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Abstract

In this paper, we propose an adaptive top-r method to monitor large-scale data
streams where the change may affect a set of unknown data streams at some unknown
time. Motivated by parallel and distributed computing, we propose to develop global
monitoring schemes by parallel running local detection procedures and then use the
Benjamin-Hochberg (BH) false discovery rate (FDR) control procedure to estimate the
number of changed data streams adaptively. Our approach is illustrated in two con-
crete examples: one is a homogeneous case when all data streams are i.i.d with the
same known pre-change and post-change distributions. The other is when all data are
normally distributed, and the mean shifts are unknown and can be positive or nega-
tive. Theoretically, we show that when the pre-change and post-change distributions
are completely specified, our proposed method can estimate the number of changed
data streams for both the pre-change and post-change status. Moreover, we perform
simulations and two case studies to show its detection efficiency.

Keywords: False discovery rate, CUSUM, quickest change detection, process control

1 Introduction

Process monitoring and change-point detection of high-dimensional streaming data has
many important applications, such as network security (Polunchenko et al., 2012; Tar-
takovsky et al., 2013), medical diagnostics (Nika et al., 2015), or intrusion detection on
video surveillance (Oberti et al., 2002; Xiong and Lee, 1998). In many cases, the high-
dimensional data streams may have complicated spatial and temporal correlation struc-
tures, which may cause difficulty in detecting the true change quickly. To remove the effect

of correlation in advance, some decorrelation techniques methods are commonly used. For
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example, Apley and Tsung (2002); Xie et al. (2012); Yan et al. (2018); Qiu et al. (2020)
develop some spatial-temporal models. Then, the model residuals are used for monitoring
and change detection. Moreover, Jin and Shi (1999); Paynabar et al. (2016) propose to
monitor some informative features such as PCA coefficients or Wavelets from the original
high-dimensional data. See Woodall and Montgomery (2014); Qiu (2020) for a comprehen-
sive review. For both types of methods, the (standardized) residuals or feature coefficients
can often be assumed to be independent and identically distributed. Thus, in the paper,
we mainly focus on the problem of monitoring large-scale independent data streams.
However, it is nontrivial to develop efficient monitoring procedures for large-scale inde-
pendent data streams due to two challenges. The first is about computational complexity
because of the need for real-time monitoring in some applications. The second is about
the unknown sparsity of the number of affected data streams. To address the computation
issue, many computationally efficient algorithms are proposed by combing efficient local
detection statistics, say CUSUM (Page, 1954), in different ways. Tartakovsky et al. (2006)
proposed a “MAX” scheme by taking the maximum of local CUSUM statistics to get a
global monitoring statistic. Mei (2010) developed a “SUM” scheme by combining the sum-
mation of local CUSUM statistics to get a global monitoring statistic. A “Top-1r” scheme is
proposed by Mei (2011) and Liu et al. (2015). It takes the summation of the top r largest
CUSUM statistics to obtain a global statistic. In Liu et al. (2019) and Zhang and Mei
(2018), the general “SUM-shrinkage” framework is proposed. It applies shrinkage transfor-
mation on local CUSUM statistics and takes the summation of these shrunk statistics to
obtain a global monitoring statistic. Benefiting from the recursive format of the CUSUM,
all of these methods can be computed recursively and thus can be implemented in real
time. However, it turns out the “MAX” scheme is efficient in detecting the change only
if the number of affected data streams is very small, while the “SUM” scheme is efficient
only if a lot of data streams are changed. Moreover, as shown in Liu et al. (2019) and
Zhang and Mei (2018), for some popular thresholding functions, such as soft-thresholding,
hard-thresholding, and order-thresholding, the optimal choices of thresholding parameters
in the corresponding “SUM-shrinkage” procedure also depend on the number of affected
data streams. To address the challenge of an unknown but sparse number of affected data

streams, some generalized-likelihood-ratio-based methods are proposed in Xie and Sieg-



mund (2013) and Fellouris and Sokolov (2016), which have been shown to be second-order
optimal for the Gaussian data streams in Fellouris and Sokolov (2016) and Chan (2017).
However, these methods are computationally infeasible for online monitoring large-scale
data streams over a long time period. Moreover, Liu et al. (2015); Xian et al. (2021);
Zhang and Mei (2023) studied the problem of monitoring multiple data streams when only
partial information is available each time. They have proposed some adaptive sampling
and change detection methods under the sampling constraint, which is different from our
problem when the information of all data streams is always available.

In this article, we propose an adaptive top-r scheme that does not rely on the information
on the number of affected data streams and can be implemented in real-time. The key idea
of our proposed approach is based on a false discovery rate control procedure, called the
Benjamini and Hochberg (BH) procedure (Benjamini and Liu, 1999), which is originally
aimed to select rejected hypotheses in multiple testing problems. Using such BH procedure,
at each time, we will select some data streams and obtain a global monitoring statistic by
taking the summation of their CUSUM statistics. Therefore, instead of using a fixed r in
the “Top-r” scheme, our method will select different numbers of data streams adaptively to
different post-change scenarios. We should also mention that in literature, false discovery
rate is also used as an error metric for online monitoring of multiple data streams. Some
procedures have been developed to yield smaller detection delays while controlling the false
alarm rate (Li and Tsung (2009); Gandy and Lau (2013); Chen et al. (2020)). However,
although our proposed method is motivated by the false discovery rate control, our method
is still designed to control the in-control average run length instead of the false discovery
rate.

Our research makes three main contributions. First, our proposed adaptive top-r
method provides a natural connection between the false discovery rate control in multi-
ple testing problems and the change-point detection of large-scale data streams. Second,
our proposed method does not rely on the prior knowledge of the number of changed data
streams and thus is adaptive to various post-change scenarios. Numerical experiments are
conducted to illustrate the detection efficiency of our proposed method. Third, theoreti-
cally, we show that for our proposed method, under mild conditions, on average, the number

of selected data streams is close to one before the change and is close to the true number



of affected data streams after the change. Such consistent results imply the nice detection
efficiency of our method.

