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Abstract—Caching is vital for high-throughput networks in
data-intensive applications. Dynamic random-access memory
(DRAM), often used for caching due to its high data transfer rate,
faces limitations in capacity and cost, hindering scalability needed
to meet growing demand. Evolving flash storage can augment
DRAM, but necessitates caching techniques adapted to its charac-
teristics for optimal network performance. This paper models the
cache as a set of storage blocks with varying rate parameters and
utilization costs. Utilizing a framework that enables joint caching
and forwarding, we introduce an optimization technique based
on the drift-plus-penalty method. Our approach minimizes the
drift-plus-penalty expression in a virtual control plane and offers
a throughput-cache utilization cost trade-off. We implement a
corresponding practical policy in the data plane. Simulations
demonstrate the superior performance of our approach in total
delay and cache utilization costs.

I. INTRODUCTION

In-network caching is pivotal for high-throughput data de-
livery networks. In this context, cache devices are ubiquitously
distributed across the network and placed directly on the
forwarding path of requests. Capacity and read rate are critical
cache device parameters that influence network performance.
As bottlenecks in the caching system can lead to compounding
network-wide performance issues, in-network caching places
strict demands on these parameters. Dynamic random-access
memory (DRAM), commonly chosen for its ability to match
network link rates, faces obstacles in scaling network perfor-
mance due to its limited capacity and high upfront cost. In
contrast, persistent storage like solid-state drives (SSDs) offer
large capacities at low upfront costs, but are much slower than
DRAM. However, they can still serve as additional cache tiers
alongside DRAM to enable larger capacities. Some system
designs already incorporate this vertical scaling of caches, and
given the expected performance improvements in upcoming
generations of SSDs, wider implementation of routers with
large multi-tiered caches is imminent.

However, a transfer rate gap between memory and storage
will persist, and operational costs when using devices like
SSDs as short-term caches arise due to power consumption and
wear. Therefore, the benefits and costs of using these devices
must be carefully balanced in order to build sustainable high
performance networks. The first step in this balancing act is the
cache admission and replacement policy. However, policies in
wide adoption today focus on the characteristics of data rather
than caches, making them unsuitable for the task.

In this paper, we propose a cost-aware multi-tiered caching
policy that intelligently utilizes a variety of memory and

storage elements with different characteristics and offers a
trade-off between performance and utilization costs. While this
policy retains the goal of caching a small set of data objects
with high demand in the fastest tier of cache, it also aims to
collect a larger set of objects with less demand in slower tiers
with more capacity. In this way, it can balance the frequency
of cache hits served by cache tiers based on their transfer rates.
Furthermore, it makes cache replacement decisions carefully
to mitigate the number of low benefit replacements, where
a data object is replaced by another with similar measured
demand. We build this policy on the VIP framework [1],
which provides powerful design and analysis tools that fit our
goals. Most notably, we use this framework to enable a joint
caching and forwarding policy. The benefits of this coupling
were shown in the literature [2], and it allows us to take full
advantage of the additional tiers distributed across the network.
The contributions of this paper can be summarized as follows:
• An object-level caching model that considers cache tiers

with diverse cost and performance parameters, and an
extension of the VIP framework to this caching model,

• A distributed joint caching and forwarding algorithm built
in the virtual control plane of this extended framework
which optimally balances queue backlog and cache uti-
lization cost bounds,

• Practical caching and forwarding policies in the data plane
driven by the virtual control plane algorithm and an exper-
imental evaluation of these policies through simulations.

II. RELATED WORK

Feasibility of devices like SSDs for in-network caching has
been primarily explored in the information-centric networking
(ICN) paradigm. In [3], a two-layer cache with a large SSD
layer masked behind a fast DRAM layer was designed, which
was later used in a follow-up work to build a high-speed router
prototype which achieved more than 10Gbps throughput [4].
Another design was proposed in [5], where block device I/O
was separated from forwarding paths by sending packets to
a dedicated caching process, allowing forwarding to continue
operating at line-rate. While these works address the integra-
tion of persistent storage into caching systems, they are not
backed by policies designed for multi-tiered caches under the
constraints of in-network caching.

