

4
π

2 U*2
ω

h
B

− p*
5
ṗ
B

+ p*
6

π
2 U*2

ω

p
B

]

(4b) 
Fig. 3. Sign convention adopted for the force coefficients.  
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Mse =
1
2

ρU2B2
[

−a*
1
ḣ
U

− a*
2
Bα̇
U

+ a*
3α + a*

4
π

2 U*2
ω

h
B

− a*
5
ṗ
B

+ a*
6

π
2 U*2

ω

p
B

]

(4c) 

As both the notations are used in different sections of the current 
work, the conversion relation between the flutter derivatives expressed 
in the Scanlan notation to the PoliMi notation and vice-versa are also 
included and are given by Eq. (5) below. 

H*
1 = −

U*

2π h*
1; H*

2 = −
U*

2π h*
2; H*

3 =

(
U*

2π

)2

h*
3 (5a)  

H*
4 =

π
2

h*
4; H*

5 = −
U*

2π h*
5; H*

6 =
π
2

h*
6 (5b)  

A*
1 = −

U*

2π a*
1; A*

2 = −
U*

2π a*
2; A*

3 =

(
U*

2π

)2

a*
3 (5c)  

A*
4 =

π
2

a*
4; A*

5 = −
U*

2π a*
5; A*

6 =
π
2

a*
6 (5d)  

P*
1 = −

U*

2π p*
5; P*

2 = −
U*

2π p*
2; P*

3 =

(
U*

2π

)2

p*
3 (5e)  

P*
4 =

π
2

p*
6; P*

5 = −
U*

2π p*
1; P*

6 =
π
2

p*
4 (5f) 

The key difference between the two notations is that the flutter de
rivatives P1* and P4* refer to the lateral velocity/displacement whereas 
p5* and p6* refer to the same in PoliMi notation. Similarly, P5* and P6* 
refer to the vertical velocity/displacement in Scanlan notation whereas 
p1* and p4* refer to the same in PoliMi notation.  

(c) Quasi-Steady Theory (QST) formulation: 

The quasi-steady theory (Scanlan, 1988) is a modeling scheme for 
wind-induced loads in which the interaction of flow with the bridge at 
the current time instant is mapped to the state at infinite time neglecting 
the wake effect on the downstream end of the deck (Wu and Kareem, 
2013). A more in-depth discussion of the quasi-steady theory can be 
found in Tubino (2005). To perform a standard frequency domain 
analysis, the quasi-steady load model is linearized (Salvatori and 
Spinelli, 2007; Lazzari, 2005), which upon further simplification and 
comparison with Scanlan’s semi-empirical relations yields a relationship 
connecting the flutter derivatives with mean aerostatic force coefficients 
and their slopes. The flutter derivatives based on QST model are given by 
Eq. (6), where K = 2π

U* is the reduced frequency of oscillation. 

H*
1 =−

Cʹ
L,0◦ +CD,0◦

K
; H*

2 =−
Cʹ

L,0◦ +CD,0◦

K
μH; H*

3 =−
Cʹ

L,0◦

K2 ; H*
5 =−

2CL,0◦

K
;

A*
1 =

Cʹ
M,0◦

K
; A*

2 =
Cʹ

M,0◦

K
μA; A*

3 =
Cʹ

M,0◦

K2 ; A*
5 =−

2CM,0◦

K
;

P*
1 =−

2CD,0◦

K
; P*

2 =−
Cʹ

D,0◦ − CL,0◦

K
μP; P*

3 =
Cʹ

D,0◦

K2 ; P*
5 =

Cʹ
D,0◦ − CL,0◦

K
;

(6) 

Similarly, CD,0◦ , CL,0◦ andCM,0◦ are the mean drag, lift and moment 
coefficients respectively at 0◦ angle of attack whereas Cʹ

D,0◦ ,

Cʹ
L,0◦ andCʹ

M,0◦ are the slopes of the mean drag, lift, and moment co
efficients respectively. The coefficients μA,μH,μP are the aerodynamic 
centers, which represent the distance between the elastic center of the 
cross section and the distances between the point of application of the 
aerodynamic forces expressed as a fraction of the section width B and are 
defined by μA =A*

3/H*
3, μH =A*

1/H*
1, μP =μH (Chen and Kareem, 2002). 

Alternately, Diana et al. (1993) have proposed that the aerodynamic 
centers can be determined from the ratio of flutter derivatives defined by 
μA = A*

2/A*
1, μH = −H*

2/H*
1, μP = P*

2/P*
1, obtained from the wind tunnel 

tests at the highest reduced velocity where the QST holds true. However, 
as no information exists about the flutter derivatives beforehand in the 
frame of standalone application of QS formulation, so, in this work, the 
aerodynamic centers inferred from the QS approximation of the flutter 
derivatives A*

1, H*
1, A*

3 and H*
3 as proposed by Larose and Livesey (1997) 

is used to determine the aerodynamic centers. The remaining flutter 
derivatives such as the Hi*, Ai* and Pi* (i = 4, 6) are 0 in the QST 
formulation. The application of QST-based formulation in the case of 
streamlined decks can be found in Larose and Livesey, 1997; Borri and 
Costa, 2004; Febo and D’Asdia, 2010; Cid Montoya et al., 2020. 

2.1.3. Buffeting forces 
The buffeting wind loads per unit length of bridge, due to the tur

bulent velocity fluctuations, defined by u = uoei2πf*t* and w = woei2πf*t* , 
(Diana et al., 2020a) is given by Eq. (7), where u and w are the turbulent 
fluctuations at a given time instant whereas uo and wo are the amplitudes 
of the harmonic fluctuation components in the horizontal and vertical 
directions respectively. 

Db =
1
2

ρU2B
(

χ*
Du

u
U

+ χ*
Dw

w
U

)
, (7a)  

Lb =
1
2

ρU2B
(

χ*
Lu

u
U

+ χ*
Lw

w
U

)
, (7b)  

Mb =
1
2

ρU2B2
(

χ*
Mu

u
U

+ χ*
Mw

w
U

)
, (7c) 

Similarly, χ*
Du, χ*

Dw, χ*
Lu, χ*

Lw, χ*
Mu, χ*

Mw are the aerodynamic admittance 
functions, which are a function of the deck cross-section and can be 
determined through experimental measurement or numerical simula
tions. Further details about buffeting analysis and determination of 
aerodynamic admittance functions can be obtained from Larose, 1999; 
Zasso et al., 2013; Diana et al., 2013a, b. 

The goal of this work is to model the nonlinear behavior of the self- 
excited forces with a focus on the low reduced velocities. In order to 
simplify the interpretation of the results, the admittance functions will 
be calculated using the Davenport admittance (Davenport, 1963), hence 
avoiding the nonlinearities coming from the buffeting loads part. This 
approach was also used in the activities of the IABSE Task Group 3.1. 
(Diana et al., 2020a, 2020b). Hence, the admittance functions will be 
calculated as per Eq. (8), where A(f*) is the davenport admittance 
(Davenport, 1963). A decay factor of 7 is used to be on the conservative 
side when performing the buffeting-resistance deck shape tailoring. 

Fig. 4. Sign convention adopted for the aeroelastic forces and mo
tion components. 
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χ*
Du = 2.CD,0◦ .A(f*), χ*

Dw =
(

C’
D,0◦ − CL,0◦

)
.A(f*),

χ*
Lu = 2.CL,0◦ .A(f*), χ*

Lw =
(

C’
L,0◦ + CD,0◦

)
.A(f*),

χ*
Mu = 2.CM,0◦ .A(f*), χ*

Mw = C’
M,0◦ .A(f*)

(8)  

2.2. CFD modeling formulation 

2.2.1. Static simulation 
Flow around the bridge deck is modeled by incompressible Unsteady 

Reynolds Averaged Navier-Stokes (URANS) equations with k-ω SST 
turbulence model (Mannini et al., 2010, 2016; Fransos and Bruno, 2010; 
Brusiani et al., 2013; Álvarez et al., 2018). A 2D flow is considered in a 
rectangular domain inside of which the deck of bridge is modeled. 

The governing fluid flow equations are given by Eqs. (9) and (10) for 
the static case (stationary deck section). 

∂Ui

∂xi
= 0 (9)  

ρ ∂Ui

∂t
+ ρUj

∂Ui

∂xj
= −

∂P
∂xi

+
∂

∂xj

[

μ
(

∂Ui

∂xj
+

∂Uj

∂xi

)

− ρ u’
iu’

j

]

(10)  

In Eqs. (9) and (10), Ui is the mean velocity of flow, P is the mean 
pressure, μ is the molecular dynamic viscosity of fluid, uʹ is the fluctu
ating component of velocity, Sij is the mean strain rate tensor and xi 
represents the spatial coordinates of the fluid domain in 2D cartesian 
frame. In the URANS approach, the averaging operator defined in Eq. 
(11) is applied on the Navier-Stokes (NS) equation, which represents the 
average of many statistically identical realizations of flow variables at a 
certain time (Ferziger and Peric, 1996). 

φ(x, t) = lim
N→∞

1
N

∑N

n=1
φ(x,t)

(11) 

After applying the averaging operator on the NS equation, some 
additional terms appear due to the non-linearity of convection term in 
NS equation leading to the classical closure problem. The residual term 
− ρu’

iu’
j obtained after the averaging procedure is called the Reynolds 

stress tensor, which is equated to the mean velocity gradient using the 
classic Boussinesq hypothesis to close the system of equation. After some 
mathematical simplification and substitutions, the specific Reynold’s 
stress tensor is obtained as follows: 

τʹij = 2ϑt . Sij −
2
3

kδij (12) 

For incompressible flow, the second term in Eq. (12) is usually 
combined with the pressure gradient term of NS equation resulting in a 

turbulent pressure field, i.e., p ← p +
(

2 /3 k
)

; here, p = P/ ρ is the ki

nematic pressure field. The only remaining unknown in the system of 
equation is the turbulent kinematic viscosity ϑt which is obtained by 
solving the transport equation of k and ω. The details about the k-ω SST 
turbulence model along with all the model coefficients used in the 
transport equations can be obtained from Menter et al., 2003. 

2.2.2. Dynamic simulation 
For the determination of self-excited forces to compute the flutter 

derivatives, forced harmonic oscillations are imposed on the deck sec
tion using the Arbitrary Lagrangian Eulerian (ALE) formulation (Donea 
et al., 2004). The imposed motion for pitching, heaving, and shoving are 
applied by α = αo sin(ωt), h = ho sin(ωt), and p = po sin(ωt) respec
tively. The amplitudes of the imposed motions αo, ho, and po are selected 
by mimicking the common engineering practice for extracting the flutter 
derivatives. The flutter derivatives dependency on the vibration ampli
tude, which is important to accurately predict VIV responses (Wang and 
Chen, 2022), is not addressed in this investigation. In this work, only one 

degree of freedom (DoF), i.e., either ‘pitch’, ‘heave’, or ‘shove’ DoF is 
imposed at a time as shown in Fig. 5. For imposing the motion, the mesh 
of the domain is adjusted in each time-step by moving the boundaries of 
the deck section. The conservation of mass and momentum for the 
motion-imposed deck system is given by Eqs. (13) and (14), where Ugi is 
the grid velocity in the ith direction. 

∂
(

Ui − Ugi
)

∂xi
= 0 (13)  

ρ ∂Ui

∂t
+ ρUj

∂
(
Ui − Ugi

)

∂xj
= −

∂P
∂xj

+
∂

∂xj

(
2μSij − ρu’

iu’
j

)
(14) 

The mesh motion is implemented using a second-order quasi-tetra
hedral Finite Element method (Jasak and Tuković, 2007). The governing 
equation for mesh motion is given by Eq. (15), in which the Laplace 
equation for mesh node displacement vector (u) is solved with a variable 
diffusivity (γ). 

∇.(γ∇u) = 0 (15) 

The variable diffusivity is computed using the quadratic inverse 
distance method, in which the amplitude of imposed motion at the 
oscillating boundary gets diffused to the rest of the domain following an 
inverse proportionality relation on the square of the distance of a cell 
from the moving boundary. After obtaining the time history of aero
elastic forces, the values of flutter derivatives are computed using the 
method of least squares (Xu et al., 2014). 

2.3. Surrogate modeling 

In engineering design problems, often, a situation is encountered in 
which it is difficult to ascertain the exact functional dependence of the 
key response variables of interest subject to a given input and/or a set of 
input variables. Due to the inherent complexity involved in the physical 
process (either experiment or numerical simulation), a set of discrete 
observations and samples often becomes the only alternative to explore 
and gain valuable insights into the functional dependence between the 
variables in certain cases (Forrester et al., 2008). Applying the same 
philosophy to bridge aeroelasticity, the aerodynamic/aeroelastic re
sponses subject to either the changes in the flow/aerodynamic condi
tions and/or the structural parameters (such as due to the different 
shapes, sizes, structural properties, etc.) would require an enormously 
large set of experiments or numerical simulations to be carried out as the 
relationship between the aeroelastic response of bridge deck subject to 
several aerodynamic and structural constraints usually exhibits highly 
non-linear relationships. In such a scenario, a surrogate model (which is 
an approximating function to the real function describing the relation
ship between the response variable and the design variables/
parameters) becomes an easy-to-evaluate and computationally efficient 
alternative to a plethora of physical/computational experiments. 