This paper is organized as follows: In Section 2, we give some preliminaries about false
discovery rate (FDR) control and then introduce schemes for change-point detection of
multiple independent data streams. In Section 3, we introduce our proposed adaptive top-r
scheme when both pre-change and post-change distributions are fully specified and show
their theoretical properties. We then propose to combine the adaptive CUSUM procedure
with our adaptive top-r method to develop a monitoring procedure for the normal distri-
bution with an unknown mean shift in Section 4. The simulation results are provided in
Section 5 to illustrate the performance of the scheme. Finally, in Section 6, we conduct
two case studies using our proposed method. The proofs of theorems are presented in the

Appendix.

2 Preliminaries

In this section, we first provide some background information for the False Discovery Rate
(FDR) control in multiple hypothesis testing problems. Then, we provide some preliminar-

ies about process monitoring and change-point detection of multiple data streams.

2.1 False discovery rate control

Suppose we have k hypotheses Hy, Ho, ..., Hi to be tested. For a given data set and some
tests or decision rules, we can get a decision of “reject” or “accept” for each of the k
hypotheses. Suppose there are a total of R rejected hypotheses (discoveries), and V of
them are true null hypotheses (false discoveries). Then, the False Discovery Rate (FDR) is

defined as the expected value of false discoveries, i.e.,

FDR = E(%). (1)

The FDR concept was formally described by Benjamini and Hochberg (Benjamini and
Hochberg, 1995), where the so-called Benjamini-Hochberg (BH) procedure was proposed
to control the FDR under certain conditions. Specifically, for a given FDR level ¢ € (0,1),

suppose the test produces a p-value p; for each hypothesis. The order statistics of these



p-values are denoted by p(1) < p) < ... < pr). Let i* be the smallest i so that p) > %q.
Then the BH procedure will reject ¢* hypotheses corresponding to the p-values p(1) < p(z) <
... < p(+). This procedure is referred to as the step-down BH procedure. There is another
variant of the step-up BH procedure defined in a similar way. In this article, we will focus on
this step-down procedure since it often allows more discoveries than the step-up counterpart

while still controlling the FDR at a rate ¢ (Gavrilov et al., 2009).

2.2 Change-point detection of large-scale data streams

Suppose we are monitoring K data streams Xj ,,k = 1,2,..., K. Assume that the data
X n's are initially independent and identically distributed (i.i.d.) with probability density
function (pdf) fo(x). At some unknown time v > 1, an undesired event occurs and changes
the distributions of an unknown but sparse set S of data streams so that the affected data
streams X}, ,,’s have another distribution fi(x) when n > v. The goal is to develop an
efficient monitoring procedure to detect the change as soon as possible.

When K =1 or when monitoring a single local data stream, say, the kth data stream,
the problem has been well studied in the literature of sequential change-point detection;
see Page (1954), Shiryaev (1963), Lorden (1971), Pollak (1985), Moustakides (1986), Lai
(1995). One of the most efficient detection procedure is Page’s CUSUM procedure, which
raises an alarm at the first time n when the local CUSUM statistic W}, ,, exceeds some

prespecified threshold, where W, ,, has a recursive form:

Xk.n
Wi, n = max (Wk,n_l + log ‘M, 0). (2)

When the number of data streams K is large, many efficient global monitoring procedures
are developed by combining local CUSUM statistics to a global monitoring statistic in
different ways.

The “SUM” schemes, introduced in Mei (2010), will raise an alarm the first time when

the summation of local CUSUM statistics exceeds a prespecified global threshold:

K
Nsum (b) = inf {n >1: ZW;WL > b}. (3)
k=1

The “MAX” scheme introduced in Tartakovsky et al. (2006) will raise an alarm at the



first time when the largest CUSUM statistic exceeds a predetermined threshold:

Nmax(b) = inf {n >1: 1I<I}€3,<XK Wi > b}. (4)

Since the “SUM” scheme uses information from all data streams, including the un-
changed ones, it will work well only if a lot of data streams are changed. Meanwhile, the
“MAX” scheme only uses the information of one data stream with the largest CUSUM,
and it will have a better detection performance only if one or very few data streams are
changed.

The “Top-r” scheme in Zhang and Mei (2018), which uses the summation of the top r
largest CUSUM statistics to get the global monitoring statistic:

T
N, (b) = inf {n >1: ZW(K—HIM > b} (5)

i=1
where W(l),n < W(g)’n <...< W(K),n are the order statistics of the K CUSUM statistics
Win, ..., Wk n. We can see the “SUM” scheme and the “MAX” scheme are the special case
of the “Top-r” scheme when r» = K and r = 1 respectively. Extensive numerical results
imply the “Top-r” scheme will have better performance if the true number of changed data

streams is around r (Liu et al., 2015; Zhang and Mei, 2018).

The “SUM-shrinkage” scheme (Liu et al., 2019; Zhang and Mei, 2018) uses the shrinkage
function on each local CUSUM statistic and sums them together to obtain the global
monitoring statistic:

K
Ne(b) = inf {n >1:3 by (W) > b}, (6)
k=1

where hj is some shrinkage transformation functions. For instance, the “hard-thresholding”
transformation function takes the form of hy(Wy,) = Wi n1(Wg,, > bi), and the “soft-
thresholding” transformation function takes the form of hy(Wy,,) = max(Wy, — bg,0),
where b is the local threshold for the kth data stream. We can see that when b = 0,
the “SUM-shrinkage” scheme with the above two transformation functions will become the
“SUM” scheme in (3). As shown in Zhang and Mei (2018), the optimal choice for the values
of b may depend on the true number of affected data streams.

Although these schemes are computationally fast because of the recursive form of the
CUSUM, their detection efficiencies are affected by the true number of affected data streams,

which may be unknown in practice.



To address the unknown number of affected data streams, Zou et al. (2015) proposed an
efficient monitoring procedure by combining the ideas of Tukey’s higher criticism statistics

and goodness-of-fit statistics:

K Ul 2
Nyog(b) = inf nleg{log[(K_l/;))g_g/@_l” X LUy > (i = 3/4)/K) ¢ |

(7)
where U; ,, = F,(W; ), Fi(.) denotes the cdf of the CUSUM statistic W ,, under the pre-

change distribution. Upy),, < Uy, < -+ < Uk, are the order statistics of (Ui, Uk n)-
Since there is no closed form for the cdf of CUSUM, an approximation to the null steady-
state distribution of the CUSUM statistic developed in Grigg and Spiegelhalter (2008) is
used. However, such a method only works for detecting the mean shift of the normal
distribution.

