On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization

Junayed Mahmud Nadeeshan De Silva
junayed.mahmud@ucf.edu kgdesilva@wm.edu
University of Central William & Mary
Florida Williamsburg, VA, USA

Orlando, FL, USA

SM Hasan Mansur
smansur4@gmu.edu
George Mason University
Fairfax, VA, USA

Oscar Chaparro
oscarch@wm.edu
William & Mary
Williamsburg, VA, USA

ABSTRACT

One of the most important tasks related to managing bug reports is
localizing the fault so that a fix can be applied. As such, prior work
has aimed to automate this task of bug localization by formulating
it as an information retrieval problem, where potentially buggy files
are retrieved and ranked according to their textual similarity with
a given bug report. However, there is often a notable semantic gap
between the information contained in bug reports and identifiers or
natural language contained within source code files. For user-facing
software, there is currently a key source of information that could
aid in bug localization, but has not been thoroughly investigated —
information from the graphical user interface (GUI).

In this paper, we investigate the hypothesis that, for end user-
facing applications, connecting information in a bug report with
information from the GUI, and using this to aid in retrieving po-
tentially buggy files, can improve upon existing techniques for
text retrieval-based bug localization. To examine this phenome-
non, we conduct a comprehensive empirical study that augments
four baseline text-retrieval techniques for bug localization with
GUI interaction information from a reproduction scenario to (i)
filter out potentially irrelevant files, (ii) boost potentially relevant
files, and (iii) reformulate text-retrieval queries. To carry out our
study, we source the current largest dataset of fully-localized and
reproducible real bugs for Android apps, with corresponding bug
reports, consisting of 80 bug reports from 39 popular open-source
apps. Our results illustrate that augmenting traditional techniques
with GUI information leads to a marked increase in effectiveness
across multiple metrics, including a relative increase in Hits@10
of 13-18%. Additionally, through further analysis, we find that our
studied augmentations largely complement existing techniques,
pushing additional buggy files into the top-10 results while gener-
ally preserving top ranked files from the baseline techniques.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE °24, April 14-20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3608139

Safwat Ali Khan Seyed Hooman
skhan89@gmu.edu Mostafavi
George Mason University smostaf6@gmu.edu

Fairfax, VA, USA George Mason University

Fairfax, VA, USA

Andrian Marcus Kevin Moran

amarcus7@gmu.edu kpmoran@ucf.edu
George Mason University University of Central
Fairfax, VA, USA Florida

Orlando, FL, USA
CCS CONCEPTS

« Software and its engineering — Software maintenance tools;
Application specific development environments.

KEYWORDS
Bug Localization, GUI, Natural Language Processing, Mobile apps

ACM Reference Format:

Junayed Mahmud, Nadeeshan De Silva, Safwat Ali Khan, Seyed Hooman
Mostafavi, SM Hasan Mansur, Oscar Chaparro, Andrian Marcus, and Kevin
Moran. 2024. On Using GUI Interaction Data to Improve Text Retrieval-
based Bug Localization . In 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE "24), April 14-20, 2024, Lisbon, Portugal. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3608139

1 INTRODUCTION

The process of bug report management has been demonstrated to
consume large amounts of developer’s time [61, 81]. One of the more
difficult bug management tasks is related to localizing the described
fault, as it requires reasoning between the description of a bug and
the source code of a software project. This process is often further
complicated by quality issues related to various elements of bug
descriptions, such as reproduction steps, stemming from inaccurate
or incomplete information provided by reporters [15, 18, 22, 72].

Researchers have been working to automate bug localization
by developing approaches that automatically retrieve and rank
potentially buggy files or code snippets to help expedite localization
effort. A substantial body of research formulates bug localization as
a text retrieval-based (TR) problem [27] — see Section 6. In general,
these approaches use the bug report to formulate a query and return
a list of source code elements (files, classes, methods, etc.), ranked
by their likelihood that they contain the bug.

The key assumption made by TR-based bug localization ap-
proaches is also their biggest limiting factor. That is, while such
techniques operate on the premise that bug reports and the cor-
responding buggy source code will share terms, research has also
documented a notable semantic gap between the information that
reporters provide in bug reports, and the identifiers and the docu-
mentation written by developers in source code [54, 57, 101]. Re-
searchers have recognized this issue, and have attempted to aug-
ment TR-based bug localization approaches with various techniques.


https://doi.org/10.1145/3597503.3608139
https://doi.org/10.1145/3597503.3608139

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Many approaches focused on processing the text in the bug reports
or the source code (e.g., through abbreviation expansion [39]), while
others focused on query reformulation, or automatically augment-
ing a query generated from a bug report using information various
sources [66]. Another line of research focused on using information
orthogonal to the code and bug report vocabulary to boost the
ranks of the retrieved buggy code elements, such as, execution in-
formation (extracted form execution or stack traces [82, 94]), code
dependencies (extracted via static source code analysis [29]), or
historical information (extracted from repositories [94]).

In this paper, we explore whether it is possible to improve TR-
based bug localization leveraging an information source not yet
explored by prior work — information from the graphical user in-
terface (GUI). GUIs encode latent patterns related to application
features in both pixel-based (i.e., screenshots) and metadata-based
(i.e., html/uiautomator) representations [59]. Our rationale is that
GUI interaction information can be easily obtained and represents
"high-level" execution related information, where code elements are
directly linked to higher level program functionality through the
UL as opposed to "low-level" execution information extracted from
execution traces, which can be difficult to acquire. Once collected,
this high-level GUI information can then be used to boost rankings
of related buggy code elements. Further, unlike low-level execution
traces, GUI-related information is rich in textual elements, and can
also be used for query reformulation. Intuitively, if the buggy code
is related to the app screen where the bug is observed, then the GUI
and interaction information from that screen can be used to help
locate the buggy code easier. Conversely, if the buggy code is not
related to the buggy screen or user interactions, then we expect
that the GUI-related information will not hinder the bug localiza-
tion process. We refer to the collective data related to both user
interactions and the software interface itself as GUI interaction data.

To investigate whether GUI interaction data can aid in TR-based
bug localization, we carry out a comprehensive empirical study
that augments four baseline TR-based approaches: BugLocator [99],
a Lucene-based approach [2], and two neural-based text embedding
approaches (based upon the sentenceBERT [69] and UniXCoder [36]
neural language models). The GUI information that we use for aug-
mentation is collected from a recorded set of GUI interactions that
reproduce a given bug, which can be easily collected manually
by developers, or automatically by any of a number of bug repro-
duction techniques [31, 42, 98]. Once these GUI interactions are
collected, we assess the effect on retrieval performance by using
information from the GUI to: (i) filter out potentially irrelevant files
that are not related to the buggy GUI screen; (ii) boost potentially
relevant files that are related to the buggy GUI screen; and (iii)
reformulate queries using information from the buggy GUI screen.

In this study, we focus on localizing bugs in Android apps, which
typically manifest themselves in the GUIL This means that these
bugs lead to unexpected app behavior (or a faulty state) that is
visible to the user, including app crashes (e.g., when the app sud-
denly closes), navigation issues (e.g., when the app leads the user to
an unexpected screen), and incorrect output shown on the screen,
among others. As such, to support our study, we have manually
sourced and validated the current largest dataset of fully-localized
and reproducible bugs for Android applications with corresponding
bug reports, consisting of 80 bug reports from 39 popular open

J. Mahmud, N De Silva, S.A. Khan, S.H. Mostafavi, SM. H. Mansur, O Chaparro, A. Marcus, and K. Moran.

source Android applications. We compared our baseline TR-based
bug localization approaches with thousands of augmented configu-
rations using different types and amounts of GUI interaction data,
as well as different query reformulation techniques.

Our results illustrate the benefit of leveraging GUI interaction in-
formation, as the best-performing configurations of the techniques
augmented with GUI information outperformed their baseline for
all TR-based techniques, with Hits@10 improving by 13-18% over-
all. A deeper investigation into these results show that our studied
augmentations help rank more bugs in the top-10 retrieved re-
sults, while generally preserving the top-ranked buggy files from
the baseline techniques. Overall, the results support our rationale
for leveraging GUI information to improve bug localization, and
suggest that future work should explore this topic further.

In summary, this paper makes the following contributions:

o A new dataset of 80 fully-localized and reproducible Android
bugs from 39 popular Android apps, complete with bug reports
and recorded scenarios (and metadata) that reproduce each bug,

e A quantitative analysis of the effect of using GUI interaction
information on the effectiveness of four TR-based bug localiza-
tion techniques, via three augmentation methods: (i) filtering,
(ii) boosting, and (iii) query reformulation, and

o A replication package [10] that contains our dataset, code, and
experimental infrastructure to aid in the replication and repro-
duction of our results.

2 BACKGROUND & MOTIVATION

In this section, we provide background on the various GUI-related
terms and concepts related to our study, explain our methods for
augmenting text-retrieval techniques for bug localization with GUI-
related information, and include a motivating scenario that illus-
trates the intuition behind the augmentation methods.

2.1 GUlI-related Information

In this paper, we analyze GUI information of Android apps, namely
GUI screens, GUI components (i.e., the GUI widgets/elements
that compose those screens), and Exercised Components (i.e., the
GUI components that the user interacts with via taps, swipes, etc.).
To illustrate the definitions of these various GUI-related concepts,
we provide an example in Figure 1, oriented around a set of screens
that reproduce the bug described in the report shown in Figure 2.

@ GUI screens represent the Ul canvas upon which GUI compo-
nents are drawn, wherein the screen is composed of a hierarchy of
interactive components and GUI containers that group individual
components together such that they may adapt to various screen
sizes and dimensions. In Android, screens are referred to as Activi-
ties [5], and each activity corresponds to one or more . java/.kotlin
class files that define the functionality of the screen, and a set of
resource . xml files that describe the layout of components on the
screen. The code and resource files directly make up the static defini-
tion of the screen in the code. In addition to Activities, Android also
allows for the definition of Fragments [3], which are reusable groups
of GUI components (e.g., menus, dialog boxes...). A GUI screen
can display a Window, as shown in the buggy screen of Figure 1-Q@),
which can display a dialog, toast, or other GUI component in the
foreground of the Activity. Fragments and Windows are also de-
fined in their own . java/.kotlin class files and .xml resource files.



