
Congestion-aware Routing and Content Placement

in Elastic Cache Networks

Jinkun Zhang and Edmund Yeh

Department of Electrical and Computer Engineering, Northeastern University, US

zhang.jinku@northeastern.edu eyeh@ece.neu.edu

Abstract—Caching can be leveraged to significantly improve
network performance and mitigate congestion. However, char-
acterizing the optimal tradeoff between routing cost and cache
deployment cost remains an open problem. In this paper, for
a network with arbitrary topology and congestion-dependent
nonlinear cost functions, we aim to jointly determine the
cache deployment, content placement, and hop-by-hop rout-
ing strategies, so that the sum of routing cost and cache
deployment cost is minimized. We tackle this mixed-integer
nonlinear problem starting with a fixed-routing setting, and
then generalize to a dynamic-routing setting. For the fixed-
routing setting, a Gradient-combining Frank-Wolfe algorithm
with (1

2
, 1)-approximation is presented. For the general dynamic-

routing setting, we obtain a set of KKT conditions, and devise
a distributed and adaptive online algorithm based on these
conditions. We demonstrate via extensive simulation that our
algorithms significantly outperform a number of baselines.

Index Terms—Caching, Routing, Information-centric network

I. INTRODUCTION

Caching, by bringing popular data objects closer to con-

sumers, is recognized as one of the most efficient ways to

mitigate bandwidth bottlenecks and reduce delay in modern

content delivery networks. However, as a resource, network

caches typically neither have prescribed sizes, nor are provided

for free. The network operator may pay a cost to deploy

caches of elastic sizes across the network (e.g. rent from

service providers or purchase and install manually), if doing

so yields satisfactory improvement in network performance.

Therefore, a rational network operator may seek to quantify

the tradeoff between cache deployment costs and network

performance metrics. In this paper, by formulating and solving

the problem of joint routing and caching with elastic cache

sizes, we explicitly investigate this important tradeoff.

The multi-commodity routing problem with arbitrary net-

work topology and nonlinear costs is optimally solved [1],

and the caching problem with fixed path and cache capacities

is solved with 1− 1
e approximation [2]–[5]. Recently, routing

and caching have been considered jointly as they are highly

coupled. i.e., we wish to cache on the routing path, and to

route to a cache site. Jointly-designed routing and caching

strategies can reduce routing costs significantly compared to

those designed separately [6]. Joint optimization of routing

and caching is studied in various networking contexts, such

as content delivery networks (CDNs) [7]–[9] and information-

centric networks (ICNs) [10], [11]. Using the idea of back-

pressure [12], a throughput-optimal dynamic forwarding and

caching algorithm for ICN is proposed by [13]. Approximation

solutions are proposed for joint routing and caching with

linear costs in bipartite graphs [7], or with arbitrary network

topology [6]. Nevertheless, the optimal routing and caching

with arbitrary topology and nonlinear costs remains an open

problem. A heuristic algorithm was proposed for this problem

[14], however, without an analytical guarantee.

On the other hand, optimization over elastic cache sizes has

drawn significant attention in recent years. This corresponds

to the demand of rapidly growing small content providers who

tend to lease storage from elastic CDNs, e.g., Akamai Aura,

instead of purchasing and maintaining storage by themselves.

One line of work focused on jointly optimizing cache de-

ployment and content placement subject to a cache budget

constraint [15]–[22]. Another line considered the tradeoff

between cache deployment costs and cache utilities, so that

the budget itself is optimized to pursue a maximum gain [23]–

[28]. In the latter line, almost all cache utilities are defined as

functions of cache hit count or ratio. Whereas, in a network of

arbitrary topology and congestion-dependent nonlinear costs,

a higher cache hit count or ratio does not necessarily yield a

lower routing cost. It is more directly in the network operator’s

interest to achieve lower routing costs, e.g., lower user latency

or link usage fee. For example, requests served with a hit ratio

1 at distant servers could incur severer network congestion

and thus a higher average delay, compared to requests served

locally with a lower hit ratio [29].