The fundamental requirement for implementing surrogate models in 
design frameworks based on gradient-based optimization algorithms is 
that the response surface describing the relationship between the 
response variable (aerodynamic/aeroelastic response within the current 
scope of work) and the design variables/parameters is continuous, 
smooth, and differentiable over the design space. The next important 
consideration in surrogate modeling is the quality of the space explo
ration, which consists of the necessity to sample a high enough number 
of discrete observations of the response with an efficient distribution 
along the design domain that guarantees that the set of observations 
provides an accurate and sufficient representation of the real response in 
the design domain for its intended use. For that purpose, different 
sampling techniques are available such as the full-factorial sampling 
plan, Latin hypercube sampling plan, space-filling Latin Hypercube 
sampling plan, to name a few. Each of these techniques has its own 
strengths and drawbacks, as discussed in McKay et al. (1979), Sacks 
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et al. (1989), Olsson et al. (2003), Picheny et al. (2010), and Yondo et al. 
(2018). For instance, the full factorial sampling plan provides a uniform 
level of accuracy throughout the design space with the uniformly spread 
point distribution on its input variable axes but results in the overlap of 
sample points when projected onto its constituent axes. The Latin hy
percube sampling technique ensures a stratified distribution of sample 
points in each of the dimensions; however, it still might suffer the 
drawback of not fulfilling the space-filling criteria. The space filling 
Latin hypercube sampling could be an alternative to satisfy the 
space-filling criteria, but its computational complexity may rise very 
rapidly as the size of sampling plan (or the number of sampling points) 
increases. The choice of a specific sampling plan suited for a particular 
problem is generally an open issue. In the context of wind engineering 
problems, the computational extraction of fluid-structure interaction 
parameters is typically conditioned to its later interpretation and vali
dation with wind tunnel tests, which requires comparisons changing 
only one variable, e.g., flutter derivatives as a function of the reduced 
velocity, while the other variables are unchanged (ceteris paribus). In 
this context, full factorial sampling stands as a very suitable alternative 
for engineering interpretation and systematic analysis (Cid Montoya 
et al., 2023). Further details about the full factorial sampling strategy 
adopted in this investigation are described in Section 3.3. 

Once the dimensionality of the problem is ascertained (based on the 
number of design variables and design parameters) and an appropriate 
sampling plan has been worked out, the next step is to determine the 
responses (the output of the emulator, i.e., the flutter derivatives in the 
current scope of work) via dynamic CFD simulations. Once these re
sponses are available for every design included in the sampling plan, the 
next step is to train the surrogate model. The Kriging surrogate model 
(Krige, 1951; Sacks et al., 1989), which is a popular choice in 
surrogate-based optimization problems, is chosen for this task as it 
guarantees that all the responses of the samples are contained in the 
response surface. This is a key advantage in problems where the 
computation of the responses for each sample has a high computational 
burden, as it is the case for dynamic CFD simulations. Previous appli
cations in the bridge engineering field for emulating bridge deck force 
coefficients can be found in Cid Montoya et al., 2018a; Kusano et al., 
2020; Nieto et al., 2020; Xu et al., 2020; Li et al., 2021. The kriging 
emulator f̂k(x) is made of a regression model or trend function k(x)

Tρ 
and a stationary Gaussian process error model ε(x) that corrects the 
trend function: 

f̂k (x) = k(x)
Tρ + ε(x) (16) 

Another key assumption in the Kriging model is that the observed 
responses are the realization of random variables from a stochastic 

process in which the random variables are correlated to each other 
through the basis function defined in Eq. (17). 

cor
[
Y

(
x(i)), Y

(
x(l))]

= ψ (i) = exp

(

−
∑k

j=1
θj

⃒
⃒
⃒x(i)

j − xj

⃒
⃒
⃒
pj

)

(17)  

In Eq. (17), k is the number of design variables, the vector x(i) is the ith 

sample and Y
(
x(i)) is the observed response of the ith sample. Similarly, 

⃒
⃒
⃒x(i)

j − xj

⃒
⃒
⃒
pj 

is the absolute distance between sample points, and θj and pj 

are model parameters obtained maximizing the likelihood of the vector 
of observed data y. Further details about the Kriging surrogate model 
can be obtained from Forrester et al., 2008. 

2.4. Buffeting analysis 

Buffeting is commonly a governing load in the wind-resistant design 
of bridges. Depending on the characteristics of the incoming flow in 
terms of the magnitude of the variations of the mean velocity and angle 
of attack as a function of time, different modeling approaches can be 
implemented, ranging from linear frequency domain methods (Cheynet 
et al., 2016; Diana et al., 2020b; Cid Montoya et al., 2020) to nonlinear 
time-domain methods (Chen and Kareem, 2002; Diana et al., 2010; 
Diana and Omarini, 2020; Barni et al., 2022). In this study, a synoptic 
wind scenario is used for analyzing the impact of deck shape modifi
cations on the bridge’s self-excited forces and its impact on the buffeting 
response. In this context, a linear frequency domain analysis is sufficient 
to obtain an accurate response (Diana et al., 2023). 

2.4.1. Multi-mode buffeting response 
Under the action of turbulent winds, the bridge is subjected to three 

main wind-induced forces, viz. (a) mean aerodynamic forces on the deck 
submerged in the flow (b) self-excited forces due to the structural mo
tion and (c) buffeting forces due to the turbulent velocity fluctuations. 
The mean aerodynamic forces acting on the deck are defined in Eq. (2), 
whereas the aeroelastic forces are given by Eq. (3). Since the RMS of the 
accelerations of the bridge deck is considered for buffeting response 
evaluation, the effect of mean aerodynamic forces can be neglected, and 
the equation of motion can be written as: 

Mü + (C − Cse)u̇ + (K − Kse)u = fb (18) 

Either the frequency domain or the time domain buffeting analysis 
(Strømmen, 2010; Caracoglia and Jones, 2003; Diana et al., 2023) can 
be adopted for multi-mode buffeting response evaluation. However, 
frequency domain analysis is relatively more efficient compared to time 
domain analysis from a computational perspective, which makes it very 

Fig. 5. Schematic representation of a deck cross-section subjected to forced vibration and oscillating in different (torsional, vertical, and lateral) vibration modes.  
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suitable for design purposes when dealing with synoptic winds. 

2.4.2. Frequency domain buffeting analysis 
The buffeting response of a bridge deck, when expressed in physical 

coordinates Sr, as the matrix of power spectral density (PSD) of the 
displacements is given by: 

Sr = ΦHΦTSbΦH*TΦT (19)  

In Eq. (19), Φ is the modal matrix normalized to the mass, H is the 
impedance matrix of the system at a given frequency and Sb is the matrix 
of PSDs of the buffeting forces. The matrix Sb is defined by: 

In Eq. (20), χ*
A represent the admittance functions, Swind(f*) is the cross- 

power spectrum matrix of the incoming turbulence whereas Suu, Svv, Sww 
and Suw are the different components of the wind spectrum that is 
multiplied by the space coherence function (Davenport, 1967). The root 
mean square (RMS) of the buffeting responses given by rRMS = [uRMS, 
wRMS, θRMS], which are the RMS of lateral, vertical, and torsional dis

placements and the RMS of accelerations r̈RMS =

[

üRMS, v̈RMS, θ̈RMS

]

, are 

obtained from the PSD matrix of displacements Sr for each node of the 
deck and wind velocity and are given by: 

rRMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫ ∞

0
Srdf

√

and r̈RMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫ ∞

0
16π4f4Srdf

√

(21) 

Further details about the procedure of frequency domain buffeting 
analysis can be obtained from Hui et al., 2005; Zhu and Xu (2005); Diana 
et al., 2020a; Diana et al., 2020b, and the references cited therein. 

3. Application case 

3.1. Baseline geometry 

The reference geometrical cross-section considered in this work is 
inspired by the Sunshine Skyway bridge in Florida (Shahawy and 
Arockiasamy, 1996a, 1996b). Due to the popularity and ubiquity of this 
type of section in medium-span bridges in different parts of the world, 
several studies have been carried out to develop a better understanding 
of the wind loading on this type of section. For instance, the peak ver
tical displacement of the Farø bridge (resembling the cross-section used 
in this work) obtained through full-scale monitoring showed good 
agreement with that predicted from the quasi-steady approach (Petersen 
et al., 1987). Similarly, the comparison of the mid-span deflection of the 
prototype Sunshine Skyway bridge showed a very good agreement when 
compared with the results obtained from section model tests and full 
bridge model tests (Davenport and King, 1982a, 1982b). Further details 
about the full-scale monitoring of bridges and comparison with experi
mental and analytical approaches can be obtained from Larose et al., 
1992. In addition, the details of the sectional model tests and full 
aeroelastic model tests carried out for the Prospect Verona bridge (with 
similar cross-section) in Maine is well documented in King et al., 2005. 
All these studies highlight the importance of this type of cross-section in 
medium-span bridges, thus leading to the motivation for its selection as 
an application case in this work. 

The baseline geometry comprises the single box deck as shown in 
Fig. 6. Although the selection of this deck section as the baseline ge
ometry is inspired by the Sunshine Skyway bridge, it is worth pointing 
out that the bottom edge corners of the Sunshine Skyway bridge are 
made sharp using acrylic blocks whereas in the current work, a small 
radius of curvature (R = 0.05B) is provided. This is done to make the 
computational studies carried out in this work consistent with the 
experimental studies conducted in the experimental CRIACIV section at 
the Inter-university Research Center on Building Aerodynamics and 
Wind Engineering, Boundary Layer Wind Tunnel, Prato, Italy. During 
the fabrication process, a slight degree of roundness was introduced in 
the deck section bottom corners (marked by ‘e’ and ‘f’ in Fig. 6) due to 

the bending of aluminum sheets (Mannini et al., 2010). The degree of 
roundness (whether perfectly sharp or with a slight curvature) strongly 
influences the flow separation, attachment, and re-attachment points 
and subsequently the Strouhal number. Experimental tests carried out at 
the Western Ontario Wind Tunnel Laboratory, Canada (Davenport and 
King, 1982b ; Ricciardelli and Hangan, 2001) on similar deck section 
(but with sharp bottom corners) revealed positive lift force at zero de
grees angle of attack (AoA) and demonstrated earlier stall whereas that 
from the experimental CRIACIV section (with a slight curvature) yielded 
negative lift force on the section at 0◦ AoA with a delayed stall. CFD 
studies carried out by Mannini et al., 2010; Fransos and Bruno, 2010 
later confirmed that a small degree of curvature introduced at the bot
tom corners of the deck section makes a more realistic idealization of the 
actual CRIACIV section, thus leading to better agreement in the flow 
field and force coefficients. Since most of the validation aspects of the 
CFD model employed in this work is based on the experimental CRIACIV 
section and computational studies from Mannini et al., 2010; Fransos 
and Bruno, 2010; Mannini et al., 2016, a small radius of curvature (R =
0.05B) is introduced at the bottom corners in the baseline geometry as 
well as any other candidate design within the shape design domain 
adopted. 

3.2. Surrogate domain: design and parametric domains 

Aiming at avoiding the curse of dimensionality issues discussed in 
Section 2, a judicious choice of shape design variables and parameters is 
necessary while still ascertaining the required degree of accuracy to be 
achieved from the metamodel. Accordingly, two variables, viz. (a) depth 
of deck (H) and (b) reduced velocity (U*) are chosen as shape design 
variable and aeroelastic parameter respectively, which makes the 
dimensionality of the surrogate modeling problem as 2. However, the 
methodology presented in this investigation can be extended by adding 
more shape design variables, such as the deck width (see, for instance, 
Cid Montoya, 2024), corner angles (Jiang et al., 2020), the position of 
appendages (Cid Montoya et al., 2023), and others, which may entail a 
higher computational burden to properly explore the design domain. 
The next step is the definition of the bounds of the surrogate domain 
D s = [Sd, U*] in which a set of discrete observations are taken to learn 
about the behavior of the responses. 