On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization

ICSE °24, April 14-20, 2024, Lisbon, Portugal

@ GUI-Related Files

@ GUI Screens @GUI Components
4 4

<node bounds="

dwe 'ty ui'op
asdfgh k.l

4 zxcvbnma

T
Buggy GUI Screen

ndroid: id

- Component Image

Component Metadata

true
ntner.markor"

false" selectec

@ Src Code Files
p

) (GUI Screen Information

Document
Activity 1) MainActivity.java

.java ﬁ 2) MoreFragment.java

Document 3) NewFileDialog.java:

Edit Exercised GUI Component Info
Fragment

.java ﬁ 1) MainActivity.java

NewFile All GUI Component Info
Dialog
.java 1) DocumentActivity.java
2) DocumentEditFragment.java
More 3) DocumentRelayActivity.java
Component Fragment 4) DocumentSharelntoFragment.java
Resource ID

IntroActivity.java

.java ﬁ
MorelnfoFragment.java

)

5)

. 6)
Main 7) SettingsActivity.java

8)

9)

e e e — - -
| Activity: MainActivity Activity: MainActivity | Matches ACt'lavaaty OpenEditorActivity,java
! Window: None Window: NewFileDialog | Exercised GUI Component - TextConverter.java
S S gy J L J . J
I 4 Matches

Figure 1: Example of GUI-related information used in this study

In addition to the static definitions of GUI screens in class and re-
source files, it is also possible to extract a runtime representation of
a given GUI screen using the Android uiautomator framework [1],
which queries a device’s ViewServer to extract metadata about the
various GUI components currently rendered on the screen. Fig-
ure 1 illustrates the last two screens of the bug reproduction for
the Markor app [6], along with their Activity (MainActivity), and
Window (NewFileDialog) information. Note that both screens cor-
respond to the same Activity, but the second screen displays a
foreground popup defined in the NewFileDialog Java class file.

(@ GUI Components are the Ul elements, defined by developers
and rendered to the screen, with which end-users interact via GUI-
level actions (taps, swipes, long touches, etc.). The presentation
attributes (color, size, component type, etc.) are defined in the app
source code and in the resource files described earlier. These com-
ponent definitions can be attached to Event Listeners that cause
Java/Kotlin code to be executed when a certain GUI-level action
(e.g., tap) is performed on the component. To link the component
definition to the app Java/Kotlin code, unique Resource IDs are used.
As mentioned earlier, in addition to the static definition of GUI com-
ponents, a dynamic representation can also be extracted using the
uiautomator framework. This dynamic component metadata is
shown as in Figure 1-@) for the @ button in the bottom right hand
side of the first GUI Screen (highlighted in yellow). This metadata
contains information related to the size, class, and resource-id of
this component, among other attributes. If you refer to the screen
flow shown in Figure 1-@), the @ button was the component that
the user interacted with to navigate to the buggy screen with the
dialog box. We refer to components that a user interacted with
during a GUI-level execution scenario as Exercised Components.

2.2 Motivating Example

In order to illustrate our intuition about leveraging GUI interaction
information to improve bug localization, in this subsection we
illustrate the effect that this information has on an example bug
report from the Markor [7] app shown in Figure 2.

The Markor app is a text-editor primarily aimed at supporting
quick note-taking and managing to-do lists. It is also relatively pop-
ular - the GitHub repository currently has 2.6k stars. For each file
created, Markor supports different ways of formatting the text (e.g.,
Markdown) that is configurable through a note creation dialog. The

Bug ReportTitle: New file dialogue always says\
Type: Markdown rather than previous type used J

Steps to reproduce:

1. Create a new file, change type to e.g. todo.txt, save it

2. Create another new file

3. Observe the dialogue correctly remembers .todo.txt as the previously
used file extension, but below that it says Type: Markdown

... the second new file is named something.todo.txt, so the app is correctly

remembering the user's last settings, but nonetheless it looks odd and

confusing to the user.

It also makes it harder when you want to make a Markdown file as you

have to choose something other than Markdown then choose Markdown
|_again before the file extension will change to .md.

Figure 2: Example Bug Report from the Markor[7] App

observed buggy behavior of the report (illustrated in Figure 2) is re-
lated to the formatting method of a given file being reset in the File
creation/editing dialog, wherein it always defaults to “Markdown”,
even when it is initially set to something else. For instance, if a user
were to set the note to “plain-text” formatting, and then later return
to edit the note, the formatting type would be reset to “Markdown”.

Let’s consider an existing TR-based bug localization approach,
BugLocator [99], which uses term similarity and document length
in conjunction with a Vector Space Model (VSM), to rank buggy
files. When we use the bug report from Figure 2 to BugLocator
as a query, the top 3 returned files are (1) SearchOrCustomText-
DialogCreator. java, (2) TodoTxtHighlighter. java, and (3) TextFor-
mat. java. However, as shown in Figure 1-3) the actual buggy file is
NewFileDialog. java, as the bug occurs in the Dialog box used for
creating and modifying files. This file is ranked 35th by BugLocator.
However, for this particular bug, we can observe in Figure 1-(@) that
the screen which exhibits the buggy behavior is composed of the
MainActivity activity, and the NewFileDialog fragment that makes
up the popup dialog box shown in the screenshot. For this partic-
ular bug, the java class file NewFileDialog. java that corresponds to
the window fragment in the buggy screen is the buggy file (shown
in Figure 1-@3)). Hence, if the TR-based bug localization approach
had knowledge of this GUI-related information, it likely could have
improved the ranking of the buggy NewFileDialog. java file.

This example illustrates the potential promise of leveraging GUI
interaction data to improve existing text retrieval-based bug local-
ization approaches. While the buggy file for a given report may
not always correspond neatly to the class that implements a buggy



ICSE °24, April 14-20, 2024, Lisbon, Portugal

screen’s Activity or Window, information related to event-listeners
for various GUI-components that are relevant to a bug reproduction
scenario, or screen information from earlier bug reproduction steps,
may help identify and rank buggy files. In this study, we aim to
investigate the potential for such GUI Interaction Information to
augment TR-based bug localization approaches.

3 DESIGN OF EMPIRICAL STUDY

The goal of this study is to investigate: (1) the extent to which GUI
interaction information from Android apps leads to more effective
automated bug localization, and (2) how this information can be
most effectively used to increase bug localization effectiveness.
With this in mind, we formulate the following overarching research
question (RQ), refined into four specific research RQs:
RQ: What is the impact of using GUI interaction information
on text-retrieval bug localization performance?

o RQq: What is the effect of using GUI interaction information from

different numbers of screens on bug localization performance?

o RQy: What is the effect of the type of GUI interaction information
and augmentation method on bug localization performance?

o RQs3: What are the overall best-performing combinations of using
GUI interaction information?

To answer these research questions, we have developed methods
to link GUI Information to potentially buggy files and to augment
existing TR-based bug localization techniques with this file infor-
mation, which we describe in Secs. 3.1 and 3.2. Additionally, we
have manually sourced the largest corpus of fully-localized and
reproducible Android bugs, consisting of 80 bug reports from 39
popular open source Android apps (see Sec. 3.3).

We study four baseline techniques — one existing TR-based bug
localization technique, one traditional term matching technique,
and two neural text-embedding approaches, described in Sec. 3.4.
We assess the performance of these baseline techniques in locating
buggy files for the 80 bugs, with and without using GUI-information
augmentation. We measure bug localization performance using the
metrics described in Sec. 3.6, and answer the RQs in Sec. 4.

3.1 Mapping GUI Terms to GUI-Related Files

Given that the goal of our study is to determine how GUI informa-
tion can be used to augment bug report-based fault localization, we
aim to map terms extracted from GUI Screens and Components
to source code files that may be useful for the localization process.
These GUI-related terms are later used for query reformulation,
whereas the GUI-Related Files are used to re-rank retrieved files.
Our study assumes the scenario wherein the developer has access to
a GUI-level reproduction scenario, which contains screenshots, the
uiautomator metadata, and the resource-id and GUI-level action
(e.g., tap, long touch) for each screen interaction. This information
is easy to collect, and could be collected manually, wherein the de-
veloper records a video and translates this video to a scenario using
a tool such as V2S [13, 14, 38] or GifDroid [32], or can be collected
automatically using tools that reproduce Android bug reports such
as Yakusu [31], RecDroid+ [97, 98], or the recent approach by Zhang
et al. [96]. Given this information, we aim to link key terms from
GUI-screens and GUI-components to potentially buggy files, or
GUI-Related Files. Given that the bug occurs at the end of a given

J. Mahmud, N De Silva, S.A. Khan, S.H. Mostafavi, SM. H. Mansur, O Chaparro, A. Marcus, and K. Moran.

Table 1: Mapping of GUI Terms to GUI-Related Files

GUI Information Terms Files
Screen Activity and Window . java files with file
names queried from the names matching the
Android ViewServer terms
(Exercised) GUI Screen resource-id(s) of the . java files that contain
Components (interacted) components invocations of the

resource-id(s) in
event listeners

from the dynamic
uiautomator metadata

reproduction scenario, but the buggy behavior may be triggered or
exercised earlier in the scenario, we explore using information from
the buggy screen and the information from the prior 1-3 screens.
Next, we describe how we identify GUI-Related Files from GUI
Screen and component metadata (using the relevant terms).
We define three different types of GUI-Related Files: (1) those
related to the Activity and Window information from a given GUI
Screen; (2) those related to the Exercised Components; and (3)
those related to all the components that appear on the selected
screens of a given reproduction scenario, which we refer to as GUI
Screen Components. We next discuss how each type of GUI-
Related File is derived, also summarized in Table 1.
- Mapping GUI Screen terms to Files: To derive the GUI-Related
Files for a given GUI screen, the Activity and Window names from
the dynamic Ul metadata generated by the Android ViewServer are
taken as terms and directly matched with their corresponding . java
class file names. For instance, the GUI Screen information for the
two screens shown in Figure 1 is MainActivity, MoreFragment, and
NewFileDialog as shown in Figure 1-(@), which map to the Java files
with the same names.
- Mapping GUI Screen Component terms to Files: To derive
GUI-Related Files for all GUI components of the considered screens,
the resource-id for all components for a given screen that support
interaction are extracted from the uiautomator metadata and used
as terms, and then invocations of these resource-id terms are auto-
matically identified in event-listeners in the app source code. The
corresponding files that contain these event listeners are taken as
the GUI-Related Files for Screen Components. This generally leads
to a large set of GUI-Related Files, as matching the resource-ids of
a large number of interactive components on a given set of screens
to event-listeners typically leads to many affected files. For the
example shown in Figure 1, the resource-ids for 41 components
are extracted, which in turn map to event-listeners in 77 code files,
some of which are shown in Figure 1-@.
- Mapping Exercised GUI Component terms to Files: To de-
rive GUI-Related Files for an Exercised GUI Component, the same
approach as described for GUI Screen Components is followed, but
only for those components on the screen which were exercised as
part of a bug reproduction scenario. Any source code file that con-
tains an event-listener for the component is identified is considered
as a GUI-Related File. For the example in Figure 1, there is only one
Exercised Component, and only one invocation of this exercised
component, in the MainActivity. java file (shown in Figure 1-@).
It is important to note that in our study we do not only consider
each type of GUI information in isolation, but also consider com-
binations, represented as unions of the GUI Information Terms for
two different types. We illustrate our considered combinations in
Table 2, organized according to the number of files they typically
return. Note that GUI Information terms stemming from Exercised




