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Abstract—Detection of sparse signals arises in many modern
applications such as signal processing, bioinformatics, finance,
and disease surveillance. However, in many of these applications,
the data may contain sensitive personal information, which
is desirable to be protected during the data analysis. In this
article, we consider the problem of (e, §)-differentially private
detection of a general sparse mixture with a focus on how privacy
affects the detection power. By investigating the nonasymptotic
upper bound for the summation of error probabilities, we find
any (e, d)-differentially private test cannot detect the sparse
signal if the privacy constraint is too strong or if the model
parameters are in the undetectable region in [2]. Moreover, we
study the private clamped log-likelihood ratio test proposed in
[3] and show it achieves vanishing error probabilities in some
conditions on the model parameters and privacy parameters.
Then, for the case when the null distribution is a standard
normal distribution, we propose an adaptive (e, §)-differentially
private test, which achieves vanishing error probabilities in the
same detectable region in [2] when the privacy parameters satisfy
certain sufficient conditions. Several numerical experiments are
conducted to verify our theoretical results and illustrate the
performance of our proposed test.

I. INTRODUCTION

Detection of sparse mixtures, with the goal to determine
the existence of signals in a small fraction of a noisy dataset,
has many important applications such as signal processing [4],
finance [5], industrial quality control [6], and disease surveil-
lance [7]. For example, for image-based quality inspection, the
photoelasticity test is a nondestructive evaluation method used
for stress and strain analysis of translucent parts, or material
[8]. The output is often presented by a colormap, which is used
to detect sparse anomalies with high-tensile stress. In many
cases, such image colormap data may have complicated spa-
tial correlation structures, and some decorrelation techniques
methods, for example, [9]-[11], can be used. Then, the model
residual or residual image, which is often assumed to be i.i.d
for the normal pixels, is used to detect sparse anomalies.
However, in many of these applications of detection of sparse
mixtures, the data may contain sensitive personal information
such as financial or medical records. Thus, procedures with
good detection ability for the sparse signal while preserving
individual information are highly desirable.
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The study of the detection of sparse Gaussian mixtures
where the fraction of signal is close to zero was first in-
vestigated by Ingster [12], where the detectable region is
discovered. It has been shown that for any test, the sum of the
probabilities of type I and type II errors are always bounded
away from 0 outside the detectable region, which implies no
tests can detect the sparse signal asymptotically. Moreover,
although the likelihood ratio test can be applied to distinguish
the two hypotheses efficiently in the detectable region, it may
not be applied directly since it involves parameters in the
alternative distribution, which may be unknown in practice.
Later on, many efficient tests, which do not involve the
information of parameters in the alternative hypothesis, were
proposed and proved to be optimal in the detectable region,
such as the higher criticism test [13], [14], goodness-of-fit test
based on ®-divergences [15], [16] and the Berk-Jones test [17].
Moreover, the detection boundary for the heterogeneous and
heteroscedastic Gaussian mixture model was studied in [18],
and a double-sided version of the higher criticism test was
proved to be optimal in the detectable region. [2] developed a
general detectable region and has shown the higher criticism
test is adaptive optimal in such a detectable region. Later on,
[19] conducted a rate analysis on the error probabilities for the
log-likelihood ratio test to detect the general sparse mixtures.
However, none of these works consider the privacy-preserving
guarantees.

Since Dwork et al’s pioneer work on differential privacy
[20], differential privacy has garnered much attention. A wide
variety of differentially private procedures with theoretical
efficiency guarantees have been developed for many statistical
problems such as point estimation [21], [22] and hypothesis
testing [3], [23]-[25]. Informally, the field of differential pri-
vacy provides a systematic tool to construct private algorithms
or procedures by adding designed random noise such that the
output has a similar distribution with or without data for each
individual participant, which helps to protect the information
of individuals in the dataset. In particular, in the area of
hypothesis testing, [23] proposed differentially private tests
for categorical data. [24] focused on the differentially private
test of the Gaussian distribution and proposed a test based
on the likelihood ratio test. Under the differential privacy
context, [22] proposed a general framework to construct robust
hypothesis tests based on M-estimation. For the general simple
hypothesis testing setting, [3] derived an upper bound for
the sum of type I and type II error probabilities of simple
hypotheses for general e-differentially private tests and then
proposed an optimal test by the clamped likelihood ratio
statistics. [25] proposed differentially private algorithms for



controlling the false discovery rate in multiple hypothesis
testings. The problem of private identity testing for high-
dimensional distributions was studied in [26]. [1] studied the
problem of detection of the sparse Gaussian mixture under
the e-differentially private constraint with a focus on how
the privacy parameter e affects the detection ability for some
differentially private tests.