The design domain is defined by setting lower and upper limits to the 
only shape design variable adopted, the deck depth H. As shown in 
Fig. 6, the profile of deck bounded by the letters ‘a - k’ defines the shape 
of the baseline geometry with deck depth of H0 = 0.1556B, where B =

Sb(f*) = χ*
A(V*) Swind(f*) χ*T

A (V*) =

(
1
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ρUBle
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36 m, is considered in the current work. The baseline design, or initial 
design (H0), corresponds to the deck cross-section geometry of the 
Sunshine Skyway Bridge, as previously discussed in Section 3.1. The 
lower bound and the upper bounds of the design domain with deck 
depths Hmin = 0.0879B and Hmax = 0.2232B respectively, are obtained 
by shifting the positions of ‘e’ and ‘f’ vertically upwards leading to more 
streamlined geometrical sections than the baseline geometry as well as 
downwards leading to relatively bluffer ones. This information is also 
reported in Table 1. It should be noted that the radius of curvature (R =
0.05B) is maintained for any candidate design within the shape design 
domain. 

On the other hand, the parametric domain consists of setting upper 
and lower bounds to the reduced velocity U*. The domain adopted is U* 
= [2.0, 20.0], seeking the reproduction of eventual nonlinear aeroelastic 
features at low reduced velocities, typically occurring for reduced ve
locities lower than 10 (Diana and Omarini, 2020), and also aiming at 
capturing the flutter derivative values at large reduced velocities, in 
order to cover the complete range usually required for aeroelastic 
analyses. 

3.3. Domain exploration: sampling plan 

Once the design domain is defined, the next step is to create a sam
pling plan to evaluate the responses of interest (18 aerodynamic flutter 
derivatives in the current scope of work) at discrete sample points 
residing in the n-dimensional surface/plane formed by the design vari
ables/parameters, where n is the dimensionality of the problem. The 
classical full factorial sampling plan combined with some applied en
gineering judgement is adopted in this work. Engineering judgement is 
applied in the sense that the projection of sampling points on the H/B- 
axis is uniform in order to explore the entire design domain with a 
uniform sample density. However, the projection on the U* axis is non- 
uniform with larger number of points (4) stacked towards the lower 
bound of reduced velocity range (i.e., 2.0 ≤ U* ≤ 10.0) in order to 
capture eventual aerodynamic nonlinearities, while only 3 points are 
considered towards the upper bound (10.0 ≤ U* ≤ 20.0), since it is 

expected that the flutter derivatives tend to exhibit an asymptotic 
behavior at large reduced velocities when represented as a function of 
U* in PoliMi notation. Hence, the resulting samples for the reduced 
velocity are U* = [2.0, 3.0, 5.0, 6.5, 10.0, 15.0, 20.0]. The sampling plan 
adopted is represented in the U*-H/B plane as shown in Fig. 7. Table 1 
reports some geometrical characteristics of the 7 shape designs adopted 
for the full factorial sampling plan, where Hmodel−scale represents the 
dimensional properties of the CFD/experimental model deck section 
whereas the HSunshine Skyway-scale represents the dimensional properties of 
the Sunshine Skyway bridge, δH is the relative variation in depth of deck 
with respect to that of the baseline geometry and θ is the corner angles 
(refer Fig. 6) of the geometry samples. 

3.4. Numerical evaluation of the samples 

The next step is to carry out dynamic CFD simulations for each of the 
sample points as defined in the sampling plan to obtain the time history 
of aeroelastic forces. After obtaining the time history, all the 18 flutter 

Fig. 6. Deck cross-section of the baseline geometry (gray) including the upper and the lower bounds of the selected shape design domain.  

Table 1 
Details of the deck depth (H) and corner angles (θ) for all the 7 shape designs included in the sampling plan, including the initial design (Ho), the lower bound design 
(Hmin), and the upper bound design (Hmax).  

Design H/B Hmodel−scale (m) HSunshine Skyway-scale (m) δH (%) θ (◦) 

1 (Hmin) 0.0879 0.03955 3.164 −43.50 21.78 
2 0.1104 0.04970 3.976 −29.00 28.05 
3 0.1330 0.05985 4.788 −14.50 33.66 
4 (Ho) 0.1556 0.07000 5.600 0.00 38.63 
5 0.1781 0.08015 6.412 14.50 43.00 
6 0.2007 0.09030 7.224 29.00 46.82 
7 (Hmax) 0.2232 0.10045 8.036 43.50 50.17  

Fig. 7. Sampling plan over the surrogate domain in the U*-H/B plane.  
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derivatives of a given geometrical section can be determined. It can be 
inferred from the sampling plan in Fig. 7 that there are 7 geometries in 
total and 7 distinct reduced velocities are considered, which results in a 
test grid of 49 cases. Since, these 49 cases are carried out for each of the 3 
degrees of freedom (DoF), i.e., pitch, heave, and shove motion, the total 
budget of the CFD simulations is 147 to determine the full set of 18 
flutter derivatives for all the 7 geometries and reduced velocities defined 
in the sampling plan. 

The chosen domain comprises of a combination of more streamlined 
and bluffer geometries as compared to the baseline geometry, which also 
tend to exhibit fairly different and contrasting aerodynamic behavior. 
This allows some degree of flexibility to the designer to play with the 
deck section properties and decide whether to improve the aerodynamic 
characteristics or to improve the structural stiffness by varying the 
sectional depth based on the local wind climate. Similarly, the consid
eration of a wide range of reduced velocities, comprising of low reduced 
velocities where non-linear features are typically present and high 
reduced velocities exhibiting where an asymptotic trend approaching 
the QST values is expected can also be appreciated, permitting a wide 
exploration of the aeroelastic phenomena. 

4. CFD simulations 

4.1. Computational modeling 

4.1.1. Spatial discretization of the computational domain 
The overall computational domain is a rectangle as shown in Fig. 8. 

The entire domain is divided into different regions with varying levels of 
mesh refinement to capture the important flow features, vortices, and 
the wake on the downstream side of the deck, which has a significant 
impact on the flow-induced aerodynamic forces. The key dimensional 
parameters of the computational domain, which is very similar to that in 
Fransos and Bruno, 2010, are reported in Table 2. An attempt is made to 
discretize the computational domain as efficiently as possible with 
adequate refinement level while still maintaining the Control Volume 
(CV) cells count as low as possible to reduce the overall computational 
cost/burden of simulation. Accordingly, the entire domain is divided 
into 5 regions, viz. Region A, B, C, D, and E. The overall length of the 
computational domain in the horizontal and the vertical direction are 
Dx = 38.5B and Dy = 27.0B respectively. Similarly, the rectangular 

refinement region within the domain is located at a distance of Δx = Δy 
= 8.5B from the inlet boundary in the horizontal and from the bottom 
face in the vertical direction. All the relevant dimensions of the 
computational domain including the refinement regions expressed in 
terms of the deck width (B) are shown in Fig. 8. 

Region A is the rectangular buffer region surrounding the deck sec
tion, in which important flow-critical phenomena such as the flow 
separation, attachment, and re-attachment takes place. The growth rate 
of cells within Region A is limited to about 0.09%, which provides a very 
finely resolved buffer region for flow-critical phenomena in the 
boundary layer. The region lying next to the Region A is Region B, which 
acts as a buffer region for capturing the wake formed on the downstream 
end of the deck. The growth rate of the CV cells within Region B is about 
1.57%, which is coarser than Region A but still adequately fine to cap
ture the vortex shedding on the downstream end. The region adjoining 
Region B is the wake refinement region designated as Region C, which 
serves two essential purposes, i.e., (a) to capture the separated shear 
layers from the surface of the deck which is then transported along the 
flow and gets dissipated on the downstream side including the wake 
formed behind the deck, and (b) to gradually increase the grid size while 
progressing ahead in the downstream side of the deck. The region lying 
exterior to the boundary layer, wake buffer, and wake refinement region 
is the Region D, whose primary purpose is to serve as a medium for 
smooth transition from a very finely resolved Region A, B and C to a 
relatively coarse CV cells distribution in Region D. Finally, Region E 
defines the overall extent of the computational domain which is located 
far away from the deck section, the boundary layer and wake refinement 
regions whose primary objective is to provide a freestream flow condi
tions and to minimize the effect of imposed boundary conditions on the 
flow around the deck. The details about the spatial discretization of 

Fig. 8. Discretization of the computational domain with refinement regions for the baseline geometry (H/B = 0.1556).  

Table 2 
Region wise distribution of CV cells in the computational domain along with 
max/min sizes in the medium mesh.  

Region Min. Size (m) Max. Size (m) Growth Rate Num. of Cells 

A 0.0008 0.0090 0.009144 247,589 
B 0.0080 0.0250 0.015750 7,516 
C 0.0250 0.1000 0.057500 3,219 
D 0.0100 0.2000 0.045000 21,089 
E 0.1500 0.4000 0.060000 3,718  
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computation domain including the wake buffer and wake refinement 
region for the baseline geometry, the lower and the upper bound shape 
designs, and the corner details are shown in Fig. 9. Further details about 
the region wise distribution of control volume cells including the 
maximum, the minimum cell sizes, their growth rate, and total region- 
wise cell count for the baseline geometry is presented in Table 2. 

It is worth highlighting that a special care has been taken for the 
spatial discretization of the domain, especially the boundary layer, wake 
buffer and wake refinement regions. A target y+ value of 1 (i.e., y+ ≈ 1) 
is sought after in the first layer of CV cells around the deck perimeter. 
The distribution of the y+ values around the deck perimeter is shown in 
Fig. 10, in which it can be observed that the y+ values around the deck 
perimeter remains less than 1 largely, exceeds 1 only at a few points and 
exceeds 2 at even fewer points. It should be noted that the plotted y+

around the deck correspond to the time-averaged values over one 
complete cycle of harmonically fluctuating aerodynamic forces. While 
computing the time-averaged y+ values over the full cycle, the y+ dis
tribution corresponding to 105 different time steps used to discretize a 
full cycle were averaged in time to obtain the plotted values. 

Further details about the mean and the maximum y+ of CV cells 
around the deck perimeter including the number and percentage of cells 
with y+ > 1 and y+ > 2 for the medium mesh considered in the current 
work is reported in Table 3. However, it is pointed out that the metrics 
presented in Table 3 correspond to that at the final timestep (at t = 1 s) of 
simulation using the medium mesh as opposed to an average over the 
full 1 cycle as presented in Fig. 10. 

The comparison of mesh resolution considered in this work to that 
present in the contemporary literature reveals that the percentage of 
cells with y+ > 2 is around 3.6% (Álvarez et al., 2019) whereas the same 
metric in current work is about 1.0%. Hence, this comparison provides 
an additional verification about the adequacy of mesh resolution pur
sued in the current piece of research. 

4.1.2. Parametrization of the computational domain for deck shape 
tailoring 

A parametrized semi-automated workflow was developed for the 
generation of any design candidate geometry needed in the sampling 
plan and in future design-oriented frameworks. In order to obtain a mesh 
for any geometry with the required depth of deck and refinement level, 
at first, the profile of the deck cross-section is created from nine control 
points, resembling the experimental CRIACIV section with R/B = 0. 
Among the nine control points, the two bottom edge corner points are 
shifted vertically up or down to obtain more streamlined geometries or 
bluffer geometries as compared to the baseline geometry configuration. 
Then, a small radius of curvature, R = 0.05B is introduced at the two 
bottom corner points resulting in the curved arcs (arcs ‘d-e’ and ‘f-g’; 
refer Fig. 6), which is the final profile of deck used in the CFD simula
tion. Once the deck outline with curved bottom edges is obtained, the 
coordinates of the boundary layer are then determined by uniformly 
projecting the deck outline outwards by a distance of B/45. Then, 
different refinement regions as highlighted in Fig. 8 are created with the 
maximum, the minimum cell size, and the growth rate of cells 

Fig. 9. Spatial discretization of the computational domain with refinement details for the baseline geometry (H/B = 0.1556), the lower bound design (H/B =

0.0899), the upper bound design (H/B = 0.2232) including the corner details. 
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parametrized for each region to control the mesh refinement level in 
each region independently. Likewise, the number of divisions along the 
deck perimeter is also parametrized to control the cell aspect ratio in the 
1st layer hexahedral cells in the boundary layer while that in the normal 
direction (to deck edges) is governed by the target y+ value. Hence, this 
parametrization strategy enables (1) a precise control on the number of 
cells and the cell aspect ratio in the boundary layer including mesh 
refinement levels and (2) the ability to control the key mesh parameters 
for creating meshes for different deck shape designs in a semi-automated 
fashion. 

4.1.3. Boundary conditions 
The flow and boundary conditions imposed on the CFD model should 

reflect the experimental wind tunnel testing conditions so that a one-to- 
one comparison could be made while comparing the CFD datasets with 
the experimental datasets. Accordingly, at the inlet, Dirichlet boundary 
condition is specified with a uniform inlet velocity (U) of 20 m/s in the 
positive x-direction while a Neumann boundary condition is specified 
for pressure. At the outlet, Dirichlet boundary condition is specified for 
pressure with a value of P = 0 while the normal gradient of velocity is 
specified to be zero. The top and the bottom wall are set as slip walls 
while the boundary of the deck section is treated as a no-slip wall. The 
free-stream turbulent kinetic energy (k∞) to be specified at the inlet is 
determined considering a turbulence intensity (I) of 1% using Eq. (22). 
The turbulent kinematic viscosity is computed from the internal field 
after solving the transport equations of k and ω. 

k∞ = 3 /2(UI)2 (22) 

Similarly, the free stream specific dissipation rate is computed using 
the eddy-viscosity ratio of unity in Eq. (23) and the specific dissipation 
rate at the walls is computed using Eq. (24). 