On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization

Table 2: Types of GUI-Related Files

Low Number of Files

GUI Screen

Exercised GUI Components
Medium Number of Files

GUI-Screen + Exercised GUI Components
High Number of Files

GUI Screen Components

GUI Screen + GUI Screen Components

GUI Components are a subset of the GUI Screen Components, thus
we do not combine these information types. Additionally we ignore
components without resource-ids and do not consider interactions
with the Android Back button from the bottom navigation bar as
exercised components, as interactions with this component cannot
be mapped back to the event listeners in the app code.

3.2 Text-Retrieval Augmentation Methods

Below, we describe how the GUI-Related Files can be used to aug-
ment existing techniques for text retrieval via Query Reformulation
and Re-Ranking, to (potentially) improve bug-localization.

In the context of our bug localization process, typically text-
retrieval techniques use a pre-processed version of the bug report
as a query to retrieve source code files that contain similar terms to
those used in the bug report. The method of calculating query-to-
document similarity can vary from relatively simple methods, such
as using term frequency (e.g., tf-idf vectors), to more complicated
techniques that use neural text embeddings.

3.21 Reformulating Queries using GUI Terms. The first type
of augmentation techniques that we define are Query Reformula-
tion techniques [33]. These techniques modify the textual query
used by TR-based techniques to retrieve relevant files. Given this
setting, we define the following two reformulation techniques:

- Query Expansion: In this technique, the dynamic Activity/Win-
dow names for GUI screens, and GUI component resource IDs for a
given GUI component type (e.g., Exercised Components or Screen
Components) are appended to the bug report to form the query.

- Query Replacement: In this technique, the dynamic Activi-
ty/Window names for GUI screens and GUI component resource
ids for a given GUI component type (e.g., Exercised Components or
Screen Components) are used to replace the bug report as the query.

3.22 Re-Ranking using GUI-Related Files. We explore three
different techniques for re-ranking files using GUI information:
- Filtering: In this strategy, all files that do not match the GUI-
Related Files for a given information type are filtered out from the
corpus of potentially buggy files.

- Boosting: In this strategy, files that match the GUI-Related Files
are boosted to the top of the ranked list of results returned by a
given text-retrieval technique while preserving the relative order
of those files originally ranked by the technique.

- Filtering + Boosting: The final re-ranking strategy combines
both filtering and boosting, wherein files are filtered using a GUI
information type that has a higher number of files, and boosting is
performed with a type that returns a lower number of files. This is
due to the fact that filtered files, cannot be subsequently boosted.

3.3 Dataset Construction

3.3.1 Bug Report Selection. Given that no prior dataset of fully-
localized and reproducible bug reports for Android apps exists, we

ICSE °24, April 14-20, 2024, Lisbon, Portugal

constructed our own using a rigorous manual process. We built a
ground-truth bug localization dataset by using as many bug reports
as possible from the AndroR2 dataset [42, 83], which consists of 180
manually reproduced bug reports for popular open source Android
applications hosted on GitHub. These reports were systematically
collected from the project’s issue trackers according to the following
criteria, as reported by Wendland & Johnson [42, 83]: they contain
the label "bug", were opened in the past five years and closed at the
time of the mining (November 2020), contain the word "steps" in
their content, and report a non-trivial bug (i.e., did not occur by
opening the app). The bug reports are grouped into four categories
that represent a bug type, namely output-, cosmetic-, navigation-,
and crash-related bugs. Furthermore, each bug report is associated
with additional (meta)data, including the commit ID of the app
version that contains the bug, the buggy app’s apk file, and the link
to the GitHub issue where it was originally submitted.

We explored all bug reports in the AndroR2 dataset and utilized
a subset of reports that fit the necessary criteria for our study (i.e.,
they were reproducible and able to be localized to source code files).
To identify the buggy files among the set of all files from the buggy
version of the app, we followed a systematic procedure that involved
at least two authors examining each bug report. Specifically, two
authors inspected the content of the bug reports (including the com-
ments) to find any references to the commits that fixed the bug. They
then inspected the commit messages and specific code changes to de-
termine if they appeared to fix the bugs. Among the 180 bug reports
in AndroR2, one bug report does not exist anymore, and eight bug re-
ports do not contain any obvious commit ID or version information
for the bug being reported, making it difficult to extract the buggy
source code. As a first step in filtering the dataset, we excluded
these bug reports and investigated the remaining 171 bug reports.

In checking for bug-fixing commits, the two authors were able
to source 120 bug reports with bug-fixing commit IDs that were
confirmed to fix the reported bug, and on average, each bug re-
port contained ~1.90 bug-fixing commit IDs. When no commit was
mentioned in the bug reports, or the fixed commit ID mentioned
in bug reports did not appear to resolve the error, the two authors
followed references to duplicate reports and collected the refer-
enced commits, again confirming that these commits did indeed
fix the bug. We followed this procedure for the remaining 51 bug
reports (of the 171 filtered reports) and were successful in gathering
bug-fixing commit IDs in 27 cases — resulting in 147 bug reports
with confirmed bug-fixing commit IDs. Although in certain cases
our ground-truth uses the bug fixing commits from duplicate bug
reports, in this study we use the original bug report contents as
reported by AndroR2 as the query for TR-based bug localization.
Once bug-fixing commits were identified, two authors performed
two rounds of coding, during which they compared the file diffs
between the buggy (i.e., the latest app release commit ID before the
bug was reported) and the fixed version of the app (based on the
commit IDs) to identify the files that contained bug fixing changes.
If there were disagreements, a third author discussed the cases with
the two coders and the three authors reached a consensus. Note
that this process only identified code files from the app’s buggy
version that had bug fixes (i.e.,, code changes), thus excluding code
files that were added in the fixed app version and ignoring changes
in white space and code comments. This set of 147 bug reports



ICSE °24, April 14-20, 2024, Lisbon, Portugal

formed the set used for isolating the buggy files and collecting the
required bug reproduction scenarios and GUI information.

3.3.2 Coding & Collecting GUI Interaction Data. The ground-
truth construction process was executed independently by two
authors across two sessions. During the first session, two authors
randomly selected 24 bug reports from all failure types of the An-
droR2 dataset among the 147 bug reports filtered as described above.
The two authors worked together in this session and discussed
each bug in order to derive a common understanding of the coding
process. Given that some of the studied baseline techniques only
operate on . java files, we discarded two bugs where the erroneous
behavior was isolated the .xml resource files and one bug contain-
ing buggy Kotlin files. As such, 21 bug reports were coded as part
of this first session.

To collect the GUI interaction data for these 21 bug reports, we
followed the record-and-replay methodology used by Cooper et
al. [25], which includes installing and using the buggy app on
an emulator, recording a usage scenario that reproduces the bug
while collecting screen recordings and getevent traces (i.e., traces
that include low-level GUI-related information) using the Android
getevent utility. These scenarios are then replayed in a step-by-step
manner by converting the recorded getevent actions to a set of
adb commands. During the step-by-step replay, screenshots and
GUI metadata were collected before and after each GUI action that
includes information on the Activity and Window, as well the GUL
hierarchy extracted via the uiautomator tool that contains the UI
metadata for all components displayed on the screen. Since the
AndroR2 bug reports provide the steps to reproduce the bug (S2Rs)
and the buggy APK of the apps, we were able to reproduce the
bugs on an emulator. Specifically, two authors reproduced the bugs
manually on Pixel 2 Android emulator with the specific Android
version mentioned in the AndroR2 dataset. Among the 21 bug
reports, we could not reproduce the bug for one bug report due to
a lack of getevent support for recording rotation events. Therefore,
we included the remaining 20 bug reports in our dataset.

In the second round of coding, the two authors worked with the
remaining 123 bug reports. During this process 16 additional bug
reports were identified to have bug fixing changes on . xml files only,
14 more contained Kotlin code, one used web-based technologies
and hence had no Java/Kotlin/resource files, and two bug reports
with tangled commits (i.e., a large number of file changes) in the
fixed commits. We excluded these 33 bug reports resulting in 90
bug reports having at least one buggy Java file.

During the collection process for the GUI Interaction data for the
remaining 90 bug reports, were not able to collect GUI interaction
data for 30 bug reports due to the one of following reasons: (1)
the buggy behavior could not be reproduced; (2) bugs could not
be reproduced due to the constraints of the step-by-step replay
process (e.g., logging into some apps was not possible); and (3) the
step-by-step replay process has limitations including the inability
to rotate the screen or execute fast swipe gestures. We excluded
these 30 reports from our dataset, leaving 60 bug reports.

Finally, the two authors then worked separately to identify rele-
vant buggy files reaching consensus in 53/60 (~88.33%) of the cases
(i.e., the set of buggy code files matched). When there was no consen-
sus, the three authors mutually finalized the buggy files. In total, we

J. Mahmud, N De Silva, S.A. Khan, S.H. Mostafavi, SM. H. Mansur, O Chaparro, A. Marcus, and K. Moran.

identified the buggy files and GUI metadata containing screenshots,
XMLs and event execution information for 80 bug reports (20 in the
initial round and 60 in the subsequent round). The collection of the
GUI interaction data took ~60-70 hours for the 80 bug reports orig-
inating from 39 apps (i.e., 1.5 hours per app). However, it should
be noted that in practice, the GUI interaction data that we collect
in this study could be collected automatically through any number
automated input generation tools for Android [31, 45, 96-98].

