
On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization

Junayed Mahmud

junayed.mahmud@ucf.edu

University of Central

Florida

Orlando, FL, USA

Nadeeshan De Silva

kgdesilva@wm.edu

William & Mary

Williamsburg, VA, USA

Safwat Ali Khan

skhan89@gmu.edu

George Mason University

Fairfax, VA, USA

Seyed Hooman

Mostafavi

smostaf6@gmu.edu

George Mason University

Fairfax, VA, USA

SM Hasan Mansur

smansur4@gmu.edu

George Mason University

Fairfax, VA, USA

Oscar Chaparro

oscarch@wm.edu

William & Mary

Williamsburg, VA, USA

Andrian Marcus

amarcus7@gmu.edu

George Mason University

Fairfax, VA, USA

Kevin Moran

kpmoran@ucf.edu

University of Central

Florida

Orlando, FL, USA

ABSTRACT
One of the most important tasks related to managing bug reports is

localizing the fault so that a fix can be applied. As such, prior work

has aimed to automate this task of bug localization by formulating

it as an information retrieval problem, where potentially buggy files

are retrieved and ranked according to their textual similarity with

a given bug report. However, there is often a notable semantic gap
between the information contained in bug reports and identifiers or

natural language contained within source code files. For user-facing

software, there is currently a key source of information that could

aid in bug localization, but has not been thoroughly investigated –

information from the graphical user interface (GUI).

In this paper, we investigate the hypothesis that, for end user-

facing applications, connecting information in a bug report with

information from the GUI, and using this to aid in retrieving po-

tentially buggy files, can improve upon existing techniques for

text retrieval-based bug localization. To examine this phenome-

non, we conduct a comprehensive empirical study that augments

four baseline text-retrieval techniques for bug localization with

GUI interaction information from a reproduction scenario to (i)

filter out potentially irrelevant files, (ii) boost potentially relevant

files, and (iii) reformulate text-retrieval queries. To carry out our

study, we source the current largest dataset of fully-localized and

reproducible real bugs for Android apps, with corresponding bug

reports, consisting of 80 bug reports from 39 popular open-source

apps. Our results illustrate that augmenting traditional techniques

with GUI information leads to a marked increase in effectiveness

across multiple metrics, including a relative increase in Hits@10

of 13-18%. Additionally, through further analysis, we find that our

studied augmentations largely complement existing techniques,

pushing additional buggy files into the top-10 results while gener-

ally preserving top ranked files from the baseline techniques.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ICSE ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0217-4/24/04.

https://doi.org/10.1145/3597503.3608139

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
Application specific development environments.

KEYWORDS
Bug Localization, GUI, Natural Language Processing, Mobile apps

ACM Reference Format:
Junayed Mahmud, Nadeeshan De Silva, Safwat Ali Khan, Seyed Hooman

Mostafavi, SM Hasan Mansur, Oscar Chaparro, Andrian Marcus, and Kevin

Moran. 2024. On Using GUI Interaction Data to Improve Text Retrieval-

based Bug Localization . In 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE ’24), April 14–20, 2024, Lisbon, Portugal. ACM,

New York, NY, USA, 13 pages. https://doi.org/10.1145/3597503.3608139

1 INTRODUCTION
The process of bug report management has been demonstrated to

consume large amounts of developer’s time [61, 81]. One of themore

difficult bug management tasks is related to localizing the described
fault, as it requires reasoning between the description of a bug and

the source code of a software project. This process is often further

complicated by quality issues related to various elements of bug

descriptions, such as reproduction steps, stemming from inaccurate

or incomplete information provided by reporters [15, 18, 22, 72].

Researchers have been working to automate bug localization
by developing approaches that automatically retrieve and rank

potentially buggy files or code snippets to help expedite localization

effort. A substantial body of research formulates bug localization as

a text retrieval-based (TR) problem [27] — see Section 6. In general,

these approaches use the bug report to formulate a query and return

a list of source code elements (files, classes, methods, etc.), ranked
by their likelihood that they contain the bug.

The key assumption made by TR-based bug localization ap-

proaches is also their biggest limiting factor. That is, while such

techniques operate on the premise that bug reports and the cor-

responding buggy source code will share terms, research has also

documented a notable semantic gap between the information that

reporters provide in bug reports, and the identifiers and the docu-

mentation written by developers in source code [54, 57, 101]. Re-

searchers have recognized this issue, and have attempted to aug-

ment TR-based bug localization approacheswith various techniques.

1

https://doi.org/10.1145/3597503.3608139
https://doi.org/10.1145/3597503.3608139

ICSE ’24, April 14–20, 2024, Lisbon, Portugal J. Mahmud, N De Silva, S.A. Khan, S.H. Mostafavi, SM. H. Mansur, O Chaparro, A. Marcus, and K. Moran.

Many approaches focused on processing the text in the bug reports

or the source code (e.g., through abbreviation expansion [39]), while
others focused on query reformulation, or automatically augment-

ing a query generated from a bug report using information various

sources [66]. Another line of research focused on using information

orthogonal to the code and bug report vocabulary to boost the

ranks of the retrieved buggy code elements, such as, execution in-

formation (extracted form execution or stack traces [82, 94]), code

dependencies (extracted via static source code analysis [29]), or

historical information (extracted from repositories [94]).

In this paper, we explore whether it is possible to improve TR-

based bug localization leveraging an information source not yet

explored by prior work – information from the graphical user in-
terface (GUI). GUIs encode latent patterns related to application

features in both pixel-based (i.e., screenshots) and metadata-based

(i.e., html/uiautomator) representations [59]. Our rationale is that
GUI interaction information can be easily obtained and represents

"high-level" execution related information, where code elements are

directly linked to higher level program functionality through the

UI, as opposed to "low-level" execution information extracted from

execution traces, which can be difficult to acquire. Once collected,

this high-level GUI information can then be used to boost rankings

of related buggy code elements. Further, unlike low-level execution

traces, GUI-related information is rich in textual elements, and can

also be used for query reformulation. Intuitively, if the buggy code

is related to the app screen where the bug is observed, then the GUI

and interaction information from that screen can be used to help

locate the buggy code easier. Conversely, if the buggy code is not

related to the buggy screen or user interactions, then we expect

that the GUI-related information will not hinder the bug localiza-

tion process. We refer to the collective data related to both user

interactions and the software interface itself as GUI interaction data.
To investigate whether GUI interaction data can aid in TR-based

bug localization, we carry out a comprehensive empirical study

that augments four baseline TR-based approaches: BugLocator [99],
a Lucene-based approach [2], and two neural-based text embedding

approaches (based upon the sentenceBERT [69] and UniXCoder [36]

neural language models). The GUI information that we use for aug-

mentation is collected from a recorded set of GUI interactions that

reproduce a given bug, which can be easily collected manually

by developers, or automatically by any of a number of bug repro-

duction techniques [31, 42, 98]. Once these GUI interactions are

collected, we assess the effect on retrieval performance by using

information from the GUI to: (i) filter out potentially irrelevant files

that are not related to the buggy GUI screen; (ii) boost potentially

relevant files that are related to the buggy GUI screen; and (iii)

reformulate queries using information from the buggy GUI screen.

In this study, we focus on localizing bugs in Android apps, which

typically manifest themselves in the GUI. This means that these

bugs lead to unexpected app behavior (or a faulty state) that is

visible to the user, including app crashes (e.g., when the app sud-

denly closes), navigation issues (e.g., when the app leads the user to

an unexpected screen), and incorrect output shown on the screen,

among others. As such, to support our study, we have manually

sourced and validated the current largest dataset of fully-localized

and reproducible bugs for Android applications with corresponding

bug reports, consisting of 80 bug reports from 39 popular open

source Android applications. We compared our baseline TR-based

bug localization approaches with thousands of augmented configu-

rations using different types and amounts of GUI interaction data,

as well as different query reformulation techniques.

Our results illustrate the benefit of leveraging GUI interaction in-

formation, as the best-performing configurations of the techniques

augmented with GUI information outperformed their baseline for

all TR-based techniques, with Hits@10 improving by 13-18% over-

all. A deeper investigation into these results show that our studied

augmentations help rank more bugs in the top-10 retrieved re-

sults, while generally preserving the top-ranked buggy files from

the baseline techniques. Overall, the results support our rationale

for leveraging GUI information to improve bug localization, and

suggest that future work should explore this topic further.

In summary, this paper makes the following contributions:

• A new dataset of 80 fully-localized and reproducible Android

bugs from 39 popular Android apps, complete with bug reports

and recorded scenarios (and metadata) that reproduce each bug,

• A quantitative analysis of the effect of using GUI interaction

information on the effectiveness of four TR-based bug localiza-

tion techniques, via three augmentation methods: (i) filtering,

(ii) boosting, and (iii) query reformulation, and

• A replication package [10] that contains our dataset, code, and

experimental infrastructure to aid in the replication and repro-

duction of our results.

2 BACKGROUND & MOTIVATION
In this section, we provide background on the various GUI-related

terms and concepts related to our study, explain our methods for

augmenting text-retrieval techniques for bug localization with GUI-

related information, and include a motivating scenario that illus-

trates the intuition behind the augmentation methods.

2.1 GUI-related Information
In this paper, we analyze GUI information of Android apps, namely

GUI screens, GUI components (i.e., the GUI widgets/elements

that compose those screens), and Exercised Components (i.e., the
GUI components that the user interacts with via taps, swipes, etc.).
To illustrate the definitions of these various GUI-related concepts,

we provide an example in Figure 1, oriented around a set of screens

that reproduce the bug described in the report shown in Figure 2.

1 GUI screens represent the UI canvas upon which GUI compo-
nents are drawn, wherein the screen is composed of a hierarchy of

interactive components and GUI containers that group individual

components together such that they may adapt to various screen

sizes and dimensions. In Android, screens are referred to as Activi-
ties [5], and each activity corresponds to one or more .java/.kotlin

class files that define the functionality of the screen, and a set of

resource .xml files that describe the layout of components on the

screen. The code and resource files directly make up the static defini-

tion of the screen in the code. In addition to Activities, Android also

allows for the definition of Fragments [3], which are reusable groups

of GUI components (e.g., menus, dialog boxes...). A GUI screen
can display a Window, as shown in the buggy screen of Figure 1- 1 ,

which can display a dialog, toast, or other GUI component in the

foreground of the Activity. Fragments and Windows are also de-

fined in their own .java/.kotlin class files and .xml resource files.