Thus, in this paper, we will propose an adaptive “Top-r” monitoring scheme based on
the false discovery rate control. As we will show later, our proposed method does not rely
on a pre-knowledge about the true number of affected data streams, can be adaptive to
different post-change scenarios, and also works for many distributions other than normal

distributions.

3 Our proposed monitoring procedure for known post-

change distributions

In this section, we propose an adaptive “Top-r” scheme to monitor a large number of data
streams when the pre-change and post-change distributions are completely specified. Then
we will investigate some theoretical properties of our proposed method.

We consider the problem of change-point detection of K independent data streams Xy, ,,
as we described in Section 2.2. At the high level, at each time n,, we borrow the idea of
the BH procedure in the FDR control and consider testing K hypotheses for these K data
streams. Let R, be the number of rejected hypotheses from the BH procedure. Then,
we calculate the summation of the largest R,, CUSUM statistics as the global monitoring
statistic and raise the alarm if it exceeds a certain pre-defined threshold. The key question

is how to get p-values for each data stream in order to use the BH procedure for FDR



control. Since the CUSUM statistic is a good indicator of the potential change for each
data stream, here we will calculate p-values using the CUSUM statistics. Specifically, let
Wi be the CUSUM statistic for kth data stream at time n, and Wy, be the actually
observed value of the CUSUM statistic. Then, we consider the corresponding p-value
pz’n = Po(Wk,n > wg,,), where Py denotes the probability measure when data follow the
pre-change distribution fy. However, due to the complexity of the sampling distribution of
the CUSUM statistic, there is no closed-form expression for the exact p-value pzm. Thus,

we propose to use

Prkn = exp(_Wk:,n) (8)

to conduct the BH FDR control and construct the global monitoring statistics. By the
property of CUSUM (see appendix A in Siegmund (2013)): Po(Wj,, > x) < e™* for any
x > 0, we have pz’n < Pin- Thus, pi,, is an upper bound of the exact p-value p,‘;n.

We then summarize our proposed adaptive Top-r monitoring procedure below:

Let R, be the number of rejected hypotheses using the p;, and the BH procedure.

Then we have

K, ifppy,<+aforallr=1,2,... K
R, — (r), K 9)

min {1 <r<K:ppnm=> %a} , otherwise,
where p(1) ., < P@E)n < -+ < P(K),n are the order statistics of the K statistics p1y, ..., PKn-
That means at each time n, we will reject top R,, of hypotheses and use the corresponding
CUSUM statistics to construct the global monitoring procedure. In other words, given a

preset global threshold b, we will raise an alarm the first time

Ry
T,(b) = inf {n > 10 Wicssnn = b}, (10)
r=1

where W(l),n < W(2)7n <...< W(K),n are the order statistics of the K CUSUM statistics
Win, ... Wk n. We should emphasize that although we did not use the exact p-value to
conduct the FDR control and select the rejected hypotheses, as we will show in the later
simulation section, our proposed global monitoring procedure (10) using the simple upper

bound pg, in (8) can detect various change scenarios quickly. Moreover, similar to the



BH procedure for the FDR control in multiple testing problems, the tuning parameter «
in our proposed method may also control the false discovery rate when no change occurs.
Intuitively, the choice of a will also affect the detection performance of our proposed mon-
itoring procedure. Based on our simulation and case study results, we can set « as a small
number (for example, & = 0.1) to detect the change quickly.

Next, we will present the theoretical properties of our proposed adaptive top-r moni-
toring procedure. We first introduce some notations. We use Eg to denote the expectation
when there are no changes in the data streams, i.e., data X}, are i.i.d with pdf fo. We use
E,, to denote the expectation when the data stream changes at the first time v = 1 and
the pdf of m out of K data streams are changed to fi. Let R, be the number of rejected

data streams as defined in (9), then we have the following theorem:

Theorem 1. For 0 < a < %, we have

1 < Eo(R,) <1+ Sllog(K —1) —a+1]. (11)

1+ )

Moreover, if € > (m + 1)(K —m), and e% <a< m, we have

(m+ K)(K —m—1)
2

g, (12)

02
(1— n[110g<K)_M2> (m+1) <Ep(R,) <m+1+

where i = J () o8 $23dr, o = [ i(a)log {5 — i, and § = ol

The proof of Theorem 1 is postponed to the Appendix. Based on Theorem 1, we can
see when there is no change, as « — 0, we have E¢(R,) — 1. This implies on average
we will only use the information of one data stream to monitor whole data streams when
there is no change. This will reduce much noise information. Moreover, as n — 00,
m goes to 0. As a — 0, B goes to 0. Therefore, for a very small « satisfying the

oy K K
condition iz < a <

D (R=m) We have E,,,(R,) — m + 1. This result means if m data

streams change, on average, approximately m + 1 data streams will be rejected and used
to monitor the process. Therefore, our proposed method does not include more additional
noise information when monitoring these data streams and can be adaptive to different

change scenarios.



4 Our proposed monitoring procedure for unknown post-

change means

Suppose we are monitoring K data streams X}, ,,’s. Initially, the data X}, ,,’s are iid N (0, 1).
At some unknown time v, the distribution of the k-th local data stream might change to
N(u, 1) if affected. Here, we assume the post-change mean p is unknown, but the minimum
magnitude of the shift p > 0 is known. That is, assume |u| > p. We then propose to use
the adaptive Top-r method and the adaptive CUSUM statistics (Lorden and Pollak, 2008;
Liu et al., 2019) to construct a global monitoring procedure.