ω∞ =
ρk∞

μ

(
μt

μ

)−1

(23)  

ωwall = 10
6ν
βy2

p
(24)  

In Eq. (23), μ is the molecular dynamic viscosity of fluid (air) whereas μt 
is the turbulent dynamic viscosity. Similarly, yp is the distance of the 
centroid of the 1st CV cell from the wall, ν is the kinematic viscosity of 
air, and β = 0.075 in Eq. (24). For the dynamic CFD simulations, the 

amplitude of vibration imposed in the pitching motion is 2◦ whereas in 
the heaving and shoving motion are each 0.009 m in the respective di
rections, which corresponds to a non-dimensional amplitude of 0.128Ho 
as used in the study by Mannini et al. (2016). 

4.1.4. Numerical schemes and solution algorithms 
The second order accurate Finite Volume Method (FVM) is used for 

the discretization of the governing pde’s into a linear system of equa
tions. The convection term of the NS equation is discretized using the 
second order linear upwind scheme that requires the gradient of velocity 
to be specified. Similarly, the diffusion term in the NS equation is dis
cretized using the Gauss linear corrected scheme, in which the viscosity 
is linearly interpolated across the control volume cells and a non- 
orthogonal correction factor is applied to account for non- 
orthogonality in non-orthogonal meshes. For the computation of sur
face normal gradient scheme, which is important to solve the Laplacian 
in the diffusion term of NS equation, corrected scheme is chosen, that 
applies an explicit non-orthogonal correction factor to maintain the 
second order accuracy. The pressure gradient term is approximated 
using the central differencing scheme and the solution advances in time 
using the second order accurate backward scheme with an adaptive 
timestep size such that the maximum Courant number is 1. The pressure- 
velocity coupling is done using the PISO algorithm using 2 outer 
corrector loops (also known as the PIMPLE algorithm). The pressure 
correction equation is solved using the PCG iterative solver while the 
momentum equation and the transport equations for k and ω are solved 
using the preconditioned bi-conjugate gradient (PBiCG) solver. The 
pressure correction equation is solved 3 times in the inner loop with 2 
additional non-orthogonal correctors. An under-relaxation factor of 0.5 
is used for the pressure field while a factor of 0.7 is chosen for the ve
locity, k and ω fields. 

4.2. Verification and validation of static CFD simulation 

4.2.1. Spatial verification of the entire computational domain 
The verification studies of the CFD solution are used to assess 

whether the conceptual model from continuum mechanics/mathematics 
is solved correctly using discrete mathematics that is embodied in the 
form of a computer code (Oberkampf and Trucano, 2002; AIAA 
G-077-1998, 2002). The process of discretization occurs with respect to 
space and time. In the context of space, the discretization of the gov
erning partial differential equations (PDE’s) on a finite volume mesh 

Fig. 10. Distribution of time-averaged y+ over a full cycle around the perimeter of deck cross-section. The red marker represents the maximum y+ around the 
deck perimeter. 

Table 3 
Mean and maximum y+ values for CV cells around the deck perimeter at α ¼ 0◦ in the medium mesh. y1 is the height of the first layer cells in the BL, NBL is the number of 
layers of hexahedral cells in BL, yBL is the thickness of the BL, NH is the number of cells around the deck perimeter, y+ is the mean y+ value at the last time step (t = 1 s), 
Max. y+ is the maximum value of y+ at t = 1 s, % y+ > 1 and % y+ > 2 indicates the percentage of cells with y+ value greater than 1 and 2 respectively, BL cells indicates 
the number of hexahedral cells in the boundary layer.  

Fineness y1/B NBL yBL/B NH y+ Max. y+ % y+ > 1 % y+ > 2 BL cells 

Medium 6.67 × 10−5 50 0.022 1595 0.71633 2.37909 10.41 1.00 79,750  
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inherently introduces some spatial discretization error in CFD solution. 
Thus, it is important to conduct mesh convergence studies to ensure that 
the solution obtained from the CFD simulation is mesh independent. 
Accordingly, a mesh verification study was carried out using three 
different meshes, viz., Coarse, Medium, and Fine mesh for a static bridge 
deck (baseline geometry) at 0◦ angle of attack. The total number of 
control volume cells in the computational domain, the time-averaged 
force coefficients, the standard deviations, and the Strouhal number 
obtained from the three meshes is reported in Table 4. The integrated 
time-averaged force coefficients, the standard deviations, and the 
Strouhal number are calculated using a suitable length of the time his
tory of aerodynamic forces once the flow attains a statistically steady 
state. 

As it can be observed in Table 4 that the time-averaged force co
efficients and the standard deviations obtained from 3 different meshes 
converge towards the same value (differing only in the 3rd or the 4th 
significant digit), which testifies that the obtained solution from CFD 
simulation is mesh independent. Hence, for all the further studies, the 
medium mesh is used unless otherwise stated. 

4.2.2. Spatial verification of the boundary layer computational domain 
Usually, the verification studies reported in the literature are done to 

check the adequacy of the spatial and the temporal resolution chosen for 
the CFD simulations. However, from some prior physical understanding 
of the problem, it has been observed that small vortical structures may 
form around the periphery of the deck section under the action of the 
wind. In the event that the cell aspect ratio of the hex-dominant cells in 
the boundary layer is too large, the mesh would fail to resolve the ve
locity gradients close to the wall, which in turn would lead to the failure 
of mesh in resolving the vortical structures in the periphery of the deck 
section. The failure to account for these vortical structures affects the 
aerodynamics of the deck section leading to inaccuracies in the calcu
lated time-averaged force coefficients from aerostatic analyses and other 
subsequent analyses up to the computation of flutter derivatives. For an 
accurate depiction of the integrated time-averaged force coefficients on 
the deck section, the boundary layer formed around the deck is the most 
critical region from spatial discretization and CFD modeling point of 
view. This is because the solved pressure field and the shear stress in 
these CV cells (especially the 1st layer cells) are used for the computation 
of integrated time-averaged force coefficients in each time-step (in 
either the aerostatic or the aeroelastic analyses). Thus, to ensure that the 
small vortical structures including the velocity gradients both in the 
direction of flow as well as the flow normal direction are captured well, 
another sensitivity study was carried out considering the mean cell 
aspect ratio of the 1st layer cells in the boundary layer. 

For that purpose, three different simulations were carried out for the 
static deck (baseline geometry) at 0◦ angle of attack with the medium 
mesh (as described in Section 4.2.1) by varying the cell aspect ratio 
around the deck perimeter. The number of hex-dominant cells in the 1st 

layer cells of the boundary layer for different cell aspect ratio cases 
including the time-averaged force coefficients, Strouhal number, and the 
standard deviation values are listed in Table 5. Since, the values of the 
time-averaged force coefficients, the standard deviations, and the 
Strouhal number tend to converge towards the same value (only with 
subtle variations) in Table 5, thus, this sensitivity study with respect to 
the cell aspect ratio serves as an additional confirmation that the spatial 
discretization considered in Section 4.2.1 provides adequate spatial 
resolution to capture all the relevant flow structures. Unless otherwise 

stated, the medium mesh with cell aspect ratio, AR ≈ 20 is considered for 
all the simulations, analyses, and results presented in the subsequent 
Sections. 

4.2.3. Temporal verification 
In addition to spatial discretization errors, there is a possibility of 

error being introduced in the CFD solution if the temporal resolution 
chosen for the simulation is not adequate. In other words, if the time- 
step size is too large in an unsteady problem, the solution becomes 
prone to errors as all the relevant transient flow phenomena are not 
resolved due to the lack of adequacy of temporal resolution. This applies 
for both the implicit scheme and the explicit time schemes; for implicit 
schemes, the solution may still be obtained but with inaccuracies while 
for the explicit schemes, the solution often becomes unstable and di
verges beyond a certain time-step size (when the courant number ex
ceeds unity). Hence, as per the AIAA G-077-1998, 2002 
recommendations, it is a common practice to conduct a set of simula
tions with varying time-step size to ascertain that the solution remains 
stable and consistent even when the time-step size is varied, which 
would ensure the adequacy of the temporal resolution of the CFD 
solution. 

The flow of wind over the deck section considered in the current 
work is an unsteady problem. So, the flow evolves over the computa
tional domain from one time step to another. As the flow evolves over 
time, it is necessary to also ensure that the solution remains both stable 
and is unaffected by the time step size. Thus, three different simulations 
were carried out for a static deck (baseline geometry) at 0◦ angle of 
attack with the medium mesh (as described in Section 4.2.1) by varying 
the courant number (i.e., Co = 0.5, 1.0 and 2.0) as listed in Table 6. The 
integrated time-averaged force coefficients, the standard deviation 
values, and the Strouhal number reported in Table 6 are computed using 
a suitable length of time history once the flow attains a statistically 
steady state. From Table 6, it can be again observed that the time- 
averaged force coefficients including the standard deviations, and the 
Strouhal number converge towards the same value (only with subtle 
variations), thus, it is concluded that the final solution is independent of 
the time step size testifying the adequacy of the temporal resolution 
considered in this work. For all the further analyses, the medium mesh as 
described in Section 4.2.1 with courant number of Co = 1 is used unless 
otherwise stated. 

4.2.4. Validation of time-averaged force coefficients and Strouhal number 
In addition to the verification studies, it is also critically important to 

validate the computational simulation results with experimental data
sets or analytical solutions such as the thin airfoil theory (Theodorsen, 
1934). Since analytical solutions to complex engineering problems that 
we encounter in real-life can rarely be found, usually the computational 
simulation datasets are compared/validated using the experimental 
datasets. As per the AIAA Guide for verification and validation of CFD 
simulations (AIAA G-077-1998, 2002), validation is the process of 
determining the degree to which a model is accurate representation of 
the real world from the perspective of the intended use of the model. For 
measuring the accuracy of the representation (computational simula
tion) of the real world, AIAA Guide recommends a systematic compar
ison of CFD results with the experimental data, while also underscoring 
the fact that all experimental data contain bias and random errors and 
the comparison of CFD results does not necessarily imply that the 
experimental data has higher accuracy. Hence, for the purposes of 

Table 4 
Comparison of time-averaged force coefficients, standard deviations, and Strouhal number between three different meshes at α = 0◦.  

Mesh No. of Cells CD CL CM St C̃D C̃L C̃M 

Coarse 244,071 0.0675 −0.1186 0.0956 0.2833 0.00061 0.04861 0.01019 
Medium 283,131 0.0676 −0.1197 0.0953 0.2847 0.00059 0.04792 0.01006 
Fine 365,965 0.0677 −0.1193 0.0953 0.2855 0.00060 0.04857 0.01014  
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validation, the integrated time-averaged force coefficients, and the 
Strouhal number is plotted as a function of the angle of attack in Fig. 11 
and compared with the experimental as well as computational datasets 
available in the published literature (Mannini, 2006; Mannini et al., 
2010; Fransos and Bruno, 2010). From the set of considered references, 
Mannini, 2006 pertains to the experimental datasets obtained from the 
CRIACIV wind tunnel facility at the University of Florence whereas the 
datasets pertaining to Mannini et al., 2010; Fransos and Bruno, 2010, are 
the datasets obtained from CFD simulation on the deck section same as 
what is chosen for the current work. 

From Fig. 11, it can be observed the time-averaged force coefficients 
from current simulation exhibits a very good agreement with the 
computational datasets but shows some degree of variability (especially 
the drag coefficient curve and the Strouhal number curve) when 
compared with the experimental datasets. With regards to the drag co
efficient curve, it is believed that a rougher surface of the deck sectional 
model used in the wind tunnel facility could have led to a higher value of 

mean drag coefficient in the CRIACIV section whereas the surface of deck 
section considered in the current simulation is smooth, leading to a better 
match with the numerical data reported by Mannini et al., 2010; Fransos 
and Bruno, 2010. Additionally, it is reported that the Strouhal number for 
the CRIACIV section is taken as the average of result at different Reynolds 
numbers in the range of 0.75 × 105 ≤ Re ≤ 8.1 × 105, and some level of 
uncertainty was noticed in the hot-wire anemometer measurements 
(Mannini et al., 2010). It is believed that a lack of perfect parity in the flow 
conditions and the geometry conditions such as the degree of roundedness 
of the bottom edge corners and the wall roughness is the reason for 
variability between the experimental datasets and the CFD results from 
the current work and those reported in the literature. 