2

On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

<node bounds="[849,1479][996,1626]"
checkable="false"
checked="false"
class="android.widget.ImageButton”
clickable="false"
content-desc="Create a new file or folder"
enabled="true"
focusable="true"
focused="false" index="0"
long-clickable="true"
package="net.gsantner.markor"
password="false"
resource-id="android:id/fab_add_new_item"
scrollable="false" selected="false"
text=""/>

Buggy GUI Screen

Exercised GUI Component

Document
Activity
.java

NewFile
Dialog
.java

Document
Edit

Fragment
.java

More
Fragment
.java

GUI Screen

GUI Screens GUI Components Src Code Files GUI-Related Files

- Component Image

Component Metadata

GUI Screen Information

Exercised GUI Component Info

All GUI Component Info

Main
Activity
.java

 Activity: MainActivity

Window: NewFileDialog

 Activity: MainActivity

Window: None

1) MainActivity.java
2) MoreFragment.java
3) NewFileDialog.java

1) MainActivity.java

1) DocumentActivity.java
2) DocumentEditFragment.java
3) DocumentRelayActivity.java
4) DocumentShareIntoFragment.java
5) IntroActivity.java
6) MoreInfoFragment.java
7) SeingsActivity.java
8) OpenEditorActivity.java
9) TextConverter.java

Matches

1 2 3 4

Component
Resource ID

Matches

Figure 1: Example of GUI-related information used in this study

In addition to the static definitions of GUI screens in class and re-
source files, it is also possible to extract a runtime representation of

a given GUI screen using the Android uiautomator framework [1],

which queries a device’s ViewServer to extract metadata about the

various GUI components currently rendered on the screen. Fig-

ure 1 illustrates the last two screens of the bug reproduction for

the Markor app [6], along with their Activity (MainActivity), and

Window (NewFileDialog) information. Note that both screens cor-

respond to the same Activity, but the second screen displays a

foreground popup defined in the NewFileDialog Java class file.

2 GUI Components are the UI elements, defined by developers

and rendered to the screen, with which end-users interact via GUI-

level actions (taps, swipes, long touches, etc.). The presentation

attributes (color, size, component type, etc.) are defined in the app

source code and in the resource files described earlier. These com-

ponent definitions can be attached to Event Listeners that cause

Java/Kotlin code to be executed when a certain GUI-level action

(e.g., tap) is performed on the component. To link the component
definition to the app Java/Kotlin code, unique Resource IDs are used.

As mentioned earlier, in addition to the static definition of GUI com-

ponents, a dynamic representation can also be extracted using the

uiautomator framework. This dynamic component metadata is

shown as in Figure 1- 2 for the button in the bottom right hand

side of the first GUI Screen (highlighted in yellow). This metadata

contains information related to the size, class, and resource-id of

this component, among other attributes. If you refer to the screen

flow shown in Figure 1- 1 , the button was the component that
the user interacted with to navigate to the buggy screen with the

dialog box. We refer to components that a user interacted with

during a GUI-level execution scenario as Exercised Components.

2.2 Motivating Example
In order to illustrate our intuition about leveraging GUI interaction

information to improve bug localization, in this subsection we

illustrate the effect that this information has on an example bug

report from the Markor [7] app shown in Figure 2.

The Markor app is a text-editor primarily aimed at supporting

quick note-taking and managing to-do lists. It is also relatively pop-

ular – the GitHub repository currently has 2.6k stars. For each file

created, Markor supports different ways of formatting the text (e.g.,
Markdown) that is configurable through a note creation dialog. The

Bug Report Title: New file dialogue always says
Type: Markdown rather than previous type used

Steps to reproduce:

1. Create a new file, change type to e.g. todo.txt, save it
2. Create another new file
3. Observe the dialogue correctly remembers .todo.txt as the previously
used file extension, but below that it says Type: Markdown

… the second new file is named something.todo.txt, so the app is correctly
remembering the user's last seings, but nonetheless it looks odd and
confusing to the user.

It also makes it harder when you want to make a Markdown file as you
have to choose something other than Markdown then choose Markdown
again before the file extension will change to .md.

Figure 2: Example Bug Report from the Markor[7] App

observed buggy behavior of the report (illustrated in Figure 2) is re-

lated to the formatting method of a given file being reset in the File

creation/editing dialog, wherein it always defaults to “Markdown”,

even when it is initially set to something else. For instance, if a user

were to set the note to “plain-text” formatting, and then later return

to edit the note, the formatting type would be reset to “Markdown”.

Let’s consider an existing TR-based bug localization approach,

BugLocator [99], which uses term similarity and document length

in conjunction with a Vector Space Model (VSM), to rank buggy

files. When we use the bug report from Figure 2 to BugLocator

as a query, the top 3 returned files are (1) SearchOrCustomText-

DialogCreator.java, (2) TodoTxtHighlighter.java, and (3) TextFor-

mat.java. However, as shown in Figure 1- 3 the actual buggy file is

NewFileDialog.java, as the bug occurs in the Dialog box used for

creating and modifying files. This file is ranked 35th by BugLocator.

However, for this particular bug, we can observe in Figure 1- 1 that

the screen which exhibits the buggy behavior is composed of the

MainActivity activity, and the NewFileDialog fragment that makes

up the popup dialog box shown in the screenshot. For this partic-

ular bug, the java class file NewFileDialog.java that corresponds to
the window fragment in the buggy screen is the buggy file (shown
in Figure 1- 3). Hence, if the TR-based bug localization approach

had knowledge of this GUI-related information, it likely could have

improved the ranking of the buggy NewFileDialog.java file.

This example illustrates the potential promise of leveraging GUI

interaction data to improve existing text retrieval-based bug local-

ization approaches. While the buggy file for a given report may

not always correspond neatly to the class that implements a buggy

3

ICSE ’24, April 14–20, 2024, Lisbon, Portugal J. Mahmud, N De Silva, S.A. Khan, S.H. Mostafavi, SM. H. Mansur, O Chaparro, A. Marcus, and K. Moran.

screen’s Activity or Window, information related to event-listeners

for various GUI-components that are relevant to a bug reproduction

scenario, or screen information from earlier bug reproduction steps,

may help identify and rank buggy files. In this study, we aim to

investigate the potential for such GUI Interaction Information to

augment TR-based bug localization approaches.

3 DESIGN OF EMPIRICAL STUDY
The goal of this study is to investigate: (1) the extent to which GUI

interaction information from Android apps leads to more effective

automated bug localization, and (2) how this information can be

most effectively used to increase bug localization effectiveness.

With this in mind, we formulate the following overarching research

question (RQ), refined into four specific research RQs:

RQ: What is the impact of using GUI interaction information
on text-retrieval bug localization performance?
• RQ1:What is the effect of using GUI interaction information from
different numbers of screens on bug localization performance?

• RQ2:What is the effect of the type of GUI interaction information
and augmentation method on bug localization performance?

• RQ3:What are the overall best-performing combinations of using
GUI interaction information?
To answer these research questions, we have developed methods

to link GUI Information to potentially buggy files and to augment

existing TR-based bug localization techniques with this file infor-

mation, which we describe in Secs. 3.1 and 3.2. Additionally, we

have manually sourced the largest corpus of fully-localized and

reproducible Android bugs, consisting of 80 bug reports from 39

popular open source Android apps (see Sec. 3.3).

We study four baseline techniques – one existing TR-based bug

localization technique, one traditional term matching technique,

and two neural text-embedding approaches, described in Sec. 3.4.

We assess the performance of these baseline techniques in locating

buggy files for the 80 bugs, with and without using GUI-information

augmentation. We measure bug localization performance using the

metrics described in Sec. 3.6, and answer the RQs in Sec. 4.

3.1 Mapping GUI Terms to GUI-Related Files
Given that the goal of our study is to determine how GUI informa-

tion can be used to augment bug report-based fault localization, we

aim to map terms extracted from GUI Screens and Components
to source code files that may be useful for the localization process.

These GUI-related terms are later used for query reformulation,

whereas the GUI-Related Files are used to re-rank retrieved files.

Our study assumes the scenario wherein the developer has access to

a GUI-level reproduction scenario, which contains screenshots, the

uiautomator metadata, and the resource-id and GUI-level action

(e.g., tap, long touch) for each screen interaction. This information

is easy to collect, and could be collected manually, wherein the de-

veloper records a video and translates this video to a scenario using

a tool such as V2S [13, 14, 38] or GifDroid [32], or can be collected

automatically using tools that reproduce Android bug reports such

as Yakusu [31], RecDroid+ [97, 98], or the recent approach by Zhang

et al. [96]. Given this information, we aim to link key terms from
GUI-screens and GUI-components to potentially buggy files, or

GUI-Related Files. Given that the bug occurs at the end of a given

Table 1: Mapping of GUI Terms to GUI-Related Files
GUI Information Terms Files

Screen Activity and Window

names queried from the

Android ViewServer

.java files with file

names matching the

terms

(Exercised) GUI Screen

Components

resource-id(s) of the
(interacted) components

from the dynamic

uiautomator metadata

.java files that contain
invocations of the

resource-id(s) in
event listeners

reproduction scenario, but the buggy behavior may be triggered or

exercised earlier in the scenario, we explore using information from

the buggy screen and the information from the prior 1-3 screens.
Next, we describe how we identify GUI-Related Files from GUI
Screen and component metadata (using the relevant terms).

We define three different types of GUI-Related Files: (1) those
related to the Activity and Window information from a given GUI
Screen; (2) those related to the Exercised Components; and (3)

those related to all the components that appear on the selected

screens of a given reproduction scenario, which we refer to as GUI
Screen Components. We next discuss how each type of GUI-
Related File is derived, also summarized in Table 1.

- Mapping GUI Screen terms to Files: To derive the GUI-Related
Files for a given GUI screen, the Activity and Window names from

the dynamic UI metadata generated by the Android ViewServer are

taken as terms and directly matched with their corresponding .java

class file names. For instance, the GUI Screen information for the

two screens shown in Figure 1 is MainActivity, MoreFragment, and

NewFileDialog as shown in Figure 1- 4 , which map to the Java files

with the same names.