In this paper, we focus on the problem of differentially
private detection of a general sparse mixture and make three
major contributions. First, we study the detection ability of
a general sparse mixture under the framework of (e,d)-
differential privacy. Motivated by the detection boundary of
the sparse Gaussian mixtures proposed by [12], [13] and the
general sparse mixture derived by [2] under the non-privacy-
preserving scenario, we further take the privacy parameters
€,0 into account and derive a nonasymptotic bound on the
summation of type I and type II of any (e, 0)-DP test. Based
on such bound, we can see that if € = o(1/n),d = o(1/n),
or if the model parameters are in the undetectable region
derived by [2] and §/e = O(1), any (€, §)-DP test cannot have
vanishing type I and type II probabilities asymptotically and
thus cannot detect the presence of the sparse signal. This result
is consistent with the fact that strong privacy may damage the
accuracy of the procedure. Second, we study the detection
power of the noisy clamped log-likelihood ratio test proposed
by [3], which is optimal in the sense of requiring the smallest
sample size to achieve designed detection power under the
e-differentially privacy constraint for the simple hypothesis
testing problem where the null and the alternative distributions
do not involve the sample size n. In this paper, we further con-
sider the clamped log-likelihood ratio test under the (e, §)-DP
constraint and show that the test has good detection efficiency
in the sense of achieving vanishing probability of errors when
the model parameters are inside of a detectable region and the
privacy parameters satisfy —w = O(1). Third,

for the Gaussian null hypothesis, we propose an adaptive
differentially private test, which achieves vanishing probability
of errors when model parameters are inside the detectable

region of [2] and %e — 00. Our proposed test

is based on one variant of higher criticism statistic, which
can separate the null hypothesis and the alternative hypothesis
asymptotically without the privacy constraint [2], [13]. We
show that this variant of higher criticism statistics has a
relatively small sensitivity. Thus, we can construct an efficient
(¢, 0)-differentially private test by adding a small noise. We
should emphasize that our proposed test does not involve
parameters in the alternative distribution, which are usually
unknown to statisticians in practice.

The organization of this article is as follows. In Section
I, we introduce the preliminaries and background on the
detection of general sparse mixtures and (e, ¢)-differentially
private tests. In Section III, we study the fundamental bounds
of general (¢, §)-DP tests for detecting the sparse mixture and
investigate the detection property of the clamped likelihood
ratio test by adding an independent Gaussian noise. We then
describe an adaptive (e,0)-DP test in Section IV and show
simulation results in Section V. The conclusion and further

discussions are provided in Section VI. The proofs of the main
theorems are postponed in the Appendix.

II. PRELIMINARIES

In this section, we provide the necessary preliminaries
and background on the detection of sparse mixtures and
differentially private tools with an emphasis on the hypothesis
testing problems.

A. Detection of Sparse Mixtures

Suppose we have n independent and identically distributed
(i.i.d.) random samples Xi, Xo,---,X,,. We consider the
following hypothesis testing problem with the null hypothesis
as

i.4.d.

Ho: Xi "~ p, ()
and the alternative hypothesis as
1 X R (1= Np + Agn. )

Here, p denotes the p.d.f of the null distribution, g,, denotes
the p.d.f of the non-null effects (signal) distribution, which
depends on the sample size n. Roughly speaking, under the
null hypothesis Hy, all data are i.i.d from the distribution p.
Under the alternative hypothesis Hﬁ”), a fraction \ of the data
come from another distribution g,, and the remaining 1 — A
fraction of the data are still from the null distribution p.

Clearly, if A, p, and g are fixed and known, the optimal
procedure is simply the likelihood ratio test. In this paper,
we follow the literature on detecting the sparse mixture
[2], [12], [13] and assume A = n—? for some exponent
% < B < 1, so that the fraction of nonzero means is small but
not vanishingly small. In the special case of detection of sparse
Gaussian mixtures when the null distribution p ~ N (0, 1) and
gn ~ N(y/2rlog(n),1), for a positive constant r > 0, [12],
[13] found the sharp detection boundary in the (r, ) plane,
which is given by

. g -3 if 1/2 < 3<3/4,
P (6){ (1-?@)2, if3/4<B<1. )
That is if r < p*(B), Ho and Hﬁ") are asymptotically
unseparatable in the sense that the sum of type-I and II error
probabilities for any tests goes to 1. Otherwise, if » > p* (),
then Hy and HY” are asymptotically detectable. The strict
epigraph {(r,8) : r > p*(8)} is known as the detectable
region. Moreover, inside the detectable region, several adaptive
optimal tests, which have vanishing Type I and Type II error
probabilities and do not rely on the information of r and
B, are proposed in the literature. For example, [13] showed
that Tukey’s higher criticism test can separate H, and Hﬁ”)
asymptotically when r > p*(3). The test is based on Tukey’s
higher criticism statistic, which is defined by

up St L <1) —nt] "
t€(0,1) nt(l —t)
where 7, = P(IN(0,1) > Xy), I(.) is the indicator function.
Tukey’s higher criticism test rejects the null hypothesis if

HC! =



HC; in (4) is greater than some critical values. There are
several variants of HC statistic, see [13], [14]. In this paper,
we choose the variant as in (4) and construct a differentially
private test based on the discrete version of (4) since it can
satisfy the privacy guarantee while keeping good detection
efficiency. Besides the higher criticism test, the Berk-Jones test
can also be used to detect the sparse Gaussian mixtures [27].
Let u; = P(N(0,1) < X;) and u;) denote its sorted order
statistics in increasing order. Then, let the corresponding one-
sided p-values be denoted as p; = P (Beta(i,n—i+1) < u;),
where Beta(i, j) denotes the Beta distribution with parameters
i, 7. The exact Berk-Jones statistics M,, is defined by