Nevertheless, it is also emphasized that the CFD datasets from cur
rent study exhibit a very good agreement with the computational studies 
from Mannini et al., 2010; Fransos and Bruno, 2010, which are based on 
similar aerostatic analysis on the same deck section as considered in the 
current work. Thus, it is concluded that the validation efforts pursued in 

Table 5 
Comparison of time-averaged force coefficients, standard deviations, and Strouhal number for the medium mesh at three different aspect ratio of boundary layer cells 
and at α = 0◦.  

Aspect Ratio No. of BL cells CD CL CM St C̃D C̃L C̃M 

≈ 10 3,070 0.0675 −0.1066 0.0957 0.2844 0.00063 0.05035 0.01055 
≈ 20 1,595 0.0676 −0.1197 0.0953 0.2847 0.00059 0.04792 0.01006 
≈ 27 1,284 0.0668 −0.0990 0.0969 0.2812 0.00064 0.05065 0.01065  

Table 6 
Comparison of time-averaged force coefficients, standard deviations, and Strouhal number for the medium mesh at three different Courant numbers and at α = 0◦.  

Co dt CD CL CM St C̃D C̃L C̃M 

0.5 4.525 × 10−6 0.0676 −0.1231 0.0953 0.2911 0.00059 0.04786 0.01005 
1.0 8.875 × 10−6 0.0676 −0.1197 0.0953 0.2912 0.00059 0.04790 0.01005 
2.0 1.737 × 10−5 0.0675 −0.1152 0.0953 0.2906 0.00056 0.04782 0.01003  

Fig. 11. Comparison of force coefficients and Strouhal number at different angles of attack from current CFD simulations and published literature: (a) Mean CD vs α, 
(b) Mean CL vs α, (c) Mean CM vs α, and (d) St vs α. 
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this piece of research is in compliance with that published in the existing 
literature on the same deck section. Finally, based on the collective 
analysis of datasets in the validation plot (Fig. 11) by comparing the 
results from k-ω SST model from the current work with that from the 
experimental CRIACIV section and CFD datasets from Mannini et al., 
2010; Fransos and Bruno, 2010, the following conclusions are drawn: (a) 
the variation of mean drag coefficient as a function of the angle of the 
attack is fairly captured as manifested by the concavity of the mean drag 
coefficient curve (b) the linearity of the mean lift coefficient curve is also 
captured well for the negative angles of attack and for lower values of 
the positive angles of attack; however, the CFD model predicts an early 
onset of stall for the deck section whereas in the experimental model, the 
onset of stall on the positive angle of attack side is somewhat delayed (c) 
the mean moment coefficient also exhibits a decent agreement with the 
experimental curve except for an early prediction of the onset of stall as 
compared to experiment, and (d) the Strouhal number curve exhibits 
some degree variability when compared with the experimental datasets; 
however, the uncertainties associated with the experimental measure
ments including the CFD modeling assumptions and turbulence model, 
all collectively might have a role to play in the observed variability. 
Overall, on a holistic basis, the CFD model follows the trend of a 
real-world physical measurement quite well and can reproduce the bulk 
of the important flow features affecting the aerodynamics of the deck 
system, thus, the CFD model is said to be validated. 

4.2.5. Comparison of the flow field 
An attempt to comparatively assess the extent of agreement between 

the streamlines obtained from the current CFD simulation to that from 
Mannini et al., 2010 is pursued in this Section. For that purpose, a sur
face line integral convolution (surface LIC) plot is extracted from current 
CFD simulation (corresponding to the baseline geometry at 0◦ AoA with 
R = 0.05B) and is plotted in the background as shown in Fig. 12. On top 
of the surface LIC plot, the digitized streamlines from Mannini et al., 
2010 (for the same geometry, AoA, and R/B ratio) is overlayed to yield 
the plot in Fig. 12. 

It should be noted that both the streamlines correspond to a time- 
averaged flow field in which the time-averaging is carried out for the 
full one complete cycle of harmonically oscillating aerodynamic forces. 
The overlay analysis of the streamlines also reveals a fair agreement 
between the streamlines obtained from the current CFD simulation to 
that from Mannini et al., 2010 with some minimal differences. For 
instance, the vortical structure formed on the left top edge in the current 
CFD simulation is somewhat smaller as compared to that obtained from 

Mannini et al., 2010. Except for this feature, the surface LIC plot ob
tained from the current CFD simulation exhibits an overall good 
agreement. 

4.2.6. Analysis of the mean pressure distribution over the deck surface 
The aerostatic mean pressure coefficient averaged over a full cycle of 

harmonically oscillating aerodynamic forces is plotted over the surface 
of the deck in Fig. 13. In this plot, the pressure coefficient values are 
orthogonally projected from the surface of the deck in the outward or 
the inward direction. In this Section, a one-to-one comparison of the 
pressure distribution plot is not carried out as the mean pressure dis
tribution plot in Mannini et al., 2010 consists of a deck section with a 
sharp cornered edge (R/B = 0) with fairly different aerodynamic 
behaviour. 

4.3. Verification and validation of dynamic CFD simulation 

4.3.1. Spatial verification based on sensitivity of self-excited forces 
The key variables of interest in the dynamic CFD simulations are the 

aeroelastic flutter derivatives, which are also used for comparison/ 
validation with existing literature in the following sections. Thus, an 
additional set of verification studies was carried out for the dynamic 
CFD simulation (in which a harmonic motion was imposed on the deck) 
and is reported in this Section. As stated earlier, all the 3 DoFs are 
imposed on the deck system in an uncoupled manner, i.e., the deck os
cillates either in vertical, lateral, or the torsional mode at a time but not 
concurrently. For the purposes of this verification study, three different 
simulations were carried out with a motion-imposed deck section 
oscillating in torsional mode of vibration with an amplitude of oscilla
tion of 2◦ at reduced velocity (U* = 10.0). 

The total number of CV cells including the aeroelastic flutter de
rivatives obtained from three different meshes is listed in Table 7. From 
Table 7, it can be again observed that the computed flutter derivatives 
tend to converge towards the same value (only with subtle variations), 
thus, it is concluded that a mesh-convergent solution is obtained justi
fying the adequacy of the spatial resolution considered for dynamic CFD 
simulations chosen for this work. For all further analyses, the medium 
mesh as described in Section 4.2.1 with courant number of Co = 1, is 
used unless otherwise stated. In addition, the time-history of aeroelastic 
lift force obtained from the three meshes including the waveform of the 
imposed rotation on the deck system is plotted in Fig. 14 (a), which 
again exhibits a decent agreement in the time-history of aeroelastic lift 
force from 3 different meshes. 

Fig. 12. Overlay analysis of digitized streamlines from Mannini et al., 2010 over the surface LIC plot from current static CFD simulation.  
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4.3.2. Temporal verification based on sensitivity of self-excited forces 
The governing partial differential equations in a dynamic CFD 

simulation are also discretized with respect to time, so, using similar 
arguments and reasoning as is included in Section 4.2.3, another tem
poral verification study was carried out considering the torsional mode 
of vibration of the deck section at U* = 10.0 with the oscillation 
amplitude of 2◦ (same as in Section 4.3.1) with different courant 
numbers and the medium mesh. Since, the solver chosen for this work is 
‘pimpleFoam’, which has the provision to allow for adaptive time step 
size depending upon the maximum Courant number (which in this case 
is Co = 1), thus time step size might differ from one time step to another 
as the simulation progresses. However, once the flow field is stabilized 
with distinct periodically fluctuating aerodynamic forces in time, the 
time step size is expected to be constant. Thus, the mean value of time 
step size is computed after the flow field becomes steady and is reported 

in Table 8 including the 6 flutter derivatives (Ai*, Hi*, Pi*; i = 2, 3) that 
are obtained from the torsional mode of vibration. 

From Table 8, it can be again observed that the computed flutter 
derivatives tend to converge towards the same value (only with subtle 
variations) regardless of the time step size (or alternately the Courant 
numbers), thus, it is concluded the temporal resolution provided by the 
medium mesh at Co = 1 is adequate for the current scope of work. For all 
further analyses pertaining to dynamic simulations, the medium mesh at 
Co = 1 is used unless otherwise stated. 

4.3.3. Validation of the aeroelastic lift coefficient time history 
The flutter derivatives as a function of the reduced velocity (U*) are 

considered for validation in this Section. For the validation of dynamic 
CFD simulation, two metrics are essentially considered, i.e., (a) valida
tion of the time history of aeroelastic lift coefficient force, reported in 

Fig. 13. Distribution of time-averaged Cp over a full cycle around the perimeter of deck cross-section.  

Table 7 
Comparison of the six flutter derivatives (Ai*, Hi*, Pi*; i = 2, 3) obtained from the torsional mode of oscillation from three different meshes.  

Mesh No. of Cells H2* H3* A2* A3* P2* P3* 

Coarse 244,071 1.8955 −9.7744 −0.6178 2.8017 0.0672 0.1943 
Medium 283,131 1.8615 −9.7932 −0.6190 2.7982 0.0635 0.1962 
Fine 365,965 1.8911 −9.8040 −0.6198 2.7977 0.0644 0.1953  

Fig. 14. Comparison of time histories of aeroelastic lift coefficient: (a) from Coarse, Medium, and Fine meshes, and (b) at different Courant numbers (Co = 0.5, 1.0, 
and 2.0). 

Table 8 
Comparison of the six flutter derivatives (Ai*, Hi*, Pi*; i = 2, 3) obtained from the torsional mode of oscillation for medium mesh at three different Courant numbers 
(Co).  

Co dt H2* H3* A2* A3* P2* P3* 

2.0 4.410 × 10−6 1.9316 −9.7793 −0.6145 2.7892 0.0674 0.2076 
1.0 2.250 × 10−6 1.8615 −9.7932 −0.6190 2.7982 0.0635 0.1962 
0.5 1.147 × 10−6 1.8278 −9.8085 −0.6195 2.8010 0.0610 0.1878  
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this Section and (b) validation of 8 flutter derivatives (Ai*, Hi*; i = 1, 2, 
3, 4) obtained from the torsional and vertical mode of vibration, which 
is reported in the following Section. The time history of aeroelastic lift 
coefficient corresponding to the torsional mode oscillating at a reduced 
velocity of U* = 10.0 is extracted from Mannini et al., 2016 by digiti
zation. Then, the time history of corresponding force coefficients (Cl,ae) 
obtained from current CFD simulation are overlayed one over the other 
as shown in Fig. 15, where in the imposed harmonic motion on the deck 
system is also plotted as a function of non-dimensional time (α vs t*). It is 
important to note that the horizontal axis in Fig. 15 includes the 
non-dimensional time (t*), which is related to the physical time (t) by t* 
= Ut/B. 

From Fig. 15, a good agreement can again be noticed between the 
digitized time history of aeroelastic lift coefficient from Mannini et al., 
2016 and the current CFD datasets, thus validating the numerical 
framework for dynamic simulation considered in this work. There are 
variations between the two simulations in the overlap of the time his
tories, which may be caused by differences in turbulence modeling ap
proaches, space, and time discretization, among other reason. 
Nevertheless, it will be demonstrated in the upcoming Section 4.3.4 that 
the computed values of flutter derivatives using the same time history 
exhibit a very good agreement between the numerical and the experi
mental datasets available in the published literature. Thus, it is 
concluded that the simulation framework presented in the current work 
is able to reproduce the trend of real-world physical measurements, and 
thus the model is considered to be validated. 

4.3.4. Validation of flutter derivatives from torsional and vertical vibration 
modes 

The next metric used for validating the dynamic CFD simulation 
framework is through the comparison of 8 flutter derivatives (Ai*, Hi*; i 
= 1, 2, 3, 4) as a function of reduced velocity (U*) obtained from the 
torsional and the heaving modes of vibration with that from the 
experimental CRIACIV section (Mannini, 2006) and the CFD datasets 
from Mannini et al., 2016. In addition, the flutter derivatives obtained 
from the Quasi-Steady Theory (QST) are also included in Fig. 16 for both 
the computational datasets, i.e., the one obtained from static simulation 
reported by Mannini et al., 2010 and the other obtained from static 
simulations from the k-ω SST model implemented in the current work. 
The inclusion of the curves from QST serves two essential purposes (a) 
these curves provide a baseline/reference for the trend of flutter de
rivatives when plotted as a function of reduced velocity (U*) and (b) 
these curves also helps to demonstrate the limitations of the QST-based 
aero-structural design framework (i.e., how the flutter derivatives ob
tained from QST tend to exhibit greater degree of variability at higher 

reduced velocities, when compared with the ones obtained from an 
actual fluid-structure interaction study as proposed in this work). This 
also underscores the necessity to train the aeroelastic emulator with the 
flutter derivatives obtained from a real fluid-structure interaction for a 
better prediction of the response surface. 