- Mapping GUI Screen Component terms to Files: To derive

GUI-Related Files for all GUI components of the considered screens,

the resource-id for all components for a given screen that support

interaction are extracted from the uiautomator metadata and used

as terms, and then invocations of these resource-id terms are auto-

matically identified in event-listeners in the app source code. The

corresponding files that contain these event listeners are taken as

the GUI-Related Files for Screen Components. This generally leads

to a large set of GUI-Related Files, as matching the resource-ids of

a large number of interactive components on a given set of screens

to event-listeners typically leads to many affected files. For the

example shown in Figure 1, the resource-ids for 41 components

are extracted, which in turn map to event-listeners in 77 code files,

some of which are shown in Figure 1- 4 .
- Mapping Exercised GUI Component terms to Files: To de-

rive GUI-Related Files for an Exercised GUI Component, the same

approach as described for GUI Screen Components is followed, but

only for those components on the screen which were exercised as

part of a bug reproduction scenario. Any source code file that con-

tains an event-listener for the component is identified is considered

as a GUI-Related File. For the example in Figure 1, there is only one

Exercised Component, and only one invocation of this exercised

component, in the MainActivity.java file (shown in Figure 1- 4).
It is important to note that in our study we do not only consider

each type of GUI information in isolation, but also consider com-

binations, represented as unions of the GUI Information Terms for

two different types. We illustrate our considered combinations in

Table 2, organized according to the number of files they typically

return. Note that GUI Information terms stemming from Exercised

4

On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 2: Types of GUI-Related Files
Low Number of Files
GUI Screen

Exercised GUI Components

Medium Number of Files
GUI-Screen + Exercised GUI Components

High Number of Files
GUI Screen Components

GUI Screen + GUI Screen Components

GUI Components are a subset of the GUI Screen Components, thus

we do not combine these information types. Additionally we ignore

components without resource-ids and do not consider interactions

with the Android Back button from the bottom navigation bar as

exercised components, as interactions with this component cannot

be mapped back to the event listeners in the app code.

3.2 Text-Retrieval Augmentation Methods
Below, we describe how the GUI-Related Files can be used to aug-

ment existing techniques for text retrieval via Query Reformulation

and Re-Ranking, to (potentially) improve bug-localization.

In the context of our bug localization process, typically text-

retrieval techniques use a pre-processed version of the bug report

as a query to retrieve source code files that contain similar terms to

those used in the bug report. The method of calculating query-to-

document similarity can vary from relatively simple methods, such

as using term frequency (e.g., tf-idf vectors), to more complicated

techniques that use neural text embeddings.

3.2.1 Reformulating Queries using GUI Terms. The first type
of augmentation techniques that we define are Query Reformula-
tion techniques [33]. These techniques modify the textual query

used by TR-based techniques to retrieve relevant files. Given this

setting, we define the following two reformulation techniques:

- Query Expansion: In this technique, the dynamic Activity/Win-

dow names for GUI screens, and GUI component resource IDs for a

given GUI component type (e.g., Exercised Components or Screen

Components) are appended to the bug report to form the query.

- Query Replacement: In this technique, the dynamic Activi-

ty/Window names for GUI screens and GUI component resource

ids for a given GUI component type (e.g., Exercised Components or

Screen Components) are used to replace the bug report as the query.

3.2.2 Re-Ranking using GUI-Related Files. We explore three

different techniques for re-ranking files using GUI information:

- Filtering: In this strategy, all files that do not match the GUI-

Related Files for a given information type are filtered out from the

corpus of potentially buggy files.

- Boosting: In this strategy, files that match the GUI-Related Files

are boosted to the top of the ranked list of results returned by a

given text-retrieval technique while preserving the relative order

of those files originally ranked by the technique.

- Filtering + Boosting: The final re-ranking strategy combines

both filtering and boosting, wherein files are filtered using a GUI

information type that has a higher number of files, and boosting is

performed with a type that returns a lower number of files. This is

due to the fact that filtered files, cannot be subsequently boosted.

3.3 Dataset Construction
3.3.1 Bug Report Selection. Given that no prior dataset of fully-

localized and reproducible bug reports for Android apps exists, we

constructed our own using a rigorous manual process. We built a

ground-truth bug localization dataset by using as many bug reports

as possible from the AndroR2 dataset [42, 83], which consists of 180

manually reproduced bug reports for popular open source Android

applications hosted on GitHub. These reports were systematically

collected from the project’s issue trackers according to the following

criteria, as reported by Wendland & Johnson [42, 83]: they contain

the label "bug", were opened in the past five years and closed at the

time of the mining (November 2020), contain the word "steps" in

their content, and report a non-trivial bug (i.e., did not occur by

opening the app). The bug reports are grouped into four categories

that represent a bug type, namely output-, cosmetic-, navigation-,
and crash-related bugs. Furthermore, each bug report is associated

with additional (meta)data, including the commit ID of the app

version that contains the bug, the buggy app’s apk file, and the link

to the GitHub issue where it was originally submitted.

We explored all bug reports in the AndroR2 dataset and utilized

a subset of reports that fit the necessary criteria for our study (i.e.,
they were reproducible and able to be localized to source code files).

To identify the buggy files among the set of all files from the buggy

version of the app, we followed a systematic procedure that involved

at least two authors examining each bug report. Specifically, two

authors inspected the content of the bug reports (including the com-

ments) to find any references to the commits that fixed the bug. They

then inspected the commitmessages and specific code changes to de-

termine if they appeared to fix the bugs. Among the 180 bug reports

in AndroR2, one bug report does not exist anymore, and eight bug re-

ports do not contain any obvious commit ID or version information

for the bug being reported, making it difficult to extract the buggy

source code. As a first step in filtering the dataset, we excluded

these bug reports and investigated the remaining 171 bug reports.

In checking for bug-fixing commits, the two authors were able

to source 120 bug reports with bug-fixing commit IDs that were

confirmed to fix the reported bug, and on average, each bug re-

port contained ≈1.90 bug-fixing commit IDs. When no commit was

mentioned in the bug reports, or the fixed commit ID mentioned

in bug reports did not appear to resolve the error, the two authors

followed references to duplicate reports and collected the refer-

enced commits, again confirming that these commits did indeed

fix the bug. We followed this procedure for the remaining 51 bug

reports (of the 171 filtered reports) and were successful in gathering

bug-fixing commit IDs in 27 cases – resulting in 147 bug reports

with confirmed bug-fixing commit IDs. Although in certain cases

our ground-truth uses the bug fixing commits from duplicate bug

reports, in this study we use the original bug report contents as

reported by AndroR2 as the query for TR-based bug localization.

Once bug-fixing commits were identified, two authors performed

two rounds of coding, during which they compared the file diffs

between the buggy (i.e., the latest app release commit ID before the

bug was reported) and the fixed version of the app (based on the

commit IDs) to identify the files that contained bug fixing changes.

If there were disagreements, a third author discussed the cases with

the two coders and the three authors reached a consensus. Note

that this process only identified code files from the app’s buggy

version that had bug fixes (i.e., code changes), thus excluding code

files that were added in the fixed app version and ignoring changes

in white space and code comments. This set of 147 bug reports

5

ICSE ’24, April 14–20, 2024, Lisbon, Portugal J. Mahmud, N De Silva, S.A. Khan, S.H. Mostafavi, SM. H. Mansur, O Chaparro, A. Marcus, and K. Moran.

formed the set used for isolating the buggy files and collecting the

required bug reproduction scenarios and GUI information.

3.3.2 Coding & Collecting GUI Interaction Data. The ground-
truth construction process was executed independently by two

authors across two sessions. During the first session, two authors

randomly selected 24 bug reports from all failure types of the An-

droR2 dataset among the 147 bug reports filtered as described above.

The two authors worked together in this session and discussed

each bug in order to derive a common understanding of the coding

process. Given that some of the studied baseline techniques only
operate on .java files, we discarded two bugs where the erroneous

behavior was isolated the .xml resource files and one bug contain-

ing buggy Kotlin files. As such, 21 bug reports were coded as part

of this first session.

To collect the GUI interaction data for these 21 bug reports, we

followed the record-and-replay methodology used by Cooper et
al. [25], which includes installing and using the buggy app on

an emulator, recording a usage scenario that reproduces the bug

while collecting screen recordings and getevent traces (i.e., traces
that include low-level GUI-related information) using the Android

getevent utility. These scenarios are then replayed in a step-by-step

manner by converting the recorded getevent actions to a set of

adb commands. During the step-by-step replay, screenshots and

GUI metadata were collected before and after each GUI action that

includes information on the Activity and Window, as well the GUI

hierarchy extracted via the uiautomator tool that contains the UI

metadata for all components displayed on the screen. Since the

AndroR2 bug reports provide the steps to reproduce the bug (S2Rs)

and the buggy APK of the apps, we were able to reproduce the

bugs on an emulator. Specifically, two authors reproduced the bugs

manually on Pixel 2 Android emulator with the specific Android

version mentioned in the AndroR2 dataset. Among the 21 bug

reports, we could not reproduce the bug for one bug report due to

a lack of getevent support for recording rotation events. Therefore,

we included the remaining 20 bug reports in our dataset.

In the second round of coding, the two authors worked with the

remaining 123 bug reports. During this process 16 additional bug

reports were identified to have bug fixing changes on .xml files only,

14 more contained Kotlin code, one used web-based technologies

and hence had no Java/Kotlin/resource files, and two bug reports

with tangled commits (i.e., a large number of file changes) in the

fixed commits. We excluded these 33 bug reports resulting in 90

bug reports having at least one buggy Java file.

During the collection process for the GUI Interaction data for the

remaining 90 bug reports, were not able to collect GUI interaction

data for 30 bug reports due to the one of following reasons: (1)

the buggy behavior could not be reproduced; (2) bugs could not

be reproduced due to the constraints of the step-by-step replay

process (e.g., logging into some apps was not possible); and (3) the

step-by-step replay process has limitations including the inability

to rotate the screen or execute fast swipe gestures. We excluded

these 30 reports from our dataset, leaving 60 bug reports.

Finally, the two authors then worked separately to identify rele-

vant buggy files reaching consensus in 53/60 (≈88.33%) of the cases
(i.e., the set of buggy code filesmatched).When there was no consen-

sus, the three authors mutually finalized the buggy files. In total, we

identified the buggy files and GUI metadata containing screenshots,

XMLs and event execution information for 80 bug reports (20 in the

initial round and 60 in the subsequent round). The collection of the

GUI interaction data took ≈60-70 hours for the 80 bug reports orig-

inating from 39 apps (i.e., ≈1.5 hours per app). However, it should
be noted that in practice, the GUI interaction data that we collect

in this study could be collected automatically through any number

automated input generation tools for Android [31, 45, 96–98].

3.4 Baseline Techniques
3.4.1 BugLocator. Zhou et al. introducedBugLocator [99], which
uses a revised vector space model (rVSM) to obtain a ranked list

of buggy files when a bug report is used as a query. Initially, a

classic VSM based approach calculates the cosine similarity be-

tween the vector representations of the query and a document.