+ 3 . - — H .
My = \in pi, M, @?n(l Di)s
M, = min{M M}, (3)

and the BJ test rejects the null hypothesis if the test statistic
M, in (5) is smaller than some critical values. The optimality
of the BJ test on detecting the sparse Gaussian mixtures has
been studied in [17]. However, in the simulation study of this
paper, we will show to meet the privacy constraint, the BJ-
based private test has low detection efficiency since it may
add too much noise compared with the signal or the BJ test
statistics .

In general, [2] established an explicit expression for the
detection boundary of the hypothesis testing problem in (1)
and (2) under mild regularity conditions. Let H?(p, ¢) denote
the Hellinger distance of two distributions p,q, which is
defined by

w0 = [ (Vile) - Va@w) de. ©

Note H?(p,q) takes values in the interval [0,2]. Denote the
Hellinger distance between the null distribution p and the
alternative distribution (1 — n=%)p + n=%g, in (1) and (2)
by

HX(B)=H*(p,(1—n"P)p+nPg,)). @)

It has been shown in [2] that HZ(j) is decreasing with 3.
Moreover, define 3* = inf{3 > 0 : nH2(8) — 0},5" =
sup{3 > 0 : nH2(B) — oco}. [2] showed that 0 < B* <
B* < 1 and when 8 > B*, all tests cannot separate the null
and the alternative hypotheses since the summation of the type
I and type II errors converge to 1 for any tests. Moreover,
when 8 < 3%, there exists a sequence of tests with vanishing
type I and type II error probabilities. Furthermore, under
mild regularity conditions on the distribution of log(g,/p),
[2] found * = B*, which yield the explicit expressions for
the detection boundary. As an example of Gaussian mixtures
when p ~ N(0,1) and g, ~ N(y/2rlog(n),1), the detection
boundary obtained by the condition 3 = 5* = 3* is the same
boundary as in (3). N

[19] derived another set of sufficient conditions to find the
detection boundary of the hypothesis testing problems in (1),
(2) and also studied the optimal rate of decay of type I and
type II error probabilities for the log-likelihood test in the
detectable region.

B. Differentially Private Hypothesis Test

Considering a random algorithm that maps from a database
space R™ with n entries, where each entry belongs to the set
R, to some measurable output space, we say the algorithm is
differentially private if the outputs have similar distributions
for neighboring datasets that we want to make it hard to
distinguish. Here, two databases D, D’ are neighboring if they
differ in at most one entry. We now introduce the formal
definition of differential privacy [20].

Definition 1. A randomized algorithm T : R™ — R is (¢,0)-
differentially private (DP) if for every pair of neighboring
databases D, D’ € R™, and for every subset of possible events
SCR,P(T(D)eS) <eP(T(D)eS8)+0.

In particular, for the special case of hypothesis testings with
binary output {0, 1}, we say a test with the test function T :
R™ — {0,1} is (¢,6)-DP if P(T(D) = 0) < e‘P(T(D') =
0)+ 6, and P(T(D) = 1) < eP(T(D’) = 1) + ¢ for every
pair of neighboring databases D, D’ € R™. Here, T'(D) = 1
implies the test will reject Ho and T(D) = 0 implies the test
will accept Hy based on observed dataset D. Moreover, we
call the (¢,0)-DP test as e-DP if § = 0.

For a regular test constructed by some test statistics L, e.g.,

(1, ifL(D)>e
T(D)= { 0, otherwise,

where c is the critical value controlling the type I error
of the test, one common technique to achieve (e,0) differ-
ential privacy is by adding a Gaussian noise [28]. Specif-
ically, we define the sensitivity of a real-valued function
L as A(L) = IMaXp, D’are neighbors |L(D) — L(D/)‘ Then,
for 0 < ¢ < 1,0 < § < 1, we can get an (¢,0)-
DP test by adding an independent Gaussian random noise
N(0,2(A(L)/€)*log(1.25/5)) to the realization of the statis-
tic L(D), i.e., the resulting (¢, d)-DP test will reject the null
hypothesis if L(D) + N(0,2(A(L)/€)?1og(1.25/6)) > c.

III. FUNDAMENTAL BOUNDS FOR (€, d)-DIFFERENTIALLY
PRIVATE TESTS

In this section, we focus on the fundamental bound for
(¢,0)-DP tests for the hypotheses (1) and (2). In particular,
we will investigate the bound of the summation of type I and
type II error probabilities for any private tests, which yields
sufficient conditions on the regime of parameters so that any
(¢,0)-DP test cannot separate H, and ’Hﬁ”) asymptotically.
Moreover, we will present the detection property of the noisy
clamped log-likelihood ratio test proposed by Canonne et al.
[3] and study the regime where it has vanishing type I and
type II error probabilities.