3.4 Baseline Techniques

34.1 BugLocator. Zhou et al. introduced BucLocATOR [99], which
uses a revised vector space model (rVSM) to obtain a ranked list
of buggy files when a bug report is used as a query. Initially, a
classic VSM based approach calculates the cosine similarity be-
tween the vector representations of the query and a document.
BucLocATor then ranks longer documents higher, assuming that
these files are more likely to contain bugs. BUGLOCATOR is also
capable of learning from previously fixed bugs by constructing a
three-layer heterogeneous graph and computing a similarity score
between past confirmed buggy files and the corpus of files under
analysis. However, in this paper, we do not make use of this feature
of BUGLOCATOR, as we do not have the necessary data.

34.2 Neural Embeddings via SentenceBERT. In the second
baseline technique, we use the SENTENCEBERT [69] neural language
model, which is a modification of a pre-trained BERT model [28].
SENTENCEBERT augments the traditional BERT model with siamese
and triplet networks allowing for better support of tasks such as
clustering and semantic search with less computational overhead.
The model was fine-tuned on a popular natural language inference
dataset [84] and outperforms state-of-the-art approaches.

We use the sentence transformer msmarco-distilbert-base-v3 im-
plementation [8] from the HuggingFace library [4] for our imple-
mentation of SENTENCEBERT. The model uses 768-dimensional
vector space and has a maximum sequence length of 510. As such,
while all of our bug reports fit within this sequence length, cer-
tain source code files may exceed it. Thus, we split source code
files into different segments with a maximum length of 510 tokens,
and created an embedding for each segment. We compute cosine
similarities between the bug report embedding and each segment
of each source code file, and take the segment with the highest
similarity value to the query as the similarity value for a given file,
which we use for ranking the files.

3.4.3 Neural Embeddings via UniXCoder. In addition to neu-
ral language models trained on general natural language under-
standing tasks, we also wanted to explore how GUI information
may complement document embeddings generated from a model
trained primarily for code understanding tasks. As such, for the
third baseline, we use the UNIXCODER [36] model that is based
on a multi-layer Transformer [76] architecture. We use the open-
source implementation of UNIXCODER [11] to create embeddings of
the source code and bug reports. The unixcoder-base model is pre-
trained on the CodeSearchNet [41] dataset, one of the largest model
training datasets for code understanding tasks containing two mil-
lion code-comment pairs (across six programming languages). Sim-
ilar to SENTENCEBERT, this model also inputs a maximum token



On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization

Table 3: Combinations of the Filtering+Boosting re-ranking meth-
ods and GUI-Related File types considered. GS = GUI Screen; EGC =
Exercised GUI Component; SC = GUI Screen Components.

Flt Bst GS EGC GS+EGC SC GS+SC
GS
EGC
GS+EGC v M
SC M v v
GS+SC v v v v

length, but of 512 opposed to 510. Therefore, we follow the same
segmentation and similarity score calculation method as we do for
SENTENCEBERT, again using a cosine similarity measure.

3.44 Lucene. For the fourth baseline, we use LUCENE [2], an
open-source Java project that provides features to retrieve relevant
documents. LUCENE uses a vector space model and TF-IDF document
vector representations to rank buggy files based on an input query.

3.4.5 Preprocessing of Queries and Source Code Files. We
perform the following preprocessing steps, commonly used in past
work on TR-based bug localization, for both queries (bug report-
s/reformulated queries) and source code files: splitting camel case
and removing numbers, punctuation, tokens of length 1 — 2, any
special characters not part of English alphabets, and Java keywords.
These steps were used for all techniques except source code for
BUGLOCATOR as this technique applies its own preprocessing [99].

3.5 Approach Configurations

Our study has four main configuration parameters: (i) the number of
GUI screens preceding the buggy screen to be used for GUI-Related
File derivation (we investigate between 2-4 screens, including the
buggy screen); (ii) the type of GUI interaction information used (we
investigate the five combinations shown in Table 2); (iii) the query
reformulation techniques used (query replacement or expansion);
and (iv) the re-ranking techniques used (filtering only, boosting
only, and filtering + boosting).

We examine all combinations of these four parameters. However,
one of our re-ranking techniques (filtering + boosting) is tightly
coupled to the type of GUI information used, and as such we only
investigate the feasible combinations (i.e., where boosted files are
a subset of filtered files) of the information shown in Table 3. The
reason we cannot explore all types of information is due to the fact
that we cannot filter using a more restrictive set of GUI-Related
Files (e.g., GUI Screen-related Files) and boosting with a less restric-
tive set (e.g., GUI Screen Component-related Files) as many (if not
all) of the files filtered out would be the same that would then be
subsequently boosted. In total, we explore 657 configurations
of GUI Information for each baseline, for a total of 2,628 config-
urations across all of our experiments. Table 4 shows the total
number of configurations, where the number of configurations for
each augmentation technique is calculated by multiplying feasible
combinations of GUI types with the number of GUI screens.

3.6 Metrics and Comparative Evaluation

We adopt Hits@XK, a metric widely used in the literature [20, 65, 99],
to evaluate the performance of augmenting our baseline techniques
with GUI-related information.

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Table 4: Number of configurations. GIT = GUI Information
Type; RRT = Re-ranking Technigues; QE = Query Expansion;
OR = Query Replacement

Augmen- # # # # X
tation GIT(RRT) | GIT(QE) | GIT(QR)| Screens| configs

5 3 15

Filtering 5 5 3 75
5 5 3 75

5 3 15

Boosting 5 5 3 75
5 5 3 75

Filtering 9 3 27
+ 9 5 3 135
Boosting 9 5 3 135
Query 5 3 15
Reform. 5 3 15
Total Number of Configurations 657

Hits @K: This metric computes the percentage of queries for which
a bug localizer retrieves at least one buggy file within the top-K files
returned. We report results for K=1,5,10 as past work has illustrated
that the likelihood that a developer would look beyond 10 results is
low [78]. We adopt this metric as it supports a practical scenario for
bug localization. Hits@K values fall in [0, 1], where higher values
mean higher bug localization effectiveness.

Relative Improvement to Hits@ 10: In addition to the Hits@K
metric, given that the aim of our study is to compare the baseline
techniques with their augmented counterparts, we also defined a
comparative metric that measures the improvement of Hits@10
of one of our studied GUI Information configurations to a given
baseline technique. This is defined as:

Hits@10GUI — Hits@10Base
Hits@10Base

4 EMPIRICAL RESULTS

In this section, we present the results of our empirical analysis
organized by RQ. Of the 2,628 configurations of baseline techniques
augmented with GUI interaction information, 1,080 configurations
resulted in improvement over the baseline in terms of Hits@10, and
1,548 configurations resulted in no improvement or a degradation
in effectiveness over the baselines. However, encouragingly, we find
that a small set of similar configurations of GUI-based augmentation
methods tend perform best across all baseline techniques, and more
encouraging still, these best performing configurations result in
marked improvements to Hits@10 (e.g., up to 18%) with little degra-
dation to the ranks of buggy files already ranked within the top
10 by the respective baseline techniques. That is, for a small set of
configurations that perform well across baselines, augmenting TR-
based bug localization techniques with GUI interaction information
provides a largely complementary improvement in effectiveness.

4.1 RQ;: Impact of Number of Screens

The number of configurations across different numbers of screens
that exhibit positive % improvement over baselines are shown in Ta-
ble 5. Table 6 reports the average, minimum, and maximum positive
improvement over each respective baseline technique across all
studied GUI Information configurations when different numbers of



ICSE °24, April 14-20, 2024, Lisbon, Portugal

Table 5: Number of configurations exhibiting positive % im-

J. Mahmud, N De Silva, S.A. Khan, S.H. Mostafavi, SM. H. Mansur, O Chaparro, A. Marcus, and K. Moran.

provement in Hits@ 10 over baselines across # of screens.

Approach | 2 Screens | 3 Screens | 4 Screens | # Screens
BugLocator 90 115 110 315
SentenceBERT 61 69 75 205
UnixCoder 101 114 97 312
Lucene 80 86 82 248
Total 332 384 364 1,080

Table 6: Average positive % improvement of Hits@ 10 over

baselines across the number of screens.

Table 7: Best performing GUI Information configurations
according to % relative improvement for Hits@ 10.

Approach 2 Screens 3 Screens 4 Screens
min | avg | max | min | avg | max | min | avg | max
BugLocator | 1.75 | 7.86 | 17.54 | 1.75 | 7.78 | 17.54 | 1.75 | 7.74 | 17.54
SentenceBERT | 1.72 | 5.51 | 12.07 | 1.72 | 8.05 | 15.52 | 1.72 | 8.11 | 15.52
UnixCoder 1.79 | 7.28 | 14.29 | 1.79 | 7.69 | 12.50 | 1.79 | 6.76 | 14.29
Lucene 1.56 | 5.55 | 9.37 | 1.56 | 5.65 | 10.94 | 1.56 | 5.79 | 12.50
Overall 1.56 | 6.55 | 9.37 | 1.56 | 7.29 | 10.94 | 1.56 | 7.10 | 12.50

screens from the bug reproduction scenario are used. Given that we
want to understand which screen configuration provides the best
improvement, here we do not discuss configurations that did not
improve over the baseline. The highest average improvement for
each baseline technique is shown in bold. From the table we can ob-
serve that there is no one configuration for number of screens that
performs best across all techniques. However, considering average
overall improvement, using information from 3 screens (i.e., the
buggy screen and two prior screens) provides the highest overall
improvement over the baseline techniques, whereas using infor-
mation from 4 screens provides the largest improvement for two
techniques (Lucene and SentenceBERT). It should be noted that
4 screens leads better performance in terms of the max improve-
ment of a single configuration over the baselines. However, the
average values correspond to the highest increase across all studied
configurations.

Summary of Findings for RQ;: We find that using GUI informa-
tion from the buggy screen, and two preceding screens provides
the highest overall increase in effectiveness across our studied
baseline TR-based bug localization techniques. This indicates that
relevant GUI information for bug localization is contained in not
only in the buggy screen, but also in the preceding screens.