Specifically, since we are interested in detecting both positive and negative local mean
shifts for affected data streams, we will use the two-sided adaptive CUSUM statistic in Liu

et al. (2019) for each local data stream at time n :
Wi = max(Wy ), W), (13)

n

where W,EIT)L and WIEQ) are the local one-side adaptive CUSUM detection statistics of Lorden

and Pollak (2008) for detecting positive and negative mean shifts, respectively. Specifically,

)

1
Wi = maox (WL, 4 A0 X — 50070,

1
Wi = ma (WL, + 2 X = 5 20%0) (1)
where
1) (2)
(1) 5+ Skn _(2) . =5+ 5.,
fy, ., = max ( p, > 0, fy =min ( — p, ——==) <0, (15)
5 ( t+ 1) ) 5 ( t+ 1 )

and for j = 1,2 and for any k, the sequences (S’,gj r)w T,gjz) are defined recursively

. S’g,’)“l T o) ) g
A AT e | »
) 0 ()
7 if Wi, =0
0

Note that ﬂ,(j?)l and ﬂ,(f?)l in (15) are the estimates of the post-change mean when restricted
to the positive and negative values, respectively, under the assumption that |u| > p. Clearly,

Wélg is designed to detect positive local mean shift, whereas W,ﬁg is to detect negative local

10



mean shifts. Also, the two-sided local detection statistic W, in (13) is always nonnegative
for any k at any time step n, and it will become large when there is a local mean shift no
matter whether such mean shift is positive or negative. Moreover, ¢ > 0,s > 0 are pre-
specified constants, and s/t can be considered a prior estimate of the post-change mean.
We will use s = 1, = 4 as the default setting in the simulation study.

Then, we will raise an alarm the first time

TU(b) = inf {n >1:3 Wikirmn 2 b}, (17)

where W), < W), < ... < W), are the order statistics of the K adaptive CUSUM
statistics Wi p,..., Wk in (13). R, is the number of rejected hypothesis defined in (9)

using px.n = exp(—Wiy).

5 Simulation

In this section, we evaluate the performance of our proposed adaptive top-r monitoring
procedures, compare them with existing methods, and validate our theoretical results under
different scenarios. For all these methods, we first find appropriate values of the global
stopping threshold b so that the in-control average run length of these methods is equal
to some designed value (within the range of sampling error). Then, using the obtained
stopping threshold b, we simulate the detection delays of these methods when the change
happens at n = 1 under different sparse cases of the number of affected data streams.
Note since all of the monitoring statistics of these methods are nonnegative, the average of
these simulated detection delays when change happens at time n = 1 is an estimate of the
worst-case detection delay (Lorden, 1971), which is often used to quantify the theoretical
detection performance of the monitoring procedure. All Monte Carlo simulations are based

on 2500 repetitions.

5.1 Mean shift of normal distribution

In the first experiment, we focus on detecting a mean shift in the normal distribution. We

set the number of data streams K = 100, and the pre-change distribution is the standard
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normal distribution, i.e., fo ~ N(0,1). If the data stream is affected after the change point,
the post-change distribution f; ~ N (1,1).

For comparison, we consider our proposed method T4 (b) in (10) with two a = 0.1,0.2,
the “Top-r” procedure N,(b) in (5) with r = 5,10, the “MAX” scheme Npax(b) in (4),
the “SUM” scheme Ngym(b) in (3), the “SUM-shrinkage” scheme Ng(b,bx) in (6) with
by = —1log(0.1) = 2.3026, and the goodness-of-fit test Nyo¢(b) in (7). Moreover, note for
our proposed methods, we use an upper bound of the p-value of the CUSUM statistic py, ,, =
exp(—Wy,,) to conduct BH FDR control and find the number of rejected data streams R,
as in (9). To see the robustness and efficiency of such an approximation of p-values, we also
consider similar procedures by using the actual p-value p,";n = Po(Wy,, > wy ). However,
as we mentioned before, there is no closed form of the p-values of the CUSUM statistics
except for the normal distribution with the mean shift (Grigg and Spiegelhalter, 2008).
Thus, at each time n, we simulate the empirical distribution of the CUSUM statistics and
obtain the estimated pj ,, by computing the percentage of the simulated CUSUM statistics
that are greater than the observed CUSUM statistic wy, ,,. The corresponding procedure is
denoted by N} (b). To make a pair comparison, we also consider two choices of & = 0.1 and
a=0.2.

Note all of the above methods assume the pre-change and post-change distributions to
be known. Then we also consider our proposed method 77 (b) in (17) with o = 0.1,0.2 and
the method Nxg(b,pp = 0.1) in Xie and Siegmund (2013) based on generalized likelihood
ratio (GLR):

X U,)?
N =inf{n>1: log(1 — - Bt
xs(b;po) = inf{n = 13 max ; 0g(1 —po +poexp[—5"~] >

where for all 1 <k < K,0<1i<n,

1
U]::n,i = max (07 \/ﬁ Z Xk,j)

These two methods do not use the information of the post-change mean.

For all these methods, we find the threshold b so that the in-control average run length
is 5000. Table 1 summarizes the resulting detection delays. First, we can see the “MAX”
scheme has the smallest detection delay when the number of the changed data stream is

one. However, when the number of data streams becomes larger, even if the number of

12



Table 1: A comparison of the detection delays for the mean shift of the normal distribution

with in-control average run length equal to 5000.