The comparison of flutter derivatives A1*, A2*, A3*, H2* and H3* 
exhibits a very good agreement with the experimental datasets as can be 
readily observed in Fig. 16. For H1*, the curve obtained from the current 
CFD simulation seems to have shifted slightly upwards but still captures 
the decreasing trend of H1* with increasing U* quite well. The flutter 
derivatives A4* and H4*, however, exhibit some degree of variability 
when compared to the experimental datasets. But it is worth pointing 
out that the same flutter derivatives A4* and H4* show a decent agree
ment when the computational datasets from Mannini et al., 2016 are 
taken into consideration, both of which are based on the URANS 
framework. Regarding the variability with experimental datasets for A4* 
and H4*, it is emphasized in Mannini et al., 2016 that the experimental 
A4* and H4* are obtained from free vibration tests, which depend on the 
modification of stiffness matrix of the structural system by the aero
dynamic stiffness contribution, which is quite low and at the same time 
uncertain. In addition, it has been observed that the flutter derivatives 
obtained from free and forced vibration exhibit some degree of vari
ability (Mannini, 2015). Due to these reasons, the variability in case of 
A4* and H4* may have been observed between the CFD datasets from 
current simulation and that from Mannini, 2006. Even though there is 
some degree of variability in the flutter derivatives A4*, H4* and H1*, the 
other flutter derivatives exhibit a very good agreement overall and thus, 
holistically analyzing the flutter derivatives trend, it is concluded that 
the computational framework provides a good representation of 
real-world physical experimentation. 

5. Aerodynamic and aeroelastic properties in the design domain 

5.1. Force coefficient trend in the design domain 

The time-averaged force coefficients and their slopes at angle of 
attack α = 0◦ for 15 designs with an increasing non-dimensional deck 
depth H/B are reported in Table 9. It is to be noted that the original 
sampling plan consisted of 7 geometries in total, which are designated as 
‘Original’ in Table 9 meaning those shape designs were part of the 
original sampling plan designed to build the aeroelastic emulator (Sec
tion 3.3) whereas the additional shape designs that were added later to 
better understand the trend of the force coefficients and the slopes as a 
function of the deck shape are designated as ‘Added’. In general, the 
mean drag, lift, and moment coefficients increase with the increasing 
depth, however, the lift coefficient curve exhibits some interesting 
aerodynamic non-linearities. Similarly, the slopes of the drag and the 
moment coefficient remains nearly constant with subtle fluctuations 
whereas that of the lift coefficient exhibits a trend reversal of slope for 
certain geometries such as in the range of 0.1217 ≤ H/B ≤ 0.1386. Thus, 
the results indicate that the time-averaged aerodynamic force (espe
cially the lift force) is far from being a linear function of the deck depth 
in the design domain considered in this work. Further details are re
ported in Section 6.1. 

5.2. Flutter derivatives trend in the design domain 

There are different notations for expressing the flutter derivatives 
such as the Scanlan notation, the PoliMi notation, etc. However, as the 
Scanlan formulation is still the most widely used notation for expressing 
the flutter derivatives, the flutter derivatives for the 7 samples obtained 
from the 3 DoFs (pitching, heaving, and shoving motion) are first 
expressed as a function of reduced velocity in Scanlan notation in 
Fig. 18. Later, the flutter derivatives are also expressed in the PoliMi 
notation for all the 7 samples to highlight some salient features such as 
the manifestation of distinct non-linearities in the lower reduced 

Fig. 15. Comparison of time history of aeroelastic lift coefficient with respect 
to non-dimensional time from the current dynamic CFD simulation and Mannini 
et al., 2016. 
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velocity range as well as the peculiar asymptotic trends at higher 
reduced velocity range. In addition to the flutter derivatives obtained 
from current CFD simulations, the variation of flutter derivatives as a 
function of reduced velocity from thin airfoil theory is also plotted in 
Fig. 18, which serves as an additional validation metric for the trend of 
flutter derivatives obtained from CFD simulations. 

Much of the discussion in the following paragraphs about the inter
pretation of the trend of flutter derivatives as a function of reduced 
velocity for all the 7 samples is based on the following equations of the 
motion and how the obtained flutter derivatives modify the stiffness and 
the damping matrix of the structural system. With this aim, the equa
tions of motion for the 3 DoF system (Holmes and Bekele, 2021) are 

Fig. 16. Comparison of the flutter derivatives in Scanlan formulation based on the pitch and heave DoF from the current dynamic CFD simulation and published 
literature (a) A1*, (b) H1*, (c) A2*, (d) H2*, (e) A3*, (d) H3*, (f) A4*, and (h) H4*. 
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presented below in Eq. (25). 

ẍ + 2ηxωxẋ + ω2
xx = P*

1ṗ + P*
2α̇ + P*

3α + P*
4p + P*

5ḣ + P*
6h (25a)  

ÿ + 2ηyωyẏ + ω2
yx = H*

1ḣ + H*
2α̇ + H*

3α + H*
4h + H*

5ṗ + H*
6p (25b)  

α̈ + 2ηαωαα̇ + ω2
αα = A*

1ḣ + A*
2α̇ + A*

3α + A*
4h + A*

5ṗ + A*
6p (25c)  

In Eq. (25), ωx, ωy, and ωz are the undamped circular frequencies of the 
system in the respective motion, whereas ηx, ηy, and ηz are defined by 
ηx = ωx/2π, ηy = ωy/2π, and ηα = ωα/2π, respectively. In addition, the 
contribution of the full set of 18 flutter derivatives to the aerodynamic 
stiffness and damping matrices and to the aeroelastic forces linking the 
structural displacement and velocity is depicted in Fig. 17. 

It can be observed in Fig. 18 that the flutter derivatives A*
1, H*

1 and H*
4 

exhibit a tentatively linear trend with respect to the reduced velocity 
(U*) for the 7 shape designs. More specifically, the flutter derivative A*

1 
(which physically implies the aerodynamic damping contribution to the 
aeroelastic moment due to deck velocity in the heaving direction) at 
higher U* range exhibits a drop in the slope for the bluffer section as 
compared to relatively streamlined ones but the magnitude of A*

1 re
mains positive for all the deck sections. Such trend indicates that the 
effective damping of the aero-structural system in the heaving motion 
would be more reduced for streamlined sections. The flutter derivative 
H*

1 (which implies the aerodynamic damping contribution to the aero
elastic lift force due to structural velocity in the heaving direction) in
creases in absolute value (remains negative though) with increasing U*, 
which for the bluffer sections is slightly faster than those compared to 
relatively streamlined sections as indicated by steeper slopes. The 
physical interpretation of such trend signifies that the negative H*

1, when 
transported to the left-hand side of Eq. (25), would increase the overall 
damping in the direction of heaving motion. It is also worth mentioning 

the trend transition from linear, in the case of streamlined geometries, to 
parabolic, for bluffer geometries, which is very clear when representing 
them in PoliMi notation (See Fig. 19). Another important flutter deriv
ative is A*

2, which plays a critical role in stall flutter when it changes its 
sign from negative to positive. In the current study, A*

2 varies non-lin
early as a function of U* and it remains negative for the tested range of 
2.0 ≤ U* ≤ 20.0 for all the 7 shape designs. However, it is worth pointing 
that the slope of A*

2 gradually decreases as the sections become bluffer 
(with lower negative values) as compared to more streamlined sections. 
For the flutter derivative H*

2 (which implies the aerodynamic damping 
contribution to the aeroelastic lift force due to the rate of change of α), 
the slope is negative and H*

2 is also negative for the lower U* range. 
However, as U* increases, the slope gradually tends to 0 for the 
streamlined sections. For the bluffer sections, H*

2 remains very close to 
0 in the lower U* range but the slope starts increasing rapidly as the 
value of U* increases. The implication of such behavior in H*

2 is that the 
bluffer sections at higher U* are more susceptible to the aeroelastic 
instability. The flutter derivative A*

3 exhibits some difference in the 
trend for the streamlined and bluffer sections at higher U* as compared 
to the lower U* range. In the lower U* range, the change in A*

3 across the 
different values of U* is marginal although at higher U* range, the slope 
for the streamlined sections is greater than the bluffer ones meaning the 
aerodynamic stiffness contribution to the aeroelastic moment due to the 
pitching motion increases faster for the thinner sections as compared to 
the bluffer ones in the higher U* range. H*

3 exhibits a non-linear (almost 
parabolic variation) trend with increasing U*. In the lower U* range, the 
change in H*

3 is marginal from one geometry to another and across the 
different U* values. However, as the value of U* increases, H*

3 takes a 
slightly higher negative values for the bluffer sections as compared to 
the streamlined ones. The values of A*

4 are observed to be fairly close to 
zero indicating only a feeble contribution of the heaving motion to the 

Table 9 
Force coefficients and their slopes obtained for different deck geometries inside the design domain. Shape designs designated as ‘Original’ are part of the sampling plan 
described in Section 3.3. The ‘Added’ shape designs facilitate the interpretation of the aerodynamic behavior in the design domain.  

Design Sample H/B CD,0◦ CL,0◦ CM,0◦ CD́,0◦ CĹ,0◦ CḾ,0◦

1 Original 0.0879 0.028 −0.216 0.029 −0.164 4.630 1.515 
2 Added 0.0992 0.032 −0.184 0.046 −0.125 4.541 1.549 
3 Original 0.1104 0.037 −0.133 0.060 −0.093 4.977 1.593 
4 Added 0.1217 0.043 −0.120 0.071 −0.011 4.367 1.551 
5 Added 0.1274 0.047 −0.142 0.075 0.062 3.263 1.491 
6 Original 0.1330 0.050 −0.147 0.079 0.028 3.847 1.526 
7 Added 0.1386 0.055 −0.148 0.083 −0.007 4.759 1.559 
8 Added 0.1443 0.059 −0.141 0.088 −0.037 5.725 1.584 
9 Original 0.1556 0.068 −0.120 0.095 −0.027 6.409 1.571 
10 Added 0.1668 0.077 −0.095 0.103 −0.037 7.357 1.559 
11 Original 0.1781 0.086 −0.071 0.112 −0.074 7.693 1.558 
12 Added 0.1894 0.094 −0.052 0.119 −0.100 7.777 1.541 
13 Original 0.2007 0.103 −0.030 0.128 −0.119 7.872 1.516 
14 Added 0.2119 0.110 −0.001 0.136 −0.173 8.248 1.501 
15 Original 0.2232 0.116 0.035 0.144 −0.288 8.888 1.502  

Fig. 17. Demonstration of the contribution of the full set of 18 flutter derivatives to the aerodynamic stiffness and damping matrix linking the structural velocity and 
displacement in the respective degree of freedom. 
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aeroelastic moments. It should be noted that A*
4 exhibits somewhat stark 

differences to that obtained from the thin airfoil theory as opposed to the 
general good agreement observed for A*

i , H*
i , where i = 1, 2, 3. In case of 

H*
4, the values remain close to 0 or a slightly positive value across the 

range of U* for the most streamlined section. However, as the degree of 
bluffness of the section increases, H*

4 takes higher values with a negative 

sign with increasing U*. For the bluffest section, the slope is the greatest 
as compared to the relatively streamlined ones. This trend of H*

4 in
dicates that the overall stiffness of the system gets reduced for the 
streamlined sections whereas the opposite effect is observed for the 
bluffer ones. Also, the trend of H*

4 complies well with that obtained from 
thin airfoil theory with the streamlined sections bearing closer proximity 

Fig. 18. Comparison of flutter derivatives (Ai*, Hi*, Pi*; i = 1, 2, 3, 4, 5, 6) in Scanlan formulation as a function of U* for all the 7 designs used in the sampling plan.  
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to the thin airfoil as compared to the bluffer ones. 
Another important flutter derivative that contributes to the diagonal 

term of the aerodynamic stiffness matrix is the P*
1. Except for a slight 

non-linearity for the bluffer sections in the lower U* range, which is very 
clear when represented using the PoliMi notation (refer Fig. 19), P*

1 
increases in magnitude (with a negative sign) almost linearly with 

increasing U* and the rate of increase for the bluffer sections is relatively 
swifter as compared to the streamlined ones. For P*

2, as U* rises, the 
streamlined sections tend to exhibit a drop in the value of P*

2 towards the 
negative side whereas the bluffer sections exhibit a trend reversal in that 
the P*

2 rises swiftly to positive values as U* increases. For P*
3, the most 

streamlined section exhibits a gradually increasing magnitude with 

Fig. 19. Comparison of flutter derivatives (ai*, hi*, pi*; i = 1, 2, 3, 4, 5, 6) in PoliMi formulation as a function of U* for all the 7 designs used in the sampling plan.  
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negative sign at higher U* range while the intermediate geometries (H/ 
B = 0.1104 to H/B = 0.1556) almost remain stagnant at around P*

3 = 0 or 
a slightly positive value. However, as the section gets bluffer, P*

3 in
creases with a sharp slope and rises swiftly with increasing U*. P*

4 ex
hibits some non-linear trend in the lower U* range, which is more 
conspicuously visible for the bluffest section. P*

4 also exhibits a sta
tionary trend with increasing U* but exhibits an increase in the 
magnitude across all the ranges of U* with increase in the depth of the 
section. The flutter derivative P*

5 exhibits an increasing trend with 
increasing U* for all the sections; however, P*

5 increases in a linear 
manner for the streamlined sections whereas for the bluffer ones, it in
creases sharply and then later assumes a rough asymptotic trend around 
a particular value, which is higher for the bluffer sections. Similarly, the 
flutter derivative P*

6 increases in magnitude with a negative sign with 
increasing U* with greater slope for higher H/B section ratios. For the 
thinner sections, P*

6 assumes a small positive slope and positive values. 
In general, it can be seen that the absolute value of all P*

i flutter de
rivatives at all reduced velocities increases with the level of bluffness 
(H/B), which confirms the pivotal role of the drag flutter derivatives in 
the aeroelastic responses of bluff deck bridges (Miyata et al., 1995; Jones 
et al., 2003) and the importance of emulating these parameters as a 
function of the deck shape and reduced velocity during the 
aero-structural design and optimization of bridges. 

