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Abstract—Collaborative edge computing (CEC) is an emerging
paradigm for heterogeneous devices to collaborate on edge com-
putation jobs. For congestible links and computing units, delay-
optimal forwarding and offloading for service chain tasks (e.g.,
DNN with vertical split) in CEC remains an open problem. In this
paper, we formulate the service chain forwarding and offloading
problem in CEC with arbitrary topology and heterogeneous
transmission/computation capability, and aim to minimize the
aggregated network cost. We consider congestion-aware non-
linear cost functions that cover various performance metrics
and constraints, such as average queueing delay with limited
processor capacity. We solve the non-convex optimization prob-
lem globally by analyzing the KKT condition and proposing a
sufficient condition for optimality. We then propose a distributed
algorithm that converges to the global optimum. The algorithm
adapts to changes in input rates and network topology, and can be
implemented as an online algorithm. Numerical evaluation shows
that our method significantly outperforms baselines in multiple
network instances, especially in congested scenarios.

I. INTRODUCTION

Recent years have seen an explosion in the number of

mobile and IoT devices. Many of the emerging mobile applica-

tions, such as VR/AR, autonomous driving, are computation-

intensive and time-critical. Directing all computation requests

and their data to the central cloud is becoming impractical

due to limited backhaul bandwidth and high associated la-

tency. Edge computing has been proposed as a promising

solution to provide computation resources and cloud-like ser-

vices in close proximity to mobile devices. An extension of

the idea of edge computing is the concept of collaborative

edge computing (CEC). In addition to point-to-point offload-

ing, CEC permits multiple stakeholders (mobile devices, IoT

devices, edge servers, and cloud) to collaborate with each

other by sharing data, communication resources, and compu-

tation resources to accomplish computation tasks [1]. Devices

equipped with computation capabilities can collaborate with

each other through D2D communication [2]. Edge servers can

also collaborate with each other for load balancing or further

with the central cloud to offload demands that they cannot

accommodate [3]. CEC is also needed if no direct connection

exists between devices and edge servers. That is, computation-

intensive tasks of unmanned aerial vehicle (UAV) swarms or

autonomous cars far from the wireless access point should

be collaboratively computed or offloaded through multi-hop

routing to the server with the help of other devices [2], [4].

The delay-optimal routing and offloading for independent

one-step computation tasks in CEC has been proposed [5].

As a generalization of one-step computation, service chaining

enables the ordering of computation tasks [6]. In the service

chain model, the network provides services called applica-

tions, where one application consists of a chain of tasks

that are performed sequentially, mapping input data to output

results via (potentially multiple) intermediate stages. Service

chaining has been widely studied in the network function

virtualization (NFV) context, e.g., [7], [8]. An example of

service chaining is shown in Fig 1.

Intermediate result
Input stream Display stream

Fig. 1: Service chain example: LAN video stream client for from source s to
display d. Input data stream undergoes sequential tasks.

Optimization for service chain computation allocation

has been widely considered. Zhang et al. [7] proposed a

throughput-optimal control policy for distributed computing

networks with service chain applications and mixed-cast traf-

fic flows, but did not consider the optimization of delay

performance. Khoramnejad et al. [9] minimized the cost of

service chain delay and energy consumption at the edge via

deep learning, but within the restricted setting of bipartite

network topologies. Sahni et al. [10] optimized for the earliest

finish time (EFT) of service chains in mesh networks, albeit

without considering link congestion. Recently, an efficient

framework for dispersed computing of interdependent tasks

was established by Ghosh et al. [11], but without a theoretical

performance guarantee.

In CEC with arbitrary topology and heterogeneous nodes,

the delay-optimal forwarding and offloading of service chain

tasks remains an open problem. One major challenge is incor-

porating congestion-dependent non-linear costs (e.g., queueing

delay at transmission links and computing units). Furthermore,

the forwarding and offloading mechanism should preferably be

distributed for network scaling.