BugLocator then ranks longer documents higher, assuming that

these files are more likely to contain bugs. BugLocator is also

capable of learning from previously fixed bugs by constructing a

three-layer heterogeneous graph and computing a similarity score

between past confirmed buggy files and the corpus of files under

analysis. However, in this paper, we do not make use of this feature

of BugLocator, as we do not have the necessary data.

3.4.2 Neural Embeddings via SentenceBERT. In the second

baseline technique, we use the SentenceBERT [69] neural language

model, which is a modification of a pre-trained Bert model [28].

SentenceBERT augments the traditional Bertmodel with siamese

and triplet networks allowing for better support of tasks such as

clustering and semantic search with less computational overhead.

The model was fine-tuned on a popular natural language inference

dataset [84] and outperforms state-of-the-art approaches.

We use the sentence transformer msmarco-distilbert-base-v3 im-

plementation [8] from the HuggingFace library [4] for our imple-

mentation of SentenceBERT. The model uses 768-dimensional

vector space and has a maximum sequence length of 510. As such,

while all of our bug reports fit within this sequence length, cer-

tain source code files may exceed it. Thus, we split source code

files into different segments with a maximum length of 510 tokens,

and created an embedding for each segment. We compute cosine

similarities between the bug report embedding and each segment

of each source code file, and take the segment with the highest

similarity value to the query as the similarity value for a given file,

which we use for ranking the files.

3.4.3 Neural Embeddings via UniXCoder. In addition to neu-

ral language models trained on general natural language under-

standing tasks, we also wanted to explore how GUI information

may complement document embeddings generated from a model

trained primarily for code understanding tasks. As such, for the

third baseline, we use the UniXCoder [36] model that is based

on a multi-layer Transformer [76] architecture. We use the open-

source implementation of UniXCoder [11] to create embeddings of

the source code and bug reports. The unixcoder-base model is pre-

trained on the CodeSearchNet [41] dataset, one of the largest model

training datasets for code understanding tasks containing two mil-

lion code-comment pairs (across six programming languages). Sim-

ilar to SentenceBERT, this model also inputs a maximum token

6

On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: Combinations of the Filtering+Boosting re-ranking meth-
ods and GUI-Related File types considered. GS = GUI Screen; EGC =
Exercised GUI Component; SC = GUI Screen Components.

Flt
Bst GS EGC GS+EGC SC GS+SC

GS
EGC

GS+EGC ✓ ✓
SC ✓ ✓ ✓

GS+SC ✓ ✓ ✓ ✓

length, but of 512 opposed to 510. Therefore, we follow the same

segmentation and similarity score calculation method as we do for

SentenceBERT, again using a cosine similarity measure.

3.4.4 Lucene. For the fourth baseline, we use Lucene [2], an

open-source Java project that provides features to retrieve relevant

documents. Lucene uses a vector space model and tf-idf document

vector representations to rank buggy files based on an input query.

3.4.5 Preprocessing ofQueries and Source Code Files. We

perform the following preprocessing steps, commonly used in past

work on TR-based bug localization, for both queries (bug report-

s/reformulated queries) and source code files: splitting camel case

and removing numbers, punctuation, tokens of length 1 − 2, any

special characters not part of English alphabets, and Java keywords.

These steps were used for all techniques except source code for

BugLocator as this technique applies its own preprocessing [99].

3.5 Approach Configurations
Our study has fourmain configuration parameters: (i) the number of

GUI screens preceding the buggy screen to be used for GUI-Related

File derivation (we investigate between 2-4 screens, including the

buggy screen); (ii) the type of GUI interaction information used (we

investigate the five combinations shown in Table 2); (iii) the query

reformulation techniques used (query replacement or expansion);

and (iv) the re-ranking techniques used (filtering only, boosting

only, and filtering + boosting).

We examine all combinations of these four parameters. However,

one of our re-ranking techniques (filtering + boosting) is tightly

coupled to the type of GUI information used, and as such we only

investigate the feasible combinations (i.e., where boosted files are

a subset of filtered files) of the information shown in Table 3. The

reason we cannot explore all types of information is due to the fact

that we cannot filter using a more restrictive set of GUI-Related

Files (e.g., GUI Screen-related Files) and boosting with a less restric-

tive set (e.g., GUI Screen Component-related Files) as many (if not

all) of the files filtered out would be the same that would then be

subsequently boosted. In total, we explore 657 configurations
of GUI Information for each baseline, for a total of 2,628 config-
urations across all of our experiments. Table 4 shows the total

number of configurations, where the number of configurations for

each augmentation technique is calculated by multiplying feasible

combinations of GUI types with the number of GUI screens.

3.6 Metrics and Comparative Evaluation
We adopt Hits@K, a metric widely used in the literature [20, 65, 99],

to evaluate the performance of augmenting our baseline techniques

with GUI-related information.

Table 4: Number of configurations. GIT = GUI Information
Type; RRT = Re-ranking Technigues; QE = Query Expansion;
QR = Query Replacement

Augmen-
tation

#
GIT (RRT)

#
GIT (QE)

#
GIT (QR)

#
Screens

×
configs

Filtering
5 3 15

5 5 3 75

5 5 3 75

Boosting
5 3 15

5 5 3 75

5 5 3 75

Filtering 9 3 27

+ 9 5 3 135

Boosting 9 5 3 135

Query 5 3 15

Reform. 5 3 15

Total Number of Configurations 657

Hits@K: This metric computes the percentage of queries for which

a bug localizer retrieves at least one buggy file within the top-K files

returned. We report results for K=1,5,10 as past work has illustrated

that the likelihood that a developer would look beyond 10 results is

low [78]. We adopt this metric as it supports a practical scenario for

bug localization. Hits@K values fall in [0, 1], where higher values

mean higher bug localization effectiveness.

Relative Improvement to Hits@10: In addition to the Hits@K

metric, given that the aim of our study is to compare the baseline

techniques with their augmented counterparts, we also defined a

comparative metric that measures the improvement of Hits@10

of one of our studied GUI Information configurations to a given

baseline technique. This is defined as:

𝐻𝑖𝑡𝑠@10𝐺𝑈 𝐼 − 𝐻𝑖𝑡𝑠@10𝐵𝑎𝑠𝑒

𝐻𝑖𝑡𝑠@10𝐵𝑎𝑠𝑒

4 EMPIRICAL RESULTS
In this section, we present the results of our empirical analysis

organized by RQ. Of the 2,628 configurations of baseline techniques

augmented with GUI interaction information, 1,080 configurations

resulted in improvement over the baseline in terms of Hits@10, and

1,548 configurations resulted in no improvement or a degradation

in effectiveness over the baselines. However, encouragingly, we find

that a small set of similar configurations of GUI-based augmentation

methods tend perform best across all baseline techniques, and more

encouraging still, these best performing configurations result in

marked improvements to Hits@10 (e.g., up to 18%) with little degra-

dation to the ranks of buggy files already ranked within the top

10 by the respective baseline techniques. That is, for a small set of

configurations that perform well across baselines, augmenting TR-

based bug localization techniques with GUI interaction information

provides a largely complementary improvement in effectiveness.

4.1 RQ1: Impact of Number of Screens
The number of configurations across different numbers of screens

that exhibit positive % improvement over baselines are shown in Ta-

ble 5. Table 6 reports the average, minimum, and maximum positive
improvement over each respective baseline technique across all
studied GUI Information configurations when different numbers of

7

ICSE ’24, April 14–20, 2024, Lisbon, Portugal J. Mahmud, N De Silva, S.A. Khan, S.H. Mostafavi, SM. H. Mansur, O Chaparro, A. Marcus, and K. Moran.

Table 5: Number of configurations exhibiting positive % im-
provement in Hits@10 over baselines across # of screens.

Approach 2 Screens 3 Screens 4 Screens # Screens
BugLocator 90 115 110 315

SentenceBERT 61 69 75 205

UnixCoder 101 114 97 312

Lucene 80 86 82 248

Total 332 384 364 1,080

Table 6: Average positive % improvement of Hits@10 over
baselines across the number of screens.

Approach 2 Screens 3 Screens 4 Screens
min avg max min avg max min avg max

BugLocator 1.75 7.86 17.54 1.75 7.78 17.54 1.75 7.74 17.54

SentenceBERT 1.72 5.51 12.07 1.72 8.05 15.52 1.72 8.11 15.52

UnixCoder 1.79 7.28 14.29 1.79 7.69 12.50 1.79 6.76 14.29

Lucene 1.56 5.55 9.37 1.56 5.65 10.94 1.56 5.79 12.50

Overall 1.56 6.55 9.37 1.56 7.29 10.94 1.56 7.10 12.50

screens from the bug reproduction scenario are used. Given that we

want to understand which screen configuration provides the best

improvement, here we do not discuss configurations that did not

improve over the baseline. The highest average improvement for

each baseline technique is shown in bold. From the table we can ob-

serve that there is no one configuration for number of screens that

performs best across all techniques. However, considering average

overall improvement, using information from 3 screens (i.e., the
buggy screen and two prior screens) provides the highest overall

improvement over the baseline techniques, whereas using infor-

mation from 4 screens provides the largest improvement for two

techniques (Lucene and SentenceBERT). It should be noted that

4 screens leads better performance in terms of the max improve-
ment of a single configuration over the baselines. However, the

average values correspond to the highest increase across all studied
configurations.

Summary of Findings for RQ1:We find that using GUI informa-

tion from the buggy screen, and two preceding screens provides

the highest overall increase in effectiveness across our studied

baseline TR-based bug localization techniques. This indicates that

relevant GUI information for bug localization is contained in not

only in the buggy screen, but also in the preceding screens.

4.2 RQ2: Impact of GUI Information Type &
Augmentation Method

In RQ2, we first aim to investigate the impact of using GUI-related

files sourced from different types and combinations of GUI-Interaction

Information (e.g., GUI Screens (GS), Exercised GUI Components

(ECG), GS+ECG, Screen Components (SC), and GS+SC) on our augmen-

tation methods. To do this, in Table 7, which is organized by aug-

mentation method, we report the best performing GUI Interaction

Information type for each of our five augmentation methods and

for each baseline technique. This allows us to examine whether

there are trends in the best performing information types across

our studied techniques. Dashes signify that no configuration of

the reported augmentation method improved over the baseline.

Table 7 illustrates a few notable trends across the different augmen-

tation techniques. For instance, we can observe that for Filtering,

Table 7: Best performing GUI Information configurations
according to % relative improvement for Hits@10.