The leave-copy-everywhere (LCE) strategy [6], paired with
traditional replacement policies such as least recently used
(LRU) is a known standard in architectures like Named Data
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(a) (b) (c)

Figure 1: Costs of various cache operations. Admissions into
tiers j = 1 and j = 2 are shown in (a) and (b) respectively.
The migration shown in (c) is due to a new object admitted
to tier j = 1 replacing the existing object there, which is then
admitted to tier j = 2, in turn causing an eviction in that tier.

Networking (NDN) [7] that employ in-network caching. While
simple and effective, this approach does not extend well to
multi-tiered caches. Though more sophisticated methods exist
in the literature, they tend to focus on monolithic caches
and prioritize the characteristics of data objects. Furthermore,
cost-aware policies also see little attention. One notable work
relating to our motivations in this context is [8], where the
endurance costs of using flash-based caches are reflected into
the caching policy.

The lack of robust multi-tiered caching policies is one of
the reasons why SSD-based caches have yet to see wider
adoption in modern high-performance ICN prototypes. In [9],
where a state-of-the-art forwarder for NDN was introduced,
caching in persistent memory or disk storage was stated as a
future direction and the necessity for novel caching algorithms
accounting for varying device characteristics in a multi-tiered
cache was emphasized. Most recently, an experimental study
for a NDN-based data delivery system, intended for science
experiments with data volumes in the exabyte range, featured
nodes with DRAM-only caches of 20 GB capacity [10].

While neither traditional policies nor novel ones from the
literature readily propose extensions to multi-tiered caches,
the VIP framework described in [1] stands out as a primary
candidate that can support such an extension since it models
the transfer rates of caches. We will leverage this to extend
the framework to multiple tiers and establish the basis for our
multi-tiered caching policy.

III. SYSTEM MODEL

Let the unit of content in the network be a data object
(object for short) and assume that each object has the same
size. Denote the set of objects in the network as K. Let G =
(N ,L) be a directed graph where N and L denote the sets
of nodes and links in the network respectively. Assume that
(b, a) ∈ L, if (a, b) ∈ L and let Cab be the transmission
capacity of link (a, b) ∈ L in objects/second. For each object
k ∈ K, assume that there is a unique and fixed node S(k) ∈ N
which serves as the content source of k. Requests for data
objects can enter the network at any node and are transmitted

via request packets of negligible size. A request for object k
is forwarded through the network until it reaches either S(k)
or a node n that caches k, at which point the data object is
produced at n and delivered to the requester, following the
path of the request in reverse.

Assume that any node in the network can have one or more
cache(s), each referred to as a cache tier. Denote the set of
cache tiers at node n ∈ N as Jn and let tiers j ∈ Jn be
indexed as j = 1, 2, . . . , |Jn| where |Jn| denotes the number
of tiers at n. Let each tier have capacity Lnj

in objects.
Assume that an object k can be cached in at most one tier
at a node n, and cannot be cached in any of the tiers at node
S(k). Migrations of objects from one cache tier to another
occur when a replacement takes place in one tier and the
evicted object is moved into another tier. Admitting a new
object into tier j at node n incurs the cost canj

. This can
represent the time or energy spent on this write operation,
its endurance impact, or a combination of these and any other
potential costs. Evicting an object from tier j incurs the cost
cenj

, representing similar costs for the read operation. Figure 1
illustrates the costs of various operations in this model.

IV. VIRTUAL PLANE

As stated in Section I, we build our caching policy on the
VIP framework [1]. In this framework, user demand for objects
is measured using virtual interest packets (VIPs), which are
tracked in a virtual plane. The virtual plane operates separately
from the request and data forwarding processes described in
Section III, which take place in what we refer to as the data
plane. VIPs are used as the common metric for caching and
forwarding decisions, which allow algorithms based on this
framework to drive requests toward caching nodes while avoid-
ing congestion in the network. Additionally, this separation
reduces the complexity of design and analysis for algorithms.