To meet these challenges, this paper considers an arbitrary

multi-hop network, where nodes collaboratively finish multiple

service chain applications. Nodes have heterogeneous com-

putation capabilities, while some are also data sources (e.g.,

sensors and mobile users). For each application, data enter the

network at the source nodes. Intermediate results are produced

and forwarded at collaborative nodes, and the final result is

delivered to the destination node. To more accurately model

the delay incurred on links and computing units, we consider

general congestion-dependent non-linear costs. We propose a
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Wireless link

Wireline link

Smart devices

Wireless router

Backhaul

Cloud

Fig. 2: Sample topology involving IoT network on the edge [5].

framework that unifies the mathematical representation of for-

warding and computation offloading, and tackle the non-linear

cost minimization problem with a node-based perspective first

introduced by [12] and adopted in [5]. We first characterize

the Karush–Kuhn–Tucker (KKT) necessary conditions for the

proposed optimization problem, and demonstrate that the KKT

condition can lead to arbitrarily suboptimal performance in

certain degenerate cases. To overcome this issue, we propose

a modification to the KKT condition, and prove that the

new condition is a sufficient for global optimality. We also

devise a distributed and adaptive algorithm that converges to

an operating point satisfying the sufficiency condition.

We summarize our detailed contributions as follows:

• We investigate joint forwarding and offloading for service

chain applications in arbitrary multi-hop network topolo-

gies with non-linear transmission and computation costs

and formulate a non-convex cost minimization problem.

• We study the KKT necessary condition for optimality in

the non-convex problem, and present a sufficient condi-

tion for optimality by modifying the KKT condition.

• We devise a distributed and adaptive algorithm that

converges to the global optimum.

• Through numerical evaluation, we demonstrate the ad-

vantages of our algorithm relative to baselines in different

network instances, especially in congested scenarios.

In Section II we present the network model and the optimiza-

tion problem. In Section III we present the sufficient optimality

conditions. In Section IV we develop a distributed algorithm,

and in Section V we present our numerical results.

II. PROBLEM FORMULATION

We model the CEC network with a directed graph G =
(V, E), where V and E are the sets of nodes and links,

respectively. Fig. 2 gives an example CEC network. A node

i ∈ V can represent a user device, an edge server, or the

cloud. A link (i, j) ∈ E represents an available (wireline or

wireless) channel from i to j. We assume the nodes in V
and links in E have heterogeneous capabilities for computation

and transmission. The computation and transmission in G are

driven by applications, where we let A denote the set of

the applications. Each application is a service chain, i.e., an

application consists of a finite number of tasks performed

G = (V, E) Network graph G, set of nodes V and links E
A; da Set of applications; result destination of application a
Ta Service chain tasks of application a ∈ A
S Set of all stages (a, k) where a ∈ A, k = 0, · · · , |Ta|
L(a,k) Packet size of stage (a, k) ∈ S
ri(a) Exogenous input data rate for application a at node i
ti(a, k) Traffic of stage (a, k) at node i
φij(a, k) Fraction of ti(a, k) forwarded to node j (if j ̸= 0)
φi0(a, k) Fraction of ti(a, k) assigned to CPU at i
fij(a, k) Rate (packet/sec) of stage (a, k) on link (i, j)
gi(a, k) Rate (packet/sec) of stage (a, k) assigned to CPU at i
Dij(Fij) Transmission cost (e.g. queueing delay) on (i, j)
Ci(Gi) Computation cost (e.g. CPU runtime) at node i

TABLE I: Major notations

sequentially with a pre-determined order. For a ∈ A, we let

Ta be the (ordered) set of a’s tasks.

We assume that any node in V can act as a data source

or computation site for any application. The data input rate

for application a at node i is ri(a) (packet/sec)1, where each

data packet has size L(a,0) (bit). Each application has one pre-

specified destination da ∈ V , to which the final results of the

service chain are delivered. For application a, the data flows

are injected into the network from nodes i with ri(a) > 0,

forwarded in a hop-by-hop manner to nodes that decide to

perform the first task of a. After the first task, data flows are

converted into flows of intermediate results, and are further

forwarded for the next task in the service chain. Eventually,

final results are delivered to the destination da. We assume

the flows of application a are categorized into |Ta|+1 stages,

where stage (a, k) with k = 0, 1, · · · , |Ta| represents the

(intermediate) results that have finished the k-th computation

task of a. Particularly, we say the data flows are of stage (a, 0),
and the final results are of stage (a, |Ta|). We assume packets

of stage (a, k) are of size L(a,k) (bit), and denote the set of

all stages by S =
{

(a, k)
∣

∣a ∈ A, k = 0, 1 · · · , |Ta|
}

.