4.2 RQ;: Impact of GUI Information Type &
Augmentation Method

In RQg2, we first aim to investigate the impact of using GUI-related
files sourced from different types and combinations of GUI-Interaction
Information (e.g., GUI Screens (GS), Exercised GUI Components
(ECG), GS+ECG, Screen Components (SC), and 6S+SC) on our augmen-
tation methods. To do this, in Table 7, which is organized by aug-
mentation method, we report the best performing GUI Interaction
Information type for each of our five augmentation methods and
for each baseline technique. This allows us to examine whether
there are trends in the best performing information types across
our studied techniques. Dashes signify that no configuration of
the reported augmentation method improved over the baseline.
Table 7 illustrates a few notable trends across the different augmen-
tation techniques. For instance, we can observe that for Filtering,

Approach Augmentation Information Type | # Screens | HIT@10 Improvement
Filtering SC 3 1.75
Boosting GS 4 12.28
BugLocator | Filtering+Boosting SC(F)+GS(B) 4 14.04
Query Expansion SC 2 8.77
Query Replacement GS+SC 2 1.75
Filtering SC 2 5.17
Boosting GS+EGC 3 15.52
SentenceBERT | Filtering+Boosting | SC(F)+[GS+EGC(B)] 3 1552
Query Expansion - - —
Query Replacement — —
Filtering — — —
Boosting GS 4 12.50
UniXCoder Filtering+Boosting SC(F)+GS(B) 4 12.50
Query Expansion SC 2 14.29
Query Replacement GS+SC 3 8.93
Filtering sC 3 4.69
Boosting GS 4 9.38
Lucene Filtering+Boosting SC(F)+GS(B) 4 12.50
Query Expansion GS 4 6.25
Query Replacement — — —

SC (which map to the largest number of GUI-related files) is always
the best performing information type (except for UniXCoder). This
is not entirely surprising as, due to the large number of associated
GUI-related files, it is the least restrictive filtering.

For Boosting, GS (or GS+ECG) performs best across all baseline
techniques. Given that GS information targets a smaller number
of GUI-related files that often encompass large portions of screen
functionality, it follows that boosting such targeted information is
likely to have a larger positive effect on ranking buggy files. These
same trends also hold for Filtering+Boosting, wherein filtering with
GUI Interaction Information that is mapped to a larger number
of GUI-related files (e.g., SC) and boosting with a more targeted
information type that maps to fewer files (e.g., GS, ECG) generally
leads to the best results. Finally, we find that Query Replacement
generally does not lead to an improvement over the baseline, but
Query Expansion does lead to improvements — however, there is no
clear trend in the best performing Information type for expansion.

Turning our attention to the impact of different augmentation
methods we observe further confirmation of trends that began to
surface when examining the impact of different GUI-Interaction
Information types. First, we examine the reformulation and re-
ranking methods in isolation to better understand their effects.
Figure 3 shows a box-and-whisker plot illustrating the relative im-
provement that both query expansion and replacement have over
our studied baseline techniques. The number of configurations for
each augmentation method are given above each plot. This plot
shows that, in general, Query Replacement rarely results in any
improvement over the baseline technique. On the contrary, query
expansion does generally result in improvement for every baseline
except SentenceBERT. This is likely due to the abstract semantic
embeddings that are produced by SentenceBERT which may be
able to more naturally retrieve GUI-related information due to its
learned, rich term similarities. Furthermore, query expansion seems
to have the largest positive effect on UniXcoder, which is another
neural model trained on code as opposed to natural language. We
speculate that this improvement may be due to the fact that embed-
ding file names into UniXCoder’s code-specific embedding space
makes it far more likely for those files to be retrieved as compared
to SentenceBERT. The observation that query replacement tends
to perform poorly indicates that there is often important lexical



On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization

—— Query Expansion
1<) — Query Replacement
= 20
©,_, 15 15 15 15 15 15 15 15 60 60
23
-

IE = = —
2 0
0 2 [P
> o
5 5.
]
< E
€= -2 —
53

BugLocator  Sent.BERT UniXCoder Lucene Overall

Figure 3: Relative % Improvement of Query Reformulation

information contained within bug reports for TR-based localiza-
tion techniques, as removing this information and replacing it with
GUI-related file names generally degrades performance (sometimes
markedly so). Conversely, expanding the bug report query with GUI-
related terms does appreciably improve most techniques, signaling
that expanding queries with GUI-related file names is helpful.
Figure 4 illustrates the same box and whisker plot, but for our
three re-ranking methods. Form this plot we can observe that only
a small number of filtering configurations improve upon the base-
line techniques. This follows from our findings in RQy which il-
lustrate that only filtering configurations with a GUI information
type that maps to a large number of GUI-related files perform
well, as this limits the overall number of files filtered out of the
searchable corpus. However, while filtering only sometimes leads
to improvements, nearly every configuration of Boosting leads to
appreciable improvements over the baseline techniques. Combining
Filtering and Boosting together leads to the highest overall median
improvements, but with more variability in the results due to poor
performance of filtering with certain information types. The results
related to Boosting illustrate that re-ranking GUI-related files to the
top of list of retrieved results is nearly always beneficial, which in-
dicates that these files have a far higher probability of being buggy
compared to other files that were not linked to GUI information.

Summary of Findings for RQ;: We find that for Filtering, SC
information leads to the largest improvement, and for Boosting,
GS information leads to the largest improvement. Overall, filter-
ing with information types which map to a higher number of
GUI-related files (i.e., filtering out fewer files), and boosting with
information types that map to a lower number of files, tend to
perform best. Filtering only provides benefit in a small number
of cases with limited GUI Information types, whereas boosting
is nearly always beneficial. We also observe that Query Replace-
ment rarely leads to performance improvements, whereas Query
Expansion does lead to improvement for every baseline except
SentenceBERT, albeit without any single GUI Information type
performing best. Combining Filtering and Boosting together leads
to the highest overall improvements, but these configurations are
more sensitive to the information types used.

4.3 ROQ;: Best Performing Configurations

RQs3 aims to take a deeper look at the best performing individual
GUI-augmentation configurations for each baseline technique. We
report this information in Table 8 where the best performing con-
figurations were selected by taking the top performing techniques
according to Hits@10, and breaking ties according to Hits@5. If
there were still ties after considering Hits@5, then we report all

ICSE °24, April 14-20, 2024, Lisbon, Portugal

Table 8: Best Performing Combinations

Baseline/ Filtering | Boosting | GUI Info # H@1 | H@5 | #Bugs Top10
Config GUI Info | GUI Info | Query Exp. | Scrns (H@10)
BugLocator None None None 0.39 | 0.60 57 (0.71)
sC GS GS+SC 3 | 033 | 076 67 (0.834)
None None None 0.23 | 0.56 58 (0.72)
e GS+EGC None 3 030 | 0.72 67 (0.84)
SentenceBERT | GS+SC | GS+EGC None 3 030 | 0.72 67 (0.84)
e GS+EGC EGC 3 | 030 | 072 67 (0.84)
GS+SC GS+EGC EGC 3 0.30 0.72 67 (0.84)
None None None 0.14 | 0.62 56 (0.70)
UnixCoder sC GS SC 4 031 | 0.75 64 (0.80)
GS+SC GS sC 4 | 031 | 075 64 (0.80)
None None None 0.40 | 0.75 64 (0.80)
Lucene SC GS None 4 0.36 | 0.80 72 (0.90)
GS+SC GS None 4 | 036 | 0.80 72 (0.90)
—— Filtering
401 —— Boosting
e —— Filtering+Boosting
®g 0] 1515w 15 15 27 15 15 27 15 15 27 60 60 108
)
i, 00 -of 0
¢ 3 o -
287 B
< E
<=
2 -204
BuglLocator  Sent.BERT UniXCoder Lucene Overall

Figure 4: Relative % Improvement of Re-Ranking

such configurations. The first major observation that can be made
from Table 8 is that BugGLocaToR and LUCENE, which use more
traditional text-retrieval baselines (i.e., TF-IDF document representa-
tions) tend outperform the techniques that use neural embeddings
(SentenceBERT and UniXCoder). It should be noted that, given the
goal of our study is to examine the benefit of GUI interaction infor-
mation, we used SENTENCEBERT and UNIXCODER in a zero-shot
setting, wherein they were not fine-tuned on bug report informa-
tion. Future work may examine these in a fine-tuned setting.

The next major trend illustrated in Table 8 is that the best per-
forming configurations offer a marked improvement (in terms of
Hits@5 and Hits@1-) compared to the baseline techniques, with
relative improvements ranging from 12.5%-18% for Hits@10, and
6%-29% for Hits@5. This means that, for all baselines, the best per-
forming configurations result in the inclusion of buggy files for
an additional 9-10 bugs in the top 10 results. Furthermore, we find
that the best performing configurations of our GUI-augmentation
methods are strikingly consistent. That is, Filtering+Boosting is
always the best re-ranking technique, using SC or Gs+sSC GUI in-
formation for Filtering, and either GS or GS+EGC information for
boosting always leads to the largest improvements over the base-
line techniques. This means that any one of these configurations
can likely be applied to a TR-based baseline and improve the re-
sults. We find that certain baselines and configurations seem benefit
from query expansion with varying GUI information types. This
is consistent with the observations from the previous RQ. Finally,
we performed a Wilcoxon signed rank test on the first rank of a
buggy file for all bugs (even those ranked outside top-10) across all
techniques using a 95% confidence interval. We found that all of
the best performing GUI-augmentation methods outperform their



ICSE °24, April 14-20, 2024, Lisbon, Portugal

J. Mahmud, N De Silva, S.A. Khan, S.H. Mostafavi, SM. H. Mansur, O Chaparro, A. Marcus, and K. Moran.

Table 9: In-Depth Analysis of Best Performing overall GUI-related augmentation configuration.

Baseline/ Filtering | Boosting | Number of | Hits@10 | # Bugs Out10 | # Bugs In10 | # Bugs Inside | # Bugs Inside | # Bugs Inside | # Bugs Outside | # Bugs Outside
Config GUI Info | GUI Info Screens — In10 — Out10 | 10 Improved | 10 Deteriorated | 10 Unchanged | 10 Improved | 10 Deteriortated
BugLocator SC GS 4 0.81 8 0 16 21 20 10 4
SentenceBERT SC GS 4 0.81 7 0 22 15 21 12 1
UniXCoder SC GS 4 0.79 7 0 21 13 22 15 0
Lucene SC GS 4 0.90 8 0 16 24 24 6 1

corresponding baseline techniques to a statistically significant de-
gree, save for BuGLocATOR, which had a p-value of 0.44. However,
given that past work has illustrated that TR-based bug localization
typically only provides benefits to developers if the buggy files is
ranked within the top-10 results [78], we must note that BugLoca-
TOR saw the benefit of the largest overall increase in Hits@10 from
our GUI-augmentation methods across all of our studied baselines.