In view of our design goal described in Section I, the
VIP framework provides two additional advantages. First, it
embeds the read rates of caches into its analysis of network
dynamics in the virtual plane. This is critical for our purposes.
Second, as this analysis is based on the Lyapunov drift
technique, it allows us to formulate a performance-cost trade-
off using the drift-plus-penalty approach [11].

A. VIP Dynamics

We first summarize the dynamics of VIPs in the virtual
plane, as adapted from [1] for the multi-tiered cache model.
Time in the virtual plane is represented in slots of length 1
indexed as t = 1, 2, ... where time slot t refers to the time
interval [t, t + 1). Each node n ∈ N keeps a separate VIP
counter V k

n (t) for each object k ∈ K, which are all set to
0 at the beginning of time slot t = 1, with V k

n (t) = 0 for
all t ≥ 1 if n = S(k). When a request for object k enters
the network at node n in the data plane, the corresponding
counter V k

n (t) is incremented. The number of requests for
object k that enter the network at node n during slot t is
denoted as Ak

n(t) and the external arrival rate of VIPs at
node n for object k is λk

n ≜ limt→∞
1
t

∑t
τ=1 A

k
n(τ). At each
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Figure 2: Snapshot of VIP counts of objects at the beginning of
slot t for an example network. S(1) = x, S(2) = y, S(3) = z,
S(4) = u. Cab = 2 for all (a, b) ∈ L. |Jn| = 2, Ln1

= 1,
Ln2 = 2, rn1 = 2, rn2 = 1 for all n ∈ N . VIP counter values
are given by text inside the squares depicting the objects, e.g.
V 2
z (t) = 10, V 4

y (t) = 7.

time slot, nodes communicate their VIP counts and forward
VIPs to their neighbors according to decisions made by a
virtual plane algorithm. The allocated transmission rate of
VIPs for object k over link (a, b) during slot t is denoted
as µk

ab(t). VIPs for an object k, after being forwarded through
the virtual plane, are removed at either S(k) or nodes that
cache k. In each time slot, the communication of VIPs can be
handled with a single message of negligible size in the data
plane. We define the virtual plane cache state for object k
at node n in tier j during slot t as sknj

(t) ∈ {0, 1}, where
sknj

(t) = 1 if the object is cached and sknj
(t) = 0 otherwise1,

with sknj
(1) = 0, ∀n ∈ N , k ∈ K.

A tier j at node n has read rate rnj
, meaning it can produce

rnj copies of each object it caches per time slot, independent
of other objects and tiers. We assume that cache tiers in set
Jn are numbered in descending order of their read rates, i.e.
rn1

≥ rn2
≥ · · · ≥ rn|Jn| . Then, the dynamics of each

VIP counter can be summarized with the following inequality,
where (x)+ ≜ max(x, 0).

V k
n (t+ 1) ≤

((
V k
n (t)−

∑
b∈N

µk
nb(t)

)+
+Ak

n(t)

+
∑
a∈N

µk
an(t)−

∑
j∈Jn

rnj
sknj

(t)

)+ (1)

To demonstrate VIP dynamics concretely, we use the ex-
ample of Figure 2 and numerically describe how certain VIP
counters would evolve from slot t to t + 1. Assume that
s2z1(t) = 1, A2

z(t) = 3, and an arbitrary virtual plane algorithm
allocates µ2

zy = µ2
zu = 2, µ2

yz = µ2
uz = 0. Then, by (1),

V 2
u (t+1) = 7. Node z has enough VIPs to use the entirety of

allocation rates µ2
zy and µ2

zu. Thus, it forwards 4 of its VIPs
for object 2 to its neighbors. It receives 3 VIPs from external
request arrivals and drains 2 VIPs via its tier 1 cache since
rz1 = 2. Now, assume s2x1