To model the forwarding and computation offloading behav-

ior in G, we adopt a node-based perspective first introduced in

[12] and followed by [5]. We let ti(a, k) denote the traffic of

stage (a, k) ∈ S at node i. Specifically, ti(a, k) includes both

the packet rate of stage (a, k) that is generated at i (this can

be the input data rate ri(a) if k = 0, or the newly generated

intermediate results at i’s computation unit if k ̸= 0), and

the packet rate that is forwarded from other nodes to i. We

let φij(a, k) ∈ [0, 1] be the forwarding/offloading variable for

i, j ∈ V and (a, k) ∈ S . Specifically, of the traffic ti(a, k) that

arrive at i, node i forwards a fraction of φij(a, k) to node k.

Moreover, if k ̸= |Ta|, node i forwards a fraction φi0(a, k) of

ti(a, k) to its local CPU to perform computation of the k+1-

th task.2 We assume for every data or intermediate packet

consumed at CPU for computation, one and only one next-

stage packet is generated accordingly. Therefore, for k = 0,

ti(a, 0) =
∑

j∈V
tj(a, 0)φji(a, 0) + ri(a),

1We allow applications to have multiple data sources.
2For coherence, we let φij(a, k) ≡ 0 if (i, j) ̸∈ E , and φi0(a, |Ta|) ≡ 0.

Such fractional forwarding can be achieved via various methods, e.g., random
packet dispatching with probability φij(a, k). More complex mechanisms
also exist to stabilize the actual flow rates, e.g., [13].

2024 IEEE International Conference on Communications (ICC): SAC Cloud Computing, Networking and Storage Track

3932
Authorized licensed use limited to: Northeastern University. Downloaded on October 09,2024 at 00:24:12 UTC from IEEE Xplore.  Restrictions apply. 



and for k ̸= 0,

ti(a, k) =
∑

j∈V
tj(a, k)φji(a, k)+ ti(a, k−1)φi0(a, k−1).

Let φ = [φij(a, k)](a,k)∈S,i∈V,j∈{0}∪V be the global for-

warding/offlodaing strategy, with the following constraint

∑

j∈{0}∪V

φij(a, k) =

{

0, if k = |Ta| and i = da,

1, otherwise.
(1)

Constraint (1) guarantees that all input data will eventually

be processed to the final result, and exit the network at

the destination. Let fij(a, k) be the packet rate (packet/sec)

for stage (a, k) packets transmitted on link (i, j), and let

gi(a, k) be the packet rate (packet/sec) for stage (a, k) packets

forwarded to i’s CPU for computation. Then,

fij(a, k) = ti(a, k)φij(a, k), gi(a, k) = ti(a, k)φi0(a, k).

The total flow rate (bit/sec) on link (i, j) ∈ E is given by

Fij =
∑

(a,k)∈S
L(a,k)fij(a, k),

and the total computation workload at node i ∈ V is given by

Gi =
∑

(a,k)∈S
wi(a, k)gi(a, k),

where wi(a, k) is the computational weight, i.e., the compu-

tation workload for node i to perform the (k + 1)-th task of

application a on a single input packet. Fig. 3 gives a detailed

illustration of how the flows are directed within one node.

Non-linear costs are incurred on the links due to transmis-

sion, and on the nodes due to computation. We denote the

transmission cost on link (i, j) by Dij(Fij), where function

Dij(·) is continuously differentiable, monotonically increas-

ing and convex, with Dij(0) = 0. Such Dij(·) subsumes

various existing cost functions, including linear cost (trans-

mission delay), link capacity constraints. It also incorporates

congestion-dependent performance metrics. For example, let

µij be the service rate of an M/M/1 queue, then Dij(Fij) =
Fij/ (µij − Fij) gives the average number of packets waiting

in the queue or being served on (i, j) [14]. The computation

cost at i is denoted by Ci(Gi), where Ci(·) is also increasing,

continuously differentiable and convex, with Ci(0) = 0.