Summary of Findings for RQs: We find that the best perform-
ing configurations of our GUI-augmentation methods combine
filtering and boosting, using SC or SC+GS to filter, and GS or GS+EGC
to boost, and lead to an improvement in Hits@10 ranging from
12.5%-18%, and 6%-29% for Hits@5.

4.4 Discussion

We aim to see whether a single GUI augmentation configuration can
perform well across all baselines. To this end, we first ranked our 657
configurations for each baseline in terms of their performance in
Hits@10, using the average performance of HITS@1 and HITS@5
to break ties. We found two configurations that perform identically,
and chose the simpler configuration of the two to analyze. This
configuration uses the Filtering+Boosting with SC information for
Filtering and GS information for boosting, using data from 4 screens.

In general, an augmentation affects the rankings of most of the
bugs, however we are less concerned with those that are far from
top-10 (they are still hard to retrieve), or those already in top-10
(they are still easy to retrieve). We consider an augmentation to be
good if it ranks more bugs in top-10 than its baseline (i.e., at least one
of their buggy files rank in top-10), in other words bugs that were
hard to retrieve with the baseline are now easy to retrieve with the
augmentation. With that in mind, for the GUI augmentation method
configuration we identify as best, we examined how it performed
in terms of moving bugs from outside the top 10 ranks to inside
the top 10 ranks (and vice versa) as well as the number of buggy
file that improved, degraded and remained unchanged both inside
and outside the top 10 ranks — we report these results in Table 9.
This table illustrates that the best performing GUI-augmentation
configuration brings buggy files for 7-8 bugs from outside the top-
10 to inside the top-10 without moving any buggy files that were
previously in the top 10 outside of the top 10. This signals that the
GUI-related augmentations are largely complementary to existing
techniques and do not hurt existing bugs ranked within the top-10.
When examining how ranks of buggy files change within the top 10
ranks, we find a relatively even mix of files that improved (16-22),
deteriorated (13-24), and remained unchanged (20-24). This signals
that there is limited net impact on the ranks of the files within the
top-10 ranks. Furthermore, we find that this configuration improves
more buggy files outside the top-10 than it deteriorates, and our
studied configuration outperform all baselines in terms of top ranks
of buggy files according to a Wilcoxon signed rank test at a 95%
confidence interval.

10

BugLocator BuglLocator

Lucene Lucene

c
3.
x

(@ (b)
Figure 5: Venn Diagram illustrating the overlap where buggy
files appear in the top-10 results for our studied baselines (a)

and for the best performing GUI augmentation methods (b).

In addition, we wanted to understand the degree of orthogonality,
in terms of Hits@10, across our baseline techniques, and how our
GUI augmentation methods effect this orthogonality. In Figure 5-a,
we provide a Venn Diagram that includes each baseline, where over-
lapping sections indicate a shared bug for which a buggy file was
ranked within the top-10. From this diagram, we can observe that
between 61% and 70% of bugs with buggy files ranked within the
top 10 are shared across all baselines (40 bugs), indicating that the
different approaches do exhibit some degree of orthogonality, with
Lucene having the highest amount of orthogonality in comparison
to the other techniques. However, taking the best performing GUI-
augmented configuration for each baseline decreases the overall
amount of orthogonality, as between 92% and 82% of bugs with
buggy files ranked within the top-10 are shared. This indicates that
even when we take baseline techniques that operate using different
text representations and exhibit orthogonality, our GUI-augmentation
methods are able to improve upon all of them despite their differences.

5 THREATS TO VALIDITY

Construct Validity: Our study’s main threat to construct validity is
rooted in the potential subjectivity of deriving our manually labeled
bug localization dataset. To minimize this threat, we performed a
rigorous manual labeling procedure (see Sec. 3.3.2), wherein two
authors independently coded the buggy files for each bug report,
and conflicts were resolved via discussion with a third participant.
All authors involved in this process were experienced in Android
development and achieved a high inter-coder agreement (88.33%).
Internal Validity: Threats to internal validity of our study con-
clusions stem from our selected baseline TR-based bug localization
techniques. We observed a variation in effectiveness across our
four studied TR-based localization baselines, however, despite this
differing performance, the main commonality in our experiments



On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization

was the introduction of our GUI-based augmentation techniques,
which were the main factor in the improvements we observed.
Conclusion Validity: To mitigate threats to conclusions, we made

use of the common Hits@K metric, focusing our analysis on Hits@10.

This choice was motivated by prior work that illustrated that au-
tomated bug localization techniques are generally only helpful to
developers when they return relevant buggy files in the top 10
results [78]. Furthermore, in addition to examining effectiveness in
terms of Hits@10, we also performed a fine-grained analysis into
the impact that the GUI-based augmentation techniques have on
the number of buggy files that get moved into/out of the top 10.
External Validity: To mitigate threats to external validity we stud-
ied 2,628 combinations of our GUI-based augmentation methods,
for 80 bug reports from 39 diverse, and popular applications. Given
the effort required to build our dataset, the amount of data we
analyze is sizable, but a larger set of reports would provide addi-
tional confidence in our results. We analyzed four TR-based bug
localization techniques, and our results may not generalize beyond
these.

6 RELATED WORK

Text-Retrieval-based Bug Localization (TRBL) Techniques. A
TRBL retrieval engine, powered by a TR technique, typically lever-
ages the textual similarity between the code and the bug report
to the determine the relevance of a code artifact to a query (less/-
more likely to be buggy). The relevance score is determined using
different techniques and representations of artifacts and reports.
Researchers have proposed a variety of TRBL techniques over
the past two decades [12], spanning Information Retrieval (IR) tech-
niques [34, 46, 47, 50, 55, 63, 67, 67] and, more recently, Deep Learn-
ing (DL)-based approaches [24, 30, 40, 77, 87, 88, 91]. Common IR
techniques include classical algorithms such the Unigram Model
(UM) [67], Cluster Based Document Model (CBDM) [67], Vector
Space Model (VSM) [92, 99], Latent Semantic Indexing (LSI) [55],
and Latent Dirichlet Allocation (LDA) [53]. DL-based approaches
include models such as CNNs [40, 77, 87, 88], RNNs [30, 91], Trans-
formers [24] and combinations of these [86, 89, 90]. Other ap-
proaches combine IR and DL techniques [48]. The advantage of
IR techniques is their simplicity and efficiency, since they do not
require training. Conversely, DL-based approaches are more expen-
sive as they require training using a large amount of labeled data.
The advantage of DL techniques is they can generate more informa-
tive document representations. To assess the effect of a technique
on TRBL when leveraging GUI interaction data, we used two IR-
based techniques, namely BugLocator [26, 27] and Lucene [2], and
two DL models, namely SentenceBERT [69] and UniXCoder [36].
Information Sources for TRBL. To address the lexical gap
between bug reports and source code and produce more accurate
suggestions of buggy artifacts [15, 56, 93], researchers have utilized
additional information related to the bug reports and code. The
most prominent sources of information used by existing approaches
include similar bug reports [68, 85], code structure [75, 80, 94], code
version history [79, 80, 94, 95], stack traces [60, 82, 94], part-of-
speech information [100], and combinations of the above [71, 85].
Particularly relevant is the work that leverages system execution
traces for TRBL [60], however, collecting these traces are typically
expensive since they require program instrumentation or a suite

11

ICSE °24, April 14-20, 2024, Lisbon, Portugal

of test cases with high-coverage [49]. We study how GUI interac-
tion data of Android apps can be used to help bridge the lexical
gap between bug reports and code, and thus help retrieve relevant
buggy files more effectively. To the best or our knowledge, we are
the first to explore the use of such data for TRBL. This data can be
easily collected via the Android infrastructure without requiring
app instrumentation [9], when the apps are used or the bugs are
reproduced, manually or via automated execution tools [58].

Re-ranking Methods for TRBL. Prior work has used the afore-
mentioned sources of information to produce a ranking of code
artifacts or to re-rank them based on an existing ranking. The goal
is to rank the buggy artifacts higher than non-buggy artifacts. We
identify at least three general re-ranking methods used in the litera-
ture: boosting, filtering, and query (re)formulation. Prior techniques
have boosted the similarity/relevance score of code artifacts to
improve their ranking [52, 70, 85]. Other techniques filter out irrel-
evant code artifacts from the artifact search space or initial ranking
[51]. Query (re)formulation aims to encode relevant textual infor-
mation in the query for improving retrieval [19-21, 23, 33, 56, 64].
Researchers focused on three main reformulation methods: query
expansion [17, 43] (which adds extra terms to the query), query
replacement [35, 37] (which substitutes the query with a new one),
and query reduction [23, 33, 65, 66] (which identifies/removes terms
in the query that hinder retrieval). Inspired by this work, we assess
the effect of using GUI interaction information on TRBL perfor-
mance via boosting, filtering, query expansion, and query replace-
ment. Our future work will explore how query reduction along with
GUI information can be combined to improve TRBL performance.

Software Types for TRBL. The vast majority of prior work
has proposed system-agnostic TRBL approaches [53, 62, 99]. This
means they were designed to operate on any kind of software sys-
tem (e.g., desktop applications, libraries, and command line projects)
and any bug report, without differentiating the bug type. Recent
work has target deep learning projects [44]. Our study focuses on
Android apps and GUI-based bugs, which represents the majority
of bug types found in the Android ecosystem [16, 73, 74].

7 CONCLUSION & FUTURE WORK

We reported an empirical study that found a high positive effect
of mobile app GUI interaction data on text-retrieval-based bug lo-
calization, using a manually-constructed bug localization dataset
consisting of 80 bug reports with GUI metadata and four bug lo-
calization baseline techniques. The measured effect indicates GUI
interaction data can help bridge the lexical gap between bug reports
and source code, resulting in better rankings of buggy files sug-
gested to developers. Our future work will investigate other ways
of augmenting existing localization techniques via GUI interaction
data for mobile apps and other types of systems and conducting
human studies that aim to validate the benefits of using GUI inter-
action information for bug localization in practice.