To our knowledge, the tradeoff between routing cost and

cache deployment cost remains an open problem. In this paper,

we fill this gap by minimizing a total cost – the sum of

routing cost and cache deployment cost. This paper differs

from previous works as we simultaneously (i) assume an

arbitrary multi-hop network topology, (ii) adopt a hop-by-hop

routing scheme with congestion-dependent nonlinear costs,

(iii) consider elastic cache sizes with nonlinear deployment

costs, (iv) achieve tradeoff between network performance and

cache deployment costs instead of operating with a fixed

budget, and (v) directly incorporate routing costs as the

performance metric instead of cache utilities.

We consider a cache-enabled content delivery network with

stochastic, stationary request arrivals. Requests are routed hop-

by-hop until they reach a cache hit. Content items are then sent

back to requesters along the reverse path. Costs are incurred

on the links due to transmission, and at the nodes due to cache

deployment. We aim to minimize the total cost by devising a

979-8-3503-8350-8/24/$31.00 ©2024 IEEE 1471

IE
EE

 IN
FO

C
O

M
 2

02
4

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-8
35

0-
8/

24
/$

31
.0

0
©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
52

12
2.

20
24

.1
06

21
30

4

Authorized licensed use limited to: Northeastern University. Downloaded on October 09,2024 at 00:29:03 UTC from IEEE Xplore. Restrictions apply.

distributed and adaptive online algorithm that determines the

routing and caching strategies simultaneously.

We study the proposed problem first in a fixed-routing

special case, and then in the general dynamic-routing setting.

For the fixed-routing case, we achieve a (12 , 1) approximation

by the Gradient-combining Frank-Wolfe algorithm [30]. The

general case, to our knowledge, has no known constant factor

approximation due to the loss of submodularity. Nevertheless,

inspired by [1], we propose a method with strong theoretical

insight by presenting and modifying the KKT conditions. It

suggests each node handles arrival requests in a way that

achieves minimum marginal cost – either by forwarding to

a nearby node or by expanding the local cache.

The main contributions of this paper are as follows:

• We propose a novel mathematical framework unifying

cache deployment, content placement and routing for

arbitrary network topology and nonlinear costs. We for-

mulate a mixed-integer cost minimization problem.

• With fixed-routing, we recast the problem as submodular

+ concave maximization, where a Gradient-Combining

Frank-Wolfe algorithm achieves an 1− 1
e approximation.

• In the general case, we obtain the KKT necessary condi-

tion, and develop a modification to the KKT condition.

• We propose a distributed adaptive gradient projection

algorithm that converges to the modified condition, and

compare proposed algorithms against baselines in multi-

ple scenarios through extensive simulation.

II. MODEL AND PROBLEM FORMULATION

Cache-enabled network. We model a cache-enabled network

by a directed graph G = (V, E), where V is the set of

nodes and E is the set of directed links. We assume for

any (i, j) ∈ E , (j, i) ∈ E also. For node i ∈ V , let

N (i) =
{

j ∈ V
∣

∣(i, j) ∈ E
}

=
{

j ∈ V
∣

∣(j, i) ∈ E
}

denote the

neighbors of i.
Let C denote the set of content items, i.e., the catalog.

We assume all items are of equal size Litem = 1.1 Items

are permanently kept at their designated servers, without

consuming the servers’ cache space. Let set Sk ⊆ V be the

designated server(s) for item k ∈ C. Nodes have access to

caches of elastic size, and can optionally store content items

by consuming corresponding cache space. We denote node i’s
cache decisions by xi = [xi(k)]k∈C , where the binary decision

xi(k) ∈ {0, 1} indicates whether node i chooses to cache item

k (i.e., xi(k) = 1 if node i caches item k, and 0 if not). We

denote the global caching decision by x = [xi(k)]i∈V,k∈C .

Request and response routing. Packet transmission in G is

request driven. We use (i, k) to denote the request made by

node i for item k, and assume that request packets of (i, k)
are generated by i at a (quasi-stationary) rate ri(k) (request

packet/sec) called the exogenous request input rate. Let r =
[ri(k)]i∈V,k∈C . Request packets are routed in a hop-by-hop

manner using only local information Let ti(k) be the total

1Contents files of non-equal sizes can be partitioned into file chunks of
equal size, and each file chunk is treated as a different item in C.