(t) = s2x2
= 0, A2

x(t) = 2 and

1We assume that in the virtual plane, at each time t, a node can immediately
gain access to any data object in the network and cache it locally.

the virtual plane algorithm allocates µ2
xu = 0, µ2

xy = 2. By
(1), V 2

x (t + 1) = 2. Node x can only forward 1 VIP to y as
V 2
x (t) = 1, even though the allocated rate is higher. Finally,

as node x does not cache object 2 in any of its tiers, the 2
VIPs due to the external arrivals can’t be drained via caching.

B. Joint Caching and Forwarding Algorithm

Before we state our distributed joint caching and forwarding
algorithm for the virtual plane, we first define a virtual plane
cache benefit function as follows.

bknj
(t) ≜

{
rnj

V k
n (t)− ωcanj

, if sknj
(t− 1) = 0

rnj
V k
n (t) + ωcenj

, if sknj
(t− 1) = 1

(2)

where ω ≥ 0 is the importance weight, an adjustable parameter
which determines how we weigh costs against performance.
This function incorporates the potential profits and costs
associated with object-tier pairings. Objects in higher demand,
i.e. those with high VIP counts, are more valuable if kept in
faster tiers. This is why read rate is a scaling factor to VIP
counts in (2). On the other hand, moving objects between
cache tiers or admitting new objects have associated costs,
whereas maintaining the cache state of an object does not. This
is why the potential benefit of admitting an object is reduced
by the weighed admission cost in (2), while that of maintaining
an already cached object is increased by the weighed eviction
cost, since choosing to maintain this object means we won’t
be paying the eviction cost while keeping its value2. Having
defined this function, we now state our algorithm.

Algorithm 1 (Caching and Forwarding in the Virtual Plane).
At the beginning of each time slot t, at each node n, observe
VIP counts (V k

n (t))k∈K,n∈N , then perform forwarding and
caching in the virtual plane as follows.
Caching: Let i be an integer in the set of integers In ≜
{1, 2, ...,∑j∈Jn

Lnj}, where each i represents a space in
cache that can hold one data object. Let Inj

≜ {1 +∑j−1
ℓ=1 Lnℓ

, ...,
∑j

ℓ=1 Lnℓ
} be the set of integers that represent

cache spaces in tier j. At each node n ∈ N , choose skni
(t)

for each k ∈ K and i ∈ In to
maximize

∑
k∈K

∑
i∈In

bkni
(t)skni

(t) (3)

subject to
∑
k∈K

skni
(t) ≤ 1, i ∈ In (4)∑

i∈In

skni
(t) ≤ 1, k ∈ K (5)

skni
(t) ∈ {0, 1}, k ∈ K, i ∈ In (6)

where bkni
(t) = bknj

(t) if i ∈ Inj . Then, set sknj
(t) =∑

i∈Inj
skni

(t).

Forwarding: Let Lk be the set of links which are allowed to
transmit VIPs of object k, determined by a routing policy. For
each data object k ∈ K and each link (a, b) ∈ Lk, choose

µk
ab(t) =

{
Cba, if k = k∗ab(t) and W k

ab(t) > 0
0, otherwise (7)

2Please refer to [12] for a formal derivation of this function.
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where,
W k

ab(t) ≜ V k
a (t)− V k

b (t),

k∗ab(t) ≜ argmax
{k:(a,b)∈Lk}

W k
ab(t),

(8)

Queue Evolution: Update VIP counts according to (1).

The intuition behind the caching problem (3)–(6) is better
explained with the added context of the following proposition.