# affected data streams

1 3 ) 8 10 20

Methods use the post-change mean information

Toa=0.1(b=12.43) 24.5(0.15) | 10.4(0.04) | 9(0.01) 8(0) 8(0) 7(0)
Tk _o1(b=17.2) 25.2(0.18) | 14.2(0.01) | 11.6(0.04) | 10.1(0.03) | 9.5(0.03) 6.0(0)
To=0.2(b=17.8) 32.2(0.16) | 13.7(0.06) | 8.3(0.01) 8(0.01) 8(0) 6(0)
Tr _o(b=21.9) 26.6(0.23) | 14.6(0.02) | 11.8(0.04) | 10.1(0.01) | 9.9(0.01) .0(0.01)
Ngum (b = 88.7) 52.1(0.35) | 21.8(0.12) | 14.7(0.07) | 10.3(0.04) | 8.7(0.03) | 5.3(0.02)
Nmax(b = 11.3) 23.2(0.18) | 16.2(0.09) | 14.3(0.07) | 12.9(0.06) | 12.4(0.05) | 11(0.04)
N,—5(b = 29.55) 29.6(0.21) | 14.2(0.07) | 10.7(0.05) | 8.7(0.03) 8(0.03) | 6.3(0.02)
Ny=10(b = 44.08) 34.3(0.24) | 15.4(0.08) | 11.1(0.05) 5(0.03) | 7.5(0.03) | 5.5(0.02)
Ng(b=21.5,b, =2.3) | 33.9(0.23) | 15.4(0.08) | 11.1(0.05) | 8.5(0.03) | 7.5(0.03) | 5.3(0.02)
Nyos(b = 227.6) 34.9(0.28) | 15.6(0.05) | 11.3(0.05) 7(0.03) | 7.7(0.03) | 5.2(0.02)
Methods do not use the post-change mean information
TY o1(b=12.6) 24.3(0.13) | 12.9(0.06) | 10.9(0.05) | 9.1(0.02) | 8.8(0.02) | 7.6(0.02)
T 1 o(b=14.7) 26.3(0.17) | 14.8(0.06) | 12.1(0.04) | 9.4(0.02) | 9.1(0.02) | 7.8(0.01)

Nxs(b=19.5,po = 0.1) | 31.7(0.24) | 13.4(0.09) | 9.4(0.06) | 6.7(0.04) | 5.7(0.03) | 3.4(0.02)

affected data streams is three, its performance becomes much worse than other methods.
Moreover, the “SUM” has a larger detection delay when the number of changed data streams
is less than 10. Furthermore, although the methods Nxg(b,pg = 0.1), Ng(b, b = 2.3), and
Ny—10(b) that designed for detecting change of 10 data streams have smaller detection delay
when the number of changed data streams is around 10, their detection delays are larger
than our proposed procedures T,—¢.1(b) when the number of changed data streams is less
than or equal to 5.

It is interesting to see that although the method N,—5(b) is designed to detect a change
of five data streams, our proposed methods T,—o.1(b) and Tn—02(b) are still better than
it when the number of changed data streams is around five. Theoretically, it has been
shown that the top-r method is optimal when the number of affected data streams is r.

However, it is an asymptotic result when the in-control average run length goes to infinity.

13



Therefore, the top-r method may not perform best for the finite in-control average run
length. One explanation is that for the top-r when r=>5, under the in-control status, we
still need to compute the summation of the largest five CUSUM statistics to obtain the
global monitoring statistic. Therefore, we should choose a larger threshold b to obtain
the designed in-control average run length. However, for our adaptive top-r method, the
number of rejected data streams R, may be smaller than five under the in-control status.
Thus, we just need to use a smaller threshold b to obtain the designed in-control average
run length. On the other hand, under the out-of-change status, when five data streams are
affected, R, may be close to five. Thus, our adaptive top-r method may perform better
than the top-r method in some finite sample cases.

Moreover, note when the post-change mean is unknown, compared to the GLR-based
method Nxg(b), our adaptive method T (b) still has small detection delays when the num-
ber of affected data streams is small. It is also interesting to see that our proposed adaptive
top-r methods T, (b) have competitive performance compared with the T (b), which is con-
structed using the simulated p-values of the CUSUM statistics. This finding implies the
robustness and efficiency of our proposed methods by using a simple upper bound of the
p-values.

All of these results imply that although our proposed method does not rely on the
information on the number of changed data streams, it can detect a wide range of sparse

change scenarios quickly.

5.2 Variance change of normal distribution

In the second experiment, we focus on detecting a change of variance in the normal distri-
bution. We set the number of data streams K = 100, and the pre-change distribution is
the standard normal distribution, i.e., fo ~ N(0,1). If the data stream is affected after the
change point, the post-change distribution f; ~ N(0,2).

Since the Nyor(b), Nxs(b) and our proposed method T} (b) are only designed for de-
tecting the mean shift of normal distribution, in this study, we will only compare the
performance of our proposed method T,,(b) in (10) with two o = 0.1,0.2, the “Top-r” pro-
cedure N, (b) in (5) with r = 5,10, the “MAX” scheme Npax(b) in (4), the “SUM” scheme
Nsum (D) in (3), the “SUM-shrinkage” scheme N¢ (b, by) in (6) with by = —log(0.1) = 2.3026,
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and the adaptive top-r method using simulated p-values T7%(b) with two o = 0.1,0.2.

We find the threshold b for all these methods, so the in-control average run length is
1000. Table 2 summarizes the resulting detection delays. First, we can see the “MAX”
scheme has the smallest detection delay when the number of the changed data stream is one.
However, when the number of data streams becomes larger, even if the number of affected
data streams is three, its performance becomes much worse than our proposed methods.
Moreover, the “SUM” has a larger detection delay when the number of changed data streams
is less than 10. Furthermore, although our proposed methods T, have a similar performance
with V,—5 when the number of affected data streams is five and have a similar performance
with V,—19 when the number of affected data streams is ten, overall, our proposed adaptive
top-r methods have smaller detection delay for a wide range of the number of affected data
streams. Moreover, it is also interesting to see that our proposed adaptive top-r methods
T,(b) have competitive performance compared with the 77%(b), which is constructed using
the simulated p-values of the CUSUM statistics. This finding implies the robustness and

efficiency of our proposed methods by using a simple upper bound of the p-values.

Table 2: A comparison of the detection delays for the variance change of the normal dis-

tribution with in-control average run length equal to 1000.