Approach Augmentation Information Type # Screens HIT@10 Improvement
Filtering SC 3 1.75

Boosting GS 4 12.28

BugLocator Filtering+Boosting SC(F)+GS(B) 4 14.04

Query Expansion SC 2 8.77

Query Replacement GS+SC 2 1.75

Filtering SC 2 5.17

Boosting GS+EGC 3 15.52

SentenceBERT Filtering+Boosting SC(F)+[GS+EGC(B)] 3 15.52

Query Expansion — — —

Query Replacement — — —

Filtering — — —

Boosting GS 4 12.50

UniXCoder Filtering+Boosting SC(F)+GS(B) 4 12.50

Query Expansion SC 2 14.29

Query Replacement GS+SC 3 8.93

Filtering SC 3 4.69

Boosting GS 4 9.38

Lucene Filtering+Boosting SC(F)+GS(B) 4 12.50

Query Expansion GS 4 6.25

Query Replacement — — —

SC (which map to the largest number of GUI-related files) is always

the best performing information type (except for UniXCoder). This

is not entirely surprising as, due to the large number of associated

GUI-related files, it is the least restrictive filtering.

For Boosting, GS (or GS+ECG) performs best across all baseline

techniques. Given that GS information targets a smaller number

of GUI-related files that often encompass large portions of screen

functionality, it follows that boosting such targeted information is

likely to have a larger positive effect on ranking buggy files. These

same trends also hold for Filtering+Boosting, wherein filtering with

GUI Interaction Information that is mapped to a larger number

of GUI-related files (e.g., SC) and boosting with a more targeted

information type that maps to fewer files (e.g., GS, ECG) generally
leads to the best results. Finally, we find that Query Replacement
generally does not lead to an improvement over the baseline, but

Query Expansion does lead to improvements – however, there is no

clear trend in the best performing Information type for expansion.

Turning our attention to the impact of different augmentation

methods we observe further confirmation of trends that began to

surface when examining the impact of different GUI-Interaction

Information types. First, we examine the reformulation and re-

ranking methods in isolation to better understand their effects.

Figure 3 shows a box-and-whisker plot illustrating the relative im-

provement that both query expansion and replacement have over

our studied baseline techniques. The number of configurations for

each augmentation method are given above each plot. This plot

shows that, in general, Query Replacement rarely results in any

improvement over the baseline technique. On the contrary, query

expansion does generally result in improvement for every baseline

except SentenceBERT. This is likely due to the abstract semantic

embeddings that are produced by SentenceBERT which may be

able to more naturally retrieve GUI-related information due to its

learned, rich term similarities. Furthermore, query expansion seems

to have the largest positive effect on UniXcoder, which is another

neural model trained on code as opposed to natural language. We

speculate that this improvement may be due to the fact that embed-

ding file names into UniXCoder’s code-specific embedding space

makes it far more likely for those files to be retrieved as compared

to SentenceBERT. The observation that query replacement tends

to perform poorly indicates that there is often important lexical

8

On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

%
R

el
at

iv
e

H
it

s@
10

Im

pr
ov

em
en

t

-20

0

 20

ery Expansion
ery Replacement

15 15 15 15 15 15 15 15 60 60

BugLocator Sent.BERT UniXCoder Lucene Overall

Figure 3: Relative % Improvement of Query Reformulation

information contained within bug reports for TR-based localiza-

tion techniques, as removing this information and replacing it with

GUI-related file names generally degrades performance (sometimes

markedly so). Conversely, expanding the bug report query with GUI-
related terms does appreciably improve most techniques, signaling

that expanding queries with GUI-related file names is helpful.

Figure 4 illustrates the same box and whisker plot, but for our

three re-ranking methods. Form this plot we can observe that only

a small number of filtering configurations improve upon the base-

line techniques. This follows from our findings in RQ2 which il-

lustrate that only filtering configurations with a GUI information

type that maps to a large number of GUI-related files perform

well, as this limits the overall number of files filtered out of the

searchable corpus. However, while filtering only sometimes leads

to improvements, nearly every configuration of Boosting leads to

appreciable improvements over the baseline techniques. Combining

Filtering and Boosting together leads to the highest overall median

improvements, but with more variability in the results due to poor

performance of filtering with certain information types. The results

related to Boosting illustrate that re-ranking GUI-related files to the

top of list of retrieved results is nearly always beneficial, which in-

dicates that these files have a far higher probability of being buggy

compared to other files that were not linked to GUI information.

Summary of Findings for RQ2: We find that for Filtering, SC

information leads to the largest improvement, and for Boosting,

GS information leads to the largest improvement. Overall, filter-

ing with information types which map to a higher number of

GUI-related files (i.e., filtering out fewer files), and boosting with

information types that map to a lower number of files, tend to

perform best. Filtering only provides benefit in a small number

of cases with limited GUI Information types, whereas boosting

is nearly always beneficial. We also observe that Query Replace-

ment rarely leads to performance improvements, whereas Query

Expansion does lead to improvement for every baseline except

SentenceBERT, albeit without any single GUI Information type

performing best. Combining Filtering and Boosting together leads

to the highest overall improvements, but these configurations are

more sensitive to the information types used.

4.3 RQ3: Best Performing Configurations
RQ3 aims to take a deeper look at the best performing individual

GUI-augmentation configurations for each baseline technique. We

report this information in Table 8 where the best performing con-

figurations were selected by taking the top performing techniques

according to Hits@10, and breaking ties according to Hits@5. If

there were still ties after considering Hits@5, then we report all

Table 8: Best Performing Combinations
Baseline/ Filtering Boosting GUI Info # H@1 H@5 #Bugs Top10
Config GUI Info GUI Info Query Exp. Scrns (H@10)

BugLocator

None None None 0.39 0.60 57 (0.71)

SC GS GS+SC 3 0.33 0.76 67 (0.84)

SentenceBERT

None None None 0.23 0.56 58 (0.72)

SC GS+EGC None 3 0.30 0.72 67 (0.84)

GS+SC GS+EGC None 3 0.30 0.72 67 (0.84)

SC GS+EGC EGC 3 0.30 0.72 67 (0.84)

GS+SC GS+EGC EGC 3 0.30 0.72 67 (0.84)

UnixCoder

None None None 0.14 0.62 56 (0.70)

SC GS SC 4 0.31 0.75 64 (0.80)

GS+SC GS SC 4 0.31 0.75 64 (0.80)

Lucene

None None None 0.40 0.75 64 (0.80)

SC GS None 4 0.36 0.80 72 (0.90)

GS+SC GS None 4 0.36 0.80 72 (0.90)

%
R

el
at

iv
e

H
it

s@
10

Im

pr
ov

em
en

t

-20

0

20

40

BugLocator Sent.BERT UniXCoder Lucene Overall

Filtering
Boosting
Filtering+Boosting

15 15 27 15 15 27 15 15 27 15 15 27 60 60 108

Figure 4: Relative % Improvement of Re-Ranking

such configurations. The first major observation that can be made

from Table 8 is that BugLocator and Lucene, which use more

traditional text-retrieval baselines (i.e.,tf-idf document representa-

tions) tend outperform the techniques that use neural embeddings

(SentenceBERT and UniXCoder). It should be noted that, given the

goal of our study is to examine the benefit of GUI interaction infor-

mation, we used SentenceBERT and UniXCoder in a zero-shot

setting, wherein they were not fine-tuned on bug report informa-

tion. Future work may examine these in a fine-tuned setting.

The next major trend illustrated in Table 8 is that the best per-

forming configurations offer a marked improvement (in terms of

Hits@5 and Hits@1-) compared to the baseline techniques, with

relative improvements ranging from 12.5%-18% for Hits@10, and

6%-29% for Hits@5. This means that, for all baselines, the best per-

forming configurations result in the inclusion of buggy files for

an additional 9-10 bugs in the top 10 results. Furthermore, we find

that the best performing configurations of our GUI-augmentation

methods are strikingly consistent. That is, Filtering+Boosting is

always the best re-ranking technique, using SC or GS+SC GUI in-

formation for Filtering, and either GS or GS+EGC information for

boosting always leads to the largest improvements over the base-

line techniques. This means that any one of these configurations

can likely be applied to a TR-based baseline and improve the re-

sults. We find that certain baselines and configurations seem benefit

from query expansion with varying GUI information types. This

is consistent with the observations from the previous RQ. Finally,

we performed a Wilcoxon signed rank test on the first rank of a

buggy file for all bugs (even those ranked outside top-10) across all

techniques using a 95% confidence interval. We found that all of

the best performing GUI-augmentation methods outperform their

9

ICSE ’24, April 14–20, 2024, Lisbon, Portugal J. Mahmud, N De Silva, S.A. Khan, S.H. Mostafavi, SM. H. Mansur, O Chaparro, A. Marcus, and K. Moran.

Table 9: In-Depth Analysis of Best Performing overall GUI-related augmentation configuration.
Baseline/ Filtering Boosting Number of Hits@10 # Bugs Out10 # Bugs In10 # Bugs Inside # Bugs Inside # Bugs Inside # Bugs Outside # Bugs Outside
Config GUI Info GUI Info Screens → In10 → Out10 10 Improved 10 Deteriorated 10 Unchanged 10 Improved 10 Deteriortated

BugLocator SC GS 4 0.81 8 0 16 21 20 10 4

SentenceBERT SC GS 4 0.81 7 0 22 15 21 12 1

UniXCoder SC GS 4 0.79 7 0 21 13 22 15 0

Lucene SC GS 4 0.90 8 0 16 24 24 6 1

corresponding baseline techniques to a statistically significant de-

gree, save for BugLocator, which had a p-value of 0.44. However,

given that past work has illustrated that TR-based bug localization

typically only provides benefits to developers if the buggy files is

ranked within the top-10 results [78], we must note that BugLoca-

tor saw the benefit of the largest overall increase in Hits@10 from

our GUI-augmentation methods across all of our studied baselines.

Summary of Findings for RQ3:We find that the best perform-

ing configurations of our GUI-augmentation methods combine

filtering and boosting, using SC or SC+GS to filter, and GS or GS+EGC

to boost, and lead to an improvement in Hits@10 ranging from

12.5%-18%, and 6%-29% for Hits@5.

4.4 Discussion
We aim to see whether a single GUI augmentation configuration can

performwell across all baselines. To this end, we first ranked our 657

configurations for each baseline in terms of their performance in

Hits@10, using the average performance of HITS@1 and HITS@5

to break ties. We found two configurations that perform identically,

and chose the simpler configuration of the two to analyze. This

configuration uses the Filtering+Boosting with SC information for

Filtering and GS information for boosting, using data from 4 screens.