Similarly, the flutter derivative H*
5 increases in magnitude with a 

negative sign for the relatively streamlined sections with increasing U*. 
However, for the bluffer ones, the magnitude of H*

5 decreases and tends 
to approach towards 0 at higher U*. On the other hand, some non- 
linearity is observed in the trend of H*

6 in the lower U* range. For the 
thinner sections, H*

6 is negative at lower U*, which increases to take 0 or 
a small positive value at higher U* (such as U* = 20.0). It is also 
observed that for streamlined geometries H*

6 assumes a roughly 
asymptotic trend approaching towards a constant value as U* increases. 
However, this behavior is not very distinct and seems to have been 
delayed for the bluffest section. The flutter derivative A*

5 on the other 
hand increases in magnitude with negative sign with the increasing U* 
in almost a linear manner. For the bluffer section, A*

5 takes higher values 
as compared to the thinner sections. Finally, A*

6 increases in magnitude 
with positive values with increasing U* for all the shape design candi
dates except for H/B = 0.2232, which exhibits negative values and 
decreasing trend with increasing U*. 

In Fig. 18 and also while discussing the trend of flutter derivatives 
above, it is observed that several flutter derivatives such as the A*

2, A*
3, 

H*
2, H*

3, P*
2 and P*

6 show marginal or almost no variation in their mag
nitudes across the different values of U* in the lower reduced velocity 
range when represented using the Scanlan notation. This is because the 
Scanlan formulation does not provide an adequate resolution and tends 
to obscure the non-linearities in the lower reduced velocity range (Zasso, 
1996) because the different flutter derivative terms in Scanlan notation 
are already factored in by Kx or K2

x (where x = h, p, α, are the reduced 
frequencies associated with respective motions) depending upon the 
motion component or its velocity. However, their PoliMi counterparts 
do not fare from this poor resolution and exhibit interesting non-linear 
trends in the lower reduced velocity range while also demonstrating 
an asymptotic trend converging towards a constant value in the higher 
U* range. This behavior is more distinctly visible for relatively stream
lined sections at high reduced velocities which complies well with the 
QST assumptions. 

Hence, the full set of all the 18 flutter derivatives for the 7 samples as 
a function of reduced velocity is also plotted in PoliMi notation and is 
presented in Fig. 19. One of the key observations in PoliMi notation is 
that the flutter derivatives a1*, a3*, a4*, a5*, all hi*’s and all pi*’s attain a 
nearly constant value in the higher reduced velocity range, which is 
more distinctly visible for the streamlined geometries as compared to 

the bluffer ones in which the trend seems to have been slightly delayed 
due to subtle non-linearities in the curve. The relatively streamlined 
geometries comply readily with the asymptotic trend whereas the 
bluffer sections tend to approach towards the asymptotic trend (e.g., a1*, 
a3*) in some cases, although sometimes at higher reduced velocities, 
whereas in a few others even tend to digress from the asymptotic trend 
(a2*, h2*, h4*). Another notable feature of the flutter derivatives in 
PoliMi notation is the nonlinear trend in the lower reduced velocity 
range, which is visible in a3*, h1*, and h3*. Additionally, a striking 
feature of the trend in the PoliMi notation is the manifestation of distinct 
peaks in the lower reduced velocity range (such as for a3* at U* = 5.0 for 
the geometries bluffer than the baseline geometry). Similar peaks were 
observed for some flutter derivatives in Zasso, 1996, and it was 
concluded that the peaks are due to the effect of vortex shedding. Such 
phenomenon is observed for a small range of reduced velocities in the 
lower reduced velocity region. 

It must be highlighted that in order to guarantee an accurate simu
lation of the VIV response, the non-linearities caused by the deck motion 
amplitude must be considered to reproduce the complex mechanism 
occurring in the lock-in region properly. In this context, Wang and Chen 
(2022) have demonstrated that the steady vortex-induced vibration 
amplitude of a deck can be very well predicted by forced vibration CFD 
simulations and have found the results from CFD in good agreement 
with the wind tunnel tests. Other studies that have contributed to this 
direction include Tamura (1999), Noguchi et al. (2020), and Álvarez and 
Nieto (2024). While the present study is focused on emulating the 
self-excited forces as a function of the deck shape and reduced velocity, 
the numerical design methodology can be enhanced by adding these 
considerations when the design path requires an accurate simulation of 
the bridge amplitude-dependent response. 

5.3. Performance of the QST formulation in estimating the flutter 
derivatives 

In this Section, the limitation of the QST-based framework and the 
necessity for a more general and a versatile framework is substantiated 
with the help of flutter derivatives obtained from an actual fluid- 
structure interaction and using the quasi-steady theory. To demon
strate the limitations of the QST-based framework, the flutter derivatives 
(A*

i , H*
i ; i = 1, 2, 3) at U* = 20.0 obtained from the quasi-steady theory 

and an actual fluid-structure interaction via dynamic CFD simulations is 
plotted for all the 7 shape designs in Fig. 20. 

It can be readily inferred from Fig. 20 that all the flutter derivatives 
(A*

i , H*
i ; i = 1, 2, 3) exhibit a bifurcating tendency for the bluffer sections, 

which indicates that the QST-based framework is not suitable for bluff 
deck sections, which are prone to massive flow separations. Although for 
the streamlined sections, the two curves (i.e., the one obtained from 
dynamic CFD simulations and from the QST) tend to converge towards a 
similar value in case of H*

i (i = 1, 2, 3); however, the discrepancy be
tween the flutter derivatives obtained from dynamic simulation and QST 
is clearly visible for A*

i (i = 1, 2, 3). This observation suggests that the 
application of QST-based framework to even the most streamlined sec
tion in the current scope of work yields inaccuracies as is the case for A*

i 
(i = 1, 2, 3). Besides, another important observation from the plots in 
Fig. 20 is that flutter derivatives obtained from the QST formulation 
always results in an over-prediction of the absolute magnitude of the 
flutter derivatives A*

i (i = 1, 2, 3) and H*
i (i = 1, 3). This observation 

indicates that the QST formulation over-predicts the aeroelastic loads in 
this application case in the higher reduced velocity range and the extent 
of over-prediction rises with the degree of the bluffness of the section, 
which compromises the aeroelastic performance of any deck designed 
using the QST formulation. Hence, the necessity to opt for a more gen
eral and a versatile aero-structural design framework as proposed in this 
work is justified based on the observations above. 
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Fig. 20. Comparison of flutter derivatives (Ai*, Hi*, Pi*; i = 1, 2, 3) from dynamic CFD simulations and those estimated using the QST formulation based on static 
CFD simulation represented in Scanlan notation at U* = 20.0 as a function of H/B for all the 7 designs used in the sampling plan. 

Fig. 21. Response curve for time-averaged force coefficients and their slopes with increasing depth of deck. Hollow markers are added shape designs and full markers 
are original shape designs according to Table 9. The symbol “^” indicates surrogate response curve. The slope of the drag coefficient is multiplied by a scale factor of 
−10 and the slope of the moment coefficient is multiplied by 2 to facilitate its visualization. 
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6. Emulation of aerodynamic and self-excited forces 

6.1. Emulating shape-dependent force coefficients and slopes 

The time-averaged integrated force coefficients and their slopes can 
be used for estimating the aerodynamic admittance functions, as 
described in Section 2.1.3. Hence, the data reported in Section 5.1. is 
used to build a steady aerodynamic surrogate model A s to emulate the 
variation of the time-averaged integrated force coefficients and their 
slopes with regards to the deck shape Sd. The input of this steady 
aerodynamic surrogate is the deck shape, and the output are the 
frequency-independent force coefficients and their slopes, which can be 
formulated as: 

A s(Sd) =
[
CD,0◦ , CL,0◦ , CM,0◦ , Cʹ

D,0◦ , Cʹ
L,0◦ , Cʹ

M,0◦

]
(26) 

Fig. 21 shows the aerodynamic response curves obtained in the design 
domain. In general, it is inferred that the mean static wind loads on the 
shape design candidates increase with the increase in the depth of the 
deck section. This is due to variation in the formation, distribution, and 
the size of different vortical structures formed in the vicinity of the deck 
section resulting in different aerodynamic loads. However, an interesting 
observation from the curves in Fig. 21 is also that the variation of mean lift 
force is not quite linear as demonstrated by a distinct peak for 0.11 ≤ H/B 
≤ 0.13 in Fig. 21 (a). Similarly, the non-linearity in the trend of slopes of 
the lift coefficient is again distinctly visible for the shape design candi
dates with H/B ratios in the range of 0.12 ≤ H/B ≤ 0.14. Thus, the curves 
suggest that it is of critical importance to properly account for the aero
dynamic non-linearities while assessing the wind loads on different shape 
design candidates because some of the shapes in the nearby range might 
satisfy the buffeting and other aeroelastic design requirements and 
specifications very well, however, a few design sections might still fail the 
design requirements and specifications due to the appearance of sudden 
aerodynamic non-linearities for certain designs. 

6.2. Emulating shape- and frequency-dependent flutter derivatives 

Based on the discussions in Section 2.3 and 3.2, a simulation test grid 
of 7 × 7 × 3 (i.e., no. of geometries × no. of reduced velocities × DoF) 
resulting in a total of 147 simulations were carried out to obtain the time 
history of aeroelastic forces. As already stated, the aerodynamic flutter 
derivatives were computed from the time history of aeroelastic forces 
using the method of least squares and the flutter derivatives are pre
sented in the form of a response surface, which is a multi-variate func
tion of deck shape (H) and the reduced velocity (U*). The flutter 
derivatives in both the Scanlan and PoliMi notations are presented in 
Fig. 22 for A*

i ’s, where i = 1, 2, 3. Similar conclusion as highlighted in 
Section 4.4 are revealed by the response surfaces of flutter derivative in 
Fig. 18, i.e., the variation in the magnitude of flutter derivatives across 
different reduced velocities fades away in the lower reduced velocity 
range while the same when plotted in PoliMi notation demonstrates 
interesting non-linearities as observed for a*

i ’s, where i = 1, 2, 3. Similar 
conclusions hold true for other flutter derivatives as well such as the H*

i ’s 
and h*

i ’s, where i = 1, 2, 3. The response surfaces for the flutter de
rivatives P2*, P3*, P5*, A4*, H4*, P6* and A5*, A6*, H5*, H6*, P1*, P4* are 
presented in Figs. 24 and 25 respectively. The Kriging surrogate is able 
to provide smooth, continuous and differentiable response surfaces for 
the 18 flutter derivatives even in regions of the surrogate domain 
showing high level of non-linearities (see Figs. 22 and 23), which is a 
fundamental feature for the implementation of the aeroelastic surrogate 
into aero-structural design optimization frameworks. 

7. Buffetting response analysis and deck shape tailoring 

The impact of deck shape modifications on the bridge aeroelastic 
performance is studied in this section by comparing the buffeting 
response obtained along the shape design domain under turbulent syn
optic winds. The buffeting analysis is conducted in the frequency 
domain, as discussed in Section 2.4. Frequency domain analysis 

Fig. 22. Response surface of the flutter derivatives (A1*, A2*, A3*, a1*, a2*, a3*) for the design domain D s. Comparison of representations using Scanlan and PoliMi 
notation to highlight the non-linear behavior at low reduced velocities. 
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considers the frequency dependency of the fluid-structure interaction 
parameters, namely the flutter derivatives and admittance functions, 
which permits taking into account their non-linear features. However, it 
does not consider their sensitivity to the time-variant angle of attack. 

Hence, frequency domain analysis is a good alternative to studying the 
buffeting response of bluff decks with nonlinear aerodynamics under 
synoptic winds where the variations in the angle of attack and mean 
velocity are negligible. The test case adopted consists of a 1-node 3-DoF 

Fig. 23. Response surface of the flutter derivatives (H1*, H2*, H3*, h1*, h2*, h3*) for the design domain D s. Comparison of representations using Scanlan and PoliMi 
notation to highlight the non-linear behavior at low reduced velocities. 