# affected data streams
1 3 5 8 10 20
Th=01(b=10.18) 13.1(0.18) | 6.7(0.08) | 5.8(0.06) | 4.5(0.03) | 3.9(0.02) | 2.5(0.02)
Tr_o1(b=124) 13.6(0.16) | 6.8(0.06) | 5.3(0.03) | 4.3(0.03) | 3.3(0.01) | 3.0(0.01)
Ta—0.2(b=10.97) 13.9(0.2) | 6.6(0.07) | 5.6(0.06) | 4.6(0.02) | 3.2(0.02) | 2.6(0.02)
T _o(b=13.7) 13.4(0.15) | 6.5(0.05) | 4.6(0.03) | 3.9(0.02) | 3.4(0.01) | 3.0(0.01)
Ngum (b = 55.7) 26.5(0.38) | 11.3(0.13) | 7.7(0.08) | 5.4(0.05) | 4.6(0.04) | 2.7(0.02)
Nax(b = 8.94) 13.0(0.26) | 7.1(0.13) | 5.5(0.09) | 4.3(0.07) | 3.8(0.06) | 2.8(0.04)
N,—5(b = 23.79) 16.6(0.29) | 7.6(0.11) | 5.4(0.07) | 4.0(0.05) | 3.4(0.04) | 2.2(0.03)
Ny—10(b = 34.67) 19.3(0.31) | 8.6(0.12) | 6.0(0.07) | 4.3(0.05) | 3.7(0.04) | 2.3(0.02)
Ng(b=12.9,b; =2.3) | 16.7(0.29) | 7.6(0.11) | 5.4(0.07) | 4.0(0.05) | 3.4(0.04) | 2.2(0.03)
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5.3 Change of Poisson distribution

In the third experiment, we focus on detecting a change in the parameter in the Poisson
distribution. We set the number of data streams K = 100, and the pre-change distribution
is the Poisson distribution with parameter A = 1, i.e., fy ~ Poisson(1). If the data stream
is affected after the change point, the post-change distribution f; ~ Poisson(2).

For the same reason as we stated in the previous subsection, in this study, we will only
compare the performance of our proposed method T,(b) in (10) with two a = 0.1,0.2,
the “Top-r” procedure N,(b) in (5) with » = 5,10, the “MAX” scheme Npax(b) in (4),
the “SUM” scheme Nguyn(b) in (3), the “SUM-shrinkage” scheme Ng(b,b;) in (6) with
by, = —log(0.1) = 2.3026, and the adaptive top-r method using simulated p-values 7. (b)
with two @ = 0.1,0.2.

We find the threshold b for all these methods, so the in-control average run length is
1000. Table 3 summarizes the resulting detection delays. First, the “MAX” scheme has the
smallest detection delay when the number of the changed data stream is one. However, when
the number of data streams becomes larger, even if the number of affected data streams
is three, its performance becomes much worse than our proposed methods. Moreover, the
“SUM?” has a larger detection delay when the number of changed data streams is less than
10. Furthermore, our proposed method T,—g.2 has a smaller detection delay than N,—5 and
N,—19 when the number of affected data streams is not greater than 10, which implies our
adaptive top-r methods have better performance for a wide range of the number of affected
data streams. Moreover, similar to the previous simulation study, our proposed adaptive
top-r methods T,(b) have competitive performance compared with the 77 (b), which is
constructed using the simulated p-values of the CUSUM statistics. This finding implies the
robustness and efficiency of our proposed methods by using a simple upper bound of the

p-values.

5.4 Change of exponential distribution

In the fourth experiment, we focus on detecting a change in the parameter in the exponential
distribution. We set the number of data streams K = 100, and the pre-change distribution

is the exponential distribution with parameter A\ = 1, i.e., fo ~ Exp(1). If the data stream
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Table 3: A comparison of the detection delays for the change of the Poisson distribution

with in-control average run length equal to 1000.

# affected data streams
1 3 5 8 10 20

Th=01(b=12.71) 44.0(0.44) | 23.5(0.09) | 21.5(0.04) | 16.1(0.03) | 18.9(0.02) | 12.0(0.04)
_01(b=16.2) 46.0(0.58) | 26.1(0.11) | 16.5(0.11) | 14.9(0.02) | 17.8(0.03) | 16.3(0.04)
—0.2(b=13.44) 45.1(0.45) | 23.9(0.1) | 18.8(0.1) | 14.9(0.04) | 12.7(0.02) | 11.8(0.04)

Tr _12(b=19.6) 54.7(0.67) | 26.6(0.2) | 16.0(0.02) | 12.6(0.09) | 15.6(0.02) | 13.8(0.05)
Ngum (b = 91.86) 81.5(1.07) | 38.3(0.39) | 26.5(0.22) | 19.3(0.14) | 16.4(0.11) | 10.1(0.06)
Niax(b=9.1) 40.9(0.62) | 27(0.28) | 22.9(0.21) | 20.4(0.17) | 19.3(0.16) | 16.6(0.12)
Ny=5(b = 26.6) 49.6(0.67) | 26.0(0.25) | 19.7(0.16) | 15.9(0.11) | 14.3(0.1) | 11.1(0.06)
Ny=10(b = 41.06) 56.9(0.75) | 28.2(0.27) | 20.7(0.17) | 16.0(0.11) | 14.1(0.09) | 10.1(0.05)
Ng(b=184,b, =2.3) | 56.7(0.74) | 28.2(0.26) | 20.7(0.17) | 16.0(0.11) | 14.1(0.09) | 9.9(0.05)

is affected after the change point, the post-change distribution f; ~ Exp(2).

We still compare the performance of our proposed method T, (b) in (10) with two a =
0.1,0.2, the “Top-r” procedure N, (b) in (5) with » = 5,10, the “MAX” scheme Npax(b) in
(4), the “SUM” scheme Nguym(b) in (3), the “SUM-shrinkage” scheme N¢ (b, by) in (6) with
by, = —log(0.1) = 2.3026, and the adaptive top-r method using simulated p-values T (b)
with two a = 0.1,0.2.

We find the threshold b for all these methods, so the in-control average run length is
1000. Table 4 summarizes the resulting detection delays. From the table, we can observe
similar phenomena as previous simulation studies, which implies our proposed adaptive

top-r methods can detect a wider range of possible changes efficiently.

5.5 Study of the number of rejected data streams

In the last experiment, we simulate the expectation of rejected data streams by our proposed
method, i.e., R, in (9) to validate the results in Theorem 1. In this experiment, we will run
our proposed method T,(b) for a long time without stopping to see the limit performance
of R,,. Specifically, we still set K = 100, fo ~ N (0,1), fi ~ N(1,1), and set n = 200. Then,

we simulate the R, under different scenarios of numbers of affected data streams by Monte
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Table 4: A comparison of the detection delays of for the change of the exponential distri-

bution with in-control average run length equal to 1000.