Function Ci(Gi) can incorporate computation congestion (e.g.,

average number of packets waiting for available processor or

being served at CPU). When both Dij(Fij) and Ci(Gi) rep-

resent queue lengths, by Little’s Law, the network aggregated

cost is proportional to the expected packet system delay. Our

major notation is summarized in Table I.

We aim to minimize the aggregated transmission and com-

putation cost in the network, formally cast as3

min
φ

D(φ) =
∑

(i,j)∈E
Dij(Fij) +

∑

i∈V
Ci(Gi)

subject to φij(a, k) ∈ [0, 1], and (1) holds.
(2)

III. OPTIMALITY CONDITIONS

To tackle the non-convex problem (2), we first present the

KKT necessary condition, and demonstrate that the KKT con-

dition can yield arbitrarily worse performance when compared

3We do not explicitly impose any link or computation capacity constraints
in (2), as they are already incorporated in the cost functions.

Node j

Node i

Node k

���(�, 0) 
��(�) ��(�, 0) 

��(�, 0) 
���(�, 1) ���(�, 2) ��(�, 1) ���(�, 0) ���(�, 1) ���(�, 2) ��(�, 1) ��(�, 2) 

: (virtual) 
router

: computing
unit

: data : intermediate
result

: final
    result

Fig. 3: Detailed behavior of flows on nodes j, i, k when |Ta| = 2. Node i
handles traffic ti(a, k) for different stage (a, k) via (virtual) routers. Each
router is controlled by variable [φij(a, k)]j∈{0}∪V .

to that of the global optimum. Then, we propose a sufficient

condition for optimality by modifying the KKT condition.

We start by giving closed-form derivatives of D(φ). Our

analysis generalizes [5] and makes non-trivial extensions in-

corporating service chain flows. For link (i, j) and stage (a, k),
the marginal cost of increasing φij(a, k) is equivalent to a sum

of two parts, 1) the marginal communication cost on link (i, j)
due to increasing of fij(a, k), and 2) the marginal cost due to

increasing of node j’s traffic tj(a, k). Formally, for j ̸= 0,

∂D

∂φij(a, k)
= ti(a, k)

(

L(a,k)D
′
ij(Fij) +

∂D

∂tj(a, k)

)

, (3a)

For j = 0, the marginal cost of increasing φi0(a, k) consists

of 1) marginal computation cost at node i, and 2) marginal

cost for increasing next-stage traffic ti(a, k + 1). Namely4,

∂D

∂φi0(a, k)
= ti(a, k)

(

wi(a, k)C
′
i(Gi) +

∂D

∂ti(a, k + 1)

)

.

(3b)

In (3), ∂D/∂ti(a, k) is a weighted sum of marginal costs

for out-going links and local CPU, i.e., if k ̸= |Ta|,

∂D

∂ti(a, k)
= φi0(a, k)

(

wi(a, k)C
′
i(Gi) +

∂D

∂ti(a, k + 1)

)

+
∑

j∈V

φij(a, k)

(

L(a,k)D
′
ij(Fij) +

∂D

∂tj(a, k)

)

, (4a)

and for k = |Ta|, recall φi0(a, |Ta|) ≡ 0, ∂D
∂ti(a,|Ta|)

equals

∑

j∈V

φij(a, |Ta|)

(

L(a,|Ta|)D
′
ij(Fij) +

∂D

∂tj(a, |Ta|)

)

. (4b)

Recall the fact that final results do not introduce any

cost at destination, i.e., ∂D/∂tda
(a, |Ta|) ≡ 0, one could

calculate ∂T/∂ti(a, k) recursively by (4). With the absence of

computation offloading, a rigorous proof of (3), (4) is provided

in [12] Theorem 2. Then, Lemma 1 gives the KKT necessary

optimality condition for problem (2).