Theorem 1. For the hypothesis testing problem in (1) and (2),
any (€,0)-DP test T satisfies

IP(T(X) = 1[Ho) + P(T(X) = 0|H{") - 1

6671, _ 1 5
< i 2
| (1+265 1) min (2, nH3(5)),  (8)




where H2(B) = H*(p,(1—n=")p+n~"g,)) is the Hellinger
distance between the null distribution p in (1) and the alter-
native distribution (1 — n‘ﬁ)p + n‘ﬁgn in (2).

The proof of Theorem 1 is postponed to the Appendix. By

Theorem 1, if ne — 0,nd — 0, then Szt (1 n 26%1) 0,
equivalently, the summation of type I and type II for the test
converges to 1, which implies that any (e, ¢)-differentially
private tests cannot have vanishing error probabilities asymp-
totically and thus cannot separate the null hypothesis Hy in
(1) and the alternative hypothesis Hﬁ”) in (2) asymptotically
for any value of . Moreover, define 5* = inf{3 > 0 :
nH2(B) — 0}, 8* =sup{B > 0: nH2(B) — oo}. If 3 > B*
and §/¢ = O(1), we can also get the summation of type I
and type II for the test converges to 1. In summary, we have
any (e, d)-differentially private tests cannot separate the null
hypothesis H in (1) and the alternative hypothesis Hﬁ") in (2)
asymptotically if ne — 0,nd — 0, or /e = O(1), B > B*.
Next, we study the detection property of the clamped log-
likelihood ratio test proposed by [3], which is optimal for
fixed ¢ and simple hypotheses in the sense that it requires
the smallest number of samples to achieve certain error prob-
abilities. Here, we modify the clamped log-likelihood ratio
test to make it into an (e,0)-DP test by adding an inde-
pendent Gaussian noise. Specifically, given n i.i.d. samples

X = (X1,Xs,---,X,), the clamped log-likelihood ratio
statistic is defined by
n g(Xl) c
L.(X) = [log 1—-A+A , 9)
2 | losl %)),

where [-]2 denotes the projection onto the interval [a, b] (that
is, [2]2 = max(a, min(z, b))). Then, we can modify the noisy
clamped log-likelihood ratio test proposed by [3] to satisfy the
(e, §)-differential private constraint by adding an independent

Gaussian noise and obtain the following test function

%(X)_{ 1, if Lo(X)+Y >0,

0, otherwise.
where Y ~ N(0,2(2¢/€)?log(1.25/5)) is independent to X.
In this section, we will investigate its performance under our
asymptotic settings, where the parameters A\ = n~? ¢, § are
allowed to change in n. Note the test ¢y (X) in (10) could

also be written as
Ve(X) = 1, with probability h(X)
¢ 1 0, with probability 1 — h(X),
where h(X) = Q(—WLC(X)), Q(l‘) is the

tail probability of the standard normal distribution Q(z) =
P(N(0,1) > ). Since Q(z) < e=*"/2 for z > 0, we have if
L.(X) <0,

(10)

(1)

@ (_ 2c+/210g(1.25/9) L”(X)>

< exp (—MLC(XV)
exp (LC(X) L& log(1.25/5)) |

IN

2 €2

If L.(X) >0,

zQ <_ 2c4/21og(1.25/6) Lc(X)) ’
Thus we have the following bounds for the error probabil-
ities of the test ) (X):

P (o (X) = 1|Ho) = Eo(h(X))

2
<Ey exp (LC(2X) I 1og(612.25/5)> ’

chx) T c? 10g(12.25/5)) >

€

exp (

P(¢((X) = 0|H") = Ei(1 - h(X))

2
<E, exp (_ LC(ZX) I log(€12.25/5)> .

Note if we choose ¢ > —log(l — A), then log(l — A +
)\%) > log(1 — A) > —c for any x € R, which yields the
following theorem about the detectability of noisy clamped

log-likelihood ratio test ..

Theorem 2. For any ¢ > —log(1— \), the error probabilities
of the noisy clamped log-likelihood ratio test () defined in
(10) satisfy

P(w(c) (X) = 1|,7LlO)
2 " 2 log(1.
(1~ L)' oy o200

)

P (1) (X) = 0[H{")
< (1 _Hap) + )\ec/2> eXP(M

62 )7

where H2(3) = H%(p, (1 —n=P)p +n~58g)).