Proposition 1. A solution to the following problem gives an
equivalent solution to the problem defined by (3)–(6).

maximize
∑
k∈K

∑
j∈Jn

bknj
(t)sknj

(t) (9)

subject to
∑
k∈K

sknj
(t) ≤ Lnj

, j ∈ Jn (10)∑
j∈Jn

sknj
(t) ≤ 1, k ∈ K (11)

sknj
(t) ∈ {0, 1}, k ∈ K, j ∈ Jn (12)

Proof. Since |Inj | = Lnj , sknj
(t) = 1 can hold for at most

Lnj
objects. Therefore, (4) is equivalent to (10). Since skni

= 1
can hold for at most one i ∈ In, (5) is equivalent to (11).

The problem posed by (9)–(12) maps directly to the task
of fitting data objects in multiple cache tiers according to the
potential benefits of object-tier pairings. Presented in this way,
the problem appears in the complex form of a generalized
assignment problem (GAP), which is NP-hard. However, by
representing a cache tier j at node n as a collection of Lnj

cache spaces that can each hold one object, we move from
many-to-one mappings between objects and tiers, to one-to-
one mappings between objects and cache spaces, revealing
that our problem in fact has the much simpler form presented
in (3)–(6) 3. While the problem defined by (3)–(6) is close
in form to the canonical assignment problem, because we
are not required to assign all cache spaces to objects, it
exhibits the notable difference that constraints (4) and (5)
are inequalities. Nevertheless, this problem can still be solved
exactly in polynomial time. While a number of methods exist,
we use the algorithm presented in [13], which is a variant of
the Jonker-Volgenant algorithm [14]. This algorithm already
addresses the fact that (6) is an inequality, as it is targeted at
the general case where the number of rows (i.e. cache spaces)
are smaller than the number of columns (objects). Addressing
the fact that (5) is an inequality is trivial, as we can solve the
problem treating it as an equality first, then set skni

(t) = 0
for all i such that bkni

(t) < 0, as this will yield a strictly
larger objective by (3). While the worst case complexity of
this algorithm is on the order of O(N3), its median execution
time in implementation can be fast. We refer the reader to [13]
for an in-depth analysis of both the complexity and execution
time of the algorithm in various implementations.

A major benefit of adopting the VIP framework is that we do
not need to alter the forwarding approach of [1], which applies

3Note that the problem can be presented in this way only due to our
assumption that all objects have the same size (reflected in constraint (10)).

the backpressure algorithm [15] to VIP queues to balance the
VIP backlog around the network in the virtual plane. This
approach extends naturally to pair with our caching approach,
as the it avoids forwarding interests in a way that would
overwhelm the slower tiers across the network.

C. Trade-off Analysis

We now provide a two-step analysis of our algorithm in
the virtual plane: (i) characterizing the stability region of the
VIP queue network and (ii) showing the trade-off between
minimizing queue backlog and total penalty bounds.

1) Stability Region: Our analysis of VIP queues in the
virtual plane is based on the Lyapunov drift technique, which
allows us to show that our algorithm can stabilize all VIP
queues without a-priori knowledge of arrival rates. To show
this property of the algorithm, we first characterize the stability
region [16], [11].

Theorem 1 (Stability Region). The VIP stability region Λ of
the network G = (N ,L), is the set Λ consisting of all VIP
arrival rates λ = (λk

n)k∈K,n∈N such that the following holds

λk
n ≤

∑
b∈N

fk
nb−

∑
a∈N

fk
an +

∑
j∈Jn

rnj

σ∑
i=1

βn,i1[(k,j)∈Bn,i],

∀n ∈ N , k ∈ K, n ̸= S(k) (13)
0 ≤ βn,i ≤ 1, i = 1, · · · , σ, n ∈ N

σ∑
i=1

βn,i = 1, ∀n ∈ N

where fk
ab =

∑t
τ=1 F

k
ab(τ)/t denotes the time average VIP

flow for object k over link (a, b) and F k
ab(t) is the number of

VIPs of k transmitted over (a, b) during slot t and satisfying
the following for all t ≥ 1.