ACKNOWLEDGEMENTS

This work is supported by the U.S. NSF under grants: CCF-1910976,
CCF-2343057, CCF-1955837, CCF-2007246, and CCF-1955853. Any
opinions, findings, and conclusions expressed herein are the authors
and do not necessarily reflect those of the sponsors.



ICSE °24, April 14-20, 2024, Lisbon, Portugal J. Mahmud, N De Silva, S.A. Khan, S.H. Mostafavi, SM. H. Mansur, O Chaparro, A. Marcus, and K. Moran.

REFERENCES

localization. In SANER’21. 166—-176.

Bug Reports for Android Apps. In ICSE’22. 1045-1057.

[33] Juan Manuel Florez, Oscar Chaparro, Christoph Treude, and Andrian Marcus.

2021. Combining query reduction and expansion for text-retrieval-based bug

[1] 2023. Android UlAutomator- https://developer.android.com/training/testing/ [34] Gregory Gay, Sonia Haidu'c, Andrian Marcus, and Tim Menzies.} 2009. On the
other-components/ui- automator. use of relevance feedback in IR-based concept location. In ICSM’09. 351-360.
2023. Apache Lucene- https:/lucene.apache.org. [35] Marek Gibiec, Adam Czauderna, and Jane Cleland-Huang. 2010. Towards mining
2023. Create a fragment - https://developer.android.com/guide/fragments/ replacement queries for hard-to—retr1§ve traces. 11? ASE'10. 2457254‘ .
create. [36] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
2023. HuggingFace - https://huggingface.co/. UniXcoder: Unified Cross-Modal Pre-training for Code Representation. ACL’22
2023.  Introduction to activities - https://developer.android.com/guide/ (?022)' . .
components/activities/intro-activities. [37] Jin Guo, Marek Gibiec, and Jane Cleland-Huang. 2017. Tackling the term-
2023. Markor - https:/f-droid.org/packages/net.gsantner.markor/. mismatch problem in automated trace retrieval. EMSE 22 (2017), 1103-1142.
2023. Markor - https://github.com/gsantner/markor/issues/1020/. [38] Madeleine Havranek, Carlos Bernal-Cardenas, Nathan Cooper, Oscar Chaparro,
2023. sentence-transformers/msmarco-distilbert-base-v3 - https://huggingface. Denys ?oshyvanykj and Kevin Moran. 2021. V25: A Tool for Transl,atmg Video
co/sentence-transformers/msmarco-distilbert-base-v3. Recordings of Mobile App Usages into Replayable Scenarios. ICSE’21-C (2021),
2023. System Tracing - https://developer.android.com/topic/performance/ 657,68‘ . . . . .
tracing, [39] Emily Hill, Zachary P Fry, Haley Boyd, Giriprasad Sridhara, Yana Novikova, Lori
2023. UI-Bug-Localization- https://github.com/SageSELab/UI-Bug-Localization- POHOij andlK Vijay-Shanker. 2008. AMAP: automz'ltlcally mining abbrevxan)«)n
Study. expansions in programs to enhance software maintenance tools. In MSR’08.
2023.  UniXcoder - https://github.com/microsoft/CodeBERT/tree/master/ 79-88. . . . ) . .
UniXcoder#2-similarity-between-code-and-nl. [40] Xuan Huo, Ferdian Thung, Ming Li, David Lo, and Shu-Ting Shi. 2019. Deep

] Shayan A Akbar and Avinash C Kak. 2020. A large-scale comparative evaluation Transfer Bug_ Locahzatl.onA 1SE PP,(OG 2019)’_ 171‘_ L .
of IR-based tools for bug localization. In MSR'20. 21-31. [41] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Carlos Bernal-Cérdenas, Nathan Cooper, Madeleine Havranek, Kevin Moran Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic
Oscar Chaparro, Denys Poshyvanyk, and Andrian Marcus. 2023. Translating Code Search. CoRR abs/1909.09436 (2019). arXiv:1909.09436 . .
Video Recordings of Complex Mobile App UI Gestures into Replayable Scenarios. [42] Jack J°h’?5°n’ Jgnfiyed Mahmud, ,TYler WendAIanLAi, K?vm Moran, Julia Bubln,
TSE 49, 4 (2023), 1782-1803. and Mattia Fazzini. 2022. An Empirical Investigation into the Reproduction of
Carlos Bernal-Cardenas, Nathan Cooper, Kevin Moran, Oscar Chaparro, Andrian B‘?g Rep (')rts for Android APP s. SANER'22 (2022). .
Marcus, and Denys Poshyvanyk. 2020. Translating video recordings of mobile [43] Misoo Kim, Yopngk}foung Kim, and ElijEOk Lee. 2021. A Novel Autf)matlc
app usages into replayable scenarios. In ICSE’20. 309-321. Query Expansion with Word Embedding for IR-based Bug Localization. In

] Nicolas Bettenburg, Sascha Just, Adrian Schréter, Cathrin Weiss, Rahul Prem- IS‘SRE 211 276-287. . ..
raj, and Thomas Zimmermann. 2008. What Makes a Good Bug Report?. In [44] Misoo Kim, Youngkyoung Kim, and Eunseok Lee. 2022. An Empirical Study
SIGSOFT 08/FSE-16. 308—318. of IR-based Bug Localization for Deep Learning-based Software. In ICST’22.

] Pamela Bhattacharya, Liudmila Ulanova, Iulian Neamtiu, and Sai Charan Koduru. 1?8_139' . . . , i
2013. An empirical analysis of bug reports and bug fixing in open source android (45] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein.
apps. In CSMR’13. 133143, 2018. Automated Testing of Android Apps: A Systematic Literature Review.

] Claudio Carpineto and Giovanni Romano. 2012. A survey of automatic query IEEE Transactions on Relia,bility' (2018)', X . .
expansion in information retrieval. CSUR 44, 1 (2012), 1-50. [46] Anil Koyuncu, Tegawende F. Bissyandé, Dongsun Kim, Kul‘ L'lu, Jacques Klein,

] Oscar Chaparro, Carlos Bernal-Cérdenas, Jing Lu, Kevin Moran, Andrian Marcus, Monperrus Martin, and Yves L? Trgon. 201?' D&C: A Divide-and-Conquer
Massimiliano Di Penta, Denys Poshyvanyk, and Vincent Ng. 2019. Assessing Appfoach to IR-l{ased Bug Localization. AerAabs/1902.02703 (20A19). .
the Quality of the Steps to Reproduce in Bug Reports. In ESEC/FSE’19. 86-96. [47] Adrlgn I_(uhn, S_tephane Ducasse, and Tudor Girba. 2007. Semantic clustering:

] Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. 2017. Using observed Identifying topics in source code. IST 49, 3 (2007), 230-243. .
behavior to reformulate queries during text retrieval-based bug localization. In [48] An Ngoc Lam, Anh, Tuan' Nguyen,'Hofan Anh Nguyen, z{nd Tien N. Nguyen.
ICSME’17. 376-387. 2017. Bug Localization with Combination of Deep Learning and Information

] Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. 2019. Using bug RgtnevaL In ICPC, 17. 218-229. . . .
descriptions to reformulate queries during text-retrieval-based bug localization. (49] Tien-Duy B. Le, RichardJ. Oe“,ta‘Y"’ and David Lo. 2015. Informat{on Retrieval
EMSE 24 (2019), 2947-3007. and Spectrum Based Bug Localization: Better Together. In ESEC/FSE’15. 579-590.

] Oscar Chaparro, Juan Manuel Florez, Unnati Singh, and Andrian Marcus. 2019. [50] Wei Li, ngax}] ,Ll’ Yunlong Ming, Wel)lao Dai, Shi Ying, and Mengtlng Yuan.
Reformulating queries for duplicate bug report detection. In SANER'19. 218-229. 2022. An empirical study of the effectiveness of IR-based bug localization for

] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano large-scalg mdustr@l projects. EMSE 27, 2 (2022), 47. o
Di Penta, Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detect- (51] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich. 2007.
ing Missing Information in Bug Descriptions. In ESEC/FSE’17. 396-407. Feature location via information retrieval based filtering of a single scenario

] Oscar Chaparro and Andrian Marcus. 2016. On the reduction of verbose queries e)fgcutlon tra({e. In ASE 0?‘ 234-243. L.
in text retrieval based software maintenance. In ICSE’16-C. 716-718. (52] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang,

] Agnieszka Ciborowska and Kostadin Damevski. 2022. Fast changeset-based bug and Lingming Zhang. 2021. Bogstlng coverage-)based fault localization via
localization with BERT. In ICSE’22. 946-957. graph-based representation learning. In ESEC/FSE’21. 664-676.

] Nathan Cooper, Carlos Bernal-C’ardenas, Oscar Chaparro, Kevin Moran, and [53] Stacy K Lukins, Nicholas A Kraft, and Letha H Etzkorn. 2008. Source code
Denys Poshyvanyk. 2021. It Takes Two to Tango: Combining Visual and Textual retrieval for bug localization using latent dirichlet allocation. In WCRE’08. 155-
Information for Detecting Duplicate Video-Based Bug Reports. In ICSE’21. 957- 164. . . . . .

969. [54] Andrian Marcus and Jonathan I Maletic. 2001. Identification of high-level

] Steven Davies and Marc Roper. 2013. Bug localisation through diverse sources conce'pt clones in source code. In ASE’01. 107711,4,' .
of information. In ISSREW”13. 126—131. [55] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan I Maletic.
Steven Davies, Marc Roper, and Murray Wood. 2012. Using bug report similarity 2004. zi‘m information retrieval approach to concept location in source code. In
to enhance bug localisation. In WCRE’12. 125-134. WCRE 04' 214-223. .. . . .
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: [56] Chrls Mills, Esteban Parra, J_evgemp Pantiuchina, Gabriele Bavota,_ and Sonia
Pre-training of Deep Bidirectional Transformers for Language Understanding. Halfiuc. 2020. On the re'latl'onshlp between bug reports and queries for text
In NAACL’19. retrieval-based bug localization. EMSE 25 (2020), 3086-3127.

] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013. [57] Kevin Moran, Mario Linares—Vésquez, Carlos Bemal—C.érdenag ar}d Denys Poshy-
Feature location in source code: a taxonomy and survey. JSEP 25, 1 (2013), vanyk. 2015. Auto-completing Bug Reports for Android Applications. In (FSE’15).