In general, an augmentation affects the rankings of most of the

bugs, however we are less concerned with those that are far from

top-10 (they are still hard to retrieve), or those already in top-10

(they are still easy to retrieve). We consider an augmentation to be

good if it ranksmore bugs in top-10 than its baseline (i.e., at least one
of their buggy files rank in top-10), in other words bugs that were

hard to retrieve with the baseline are now easy to retrieve with the

augmentation.With that in mind, for the GUI augmentationmethod

configuration we identify as best, we examined how it performed

in terms of moving bugs from outside the top 10 ranks to inside

the top 10 ranks (and vice versa) as well as the number of buggy

file that improved, degraded and remained unchanged both inside

and outside the top 10 ranks – we report these results in Table 9.

This table illustrates that the best performing GUI-augmentation

configuration brings buggy files for 7-8 bugs from outside the top-

10 to inside the top-10 without moving any buggy files that were

previously in the top 10 outside of the top 10. This signals that the

GUI-related augmentations are largely complementary to existing

techniques and do not hurt existing bugs ranked within the top-10.

When examining how ranks of buggy files change within the top 10

ranks, we find a relatively even mix of files that improved (16-22),

deteriorated (13-24), and remained unchanged (20-24). This signals

that there is limited net impact on the ranks of the files within the

top-10 ranks. Furthermore, we find that this configuration improves

more buggy files outside the top-10 than it deteriorates, and our

studied configuration outperform all baselines in terms of top ranks

of buggy files according to a Wilcoxon signed rank test at a 95%

confidence interval.

BugLocator

SentenceBERT
U
niXC

oder

Lucene

2

3
0

3

0
0

1

0
1

2

0
2

2
2

59

BugLocator

SentenceBERT
U
niXC

oder

Lucene

0

3
1

2

0
0

3

0
1

2

3
4

5
7

40

 BugLocator

Lucene

Sentence
BERT

UniX
Coder

40

4

5

0

0

0

0

33

1
3

2

1

7
2 59

2

0

0 3
0

2

0

2

2
2

1

2

1
0

 BugLocator

Lucene

Sentence
BERT

UniX
Coder

(a) (b)

Figure 5: Venn Diagram illustrating the overlap where buggy
files appear in the top-10 results for our studied baselines (a)
and for the best performing GUI augmentation methods (b).

In addition, wewanted to understand the degree of orthogonality,

in terms of Hits@10, across our baseline techniques, and how our

GUI augmentation methods effect this orthogonality. In Figure 5-a,

we provide a Venn Diagram that includes each baseline, where over-

lapping sections indicate a shared bug for which a buggy file was

ranked within the top-10. From this diagram, we can observe that

between 61% and 70% of bugs with buggy files ranked within the

top 10 are shared across all baselines (40 bugs), indicating that the

different approaches do exhibit some degree of orthogonality, with

Lucene having the highest amount of orthogonality in comparison

to the other techniques. However, taking the best performing GUI-

augmented configuration for each baseline decreases the overall

amount of orthogonality, as between 92% and 82% of bugs with

buggy files ranked within the top-10 are shared. This indicates that
even when we take baseline techniques that operate using different
text representations and exhibit orthogonality, our GUI-augmentation
methods are able to improve upon all of them despite their differences.

5 THREATS TO VALIDITY
Construct Validity:Our study’smain threat to construct validity is

rooted in the potential subjectivity of deriving our manually labeled

bug localization dataset. To minimize this threat, we performed a

rigorous manual labeling procedure (see Sec. 3.3.2), wherein two

authors independently coded the buggy files for each bug report,

and conflicts were resolved via discussion with a third participant.

All authors involved in this process were experienced in Android

development and achieved a high inter-coder agreement (88.33%).

Internal Validity: Threats to internal validity of our study con-

clusions stem from our selected baseline TR-based bug localization

techniques. We observed a variation in effectiveness across our

four studied TR-based localization baselines, however, despite this

differing performance, the main commonality in our experiments

10

On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

was the introduction of our GUI-based augmentation techniques,

which were the main factor in the improvements we observed.

Conclusion Validity: To mitigate threats to conclusions, we made

use of the commonHits@Kmetric, focusing our analysis onHits@10.

This choice was motivated by prior work that illustrated that au-

tomated bug localization techniques are generally only helpful to

developers when they return relevant buggy files in the top 10

results [78]. Furthermore, in addition to examining effectiveness in

terms of Hits@10, we also performed a fine-grained analysis into

the impact that the GUI-based augmentation techniques have on

the number of buggy files that get moved into/out of the top 10.

External Validity: To mitigate threats to external validity we stud-

ied 2,628 combinations of our GUI-based augmentation methods,

for 80 bug reports from 39 diverse, and popular applications. Given

the effort required to build our dataset, the amount of data we

analyze is sizable, but a larger set of reports would provide addi-

tional confidence in our results. We analyzed four TR-based bug

localization techniques, and our results may not generalize beyond

these.

6 RELATED WORK
Text-Retrieval-based Bug Localization (TRBL) Techniques. A
TRBL retrieval engine, powered by a TR technique, typically lever-

ages the textual similarity between the code and the bug report

to the determine the relevance of a code artifact to a query (less/-

more likely to be buggy). The relevance score is determined using

different techniques and representations of artifacts and reports.

Researchers have proposed a variety of TRBL techniques over

the past two decades [12], spanning Information Retrieval (IR) tech-

niques [34, 46, 47, 50, 55, 63, 67, 67] and, more recently, Deep Learn-

ing (DL)-based approaches [24, 30, 40, 77, 87, 88, 91]. Common IR

techniques include classical algorithms such the Unigram Model

(UM) [67], Cluster Based Document Model (CBDM) [67], Vector

Space Model (VSM) [92, 99], Latent Semantic Indexing (LSI) [55],

and Latent Dirichlet Allocation (LDA) [53]. DL-based approaches

include models such as CNNs [40, 77, 87, 88], RNNs [30, 91], Trans-

formers [24] and combinations of these [86, 89, 90]. Other ap-

proaches combine IR and DL techniques [48]. The advantage of

IR techniques is their simplicity and efficiency, since they do not

require training. Conversely, DL-based approaches are more expen-

sive as they require training using a large amount of labeled data.

The advantage of DL techniques is they can generate more informa-

tive document representations. To assess the effect of a technique

on TRBL when leveraging GUI interaction data, we used two IR-

based techniques, namely BugLocator [26, 27] and Lucene [2], and

two DL models, namely SentenceBERT [69] and UniXCoder [36].

Information Sources for TRBL. To address the lexical gap

between bug reports and source code and produce more accurate

suggestions of buggy artifacts [15, 56, 93], researchers have utilized

additional information related to the bug reports and code. The

most prominent sources of information used by existing approaches

include similar bug reports [68, 85], code structure [75, 80, 94], code

version history [79, 80, 94, 95], stack traces [60, 82, 94], part-of-

speech information [100], and combinations of the above [71, 85].

Particularly relevant is the work that leverages system execution

traces for TRBL [60], however, collecting these traces are typically

expensive since they require program instrumentation or a suite

of test cases with high-coverage [49]. We study how GUI interac-

tion data of Android apps can be used to help bridge the lexical

gap between bug reports and code, and thus help retrieve relevant

buggy files more effectively. To the best or our knowledge, we are

the first to explore the use of such data for TRBL. This data can be

easily collected via the Android infrastructure without requiring

app instrumentation [9], when the apps are used or the bugs are

reproduced, manually or via automated execution tools [58].

Re-rankingMethods for TRBL. Prior work has used the afore-
mentioned sources of information to produce a ranking of code

artifacts or to re-rank them based on an existing ranking. The goal

is to rank the buggy artifacts higher than non-buggy artifacts. We

identify at least three general re-ranking methods used in the litera-

ture: boosting, filtering, and query (re)formulation. Prior techniques
have boosted the similarity/relevance score of code artifacts to

improve their ranking [52, 70, 85]. Other techniques filter out irrel-
evant code artifacts from the artifact search space or initial ranking

[51]. Query (re)formulation aims to encode relevant textual infor-

mation in the query for improving retrieval [19–21, 23, 33, 56, 64].

Researchers focused on three main reformulation methods: query

expansion [17, 43] (which adds extra terms to the query), query

replacement [35, 37] (which substitutes the query with a new one),

and query reduction [23, 33, 65, 66] (which identifies/removes terms

in the query that hinder retrieval). Inspired by this work, we assess

the effect of using GUI interaction information on TRBL perfor-

mance via boosting, filtering, query expansion, and query replace-

ment. Our future work will explore how query reduction along with

GUI information can be combined to improve TRBL performance.

Software Types for TRBL. The vast majority of prior work

has proposed system-agnostic TRBL approaches [53, 62, 99]. This

means they were designed to operate on any kind of software sys-

tem (e.g., desktop applications, libraries, and command line projects)

and any bug report, without differentiating the bug type. Recent

work has target deep learning projects [44]. Our study focuses on

Android apps and GUI-based bugs, which represents the majority

of bug types found in the Android ecosystem [16, 73, 74].

7 CONCLUSION & FUTUREWORK
We reported an empirical study that found a high positive effect

of mobile app GUI interaction data on text-retrieval-based bug lo-

calization, using a manually-constructed bug localization dataset

consisting of 80 bug reports with GUI metadata and four bug lo-

calization baseline techniques. The measured effect indicates GUI

interaction data can help bridge the lexical gap between bug reports

and source code, resulting in better rankings of buggy files sug-

gested to developers. Our future work will investigate other ways

of augmenting existing localization techniques via GUI interaction

data for mobile apps and other types of systems and conducting

human studies that aim to validate the benefits of using GUI inter-

action information for bug localization in practice.

ACKNOWLEDGEMENTS
This work is supported by the U.S. NSF under grants: CCF-1910976,

CCF-2343057, CCF-1955837, CCF-2007246, and CCF-1955853. Any

opinions, findings, and conclusions expressed herein are the authors

and do not necessarily reflect those of the sponsors.

11

ICSE ’24, April 14–20, 2024, Lisbon, Portugal J. Mahmud, N De Silva, S.A. Khan, S.H. Mostafavi, SM. H. Mansur, O Chaparro, A. Marcus, and K. Moran.

REFERENCES
[1] 2023. Android UIAutomator- https://developer.android.com/training/testing/

other-components/ui-automator.

[2] 2023. Apache Lucene- https://lucene.apache.org.

[3] 2023. Create a fragment - https://developer.android.com/guide/fragments/

create.

[4] 2023. HuggingFace - https://huggingface.co/.

[5] 2023. Introduction to activities - https://developer.android.com/guide/

components/activities/intro-activities.