# affected data streams
1 3 5 8 10 20
To—0.1(b=11.22) 30.3(0.22) | 15.9(0.08) | 13.5(0.04) | 10.9(0.03) | 10.7(0.03) | 7.1(0.01)
T _1(b=13.9) 30.2(0.23) | 17.0(0.06) | 15.6(0.04) | 12.4(0.05) | 11.9(0.05) | 5.8(0.02)
To—0.2(b=13.12) 33.6(0.27) | 15.7(0.07) | 13.5(0.04) | 10.9(0.01) | 10.9(0.01) | 7.4(0.01)
T! (b =16.3) 31.3(0.29) | 17.2(0.07) | 14.6(0.03) | 12.1(0.04) | 11.7(0.04) | 5.9(0.01)
Nsum(b = 76.6) 62.0(0.53) | 27.9(0.18) | 19.1(0.11) | 13.5(0.07) | 11.4(0.06) | 6.8(0.03)
Niax(b = 8.94) 29.9(0.03) | 17.8(0.15) | 14.6(0.11) | 12.3(0.09) | 11.3(0.08) | 9.0(0.06)
Ny—5(b = 25.48) 37.5(0.36) | 18.1(0.13) | 13.3(0.09) | 10.3(0.06) | 9.1(0.05) | 6.4(0.03)
Np=10(b = 38.72) 43.5(0.39) | 20.1(0.14) | 14.4(0.09) | 10.7(0.06) | 9.3(0.05) | 6.2(0.03)
Ng(b=16.04,b, = 2.3) | 41.5(0.38) | 19.4(0.13) | 14.0(0.09) | 10.6(0.06) | 9.2(0.05) | 6.2(0.03)

Carlo simulations with 2500 repetitions. The resulting average value and the standard
deviation of R, are reported in Table 5. The table shows that our proposed method rejects
one data stream on average when there is no change. Also, after the change occurs, our
proposed method rejects approximately the number of truly affected data streams plus one.
We further plot the average number of rejected data streams R, with respect to the time
n for our proposed adaptive top-r method with @ = 0.1 and o = 0.2 in Figure 1 and Figure
2 respectively. From these plots, we can see for different numbers of changed data streams,
the average number of rejected data streams E(R,,) by our method will converge closely to
the true number of data streams quickly. These results are consistent with our Theorem
1 and imply that our proposed method does not rely on the information of the number
of affected data streams and can be adaptive to detect the change point under different

post-change scenarios.

6 Case study

In this section, we apply our proposed adaptive top-r method on two real datasets: one is
for solar flare detection, and the other is for fault detection in a progressive forming process.

Both case studies show that our proposed method is efficient to detect the change quickly
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Table 5: Average rejected data streams of our proposed method at n = 200 with o = 0.1

and a = 0.2.
# affected data streams
0 1 3 D 10 20 100
a=0.11{1.1(0.25) | 2.1(0.37) | 4.2(0.51) | 6.3(0.61) | 11.6(0.81) | 21.9(1.01) | 100(0)
a=0.2|1.1(0.41) | 2.3(0.56) | 4.5(0.77) | 6.7(0.94) | 12.2(1.21) | 23.0(1,55) | 100(0)
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Figure 1: E(R,,) when oo = 0.1 Figure 2: E(R,,) when a = 0.2

without knowing the number of truly changed data streams.

6.1 Solar flare detection

In this section, we use our proposed method to detect the solar flare occurrence. A solar flare
is an intense release of energy, usually observed near the sun’s surface as a sudden increased
bright area. With intense radio emissions, solar flares can create radiation hazards, disable
satellites, and interfere the radio communication. Thus, it is desirable to detect the solar
flare as soon as possible.

The dataset is a sequence of 300 solar images recorded in video form, which is available
at “https://voices.uchicago.edu/willett/research/software/mousse/”. The size of
each image is 232 x 292 = 67744 pixels. Since the original image data are correlated, we use
the method in Xie et al. (2012) to remove the background and then monitor the residues
for solar flare detection. The video shows that a solar flare occurs from time n = 187 to

n = 202 and reaches the brightest scene at approximately n = 202. Another one occurs
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from n = 216 to n = 268 and is brightest at approximately n = 233. Figure 3 shows the
residual image at n = 268 when the second solar flare is happening.

x10°

Monitoring Statistic
[} [e-] 8

2t ~J

: e :
0 50 100 150 200 250 300
n

Figure 4: Our proposed global monitoring

Figure 3: Solar image at n=268 oo
statistics

We then apply our proposed adaptive top-r procedure Ty, (b) in (10) with a = 0.2 on the
residual images. The threshold b = 46000 is selected based on sampling with replacement
of the first 100 in-control training data so that the average run length (ARL) is 2500.
The Monte Carlo simulation is conducted with 100 repetitions. Figure 4 shows the global
monitoring statistic of our proposed method, i.e., the sum of the top R,, CUSUM statistics
over time. The horizontal line in the plot shows the threshold b = 46000. Based on figure
4, we will raise an alarm and detect the first solar flare at the time around n = 192. This

is comparable to the results in Xie et al. (2012) and Liu et al. (2015).

6.2 Profile monitoring and fault detection

In this section, we apply our proposed adaptive top-r method to a real dataset that includes
functional profile data from a progressive forming process (Lei et al., 2010). The data
contains 307 profiles data from the normal process and 69 profiles data under five different
faults of the process. Each profile data include 2!' = 2028 measurement points. Figure
5 shows one profile and five different faulty profile data. We follow the literature (Zhou
et al., 2006; Lei et al., 2010; Zhang et al., 2018) and use Haar Wavelets to exact features
from the original nonlinear profile data. Then we will compare the detection performance
of our proposed method with T,—o.1(b) in (10), Ngym (b) in (3), Nz in (4), and N, with

r =8 and r = 10 to monitor the first 512 standardized Haar coefficients.
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Figure 5: sample profiles selected from the normal profile data and the 5 groups of fault

data

We find the threshold b for each method by sampling from the normal profiles so that the
average run length (ARL) is 1000. With the determined threshold b, we apply each method
to detect changes in anomalous profiles for each faulty group separately by conducting 100
simulations with sampling from their 69 fault profiles with replacement.