Lemma 1 (KKT necessary condition). Let φ be an optimal

solution to (2), then for all i ∈ V , j ∈ {0}∪V , and (a, k) ∈ S ,

∂D

∂φij(a, k)







= min
j′∈{0}∪V

∂D
∂φij′ (a,k)

, if φij(a, k) > 0,

≥ min
j′∈{0}∪V

∂D
∂φij′ (a,k)

, if φij(a, k) = 0.
(5)

4For coherence, we let ∂D/∂φij(a, k) ≡ ∞ for (i, j) ̸∈ E , and
∂D/∂φi0(a, |Ta|) ≡ ∞ as the final results will not be further computed.
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Proof of Lemma 1 is omitted due to space limit. Condition

(5) only gives the necessary condition for optimality. In fact,

variable φ satisfying condition (5) may perform arbitrarily

worse than the global optimal solution.

Proposition 1. For any 0 < ρ < 1, there exists a scenario (i.e.,

network G, applications A, cost functions Fij(·), Gi(·), and

input rates ri(a)) such that
D(φ∗)
D(φ) = ρ, where φ is feasible to

(2) and satisfies (5), and φ∗ is an optimal solution to (2).

A scenario with
D(φ∗)
D(φ) = ρ is demonstrated in Fig. 4. The

suboptimality of condition (5) is incurred by degenerate cases

at i and (a, k) satisfying ti(a, k) = 0, where (5) automatically

holds regardless of the actual forwarding variables φij(a, k).

Fig. 4: The KKT condition (5) leads to arbitrarily suboptimal solution.
Consider application a with |Ta| = 1, da = 4. Data is input at 1 and CPU
is only equipped at 4. All cost functions are linear. Variable φ shown in
the figure satisfies (5) with D(φ) = 1. However, the optimal strategy is
to forward all data on path 1 → 2 → 3 → 4, with D(φ∗) = ρ. Thus
Proposition 1 holds by letting ρ arbitrarily small.

We now address the non-sufficiency of condition (5). In-

spired by [5], we introduce a modification to (5) that leads to

a sufficient condition for optimality in (2). Observing that for

any i and (a, k), the traffic term ti(a, k) repeatedly exists in

RHS of (3) for all j ∈ {0} ∪ V . Thus when ti(a, k) = 0, it

always holds that φij(a, k) = 0. We thereby remove the traffic

terms in (5), leading to condition (6).

Theorem 1 (Sufficiency condition). Let φ be feasible to (2).

Then φ is a global optimal solution to (2) if the following

holds for all i ∈ V , j ∈ {0} ∪ V and (a, k) ∈ S ,

δij(a, k)







= min
j′∈{0}∪V

δij′(a, k), if φij(a, k) > 0,

≥ min
j′∈{0}∪V

δij′(a, k), if φij(a, k) = 0,
(6)

where δij(a, k) is the “modified marginal”, given by

δij(a, k) =

{

L(a,k)D
′
ij(Fij) +

∂D
∂tj(a,k)

, if j ̸= 0,

wi(a, k)C
′
i(Gi) +

∂D
∂ti(a,k+1) , if j = 0.

(7)

Proof of Theorem 1 is provided in our supplementary ma-

terial [15]. To see the difference between the KKT necessary

condition (5) and the sufficiency condition (6), consider again

the example in Fig. 4. For any φ satisfying (6), it must hold

that φ12(a, 0) = 1, φ23(a, 0) = 1 and φ34(a, 0) = 1, precisely

indicating the shortest path 1 → 2 → 3 → 4 as expected.

IV. DISTRIBUTED ALGORITHM

We propose a distributed algorithm that converges to the suf-

ficiency condition (6). The algorithm generalizes the method

in [12] to service chain computation placement. It is adaptive

to changes in data input rates and network topology, and can

be implemented as an online algorithm.