[6] 2023. Markor - https://f-droid.org/packages/net.gsantner.markor/.

[7] 2023. Markor - https://github.com/gsantner/markor/issues/1020/.

[8] 2023. sentence-transformers/msmarco-distilbert-base-v3 - https://huggingface.

co/sentence-transformers/msmarco-distilbert-base-v3.

[9] 2023. System Tracing - https://developer.android.com/topic/performance/

tracing.

[10] 2023. UI-Bug-Localization- https://github.com/SageSELab/UI-Bug-Localization-

Study.

[11] 2023. UniXcoder - https://github.com/microsoft/CodeBERT/tree/master/

UniXcoder#2-similarity-between-code-and-nl.

[12] Shayan A Akbar and Avinash C Kak. 2020. A large-scale comparative evaluation

of IR-based tools for bug localization. In MSR’20. 21–31.
[13] Carlos Bernal-Cárdenas, Nathan Cooper, Madeleine Havranek, Kevin Moran,

Oscar Chaparro, Denys Poshyvanyk, and Andrian Marcus. 2023. Translating

Video Recordings of ComplexMobile App UI Gestures into Replayable Scenarios.

TSE 49, 4 (2023), 1782–1803.

[14] Carlos Bernal-Cárdenas, Nathan Cooper, KevinMoran, Oscar Chaparro, Andrian

Marcus, and Denys Poshyvanyk. 2020. Translating video recordings of mobile

app usages into replayable scenarios. In ICSE’20. 309–321.
[15] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Prem-

raj, and Thomas Zimmermann. 2008. What Makes a Good Bug Report?. In

SIGSOFT’08/FSE-16. 308–318.
[16] Pamela Bhattacharya, Liudmila Ulanova, Iulian Neamtiu, and Sai Charan Koduru.

2013. An empirical analysis of bug reports and bug fixing in open source android

apps. In CSMR’13. 133–143.
[17] Claudio Carpineto and Giovanni Romano. 2012. A survey of automatic query

expansion in information retrieval. CSUR 44, 1 (2012), 1–50.

[18] Oscar Chaparro, Carlos Bernal-Cárdenas, Jing Lu, KevinMoran, AndrianMarcus,

Massimiliano Di Penta, Denys Poshyvanyk, and Vincent Ng. 2019. Assessing

the Quality of the Steps to Reproduce in Bug Reports. In ESEC/FSE’19. 86–96.
[19] Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. 2017. Using observed

behavior to reformulate queries during text retrieval-based bug localization. In

ICSME’17. 376–387.
[20] Oscar Chaparro, Juan Manuel Florez, and Andrian Marcus. 2019. Using bug

descriptions to reformulate queries during text-retrieval-based bug localization.

EMSE 24 (2019), 2947–3007.

[21] Oscar Chaparro, Juan Manuel Florez, Unnati Singh, and Andrian Marcus. 2019.

Reformulating queries for duplicate bug report detection. In SANER’19. 218–229.
[22] Oscar Chaparro, Jing Lu, Fiorella Zampetti, Laura Moreno, Massimiliano

Di Penta, Andrian Marcus, Gabriele Bavota, and Vincent Ng. 2017. Detect-

ing Missing Information in Bug Descriptions. In ESEC/FSE’17. 396–407.
[23] Oscar Chaparro and Andrian Marcus. 2016. On the reduction of verbose queries

in text retrieval based software maintenance. In ICSE’16-C. 716–718.
[24] Agnieszka Ciborowska and Kostadin Damevski. 2022. Fast changeset-based bug

localization with BERT. In ICSE’22. 946–957.
[25] Nathan Cooper, Carlos Bernal-C’ardenas, Oscar Chaparro, Kevin Moran, and

Denys Poshyvanyk. 2021. It Takes Two to Tango: Combining Visual and Textual

Information for Detecting Duplicate Video-Based Bug Reports. In ICSE’21. 957–
969.

[26] Steven Davies and Marc Roper. 2013. Bug localisation through diverse sources

of information. In ISSREW’13. 126–131.
[27] Steven Davies, Marc Roper, and Murray Wood. 2012. Using bug report similarity

to enhance bug localisation. InWCRE’12. 125–134.
[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding.

In NAACL’19.
[29] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk. 2013.

Feature location in source code: a taxonomy and survey. JSEP 25, 1 (2013),

53–95.

[30] Fan Fang, John Wu, Yanyan Li, Xin Ye, Wajdi Aljedaani, and Mohamed Wiem

Mkaouer. 2021. On the classification of bug reports to improve bug localization.

Soft Computing 25 (2021), 7307–7323.

[31] Mattia Fazzini, Martin Prammer, Marcelo d’Amorim, and Alessandro Orso. 2018.

Automatically translating bug reports into test cases for mobile apps. In ISSTA’18.
141–152.

[32] Sidong Feng and Chunyang Chen. 2022. GIFdroid: Automated Replay of Visual

Bug Reports for Android Apps. In ICSE’22. 1045–1057.
[33] Juan Manuel Florez, Oscar Chaparro, Christoph Treude, and Andrian Marcus.

2021. Combining query reduction and expansion for text-retrieval-based bug

localization. In SANER’21. 166–176.
[34] Gregory Gay, Sonia Haiduc, Andrian Marcus, and Tim Menzies. 2009. On the

use of relevance feedback in IR-based concept location. In ICSM’09. 351–360.
[35] Marek Gibiec, AdamCzauderna, and Jane Cleland-Huang. 2010. Towards mining

replacement queries for hard-to-retrieve traces. In ASE’10. 245–254.
[36] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.

UniXcoder: Unified Cross-Modal Pre-training for Code Representation. ACL’22
(2022).

[37] Jin Guo, Marek Gibiec, and Jane Cleland-Huang. 2017. Tackling the term-

mismatch problem in automated trace retrieval. EMSE 22 (2017), 1103–1142.

[38] Madeleine Havranek, Carlos Bernal-Cárdenas, Nathan Cooper, Oscar Chaparro,

Denys Poshyvanyk, and Kevin Moran. 2021. V2S: A Tool for Translating Video

Recordings of Mobile App Usages into Replayable Scenarios. ICSE’21-C (2021),

65–68.

[39] Emily Hill, Zachary P Fry, Haley Boyd, Giriprasad Sridhara, Yana Novikova, Lori

Pollock, and K Vijay-Shanker. 2008. AMAP: automatically mining abbreviation

expansions in programs to enhance software maintenance tools. In MSR’08.
79–88.

[40] Xuan Huo, Ferdian Thung, Ming Li, David Lo, and Shu-Ting Shi. 2019. Deep

Transfer Bug Localization. TSE PP (06 2019), 1–1.

[41] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc

Brockschmidt. 2019. CodeSearchNet Challenge: Evaluating the State of Semantic

Code Search. CoRR abs/1909.09436 (2019). arXiv:1909.09436

[42] Jack Johnson, Junayed Mahmud, Tyler Wendland, Kevin Moran, Julia Rubin,

and Mattia Fazzini. 2022. An Empirical Investigation into the Reproduction of

Bug Reports for Android Apps. SANER’22 (2022).
[43] Misoo Kim, Youngkyoung Kim, and Eunseok Lee. 2021. A Novel Automatic

Query Expansion with Word Embedding for IR-based Bug Localization. In

ISSRE’21. 276–287.
[44] Misoo Kim, Youngkyoung Kim, and Eunseok Lee. 2022. An Empirical Study

of IR-based Bug Localization for Deep Learning-based Software. In ICST’22.
128–139.

[45] Pingfan Kong, Li Li, Jun Gao, Kui Liu, Tegawendé F Bissyandé, and Jacques Klein.

2018. Automated Testing of Android Apps: A Systematic Literature Review.

IEEE Transactions on Reliability (2018).

[46] Anil Koyuncu, Tegawendé F. Bissyandé, Dongsun Kim, Kui Liu, Jacques Klein,

Monperrus Martin, and Yves Le Traon. 2019. D&C: A Divide-and-Conquer

Approach to IR-based Bug Localization. ArXiv abs/1902.02703 (2019).

[47] Adrian Kuhn, Stéphane Ducasse, and Tudor Gîrba. 2007. Semantic clustering:

Identifying topics in source code. IST 49, 3 (2007), 230–243.

[48] An Ngoc Lam, Anh Tuan Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen.

2017. Bug Localization with Combination of Deep Learning and Information

Retrieval. In ICPC’17. 218–229.
[49] Tien-Duy B. Le, Richard J. Oentaryo, and David Lo. 2015. Information Retrieval

and Spectrum Based Bug Localization: Better Together. In ESEC/FSE’15. 579–590.
[50] Wei Li, Qingan Li, Yunlong Ming, Weijiao Dai, Shi Ying, and Mengting Yuan.

2022. An empirical study of the effectiveness of IR-based bug localization for

large-scale industrial projects. EMSE 27, 2 (2022), 47.

[51] Dapeng Liu, Andrian Marcus, Denys Poshyvanyk, and Vaclav Rajlich. 2007.

Feature location via information retrieval based filtering of a single scenario

execution trace. In ASE’07. 234–243.
[52] Yiling Lou, Qihao Zhu, Jinhao Dong, Xia Li, Zeyu Sun, Dan Hao, Lu Zhang,

and Lingming Zhang. 2021. Boosting coverage-based fault localization via

graph-based representation learning. In ESEC/FSE’21. 664–676.
[53] Stacy K Lukins, Nicholas A Kraft, and Letha H Etzkorn. 2008. Source code

retrieval for bug localization using latent dirichlet allocation. In WCRE’08. 155–
164.

[54] Andrian Marcus and Jonathan I Maletic. 2001. Identification of high-level

concept clones in source code. In ASE’01. 107–114.
[55] Andrian Marcus, Andrey Sergeyev, Vaclav Rajlich, and Jonathan I Maletic.

2004. An information retrieval approach to concept location in source code. In

WCRE’04. 214–223.
[56] Chris Mills, Esteban Parra, Jevgenija Pantiuchina, Gabriele Bavota, and Sonia

Haiduc. 2020. On the relationship between bug reports and queries for text

retrieval-based bug localization. EMSE 25 (2020), 3086–3127.

[57] KevinMoran,Mario Linares-Vásquez, Carlos Bernal-Cárdenas, andDenys Poshy-

vanyk. 2015. Auto-completing Bug Reports for Android Applications. In (FSE’15).
673–686.