The proof of Theorem 2 is postponed to the Appendix. By
Theorem 2, we can see if nH2(3) — oo, or equivalently

B < B* and 7%1;35/5) = O(1), the type I error prob-
ability P(¢()(X) = 1|Ho) — 0. Moreover, if we further
let e=¢/2 = X, or equivalently ¢ = 28(logn), we have

H3(8) " 1
(1= 242+ 32)" < ey
0 as n — oo. Thus, the type II error probability P (. (X) =

n . A% . n
O/H{™) = 0/if B < B*, and VL2V loe) _ 5

We should emphasize that by adding an independent
Laplace noise Lap(2¢c/e) to the clamped log-likelihood ratio
statistic in (9), we can obtain an (¢, 0)-DP test or ¢-DP test
easily. The optimality in terms of the required sample size to
achieve the designed detection power of this noisy clamped
likelihood ratio test has been studied in [3] for the simple
hypothesis testing problem when both the null distribution
and the alternative distribution are fully specified and are
not depend on the sample size n. Moreover, the detection
performance of this e-DP test for detecting Gaussian sparse
mixtures was studied in [1]. It is not surprising that the
Laplace mechanism has a better detection power than the
Gaussian mechanism we introduced in this paper because
the variance of the added Laplace noise is 2(2c/€)?, which
is smaller than the variance of the added Gaussian noise
2(2c/€)? log(1.25/8). However, it is still interesting to study

which converges to



how the privacy parameters ¢ and § affect the detection power
of the Gaussian mechanism. In particular, to find the precise
detection boundary on the space of ((,¢,0).

Since the clamped log-likelihood ratio test involves param-
eters in the alternative hypothesis, which may be unknown in
practice, in the next section, we consider a special case when
the null distribution p follows a standard normal distribution.
We construct an adaptive (¢, )-DP test, which does not rely on
the information of the parameters in the alternative hypothesis
and also provides a sufficient condition for €, about when it
can asymptotically separate H, and HY”

IV. DIFFERENTIALLY PRIVATE HIGHER CRITICISM TEST

In this section, we construct an adaptive (¢, ¢)-differentially
private test for the detection of the general sparse mixtures
when the null distribution is a standard normal distribution.
Our test is based on the discrete version of the higher criticism
test in (4), which achieves vanishing probability of errors
inside the detectable region in [2].

Given n i.i.d. samples in the database x = (1, - ,Z,) €
R™, let m; = P(N(0,1) > ;) and
e, ShIm<im) =i,

1<i<n—1

i1 —i/n)

Note the higher criticism statistic HC,, in (12) can be thought
of as a deterministic function of the input database x =
(x1,--- ,%,). By Lemma 1 below, we have the sensitivity
of HC,, in (12) is upper bounded by \/n/(n — 1). Therefore,
we can construct an (e, d)- DP test by adding an independent
Gaussian noise Y ~ N (0, e 1)52 log(1.25/6)) to the statistic
HC,,. Specifically, our test function is defined by

1, if HC, +Y > ¢,

IX) = { 0, otherwise, (13)

where c is the critical value controlling the type I error
probability.

We should emphasize that the higher criticism statistic HC,
in (4) is also often written by

[Z' — mr(l)}

HC' = max ————°
" nﬂ'(l)(l _77'(1’))

1<i<n

(14)

where 1) <o) <o < My are the order statistics of ;.
However, it is not easy to construct an efficient e-DP test by
adding a small Laplace noise to (14) since the sensitivity of
HC;, is large (as the order of n.).

Lemma 1. HC,, defined in (13) is a deterministic function of
the database x = (x1,xa, -+ ,x,) with the global sensitivity

upper bounded by \/n/(n — 1), i.e.,
A(HC,) < +/n/(n—1).

Proof of Lemma 1. Let f;(x) = EZT/E;E#/“ ;L)_i]. We will

use f; to represent f;(x) for simplification. Clearly, we have
HC, = max f;. Let X' be a neighboring dataset of x.

1<i<n—1
/
max f;. Let f;« be the
199_1]‘1 i

Denote f! as f;(x') and HC], =

maximum of fi, fes -+, fn_1, and fJ’»* be the maximum of

ff5,++ fry, ie, HC, = fiv and HC), = f/.. Therefore,
HC, —HC, = fi— fiu < fir — fle 4+ (fle = f})

< fio— fle < A(fir), (15)
HC, —HC), = fir— flo > (fi- — f3) + fi — f-

> fie= fie > =A(f5). (16)

Note A(f;) = 1/y/i(1—i/n) < /n/(n—1) for all 1 <
i < n — 1. Therefore, we have A HC,) < 1/+/i(1 —z/n
n/(n—1).

Then, following [2], we assume the null distribution p ~
N(0,1). The distribution of the non-null effect is absolutely
continuous with respect to the null distribution and has the pdf
gn- Denote the log-likelihood ratio by ¢ = log(g,,/p). Suppose
that

. l(uy/2logn)
lim ———— =

n—00 logn

o(u) (17)
holds uniformly in v € R for some measurable function « :
R — R. Then by Theorem 1 of [2], f* = 3* = 3*, which
characterizes the detection boundary under the non-privacy-
perserving scenario. In particular,
2
A1
B* =1/240Vess sup{a(u) — u? + L£os
u€R

Yoo

Moreover, the following theorem shows the detection power
of our proposed (e, d)-DP test T'(X).

Theorem 3. For any 1/2 < 8 < (%, if% — 400,
by choosing the critical value ¢ = /3loglogn, both type I
and II error probabilities of our proposed test T(X) in (13)
converge to 0.