Existence of routing loops generates redundant flow circu-

lation and causes potential instability. We say φ has a loop of

stage (a, k) if there exists i, j ∈ V , such that i has a path5

of stage (a, k) to j, and vice versa. We say φ is loop-free

if no loops are formed for any stage (a, k) ∈ S . We assume

the network starts with a feasible and loop-free strategy φ0,

and the initial cost D0 = D(φ0) is finite. Time is partitioned

into slots of duration T . At (t + 1)-th slot (t ≥ 0), node i’s
forwarding/offloading strategy φi is updated as follows,

φt+1
i = φt

i +∆φt
i, (8)

where the update vector ∆φt
i is calculated by

∆φt
ij(a, k) =











−φt
ij(a, k), if j ∈ Bt

i(a, k)

St
i (a, k)/N

t
i (a, k), else if etij(a, k) = 0

−min
{

φt
ij(a, k), αe

t
ij(a, k)

}

, else if etij(a, k) > 0

(9)

where Bt
i(a, k) is the set of blocked nodes to suppress routing

loops, α is the stepsize, and

etij(a, k) = δtij(a, k)−minj ̸∈Bt
i
(a,k) δ

t
ij(a, k), ∀j ̸∈ Bt

i(a, k),

N t
i (a, k) =

∣

∣

∣

∣

{

j ̸∈ Bt
i(a, k)

∣

∣etij(a, k) = 0
}

∣

∣

∣

∣

, (10)

St
i (a, k) =

∑

j:et
ij
(a,k)>0

∆φt
ij(a, k).

Our method can be viewed as a variant of gradient pro-

jection. It transfers φij(a, k) from non-minimum-marginal

directions to the minimum-marginal ones (here “marginal”

refers to δij(a, k) defined in (7)), until (6) is satisfied. We next

provide details regarding the blocked node set Bt
i(a, k), and

introduce a distributed online mechanism to estimate δtij(a, k).

Blocked node set. To ensure feasibility and loop-free, we

adopt the method of blocked node sets following [12]. Com-

bining Theorem 1 with (4), if φ is a global optimal solution

satisfying (6), for any stage (a, k), the value of ∂D/∂ti(a, k)
should decrease monotonically along any path of stage (a, k).
Thus node i should not forward flow of stage (a, k) to a

neighbor j if either 1) ∂D/∂tj(a, k) > ∂D/∂ti(a, k), or 2)

j could form a path containing some link (p, q) such that

∂D/∂tq(a, k) > ∂D/∂tp(a, k). The set containing nodes of

these two categories, along with j with (i, j) ̸∈ E , is marked

as the blocked node set Bi(a, k)
t. Practically, the information

needed to determine blocked node sets could be piggy-backed

on the broadcast messages described shortly. If such a blocking

mechanism is implemented in each iteration, the loop-free

property is guaranteed to hold throughout the algorithm.

Marginal cost broadcast. Recall from (7) that in order to cal-

culate δi(a, k), node i needs the link marginal costs D′
ij(Fij),

computation marginal costs C ′
i(Gi), and the marginal costs

due to traffic term, i.e., ∂D/∂tj(a, k) and ∂D/∂ti(a, k + 1).

5A path from i to j is a sequence of nodes n1, · · · , nL with (nl, nl+1) ∈
E and φnlnl+1

(a, k) > 0 for l = 1, · · · , L− 1, and n1 = i, nL = j.
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Suppose Dij(·) and Ci(·) are known in closed-form, nodes

can directly measure D′
ij(Fij) and C ′

i(Gi) while transmitting

on link (i, j) and performing computation (or equivalently,

first measure flows Fij and workloads Gi, then substitute into

Dij(·) and Ci(·)). To collect ∂D/∂ti(a, k), we use recursive

calculate (4) starting with i = da and k = |Ta| satisfying

∂D/∂tda
(a, |Ta|) = 0. To carry out this recursive calculation,

we apply a multi-stage distributed broadcast protocol to every

application a ∈ A, described as follows:

1) Broadcast of ∂D/∂ti(a, |Ta|): Each node i first waits

until it receives messages carrying ∂D/∂tj(a, |Ta|) from

all its downstream neighbors j ∈ V with φij(a, |Ta|) > 0.