F k
nn(t) = 0, F k

S(k)n(t) = 0, ∀n ∈ N , k ∈ K,

F k
ab(t) ≥ 0,

∑
k∈K

F k
ab(t) ≤ Cba, ∀(a, b) ∈ L

F k
ab(t) = 0, ∀ ̸∈ Lk, k ∈ K

(14)

Here, Bn,i denotes the i-th among σ total number of possible
cache placement sets at node n, and βn,i represents the
fraction of time that objects are placed at n according to Bn,i.
The elements of set Bn,i are pairs (k, j), where (k, j) ∈ Bn,i,
if object k is cached in tier j.

Proof. Please see Appendix A in [12].

2) Backlog-Penalty Bound Trade-off: We now show that,
given any positive weight ω > 0, our algorithm can minimize
the upper bounds for both the queue backlog and total
penalty, using the drift-plus-penalty approach. We assume
that request arrival processes are mutually independent for all
nodes and objects, and are i.i.d. with respect to time slots.
We also assume that there is a finite value Ak

n,max such that
Ak

n(t) ≤ Ak
n,max for all n, k and t.

Theorem 2 (Throughput and Penalty Bounds). Given the VIP
arrival rate vector λ = (λk

n)k∈K,n∈N ∈ int(Λ), if there exists
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ϵ = (ϵkn)n∈N ,k∈K ≻ 0 such that λ+ ϵ ∈ Λ, then the network
of VIP queues under Algorithm 1 satisfies

lim
T→∞

1

T

T−1∑
t=0

∑
n∈N ,k∈K

E[V k
n (t)] ≤ NB

ϵ
+

ω

2ϵ
Ψ(λ) (15)

lim
T→∞

1

T

T−1∑
t=0

E[p(t)] ≤ 2NB

ω
+Ψ(λ) (16)

where ϵ ≜ minn∈N ,k∈K ϵkn, p(t) =
∑

k∈K,n∈N ,j∈Jn
pknj

(t)
is the total penalty accumulated across the network at slot
t, Ψ(λ) is the minimum long term average total penalty
achievable by any feasible and stabilizing policy [11] and,

B ≜
1

2N

∑
n∈N

((∑
b∈N Cnb

)2
+ 2
(∑

b∈N Cnb

)
|K|rn1

+
(∑

k∈K Ak
n,max +

∑
a∈N Can + |K|rn1

)2) (17)

Proof. Please see Appendix B in [12].

Theorem 2 demonstrates an achievable trade-off between
performance and costs: we can set ω large to prioritize
minimizing the bound on penalties in exchange for signifi-
cantly increasing the bound on queue backlog, and vice-versa.
Figure 3 visualizes this dynamic in the virtual plane.

0 5 10 15 20 25

Penalty Importance Weight

0

2500

5000

7500

10000

12500

15000

17500

T
im

e 
A

v
er

ag
e 

S
u
m

 o
f 
V

IP
 C

ou
n
ts

(a) Sum of VIP counts.

0 5 10 15 20 25

Penalty Importance Weight

50

100

150

200

250

300

350

400

T
im

e 
A

v
er

ag
e 

S
u
m

 o
f 
P

en
al

ti
es

(b) Sum of penalties.

Figure 3: Long-term average of total VIP queue backlog and
total penalty in the virtual plane as ω increases (Abilene
topology of Figure 4, |N | = 1000,

∑
k∈K λk

n = 10).

V. DATA PLANE

In this section, we develop practical policies that operate in
the data plane and make forwarding and caching decisions by
using Algorithm 1 as a guideline.

Caching. Implementing a caching policy in the data plane
based on Algorithm 1 requires certain adjustments. First,
unlike in the virtual plane, nodes do not have immediate access
to data objects in the data plane. Therefore, the policy must
make decisions based on objects available to a given node. Fur-
thermore, in the virtual plane, VIPs of an object are drained via
caching immediately after the cache state for that object is set
to 1, leading Algorithm 1 to make frequent changes in cache
distribution, as was also mentioned in [1]. This oscillatory
behavior is not practical in the data plane. Having observed
these, we present a practical caching policy in the data plane
that is based on the VIP flows established by Algorithm 1.