From Theorem 3, we can see if ¢, are fixed constants,
then as n — oo, our proposed test will achieve vanishing
probability errors for all values of 1/2 < 8 < (3* inside the
detectable region in [2]. If we allow €,0 to change with the
sample size n, then our test still has good detection efficiency

as long as % — 400.

V. SIMULATION

In this section, we conduct two numerical experiments to
validate our theoretical results and illustrate the detection
performance of our proposed test.

In the first experiment, we show the detection power of
our private adaptive test 1" at different privacy levels ¢ when
the p ~ N(0,1),9, ~ N(u,1). We take n = 10* and two
different choices of the sparsity parameter 8 = 0.6,0.75.
The corresponding A = n~” and detection boundary p* =

2p*(B)log(n) are (A, u*) = (0.004,1.357), (0.001, 2.146).
Then, we choose two true signal strengths p = 2,3 to
pass the detection boundary under the non-privacy-preserving
context. In summary, we simulate data in two settings:
(B,p) = (0.6,2),(0.75,3). We consider the performance of
our proposed test T'(X) in (13) with fixed & = 0.1 and four
differential privacy levels ¢ = 107%,0.5,1,5. The Receiver
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Fig. 1: ROC curves for our test T with n = 10* samples, o = 0.1, ¢ = 107%,0.5,1, 2, and with different 8 and p. Left:

B =0.6,u = 2. Right: 8 =0.75, u = 3.

Operating Characteristic (ROC) curves for our proposed test
with different choices of (3, ) are shown in Figure 1.

From these ROC curves, we can see when € is very small,
our test behaves like a random guess and cannot separate
from Hﬁ”? This observation matches our theoretical results
in Theorem 1 that any (¢, d)-DP test cannot separate the null
and the alternative hypothesis if the privacy parameter € is
too small even if the model parameter (5 is in the detectable
region in [2]. As € increases, our test shows a better detection
performance. The result is not surprising since we only need
to add a smaller noise to satisfy the privacy constraint when
€ is larger. Finally, although in Theorem 3, we have shown
asymptotically as /log(logn)e — oo, our test achieves the
optimal detection performance, for finite sample size n, there
is still room to improve the detection power. We then fix e = 1,
let § = 0.01,0.1,1 and repeat the experiment. The resulting
ROC plots are shown in Figure 2. From these ROC curves, we
can observe a similar phenomenon: If the privacy parameter «
is very small, our test cannot separate the null and alternative
hypotheses. As d increases, it will be easier to detect the sparse
mixture.

We further report the AUC (Area Under the Curve) values
for these methods in Table I and Table II. Based on these AUC
values, we can get consistent results: if the privacy parameters
€ or « are very small, our test cannot detect the sparse mixture
even if the model parameter (3, p) is inside of the detectable
region under the non-privacy setting [2], [13]. As the privacy
parameters become larger, it will be easier to detect the sparse
mixture.

€ value
10—1 0.5 1 5
B=06,u=2 0.54 | 0.54 0.6 0.81
B =0.75,u=3 0.49 0.52 | 0.67 0.8

TABLE I: AUC values for our adaptive private test 1" in (13)
when o = 0.1.

In the second experiment, we compare the performance of
the following tests:

1) T: our proposed adaptive (€.6)-DP test T in (13).

« value
0.01 0.1 1
B=0.6,u=2 0.61 | 0.66 | 0.81
B =0.75,u=3 | 0.65 | 0.59 | 0.78

TABLE II: AUC values for our adaptive private test 7" in (13)
when € = 0.1.

2) ncLLR: The noisy clamped log-likelihood ratio test
Y(e)(X) in (10) with ¢ = 231og(n).

3) HC: the HC test using the statistic HC}, in (14) without
privacy constraint.

4) nBJ: the noisy BJ test by adding a N (0, 2/€%log(1.25/6))
random noise, i.e., reject the null hypothesis if M,, +
N(0,2/€?log(1.25/6)) exceeds some critical value.

We use a similar setup as the previous experiment, where
n = 10% (B,p¢66) = (0.6,2,5,0.1),(0.75,3,1,1). But
now we set the non-null distribution g, ~ N(u,2). We then
simulate the ROC curves by these four methods. The results
are presented in Figure 3. From these figures, we can see that
for the same privacy levels (e, §), the noisy BJ test always has
the worst detection performance, implying that too much noise
is added to keep the data private. Although the sensitivities of
the BIJ statistic and the HC statistic are close to 1, for the
non-privacy-preserving case, as shown in [17], by choosing
the critical value as the order of @, the type I and type II
error probabilities of the BJ test converges to 0. Moreover, as
shown in [2], by choosing the critical value as the order of
\/log(logn), the type I and type II error probabilities of the
HC test converges to 0. Therefore, although the sensitivities
for both statistics are close to 1, the relative noise added to
the BJ statistic is much larger than the noise added to the HC
statistic, which causes a significantly different performance in
the simulation study. It is not surprising that the non-privacy-
preserving HC test has the best performance. Surprisingly, the
adaptive (e, §)-DP test has a better detection performance than
the noisy clamped log-likelihood ratio test, which implies more
noise may be added to the clamped log-likelihood ratio test.
We further report the AUC (Area Under the Curve) values
for these methods in Table III. Based on these AUC values,
we can get consistent results: the non-privacy-preserving HC
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Fig. 3: ROC curves for four different tests with n = 10* samples, and with different (3, 1) and (e,d). Left: 3 = 0.6, 4 =

2,e=5,0 =0.1. Right: 3=0.75,u=3,e=1,6 =1

test has the best performance. The adaptive (e, §)-DP test has
a better performance than the noisy clamped log-likelihood
ratio test. The noisy BJ test has the worst performance.