Then, node i calculates ∂D/∂ti(a, |Ta|) by (4b) with the

measured D′
ij(Fij) and received ∂D/∂tj(a, |Ta|). Next,

node i broadcasts newly calculated ∂D/∂ti(a, |Ta|) to all

its upstream neighbors k ∈ V with φki(a, |Ta|) > 0. (This

stage starts with the destination da, where da broadcasts

∂D/∂tda
(a, |Ta|) = 0 to its upstream neighbors.)

2) Broadcast of ∂D/∂ti(a, k) for k ̸= |Ta|: (This stage

starts with k = |Ta| − 1 and is repeated with k being

abstracted by 1 each time, until k = 0.) Suppose every

node i has calculated ∂D/∂ti(a, k
′) for all k′ ≥ k + 1.

Then, similar as stage 1), ∂D/∂ti(a, k) can be calculated

recursively by (4a) via broadcast. Besides ∂D/∂tj(a, k)
from all downstream neighbors j, node i must also obtain

∂D/∂ti(a, k + 1) and C ′
i(Gi) for (4a). For each k, this

stage starts at nodes i where φij(a, k) = 0 for all j ∈ V .

i.e., the end-nodes of stage (a, k) paths.

With loop-free guaranteed, the broadcast procedure above is

guaranteed to traverse throughout the network for all (a, k) ∈
S and terminate within a finite number of steps. We summarize

our proposed method in Algorithm 1.

Algorithm 1: Gradient Projection (GP)

1 Start with t = 0 and a loop-free φ0 with D0 < ∞.

2 do

3 Each node i obtain ∂D/∂ti(a, k) for all (a, k) ∈ S
via the marginal cost broadcast.

4 Node i calculates δij(a, k)
t by (7) for j ∈ {0} ∪ V .

5 Node i calculates the blocked node sets Bij(a, k)
t.

6 Node i obtain ∆φt
i by (9) and updates φt

i by (8).

7 when end of iteration t;

Convergence and complexity. The proposed algorithm can be

implemented in an online fashion as it does not require prior

knowledge of data input rates ri(a). Moreover, it is adaptive to

changes in ri(a) since flow rates Fij and workload Gi can be

directly estimated by the packet number on links and CPU in

previous time slots. It can also adapt to changes in the network

topology: whenever a link (i, j) is removed from E , node i
only needs to add j to the blocked node set; when link (i, j)
is added to E , node i removes j from the blocked node set.6

6When a new node v is added to the network, it can randomly initiate
φv with (1). tv(a, k) will be automatically updated by the marginal cost
broadcast in the next time slot, and the loop-free property will be guaranteed.

Theorem 2. Assume the network starts at φ0 with D0 < ∞,

and φt is updated by Algorithm 1 with a sufficiently small

stepsize α. Then, the sequence {φt}
∞
t=0 converges to a limit

point φ∗ that satisfies condition (6).

The proof of Theorem 2 is a straightforward extension of

[12] Theorem 5, and is omitted due to space limitation. The

stepsize α that guarantees convergence can also be found in

[12]. We remark that the convergence property of Algorithm

1 can be improved by adopting second-order quasi-Newton

methods, e.g., the method in [5] speeds up convergence while

guaranteeing convergence from any initial point.

Recall that φ is updated every time slot of duration T , every

broadcast message is sent once in every slot. Thus there are |E|
broadcast message transmissions for each stage in one slot, and

totally |S||E| per slot, with on average |S|/T per link/second,

and at most |S|d̄ for each node, where d̄ is the largest out-

degree. We assume the broadcast messages are sent in an out-

of-band channel. Let tc be the maximum transmission time for

a broadcast message, and h̄ be the maximum hop number for

all paths. The broadcast completion time for application a is

at most (|Ta| + 1)h̄tc. Moreover, the proposed algorithm has

space complexity O(|S|) at each node. The update may fail

if broadcast completion time exceeds T or |S|/T exceeds the

broadcast channel capacity. If so, we can use longer slots, or

allow some nodes to perform updates every multiple slots.

Meanwhile, if |S| is large, the algorithm overhead can be

significantly reduced by applying our algorithm only to the

top applications causing most network traffic.