A
B

C

1

2 3
4

5

6

7

8

: node
: cache
 (elastic size)
: content item

: response flow

Fig. 1: An example network. Node 1 makes requests for

item A, B and C, designated servers are at node 2, 3 and

4, respectively. Node 6, 7, 8 cache the items. Requests are

forwarded hop-by-hop. Responses shown by colored arrows

fetch the items back to 1 along the reverse path of request.

G = (V, E) Network graph G, set of nodes V and links E
N (i) Set of neighbors of node i
C,Sk Set of content items; Designated servers of item k
φij(k) Routing variable from node i to j for item k
ri(k) Exogenous input request rate for item k at node i
ti(k) Total request arrival rate of item k at node i
fij(k),Fij Flow rate of item k and total flow rate on link (i, j)
Dij(Fij) Communication cost (e.g. queueing delay) on (i, j)
xi(k) Cache decision of node i for item k
Xi, Bi(Xi) Cache occupancy and deployment cost at node i
yi(k), Yi Continuous cache variables and occupancy
T (φ,y) Network aggregated cost
G(y) Caching gain for fixed-routing case
δij(k) Marginal cost due to increase of fji(k)
δi(k) Minimum marginal cost for i to handle requests of k.

TABLE I: Major notations

request arrival rate for item k at node i. That is, ti(k) includes

node i’s exogenous request input rate ri(k), and the rate of

endogenously arrival requests forwarded from other nodes to

node i. Of the request packets for item k that arrive at node i, a

fraction of φij(k) ∈ [0, 1] is forwarded to neighbor j ∈ N (i).
Thus for any i ∈ V and k ∈ C2,

ti(k) = ri(k) +
∑

j∈V
tj(k)φji(k), (1)

where φij(k) ≡ 0 if (i, j) ̸∈ E . We denote i’s routing strategy

by φi = [φij(k)]j∈V,k∈C , and let φ = [φij(k)]i,j∈V,k∈C .

Request packets for k terminate at i if i ∈ Sk or xi(k) =
1. When a request packet terminates, a response packet is

generated. The response packet delivers the requested item

back to requester along the same path taken by the request

packet, in the reverse direction.3 An example network is shown

in Fig. 1. The following holds for all i ∈ V and k ∈ C,

xi(k) +
∑

j∈V
φij(k) =

{

1, if i ̸∈ Sk,

0, if i ∈ Sk.
(2)

Routing and cache costs. Costs are incurred on the links due

to packet transmission or packet queueing, and at the nodes

2We remark that the decision variables are only x and φ, whereas ti(k)
is not decision variable. In the absence of caching and for a given φ, the
uniqueness of ti(k), i.e., the existence of a unique solution to equation (1),
is shown by Theorem 1 [1] with mild assumptions.

3Such mechanism is implemented in ICN with the Forwarding Interest Base
(FIB) and Pending Interest Table (PIT) [13]. We assume different request
packets for the same item are recorded and routed separately.

1472Authorized licensed use limited to: Northeastern University. Downloaded on October 09,2024 at 00:29:03 UTC from IEEE Xplore. Restrictions apply.

due to cache deployment. Since the size of request packets

is typically negligible compared to the size of responses

carrying content items, we consider only the link cost caused

by responses. Let fij(k) be the rate of responses (response

packet/sec) traveling through link (i, j) carrying item k. Recall

that Litem = 1, then fij(k) equals to the flow rate (bit/sec)

on link (i, j) due to item k. Let Fij be the total flow rate

on (i, j). Since each request packet forwarded from i to j
must fetch a response packet travelling through (j, i), we have

fji(k) = ti(k)φij(k), and Fij =
∑

k∈C fij(k). We denote by

Dij(Fij) the flow-dependent routing cost on link (i, j), and

assume the cost function Dij(·) is continuously differentiable,

monotonically increasing and convex, with Dij(0) = 0. Such

Dij(·) subsumes a variety of existing cost functions, including

linear cost (transmission delay), link capacity constraints. It

also incorporates congestion-dependent performance metrics.