We adopt the cache score metric devised for the stable
caching algorithm presented in [1]. The cache score for object
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Figure 4: Network topologies used in experiments.

k at node n at time t is defined as the average number of
VIPs for k received by n over a sliding window of T time
slots prior to t, expressed as follows.

CSk
n(t) =

1

T

t∑
τ=t−T+1

∑
(a,n)∈Lk

F k
an(τ) (18)

We then define the data plane cache benefit metric, which
balances the cache score against utilization costs, as follows.

CBk
nj
(t) =


rnjCSk

n(t)− ωcanj
, if j is empty

rnj
(CSk

n(t)− CS
k′
nj

n (t))

− ω(canj
+ cenj

), otherwise
(19)

where k′nj
= argmin{k∈Knj

(t)} CSk
n(t) with Knj

(t) denoting
the set of cached objects in tier j at node n at a given time.

When a data object k ̸∈ ∪j∈JnKnj (t) arrives at node n
during the time interval [t, t), the caching policy first deter-
mines the cache tier which offers the highest cache benefit, i.e.
j∗ = argmax{j∈Jn} CBk

nj
(t). If CBk

nj∗
(t) > 0, the object is

admitted to tier j∗. If tier j∗ is full, object k replaces object
k′nj

. We repeat this process as long as there are replacements,
treating any replaced object as if it were a new data object
arrival to see if it is beneficial to migrate it to a different tier.

Forwarding. We adopt the forwarding strategy of [1], which
we describe briefly. A request for object k ̸∈ Knj

(t) that
arrives at n is forwarded to node

bkn(t) = argmax
{b:(n,b)∈Lk}

1

T

t∑
t′=t−T+1

F k
nb(t) (20)

The sliding window is used here as well, to represent the
time-average behavior of the periodic VIP forwarding process
in the virtual plane. This policy forwards requests on the
most profitable links, as established by the flow patterns of
VIPs in the virtual plane.

Note that these policies, like our model, are expressed in
object level terms. In real data plane implementations, objects
consist of several chunks. Our policies would employ the
following principles at the chunk level. If a data object is
admitted to or evicted from a cache tier, all its chunks must
be admitted to or evicted from the same tier. The forwarding
decision described in (20) is made when a request for the first
chunk of object k arrives at node n. Requests for subsequent
chunks of k are forwarded to the same node.
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Figure 5: Total delay (a) and cache hit distribution (b) (ω = 0).

VI. EXPERIMENTAL RESULTS

We use the Abilene [17] and GEANT [18] network topolo-
gies shown in Figure 4 in our simulation4 experiments. In
both topologies, each link has a capacity of 10 objects per
second. All nodes can be content sources, have caches and
generate requests. For each object k, a node is selected as
the content source S(k) uniformly at random and independent
of all other objects. We assume that node S(k) can produce
copies of k instantaneously. We apply a simple routing scheme
that allows each node n to forward requests for object k to
any neighboring node that is its next hop on any shortest
path (in number of hops) between n and S(k). For all
settings, we consider a total of 1000 data objects. At each
requester, requests arrive according to a Poisson process with
a rate of λ = 10. The object requested by each arrival is
determined independently of previous arrivals according to a
Zipf distribution with parameter 0.75. Requests are generated
for the first 100 seconds of the simulation, and a run completes
once all requests are fulfilled. We use the same two cache tiers
at each node. The faster tier (tier 1) can store 5 objects and
produce 20 objects per second. It has an admission cost of 4
and an eviction cost of 2. The slower tier (tier 2) can store 100
objects and produce 10 objects per second, has an admission
cost of 2 and an eviction cost of 1.