V. NUMERICAL EVALUATION

We evaluate the proposed algorithm GP via a flow-level

simulator presented at [16]. We implement several baselines

and compare against GP over different network scenarios

summarized in Table II. Specifically, Connected-ER is a

connectivity-guaranteed Erdős-Rényi graph. Balanced-tree is

a complete binary tree. Fog is a sample topology for fog-

computing [17]. Abilene is the predecessor of Internet2 Net-

work. GEANT is a pan-European research and education data

network. SW (small-world) is a ring-like graph with additional

short-range and long-range edges. Table II also summarizes

the number of nodes |V|, edges |E|, and applications |A|. We

assume each application has R random active data sources

(i.e., the nodes i for which ri(a) > 0), and ri(a, k) for each

data source is chosen u.a.r. in [0.5, 1.5]. Link is the type of

Dij(·), where Linear denotes a linear cost Dij(Fij) = dijFij ,

and Queue denotes the non-linear cost Dij(Fij) =
Fij

dij−Fij
.

Comp is the type of Ci(Gi), where Linear denotes Ci(Gi) =
si
∑

wi(a, k)gi(a, k), and Queue denotes Ci(Gi) =
Gi

si−Gi
.

We compare GP against: SPOC (Shortest Path Optimal

Computation placement) fixes the forwarding variables to the

shortest path (measured with marginal cost at Fij = 0) and

solves the optimal offloading along these paths. LCOF (Local

Computation placement Optimal Forwarding) computes all

exogenous input flows at their data sources, and optimally

routes the result to destinations. LPR-SC (Linear Program
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Fig. 5: Normalized total cost D(φ) for network scenarios in Table II

Network Parameters

Topology |V| |E| |A| R Link d̄ij Comp s̄i
Connected-ER 20 40 5 3 Queue 10 Queue 12
Balanced-tree 15 14 5 3 Queue 20 Queue 15

Fog 19 30 5 3 Queue 20 Queue 17
Abilene 11 14 3 3 Queue 15 Queue 10

LHC 16 31 8 3 Queue 15 Queue 15
GEANT 22 33 10 5 Queue 20 Queue 20

SW 100 320 30 8 (both) 20 (both) 20
Other Parameters |Ta| = 2, ri(a) ∈ [0.5, 1.5], L(a,k) = 10− 5k

TABLE II: Simulated Network Scenarios
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Fig. 7: Packet hop number vs L(a,0)

Rounded for Service Chain) is the joint routing and offloading

method by [18] (we extend this method heuristically to service

chain applications), which does not consider link congestion.

Fig.5 compares the total cost (normalized according to

the worst performing algorithm) across scenarios in Table

II. We test both linear cost and convex queueing cost with

other parameters fixed in SW, labeled as SW-linear and

SW-queue. The proposed algorithm GP significantly out-

performs other baselines in all simulated scenarios, with as

much as 50% improvement over LPR-SC which also jointly

optimizes routing and task offloading. Case SW-linear and

SW-queue suggest that GP promises a more significant delay

improvement for networks with queueing effect. Fig.6 shows

total cost versus exogenous input rates ri(a) in Abilene. The

performance advantage of GP quickly grows as the network

becomes more congested. In Fig. 7, we compare average hop

numbers travel by data and result packets for GP over the ratio

of packet size. The average computation offloading distance

grows when L(a,0) becomes relatively small, i.e., GP tends

to offload tasks with larger data size nearer to requester and

farther from the destination node.

VI. CONCLUSION

We propose a joint forwarding and offloading model for

service chain applications in CEC. We formulate a non-

convex total cost minimization problem and optimally solve

it by providing sufficient optimality conditions. We devise

a distributed and adaptive online algorithm that reaches the

global optimal. Our method achieves delay-optimal forwarding

and offloading for service chain computations, and can be

applied to embed computation-intensive complex applications,

e.g., DNN, into CEC networks. Our future work focuses

on extending the proposed framework to incorporate general

interdependency among tasks, e.g., directed acyclic graphs.
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