Table 6 shows the average detection delays with standard deviations inside the brackets
for these different methods. We can see that the SUM scheme has the longest detection
delay for all faults. Besides the SUM scheme, all other methods can detect the change in
just one sample for fault 2 and fault 3. For Fault 1,4, and 5, our method can detect the

change with the fewest samples.

Table 6: Detection delay for faults in each of the 5 operations

Method Fault 1 Fault 2 Fault 3 Fault 4 Fault 5
To—0.1(b=78.1) 2(0) 1(0) 1(0) 5.01(0.001) 3(0)
Ngym(b=612.9) | 2.09(0) | 1.24(0.004) 2(0) 6.12(0.008) | 4.18(0.004)
Nimaz(b=15.6) | 2.3(0) 1(0) 1(0) 6.03(0.006) | 3(0.002)
N,—10(b = 103.5) 2(0) 1(0) 1(0) 5.59(0.006) | 3.04(0.002)
N,—g(b = 88.55) 2(0) 1(0) 1(0) 5.57(0.006) | 3.07(0.003)

7 Conclusion

In this paper, we propose an adaptive scheme for monitoring large-scale data streams. The

scheme estimates the changed data streams by using the idea of the BH false discovery
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rate control procedure, which is originally used to determine the rejected hypotheses in
multiple hypothesis testing problems. We theoretically prove that this method is adaptive
to the unknown number of changed data streams. We further extend this adaptive top-r
method to address the problem of detecting an unknown mean shift. Simulation and case
studies show that our proposed method is efficient in detecting change and can be easily
implemented in real-time. Further study can focus on investigating the false alarm rate

and the worst-case detection delay of our proposed adaptive top-r monitoring.
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Appendix
Proof of Theorem 1. First we prove the result of Eq(R,,) in (11). Note
Eo(R,) = Po(R, > 1) ZPOR > ). (18)

By the definition of R,, in (9), we have Py(R,, > 1) = 1. Thus, we just need to prove that
S Po(Rn > i) < s llog(K —1) —a+1].
Note for fixed 2 < i < K, we have

Po(R, > i) = Pyl ﬂ{p o)) < Po(poiym < i—%la). (19)

Let Y be the number of elements in {p;, : pjn < %mj =1,.,K}, then Y ~ Bin(K, q),
where ¢ = Po{p;» < Za}. Then by (19), we have

1—1
K

Po(Ry > i) < Po(pi_1yn < ——a) = P(Y >i— 1), (20)

By the property of CUSUM: Po(W},,, > x) < e™* for any > 0, we have

N

(=1, (21)

Po(W;n > log i Da )< %

q:PO(pj,n < % )

Note when ar < %, % is an increasing function of g. Thus, from (21) and Chebyshev’s

inequality we have

Kq(l—q) _ (i=1a[K —(i—1)a]

P(Y>i—-1)<P(Y —Kq|>i—-1-Kq) < (i—1-Kq?2~ K[li—1-(i—1)a]?

_Q[K—(i—l)a] B o 1 B 042
TKG-D(-a)?  (1—aPi—1 K(l-a)? (22)

Therefore,

K K N 1 o? a a?
ZP(R”N)<;(1_a)2i—1_K(1—a)2 - (1—a)2[10g(K_1)+1]_m

< ﬁ[log(K — 1) —a+1], (23)

which completes the proof of (11).
Next, we prove the results of E,,(R,,) in (12). Note that

m—+1 K
= PRy >i)+ > Pp(Ry>1). (24)
=1 i=m-+2
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Similar to (19), when 2 < i <m + 1, we have

1

. T
Po(Ry > i) = P ([ {Pr)n < 1) 2 Pup-nn < 20). (25)

Without loss of generality, assume the first m data streams are changed. Clearly, we

have

P (p(io1), H m(Djm < 704). (26)

Let Z;; = log ;;gjtg be the log-likelihood ratio of data X ; with mean = [ f1(z) log ;%g; dx

and variance o = [ fi(z)(log j%gg)zdw — 12, For the first m data streams, i.e., 1 < j < m,

let Zj = %(Zle Zjt). Then by Chebyshev’s inequality, when o > e%, we have

1 K K 1 K
P (pjn < ?a) =P,,(Wj, > log(g)) > P, ZZN > log( ) =P(Z;; > —log( )
_ K o2
>1—-P(|Z;y — pu| > ——lo —))>1- 27
(=2 p= lonG) > 1= e (20
Thus, we have
0_2 m—+1
1-— m+ 1) P..(R, > 1)
( n[+log(£) — uP) Z
<m+ 1. (28)
Moreover, for m 4+ 2 < i < K, by (19), we have
. 1—1
Pr(Rn 2 1) < Pr(p(i-1)n < Ta)- (29)

Note by (27), for 1 < j < m, as n — 00, Py(pjn < +a) — 1. Let Y be the number of
elements in {p;, : pjn < %a,j =m+1,..,K}. Then, we have

1—1

Since Y ~ Bin(K —m, q), where ¢ = Po{pj» < %a}, using the Chebyshev’s inequality
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and the similar approach as in (22), for m + 2 < i < K, we have

PY>i-m—-1)=PY —(K-m)¢g>i—m—1— (K —m)q)

(K—m)q(l—q) _ "g"(i-1a(l-Fa)
Tli-m—1—(K—-m)q]®> [i—-m—1-Em@G-1)a]
Ko — 1o K (i — 1o
Timm— 1= G —al T - m - (- (et D)2
:(i—lmil)Qﬂ < (i—1)8, (31)
where
B (K —m)a/K
T Ezap
Therefore,
K K
Y PaBezi< Y -np< PHOEZmID, (32
i=m-+2 i=m+2

Combining (24),(28), and (32), we have

B o2 (m+ K)(K—m—1)

(1 n[ilog(f)—u}2>(m+1)§Em(Rn)<m+1+ 5 B, (33)
which completes the proof of (12). O
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