Fig. 24. Response surface of the flutter derivatives (P2*, P3*, P5*, A4*, H4*, P6*) for the design domain D s represented using the Scanlan notation.  
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system with a variable depth, as shown in Fig. 26. Changes in the deck 
depth impact the aerodynamic and aeroelastic properties. Aiming at 
focusing on this effect and for the sake of simplicity, the mechanical 
properties are kept constant, adopting the values reported in Table 10. 
However, it must be noted that deck shape modifications notably in
fluence the natural frequencies and mode shapes due to variations in the 
translational and torsional moments of inertia and mass moments of 
inertia. This data was taken from the mechanical and dynamic proper
ties of the Miradoiros Bridge (Baldomir et al., 2010; Cid Montoya et al., 
2018a), a cable-stayed bridge project with a main span of 658 m. The 
aerodynamic dimensions adopted for the deck are 22 m chordwise width 
and 1 m spanwise length. These parameters were selected to boost the 

influence of nonlinear features at low reduced velocities on the buffeting 
response at a mean wind velocity of Umean = 40 m/s. The resulting 
reduced velocities associated with the lateral, vertical, and torsional 
natural frequencies reported in Table 10 are U*

y = 7.19, V*
z = 4.64, and 

V*
θ = 2.40, respectively. These values are clearly in the low reduced 

velocity range, where more nonlinear features can be observed in the 
flutter derivatives, as shown in Fig. 19. Slight changes in the natural 
frequencies lead to variations in the reduced velocities that can cause 
drastic changes in the flutter derivatives. For instance, the value of the 
A*

3 for deck cross-section with high depth is very sensitive to changes in 
U* in the region U* = [3, 7.5], as can be anticipated from Figs. 18 and 19, 
which has an impact on the buffeting response. 

7.1. Synoptic wind modeling 

The buffeting analysis considers a turbulent synoptic wind, assuming 
negligible variations in the angle of attack and mean wind velocity. The 
wind is modeled adopting a turbulence intensity of Iu = σu/U = 0.07 in 
the horizontal flow direction while a turbulence intensity of Iw = σw/U 
= 0.03 in the vertical direction. The integral length scales in the hori
zontal and vertical direction are Lu = 200 m and Lw = 20 m, respectively. 
The Von Karman spectrum (Von Kármán, 1948) is adopted for the di
agonal terms (Suu and Sww) of the cross-power spectrum matrix, while 

Fig. 25. Response surface of the flutter derivatives (A5*, A6*, H5*, H6*, P1*, P4*) for the design domain D s represented using the Scanlan notation.  

Fig. 26. Schematic representation of the 1-node 3-DoF system with variable depth and under the action of turbulent wind used as a demonstration example for the 
wind-resistant design of the deck. 

Table 10 
Structural data used for the 1-node 3-DOF deck structural system used as a 
demonstration example for the wind-resistant design of the deck.  

Quantity Description Value 

M [T/m] Mass per unit length 22.66 
IM [T m2/m] Moment of inertia per unit of length 4435.80 
fy [Hz] Lateral structural eigenfrequency 0.253 
fz [Hz] Vertical structural eigenfrequency 0.392 
fθ [Hz] Torsional structural eigenfrequency 0.758 
ξ [-] Damping ratio (for all modes) 0.015  
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the off-diagonal terms are equated to 0. The air density is taken as ρ =
1.22 kg/m3. These reference values are based on previous studies, for 
instance, Diana et al., 2020a; Patruno and Ricci, 2017. 

7.2. Buffeting response trends in the shape design domain 

The PSD of lateral, vertical, and torsional accelerations of the 1-node 
3-DoF system described above are presented in Fig. 27 (a), (b), and (c), 
respectively. These PSDs were calculated using the aeroelastic surrogate 
model to emulate the 18 flutter derivatives for each deck design 
candidate. The torsional response is expressed as the equivalent vertical 
displacement of the deck side edge as Zeq = θB/2. The three responses 
are monomodal functions, given the simplicity of the 1-node 3-DoF 
system. However, the effect of the buffeting forces and aeroelastic forces 
as a function of the deck shape is evident. 

Fig. 27 (d), (e), and (f) show the RMS of acceleration of the lateral, 
vertical, and torsional responses calculated following the procedure 
described in Section 2.4.2. Using surrogate-based design methods per
mits the calculation of continuous, smooth, and differentiable response 
surfaces or curves, which facilitates design tasks and permits the 
implementation of gradient-based optimization algorithms. It can be 
seen the growing trend of the lateral and vertical responses as the depth 
of the cross-section increases. However, variations in the torsional 
response are minimal throughout the entire design domain. The RMS of 
accelerations are typically adopted as the acceptance criteria in stan
dards and project specifications. The limit values prescribed in the 
Messina Bridge Project (Stretto di Messina, 2004) are üRMS,max =

0.15 m/s2, ẅRMS,max = 0.25 m/s2, and Z̈eq,RMS,max = 0.125 m/ s2. We 
adopt the same values here to conduct the buffeting-resistant design of 
the deck. The buffeting response of the deck is calculated using the 
aeroelastic surrogate reported in Section 6 for the emulation of the 
flutter derivatives and also the QST formulation (Eq. (6)). These results 
are shown in Fig. 27 (d), (e), and (f) as black and blue solid lines, 
respectively. The impact of the flutter derivatives on the buffeting 
response, even at not that high wind velocities, and the relevance of 
adopting the adequate modeling scheme, i.e., the aeroelastic surrogate 

for bluff deck design, can be clearly seen for each buffeting response. In 
fact, Fig. 27 (e) shows that the errors in the assessment of the RMS of 
vertical accelerations increase as the section becomes bluffer. This can 
be anticipated by analyzing the differences in the flutter derivatives 
reported in Fig. 20, particularly for Hi*. On the other hand, the differ
ences for the Ai* are not that large, which results in a torsional response 
with slight differences, as shown in Fig. 27 (f). The lateral response re
ported in Fig. 27 (d) shows a very good agreement due to the similitude 
reported in Fig. 18 for the P1*, which has a key role on the lateral 
damping as explained in Fig. 17, obtained using either the AS or QST 
approaches. 

7.3. Buffering-resistant design: deck shape tailoring 

Deck shape modifications are very effective in mitigating buffeting- 
induced responses. Imposing a maximum response for the three de
grees of freedom as described in Section 6.2. leads to the definition of the 
feasible design domain, which is graphically sketched in Fig. 28. This 
design is conditioned by the local climate (wind modeling), shape- 
dependent mechanical properties, and shape-dependent aerodynamic 
and aeroelastic properties. As shown in Fig. 27 (d), (e), and (f), the 
limitation is not active for the lateral and torsional responses. However, 
the limitation in the vertical response of ẅRMS,max = 0.25 m/s2, condi
tions the feasible design domain. Hence, values of H/B > 0.143 lead to 

Fig. 27. Buffeting response of the 1-node 3-DoF system under a turbulent synoptic wind with a mean velocity of Umean = 40 m/s. Subplots (a), (b), and (c) show the 
PSD of the lateral, vertical, and torsional degree-of-freedom for the seven samples used in the sampling plan (see Section 3.3.) using the Aeroelastic surrogate (AS) 
reported in Section 6. In subplots (d), (e), and (f), the RMS of accelerations as a function of the deck depth calculated using the AS and the QST are compared with the 
thresholds imposed as acceptance criteria, which permits the identification of the feasible and unfeasible design domain regions. 

Fig. 28. Buffeting-resistant deck shape tailoring. Comparison of the feasible 
design domains obtained using the Aeroelastic Surrogate (AS)-based approach 
(green) and the QST-based approach (orange and green), and the unfeasible 
design domain (red). 
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RMS of vertical accelerations higher than the maximum values adopted, 
which makes this region of the design domain unfeasible, as shown in 
Fig. 27. A different feasible design domain would be obtained if other 
mechanical properties, wind conditions, or limit values were adopted. 
Moreover, it is also important to highlight the role of the fluid-structure 
interaction modeling approach. Adopting the QST formulation instead 
of the proposed aeroelastic surrogate to estimate the flutter derivatives 
can cause drastic changes in the feasible design domain. Fig. 27 also 
shows in blue the buffeting response calculated using the QST and the 
resulting new feasible design domain corresponding to H/B ≤ 0.163, 
which is also plotted in Fig. 28. It is important to remark that all deck 
shape designs between H/B = 0.143 and 0.163 surpasses the vertical 
threshold when performing the buffeting analysis with the AS. In 
particular, if the design obtained using the QST-based approach is 
selected (H/B = 0.163), the actual vertical buffeting acceleration 
calculated using the AS would be ẅRMS = 0.33 m/s2, which would clearly 
surpass the imposed threshold of ẅRMS,max = 0.25 m/s2. Consequently, 
the results obtained using the QST are not conservative for this case and 
can clearly pose a risk for the obtained designs. Hence, the definition of 
the feasible design domain, including bluff geometries at low reduced 
velocities, can only be defined by directly extracting the shape- and 
frequency-dependent flutter derivatives, hence avoiding the limitations 
of the QST formulation. This methodology opens the door to imple
menting aero-structural optimization frameworks to optimize the deck 
shape design of long-span bridges, considering flutter and buffeting re
sponses effectively and accurately. 

8. Concluding remarks 

The self-excited forces of bluff decks present multiple nonlinearities 
that must be properly modeled to conduct the shape design and opti
mization of a deck cross-section accurately. This study proposes an 
aeroelastic surrogate to emulate the frequency-dependent self-excited 
forces for the shape design and optimization of bridge decks, including 
streamlined, bluff, and any other geometry or typology where the ac
curacy of the QST may be compromised, such as in truss and twin-box 
decks. Detailed verification and validation studies based on wind tun
nel data of the static and dynamic CFD simulations were conducted to 
evaluate the performance of 2D URANS with the Menter’s kω-SST tur
bulence model in a single-box bluff deck similar to the Sunshine Skyway 
bridge deck. The deck depth was systematically changed in order to 
understand and model its impact on the self-excited forces. Numerical 
simulations of forced vibrations in the three degrees of freedom 
permitted the extraction of the 18 flutter derivatives, which are required 
for modeling the aeroelastic response of bluff decks properly. This was 
done for multiple deck designs at several reduced velocities to collect 
enough information to build a comprehensive emulator. A special focus 
was set on the low reduced velocities range to capture potential non
linearities by increasing the number of samples in that region of the 
domain. Then, a kriging surrogate was trained using the CFD datasets to 
produce an emulator that provides the values of the 18 flutter de
rivatives for a given shape and reduced velocity value. The computed 
response surfaces were analyzed using Scanlan’s and PoliMi’s formula
tions in order to properly visualize the nonlinear features and the 
asymptotic behavior at high reduced velocities which is imposed by the 
level of bluffness of the deck cross-section. As expected, notable differ
ences were found with the flutter derivatives obtained using the QST 
formulation. The potential impact of these differences on a bridge 
aeroelastic response and wind-resistant design was analyzed by 
computing the buffeting response of a 1-node 3-DoF structural system 
with variable deck depth. The remarkable differences found in the Hi* 
flutter derivatives, particularly for the bluffer geometries, led to drastic 
changes in the calculated RMS of buffeting vertical accelerations. This 
fact clearly impacts the eventual deck shape tailoring, seeking to keep 
those accelerations below a prescribed acceptance criteria threshold. 

Hence, the use of the proposed aeroelastic emulator in wind-resistant 
design frameworks involving non-streamlined deck cross-sections is 
fundamental for accurately balancing the contradictory design demands 
posed by the structural and aeroelastic requirements. Future research 
will delve into the implementation of the developed QST-free aeroelastic 
emulator into aero-structural optimization frameworks considering full 
bridge models, multiple design variables to simultaneously optimize the 
deck, cable-supporting system, and towers design, and multiple design 
constraints of structural and aeroelastic nature to control all relevant 
wind-induced responses. 
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Tinmitondé, S., He, X., Yan, L., 2022. Single-objective aerodynamic optimization of a 
streamlined bridge deck subjected to shape modification using a polynomial 
emulator and genetic algorithm. Struct. Multidiscip. Optim. 65 (12), 356. https:// 
doi.org/10.1007/s00158-022-03459-8. 

Tubino, F., 2005. Relationships among aerodynamic admittance functions, flutter 
derivatives and static coefficients for long-span bridges. J. Wind Eng. Ind. Aerod. 93 
(12), 929–950. https://doi.org/10.1016/j.jweia.2005.09.002. 

TxDOT, 2022. Independent Structural Analysis for the Corpus Christi Harbor Bridge 
Project. Texas Department of Transportation, Bridge Division, SYSTRA International 
Bridge Technologies. TM1001-5.  
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