673-686.
53-95.

] Fan Fang, John Wu, Yanyan Li, Xin Ye, Wajdi Aljedaani, and Mohamed Wiem [58] Kevin Moran, Mario Linares-Vasquez, Carlos Bernal-Cardenas, Christopher
Mkaouer. 2021. On the classification of bug reports to improve bug localization. Vendome, and‘Denys Pos?hyvanyk. %016' Automatically I?lscoverlng, Reporting
Soft Computing 25 (2021), 7307-7323. and Reproducing Android Application Crashes. In ICST’16. 33-44.

] Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018. [59] Kevin Moran, Ali Yachnes, George Purnell, Junayed Mal’lmud, Michele Tufano,
Automatically translating bug reports into test cases for mobile apps. In ISSTA’18. C'a\l.‘los Bernal' Cafden.as, Denys Poshyvanyk, anc% Za'ch H'Doubler. 2022. An Em-
141-152. pirical Investigation into the Use of Image Captioning for Automated Software

] Sidong Feng and Chunyang Chen. 2022. GIFdroid: Automated Replay of Visual Documentation. In SANER22. 514-525. . .

[60] Laura Moreno, John Joseph Treadway, Andrian Marcus, and Wuwei Shen. 2014.

On the Use of Stack Traces to Improve Text Retrieval-Based Bug Localization.
In ICSME’14. 151-160.


https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/training/testing/other-components/ui-automator
https://lucene.apache.org
https://developer.android.com/guide/fragments/create
https://developer.android.com/guide/fragments/create
https://huggingface.co/
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://f-droid.org/packages/net.gsantner.markor/
https://github.com/gsantner/markor/issues/1020/
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v3
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v3
https://developer.android.com/topic/performance/tracing
https://developer.android.com/topic/performance/tracing
https://github.com/SageSELab/UI-Bug-Localization-Study
https://github.com/SageSELab/UI-Bug-Localization-Study
https://github.com/microsoft/CodeBERT/tree/master/UniXcoder#2-similarity-between-code-and-nl
https://github.com/microsoft/CodeBERT/tree/master/UniXcoder#2-similarity-between-code-and-nl
https://arxiv.org/abs/1909.09436

On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization

[61]
(62]

(63

e
=

o
&

3
&

<
=t

3
it

=
2

(77

[78

[79

[80

(81

Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, and Nachiappan
Nagappan. 2013. The design of bug fixes. In ICSE’13. 332-341.

Denys Poshyvanyk. 2009. Using information retrieval to support software
maintenance tasks. In ICSME’09. 453-456.

Denys Poshyvanyk, Yann-Gaél Guéhéneuc, Andrian Marcus, Giuliano Antoniol,
and Vaclav Rajlich. 2007. Feature location using probabilistic ranking of methods
based on execution scenarios and information retrieval. TSE 33, 6 (2007), 420—
432.

Mohammad Masudur Rahman, Foutse Khomh, Shamima Yeasmin, and Chan-
chal K Roy. 2021. The forgotten role of search queries in ir-based bug localization:
an empirical study. EMSE 26, 6 (2021), 116.

Mohammad Masudur Rahman and Chanchal K Roy. 2017. Improved query
reformulation for concept location using coderank and document structures. In
ASE’17. IEEE, 428-439.

Mohammad Masudur Rahman and Chanchal K. Roy. 2018. Improving IR-Based
Bug Localization with Context-Aware Query Reformulation. In ESEC/FSE’18.
621-632.

Shivani Rao and Avinash Kak. 2011. Retrieval from Software Libraries for Bug
Localization: A Comparative Study of Generic and Composite Text Models. In
MSR’11. 43-52.

Michael Rath, David Lo, and Patrick Mader. 2018. Analyzing requirements and
traceability information to improve bug localization. In MSR’18. 442-453.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. EMNLP’19 (2019).

Joseph John Rocchio Jr. 1971. Relevance feedback in information retrieval. The
SMART retrieval system: experiments in automatic document processing (1971).
Zhendong Shi, Jacky Keung, Kwabena Ebo Bennin, and Xingjun Zhang. 2018.
Comparing learning to rank techniques in hybrid bug localization. Applied Soft
Computing 62 (2018), 636—648.

Yang Song and Oscar Chaparro. 2020. Bee: A tool for structuring and analyzing
bug reports. In ESEC/FSE’20. 1551-1555.

Yang Song, Junayed Mahmud, Nadeeshan De Silva, Ying Zhou, Oscar Chaparro,
Kevin Moran, Andrian Marcus, and Denys Poshyvanyk. 2023. BURT: A Chatbot
for Interactive Bug Reporting. In ICSE’23. 170-174.

Yang Song, Junayed Mahmud, Ying Zhou, Oscar Chaparro, Kevin Moran, An-
drian Marcus, and Denys Poshyvanyk. 2022. Toward interactive bug reporting
for (android app) end-users. In ESEC/FSE’22. 344-356.

Aoi Takahashi, Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki. 2018.
A preliminary study on using code smells to improve bug localization. In ICPC’18.
324-327.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, undefinedukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All You Need (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 6000-6010.
Bei Wang, Ling Xu, Meng Yan, Chao Liu, and Ling Liu. 2020. Multi-dimension
convolutional neural network for bug localization. TSC 15, 3 (2020), 1649-1663.
Qiangian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the
Usefulness of IR-Based Fault Localization Techniques. In ISSTA’15. 1-11.
Shaowei Wang and David Lo. 2014. Version History, Similar Report, and Struc-
ture: Putting Them Together for Improved Bug Localization. In ICPC’14. 53-63.
Shaowei Wang and David Lo. 2016. Amalgam+: Composing rich information
sources for accurate bug localization. JSEP 28, 10 (2016), 921-942.

Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. 2007.
How long will it take to fix this bug?. In MSR’07: ICSE Workshops 2007. 1-1.

13

[82]

[83

(84

[85

[86

[87

[88

[89

[90]

[o1

[92

[93]

[94

[95

[96

[97]

[98

[99]

[100

[101

ICSE °24, April 14-20, 2024, Lisbon, Portugal

M. Wen, R. Wu, and S. Cheung. 2016. Locus: Locating bugs from software
changes. In ASE’16. 262-273.

Tyler Wendland, Jingyang Sun, Junayed Mahmud, Syeda Mansur, Steven Huang,
Kevin Moran, Julia Rubin, and Mattia Fazzini. 2021. Andror2: A Dataset of
Manually-Reproduced Bug Reports for Android apps. In MSR’21. 600-604.
Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage
Challenge Corpus for Sentence Understanding through Inference. In NAACL18.
1112-1122.

Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong
Mei. 2014. Boosting bug-report-oriented fault localization with segmentation
and stack-trace analysis. In ICSME’14. 181-190.

Yan Xiao and Jacky Keung. 2018. Improving bug localization with character-
level convolutional neural network and recurrent neural network. In APSEC’18.
703-704.

Yan Xiao, Jacky Keung, Kwabena E Bennin, and Qing Mi. 2019. Improving bug
localization with word embedding and enhanced convolutional neural networks.
IST 105 (2019), 17-29.

Yan Xiao, Jacky Keung, Qing Mi, and Kwabena E Bennin. 2017. Improving
bug localization with an enhanced convolutional neural network. In APSEC’17.
338-347.

Yan Xiao, Jacky Keung, Qing Mi, and Kwabena E Bennin. 2018. Bug localization
with semantic and structural features using convolutional neural network and
cascade forest. In EASE’18. 101-111.

Geunseok Yang and Byungjeong Lee. 2021. Utilizing topic-based similar commit
information and CNN-LSTM algorithm for bug localization. Symmetry 13, 3
(2021), 406.

Shouliang Yang, Junming Cao, Hushuang Zeng, Beijun Shen, and Hao Zhong.
2021. Locating faulty methods with a mixed RNN and attention model. In
IcpC’21.

Zhou Yang, Jieke Shi, Shaowei Wang, and David Lo. 2021. IncBL: Incremental
Bug Localization. In ASE’21. 1223-1226.

Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to rank relevant files
for bug reports using domain knowledge. In FSE’14. 689-699.

Klaus Changsun Youm, June Ahn, and Eunseok Lee. 2017. Improved bug local-
ization based on code change histories and bug reports. IST 82 (2017), 177-192.
Tao Zhang, Wenjun Hu, Xiapu Luo, and Xiaobo Ma. 2019. A commit messages-
based bug localization for android applications. IFSEKE 29, 04 (2019), 457-487.
Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William GJ Halfond.
2023. Automatically Reproducing Android Bug Reports Using Natural Language
Processing and Reinforcement Learning. In ISSTA’23.

Yu Zhao, Ting Su, Yang Liu, Wei Zheng, Xiaoxue Wu, Ramakanth Kavuluru,
William GJ Halfond, and Tingting Yu. 2022. ReCDroid+: Automated End-to-End
Crash Reproduction from Bug Reports for Android Apps. TOSEM 31, 3 (2022),
1-33.

Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, and William
GJ. Halfond. 2019. ReCDroid: Automatically Reproducing Android Application
Crashes from Bug Reports. In ICSE’19. 128-139.

Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where Should the Bugs Be
Fixed? More Accurate Information Retrieval-Based Bug Localization Based on
Bug Reports. In ICSE’12. 14-24.

Yu Zhou, Yanxiang Tong, Taolue Chen, and Jin Han. 2017. Augmenting bug
localization with part-of-speech and invocation. IJSEKE 27, 06 (2017), 925-949.
Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian
Schroter, and Cathrin Weiss. 2010. What Makes a Good Bug Report? TSE 36, 5
(2010), 618-643.



	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 GUI-related Information
	2.2 Motivating Example

	3 Design of Empirical Study
	3.1 Mapping GUI Terms to GUI-Related Files
	3.2 Text-Retrieval Augmentation Methods
	3.3 Dataset Construction
	3.4 Baseline Techniques
	3.5 Approach Configurations
	3.6 Metrics and Comparative Evaluation

	4 Empirical Results
	4.1 RQ1: Impact of Number of Screens
	4.2 RQ2: Impact of GUI Information Type & Augmentation Method
	4.3 RQ3: Best Performing Configurations
	4.4 Discussion

	5 Threats to Validity
	6 Related Work
	7 Conclusion & Future Work
	References