T | ncLLR | HC | nBJ
B=06,p=2¢c=50=01| 084 | 061 | 001 | 0.46
B=075,u=3¢c=1,0=1 | 075 | 051 | 0.01 | 0.48

TABLE III: AUC values for four different tests

VI. CONCLUSION

In conclusion, we investigate the problem of differentially
private detection of sparse mixtures and provide a non-
asymptotic upper bound of the sum of type I and type II
error probabilities for any (e,)-DP tests. Our result reveals
the fact that no (¢,0)-DP test can detect the sparse mixture
efficiently if the privacy constraints are too strong such that
ne — 0,né — 0 or if the model parameters are in the
undetectable region in [2] such that §/¢ = O(1), 3 > B*. We
also study the performance of the noisy clamped likelihood
ratio test in the context of detecting sparse mixtures and find

D% (0] . (0] n
when 3 < (3*, and —Vlg(lzi/é)lg() = O(1), the test has

vanishing type I and type II error probabilities. Additionally,
for the detection of general sparse mixtures when the null

distribution is a standard normal distribution, we propose a
new (¢,0)— differentially private test by using a specific
variant of the higher criticism statistic. Then, we find when
the model parameter 5 < (3* is in the detectazble region in
[2] and the privacy parameters satisfy % — 400, the
test has vanishing type I and type II error probabilities. We
also conducted several simulations and the numerical results
are consistent with our theoretical results.

An interesting future direction would be to explore the
precise detectable boundary for the model and privacy pa-
rameters: That means whether we can find a region of these
parameters such that any (e, d)-DP tests cannot separate the
null hypothesis and the alternative hypothesis outside of the
region; while there exist some tests having vanishing error
probabilities inside of the region.
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APPENDIX
Proof of Theorem 1. Suppose we have n independent
and identically distributed (i.i.d.) random samples



X1,Xs9,---,X,. We consider the following hypothesis
testing problem with the null hypothesis as
ii.d.
Ho: Xi "~ p, (19)
and the alternative hypothesis as
H™M X K (1= \p+ Mg, (20)
where A =n"?. Let ¢ = (1 — \)p + \g.
Then we have for any (e, §)-DP test T,
P(T(X) = 1[H}") ~ P(T(X) = 1[Ho) 1)

- /A Pr(T(x) = 1) (q(w1).q(n) — p(1).-p(wa)) dx
~ [ Pr0 = 1) (po0)ecpln) = glar)a()) dx,

where A = {(z1,22, - .xp) q(z1)...q(zy) >
p(z1)..p(zn)}, Pr(.) denotes that the probability is over
the randomness of the randomized algorithm T. Suppose
sup, Pr(T(x) = 1) = a € [0,1] and Pp(T(x*) = 1) = a.
Then for any dataset x, we can find a sequence of n+1 datasets
x(0 x(M x@ ... %) guch that x(© = x*,x(™ = x, and
each pair of datasets (x("), x(**1)) are adjacent dataset, i.e.,
have at most one different element. Then by the property of
(¢,0)-DP, we have for any 0 < i <n —1,

Prp(T(x%) = 1) < ePp(T(x") = 1) + 4,

or equivalently,

(Pr(T(x) = 12 )e™ < Pr(T(e D) = )42
66 p— 66 —
which yields
1)
—en < = < a.
(a+ef—1)e ee—l_PT(T(X) 1)<a

Moreover, we have infx Pr(T(x) = 0) =1 - Pp(T(x*) =
1) =1—a €[0,1]. Similarly, we can get for any dataset x,

) 1
1—a<Pr(T(x)=0) <e"(1-— — .
a < Pr(T(x) = 0) < e (1l —at ) — ——
Therefore,
a>Pr(T(x)=1)
é 0
> —€n __
_max((a-!—ee_l) 1’
€N 6
l—e(l—at —7)+ —) (22)

Note the two terms on the right-hand side of (22) are linear
functions of «, which implies the maximum value depends on
the value of « so that the two terms are equal. Specifically,
we have

Pr(T(x)=1) >

1
. een < 5 )6en1
if a > + .
(

=Tt em
Pr(T(x)=1) >

ifa < e + 4
a
— 1+em e —1

Thus, by (21),
P(T(X) = 1[H{™) — P(T(X) = 1|Ho)
1) 1)
< _ en _ _
_(a 1+em(1 a+e€—1) pra

e n 1) e —1
14 en e€—1) 14en’