[58] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher

Vendome, and Denys Poshyvanyk. 2016. Automatically Discovering, Reporting

and Reproducing Android Application Crashes. In ICST’16. 33–44.
[59] Kevin Moran, Ali Yachnes, George Purnell, Junayed Mahmud, Michele Tufano,

Carlos Bernal Cardenas, Denys Poshyvanyk, and Zach H’Doubler. 2022. An Em-

pirical Investigation into the Use of Image Captioning for Automated Software

Documentation. In SANER’22. 514–525.
[60] Laura Moreno, John Joseph Treadway, Andrian Marcus, and Wuwei Shen. 2014.

On the Use of Stack Traces to Improve Text Retrieval-Based Bug Localization.

In ICSME’14. 151–160.

12

https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/training/testing/other-components/ui-automator
https://lucene.apache.org
https://developer.android.com/guide/fragments/create
https://developer.android.com/guide/fragments/create
https://huggingface.co/
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://f-droid.org/packages/net.gsantner.markor/
https://github.com/gsantner/markor/issues/1020/
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v3
https://huggingface.co/sentence-transformers/msmarco-distilbert-base-v3
https://developer.android.com/topic/performance/tracing
https://developer.android.com/topic/performance/tracing
https://github.com/SageSELab/UI-Bug-Localization-Study
https://github.com/SageSELab/UI-Bug-Localization-Study
https://github.com/microsoft/CodeBERT/tree/master/UniXcoder#2-similarity-between-code-and-nl
https://github.com/microsoft/CodeBERT/tree/master/UniXcoder#2-similarity-between-code-and-nl
https://arxiv.org/abs/1909.09436

On Using GUI Interaction Data to Improve
Text Retrieval-based Bug Localization ICSE ’24, April 14–20, 2024, Lisbon, Portugal

[61] Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, and Nachiappan

Nagappan. 2013. The design of bug fixes. In ICSE’13. 332–341.
[62] Denys Poshyvanyk. 2009. Using information retrieval to support software

maintenance tasks. In ICSME’09. 453–456.
[63] Denys Poshyvanyk, Yann-Gaël Guéhéneuc, Andrian Marcus, Giuliano Antoniol,

and Vaclav Rajlich. 2007. Feature location using probabilistic ranking of methods

based on execution scenarios and information retrieval. TSE 33, 6 (2007), 420–

432.

[64] Mohammad Masudur Rahman, Foutse Khomh, Shamima Yeasmin, and Chan-

chal K Roy. 2021. The forgotten role of search queries in ir-based bug localization:

an empirical study. EMSE 26, 6 (2021), 116.

[65] Mohammad Masudur Rahman and Chanchal K Roy. 2017. Improved query

reformulation for concept location using coderank and document structures. In

ASE’17. IEEE, 428–439.
[66] Mohammad Masudur Rahman and Chanchal K. Roy. 2018. Improving IR-Based

Bug Localization with Context-Aware Query Reformulation. In ESEC/FSE’18.
621–632.

[67] Shivani Rao and Avinash Kak. 2011. Retrieval from Software Libraries for Bug

Localization: A Comparative Study of Generic and Composite Text Models. In

MSR’11. 43–52.
[68] Michael Rath, David Lo, and Patrick Mäder. 2018. Analyzing requirements and

traceability information to improve bug localization. In MSR’18. 442–453.
[69] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings

using siamese bert-networks. EMNLP’19 (2019).
[70] Joseph John Rocchio Jr. 1971. Relevance feedback in information retrieval. The

SMART retrieval system: experiments in automatic document processing (1971).

[71] Zhendong Shi, Jacky Keung, Kwabena Ebo Bennin, and Xingjun Zhang. 2018.

Comparing learning to rank techniques in hybrid bug localization. Applied Soft
Computing 62 (2018), 636–648.

[72] Yang Song and Oscar Chaparro. 2020. Bee: A tool for structuring and analyzing

bug reports. In ESEC/FSE’20. 1551–1555.
[73] Yang Song, Junayed Mahmud, Nadeeshan De Silva, Ying Zhou, Oscar Chaparro,

Kevin Moran, Andrian Marcus, and Denys Poshyvanyk. 2023. BURT: A Chatbot

for Interactive Bug Reporting. In ICSE’23. 170–174.
[74] Yang Song, Junayed Mahmud, Ying Zhou, Oscar Chaparro, Kevin Moran, An-

drian Marcus, and Denys Poshyvanyk. 2022. Toward interactive bug reporting

for (android app) end-users. In ESEC/FSE’22. 344–356.
[75] Aoi Takahashi, Natthawute Sae-Lim, Shinpei Hayashi, and Motoshi Saeki. 2018.

A preliminary study on using code smells to improve bug localization. In ICPC’18.
324–327.

[76] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, undefinedukasz Kaiser, and Illia Polosukhin. 2017. Attention is

All You Need (NIPS’17). Curran Associates Inc., Red Hook, NY, USA, 6000–6010.

[77] Bei Wang, Ling Xu, Meng Yan, Chao Liu, and Ling Liu. 2020. Multi-dimension

convolutional neural network for bug localization. TSC 15, 3 (2020), 1649–1663.

[78] Qianqian Wang, Chris Parnin, and Alessandro Orso. 2015. Evaluating the

Usefulness of IR-Based Fault Localization Techniques. In ISSTA’15. 1–11.
[79] Shaowei Wang and David Lo. 2014. Version History, Similar Report, and Struc-

ture: Putting Them Together for Improved Bug Localization. In ICPC’14. 53–63.
[80] Shaowei Wang and David Lo. 2016. Amalgam+: Composing rich information

sources for accurate bug localization. JSEP 28, 10 (2016), 921–942.

[81] Cathrin Weiss, Rahul Premraj, Thomas Zimmermann, and Andreas Zeller. 2007.

How long will it take to fix this bug?. In MSR’07: ICSE Workshops 2007. 1–1.

[82] M. Wen, R. Wu, and S. Cheung. 2016. Locus: Locating bugs from software

changes. In ASE’16. 262–273.
[83] Tyler Wendland, Jingyang Sun, Junayed Mahmud, Syeda Mansur, Steven Huang,

Kevin Moran, Julia Rubin, and Mattia Fazzini. 2021. Andror2: A Dataset of

Manually-Reproduced Bug Reports for Android apps. In MSR’21. 600–604.
[84] Adina Williams, Nikita Nangia, and Samuel Bowman. 2018. A Broad-Coverage

Challenge Corpus for Sentence Understanding through Inference. In NAACL’18.
1112–1122.

[85] Chu-Pan Wong, Yingfei Xiong, Hongyu Zhang, Dan Hao, Lu Zhang, and Hong

Mei. 2014. Boosting bug-report-oriented fault localization with segmentation

and stack-trace analysis. In ICSME’14. 181–190.
[86] Yan Xiao and Jacky Keung. 2018. Improving bug localization with character-

level convolutional neural network and recurrent neural network. In APSEC’18.
703–704.

[87] Yan Xiao, Jacky Keung, Kwabena E Bennin, and Qing Mi. 2019. Improving bug

localization with word embedding and enhanced convolutional neural networks.

IST 105 (2019), 17–29.

[88] Yan Xiao, Jacky Keung, Qing Mi, and Kwabena E Bennin. 2017. Improving

bug localization with an enhanced convolutional neural network. In APSEC’17.
338–347.

[89] Yan Xiao, Jacky Keung, Qing Mi, and Kwabena E Bennin. 2018. Bug localization

with semantic and structural features using convolutional neural network and

cascade forest. In EASE’18. 101–111.
[90] Geunseok Yang and Byungjeong Lee. 2021. Utilizing topic-based similar commit

information and CNN-LSTM algorithm for bug localization. Symmetry 13, 3

(2021), 406.

[91] Shouliang Yang, Junming Cao, Hushuang Zeng, Beijun Shen, and Hao Zhong.

2021. Locating faulty methods with a mixed RNN and attention model. In

ICPC’21.
[92] Zhou Yang, Jieke Shi, Shaowei Wang, and David Lo. 2021. IncBL: Incremental

Bug Localization. In ASE’21. 1223–1226.
[93] Xin Ye, Razvan Bunescu, and Chang Liu. 2014. Learning to rank relevant files

for bug reports using domain knowledge. In FSE’14. 689–699.
[94] Klaus Changsun Youm, June Ahn, and Eunseok Lee. 2017. Improved bug local-

ization based on code change histories and bug reports. IST 82 (2017), 177–192.

[95] Tao Zhang, Wenjun Hu, Xiapu Luo, and Xiaobo Ma. 2019. A commit messages-

based bug localization for android applications. IJSEKE 29, 04 (2019), 457–487.

[96] Zhaoxu Zhang, Robert Winn, Yu Zhao, Tingting Yu, and William GJ Halfond.

2023. Automatically Reproducing Android Bug Reports Using Natural Language

Processing and Reinforcement Learning. In ISSTA’23.
[97] Yu Zhao, Ting Su, Yang Liu, Wei Zheng, Xiaoxue Wu, Ramakanth Kavuluru,

William GJ Halfond, and Tingting Yu. 2022. ReCDroid+: Automated End-to-End

Crash Reproduction from Bug Reports for Android Apps. TOSEM 31, 3 (2022),

1–33.

[98] Yu Zhao, Tingting Yu, Ting Su, Yang Liu, Wei Zheng, Jingzhi Zhang, andWilliam

G.J. Halfond. 2019. ReCDroid: Automatically Reproducing Android Application

Crashes from Bug Reports. In ICSE’19. 128–139.
[99] Jian Zhou, Hongyu Zhang, and David Lo. 2012. Where Should the Bugs Be

Fixed? More Accurate Information Retrieval-Based Bug Localization Based on

Bug Reports. In ICSE’12. 14–24.
[100] Yu Zhou, Yanxiang Tong, Taolue Chen, and Jin Han. 2017. Augmenting bug

localization with part-of-speech and invocation. IJSEKE 27, 06 (2017), 925–949.

[101] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian

Schröter, and Cathrin Weiss. 2010. What Makes a Good Bug Report? TSE 36, 5

(2010), 618–643.

13

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 GUI-related Information
	2.2 Motivating Example

	3 Design of Empirical Study
	3.1 Mapping GUI Terms to GUI-Related Files
	3.2 Text-Retrieval Augmentation Methods
	3.3 Dataset Construction
	3.4 Baseline Techniques
	3.5 Approach Configurations
	3.6 Metrics and Comparative Evaluation

	4 Empirical Results
	4.1 RQ1: Impact of Number of Screens
	4.2 RQ2: Impact of GUI Information Type & Augmentation Method
	4.3 RQ3: Best Performing Configurations
	4.4 Discussion

	5 Threats to Validity
	6 Related Work
	7 Conclusion & Future Work
	References