We run our virtual plane algorithm with a time slot length
of 1 second, and use a window size T of 100 slots to
compute (18) and (20) for the data plane policies. To establish
baselines, we use four cache replacement policies: First In
First Out (FIFO), Uniform Random (RAND), Least Recently
Used (LRU) and Least Frequently Used (LFU). FIFO, RAND
and LRU policies are paired with the LCE admission policy,
i.e. they admit all new (not already cached) data object arrivals.
For LRU, admissions happen in the first tier, evicting the LRU
object if the tier is full; the evicted object can then be migrated
to the second tier if there is available capacity there, or the
LRU object in the second tier was requested less recently.
For FIFO, the two tiers are operated as a single FIFO queue;
admissions happen in the first tier and when the object at the
front of the first tier is evicted, it is migrated to the second tier.
For RAND, one of the tiers is selected uniformly at random to
admit the object; if the selected tier is full, an object in the tier

4Simulation code available at https://github.com/fvmutlu/multi-tier.

is selected uniformly at random to be evicted. We adapt LFU
in a less naive manner, by using the method in the practical
caching policy we developed in Section V. To do so, in place
of the cache score (18), we use the frequency measurement of
LFU when computing the cache benefit (19).

We pair all four of the baseline caching policies described
above with a Least Response Time (LRT) forwarding scheme,
where nodes keep track of the round trip delay of the last
request sent over each outgoing link and choose the link with
the smaller delay when more than one link is available to
forward a request. For our data plane policy, we use this round
trip delay measurement to break ties when (20) yields more
than one valid neighbor node.

We first experiment with a simple scenario where penalties
are disregarded by setting ω = 0. Results of this scenario can
be seen in Figure 5. Figure 5a shows the total delay expe-
rienced by all requests generated throughout the simulation
run, as a fraction of the delay that would occur without any
caching. It can be immediately seen that naive policies perform
poorly, even increasing total delay in certain cases. For these
policies, the issue is their inability to balance the amount of
requests served from cache tiers in accordance with their read
rates. Figure 5b, which shows both the total number of cache
hits and the distribution of these hits between the two tiers,
demonstrates this. Essentially, these policies trade queuing
delays at network links with read delays of cache devices.
In contrast, we can see that the adapted policies achieve much
smaller delay with comparable amounts of total cache hits.
In the Abilene topology, which exhibits a more drastic case,
the naive LRU policy actually increases total delay by 21%
compared to the case with no caching at all, while our VIP-
based policy reduces delay by 98%.

We now exclude the naive approaches and focus on the
performance-cost trade-off by observing our policy in compar-
ison with the adapted LFU. We explore the range of trade-offs
for both policies by controlling ω. We illustrate our results
in Figure 6 by plotting total delay against the total penalty
incurred by all caching decisions throughout the simulation
run to directly demonstrate the performance-cost trade-off.

We can observe that our VIP-based policy outperforms
LFU in both topologies, with respect to delay achieved for
comparable penalty regimes or vice-versa. While the adapted
LFU policy uses a similar metric to make caching decisions
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Figure 6: Delay vs. penalty curves for our VIP-based policy and the adapted cost-aware LFU policy.

in the data plane, this performance difference between the
two arises from the joint caching and forwarding optimization
approach in the virtual plane that drives the VIP-based policy,
which can manage the larger but slower tier more effectively.

VII. CONCLUSION

Leveraging advances in storage technology to scale cache
capacities is becoming a necessity for high-performance data
delivery networks. In this paper, we presented an object-level
multi-tiered caching policy that can address the challenges
in realizing this transition. We built our policy using the
VIP framework which proved to be a suitable tool for this
challenge. We showed that our approach yields a stabilizing
algorithm which provides minimal upper bounds on both the
queue backlogs and cost accumulation across the network,
and establishes the trade-off between these two bounds. We
demonstrated through simulation experiments that the data
plane policy driven by our algorithm in the virtual plane
outperforms adapted traditional policies.
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