P(T(X) = 1/H{") — P(T(X) = 1[H,)
< (a—(a+661 eel)TV(p",q”)»
if a <

een + 6 66" _ 1
— 1+en ec—1/) 14en’

which implies
P(T(X) = 1/H{") = P(T(X) = 1|Ho)
e —1 o)
1+2 T ™ og™).
( + 66_1> V(p".q")

<
Seen 1
Here TV(p,q) denote the total variation distance of dis-
tributions p, ¢, which is defined by TV(p,q) := 3 [ |p(z) —
q(r)|dz. Let H?(p,q) denote the Hellinger distance of two
distributions p, ¢, which is defined by

) TV (p",q"),

if a >

)e—E'I’L +

2
#0.0) = [ (Vo) - Va@) o @9
Note H?(p, q) satisfies the following relationship [29]:
1 H2(p,
§H2(p,q) <TV(p,q) < H(p,q)\/ 1~ # <1 (24

By the fact that the Hellinger distance tensorizes under the
product measures in [2], we can get

H2(p",q") =2 — 2 (1— HQ(Qp’q)y. (25)
Denote
Hy(B) = H*(p,(1—n P)p+n~Pga).  (26)
By (24) and (25), we have
TV(p",¢") < HP",q") < v/min (2,nH2(B)),  (27)
which completes the proof. [
Proof of Theorem 2. Let ¢ = ﬁ, we have the
log-likelihood ratio log(l — XA + )\%) > —c
Thus we have Egexp Lcéx) + < log(€12.25/5)) <
Eo exp (Lg(’q + S1oeL2/0)) - Note  Loo(X) is the

log-likelihood ratio statistic, we have Egexp L“T(X) =

(1 — H2(B)/2)". Thus, we have the type I error probability
satisfies

62 0} .
P (X) = L[Ho) < (1 — H2(8)/2)" exp(28U1-25/0)

—

c

For the type II error, let £.(X;) = {bg(l — A+ )\f’)g’g)
By the change of measure, we have

€

E1<67%LC(X)) _ EO(eLOO(X)f%LC(X)) — H;zzlEo(efoo(Xi)féfc(Xi))



Note

Eo(efoo(Xi)—%fc(Xi)>

:/ (eloo @)= 3@y () s
{z7£OO(zl)§C}
+/ (eloe @)= 3@V () s
{T1€oo(xl)2c}
:/ ( %zf”(xi))p(l‘i)d.’lﬁi
{337 oo(-Tz <C}

" / (e'= X0~ 3)p(x;)da;
{ziloo (zi)>c}
:/{ ()< }(e%[“(xi))p(fﬂi)d% + e P (U (X;) > ©)
Tiloo (24)<c

=Eg(e7'> X)) 4 2P (1o (X;) > )

- / (2" ")) p(a;) da;
{ziloo (zi)>c}

<Eg(ez!>X)) 4 e7/2P (1o (X;) > )
- €C/2P0(€OQ(XZ') > C)

<Eg(e3f=~&X) 4 eme/2 (1~
— 60/2P0(£00(Xi) Z C)

—Eo(e3f~(X0) 4 (6—0/2(1 A - 60/2) Po(loo(X,) > ©)
+ de¢/2

H2(B)
2

NP (loo(Xi) > ) + )

<1-— + Xe /2.

Therefore, the type II error probability satisfies

P (¢ (X) = O/H™)

- (1 H22(5) e 6/2) eXp(CQ log(1.25/4)

Ta—

€

O

Proof of Theorem 3. We first bound the difference between

HC,, and HC},. Define f(t) = W We have

max (f(i/n)) < sup f(t)= sup f(m))

1<i<n—1 te(0,1) 1<i<n

HC, =

Denote i* = arg max f(m(;)) and assume k/n < m(;+) < (k+

1<i<n
1)/n for some k € {1,--- ,n — 1}. Then, we have

E+1

0 < HC;-HC, <f(7r(l) f(

i —nme (
Vi (1= ) \/(k +1)(1— ke

< n/(n—1).

Let Y
N(0,

denote the Gaussian random  variable

e 1)6 log(1.25/4) that is independent to the database

— HC}.

X. By the asymptotic property of the higher criticism statistic
HC;, [2], under the null hypothesis, the Type I error

P(HC, +Y > y/3loglognlHo)
P (Hc;; > /2.5loglogn — \/n/(n — 1)|H0)
- (Y > (V3 - V2.5) \/W)

(V3 —=v25)*(n — 1) log(log n)e*

<
= P in log(1.25/8) )’

IN

. log(logn)e2
which converges to 0 as Tog(1.95/3) — +400. Moreover,

as shown in [2], if 1/2 < (B < p* PHC, <
2v/Tog log n|’H§n)) — 0. Therefore, the Type II error

P(HC, +Y < \/3loglogn|H{")

P (HC:L < 2y/loglogn + \/n/(n — 1)|’H§"))
+ P (Y <-(2- ﬁ)m)

(2 = V3)%(n — 1) log(log )€’

P in log(1.25/8) )’

IN

IA

log(log n)e>

Tog(1.25/5) * 100 0

which converges to 0 as long as
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