For example, let µij be the service rate of an M/M/1 queue,

then Dij(Fij) = Fij/ (µij − Fij) gives the average number of

packets waiting in the queue or being served [31]. By Little’s

Law, the aggregated cost is proportional to the expected system

delay of packets. The cache occupancy at node i is given

by Xi =
∑

k∈C xi(k). We denote by Bi(Xi) the cache

deployment cost at node i, and assume Bi(·) to be contin-

uously differentiable, monotonically increasing and convex,

with Bi(0) = 0. The cache deployment cost can represent the

expense to buy/rent storage (e.g., [23], [24], [26]), or be used

to approximate traditional hard cache capacity constraints.

Problem formulation. We aim to jointly optimize cache

decisions and routing strategies to minimize the total cost. To

construct a relaxation to this mixed-integer problem, suppose

that variables xi(k) are independent Bernoulli random vari-

ables. Let ν be the corresponding joint probability distribution

defined over matrices in {0, 1}|V|×|C|, and denote by P ν [·],
Eν [·] the probability and expectation w.r.t. ν, respectively. Let

yi(k) ∈ [0, 1] be the (marginal) probability that node i caches

item k, namely, yi(k) = P ν [xi(k) = 1] = Eν [xi(k)], and let

y = [yi(k)]i∈V,k∈C . Taking expectation w.r.t. ν, (2) becomes

yi(k) +
∑

j∈V
φij(k) =

{

1, if i ̸∈ Sk,

0, if i ∈ Sk.
(3)

Let fij(k)|y = Eν [fij(k)] and Fij |y = Eν [Fij] denote the

expected link flow rates, and ti(k)|y = Eν [ti(k)]. Then, as

long as (3) holds, we have fij(k)|y = ti(k)|yφij(k), and

ti(k)|y = ri(k)+
∑

j∈V tj(k)|yφji(k), sharing the same form

as (1). Therefore, without ambiguity, we use Fij to denote

Fij |y in the rest of the paper, and let Yi =
∑

k∈C yi(k) denote

the expected cache occupancy. The relaxed joint routing and

content placement problem is cast as

min
φ,y

T (φ,y) =
∑

(i,j)∈E

Dij(Fij) +
∑

i∈V

Bi(Yi)

subject to 0 ≤ φij(k) ≤ 1, ∀(i, j) ∈ E , k ∈ C

0 ≤ yi(k) ≤ 1, ∀i ∈ V, k ∈ C

(3) holds.

(4)

Note that we do not explicitly impose any constraints

for link or cache capacity in (4), since they are already

incorporated in the cost functions. We tackle (4) first in a

fixed-routing setting (Section III), and then a general dynamic-

routing setting (Section IV).

III. SPECIAL CASE: FIXED-ROUTING

The fixed-routing case refers to scenarios where the routing

path of a request is fixed or pre-determined regardless of

caching schemes. Namely, if node i is not a designated server

of item k, the request packets of k arriving at i can only

be forwarded to one pre-defined next-hop neighbor of i. We

denote such a next-hop node of i for k as ji(k).
4

In the fixed-routing case, problem (4) reduces to

min
y

T (y) =
∑

(i,j)∈E

Dij(Fij) +
∑

i∈V

Bi(Yi)

subject to 0 ≤ yi ≤ 1, ∀k ∈ C, i ̸∈ Sk,

φij(k) =

{

1− yi, if i ̸∈ Sk, j = ji(k),

0, otherwise.

(5)

Let pvk be the routing path from node v to a des-

ignated server sk ∈ Sk. Path pvk is a node sequence

(p1vk, p
2
vk, · · · , p

|pvk|
vk), where p1vk = v, p

|pvk|
vk = sk, and

pl+1
vk = jpl

vk
(k) for l = 1, · · · , |pvk| − 1. We say (i, j) ∈ pvk

for a link (i, j) if i and j are two consecutive nodes in pvk.

If i ∈ pvk, let lpvk
(i) denote the position of i on path pvk,

i.e., p
lpvk

(i)

vk = i. We assume every path pvk is well-routed,

i.e., no routing loop is formed, and no intermediate node is a

designated server of k. Therefore, in terms of item k, the rate

of request packets that are generated by node v and arrive at

node i is given by rv(k)
∏lpvk

(i)−1

l′=1

(

1− ypl′

vk

(k)
)

if i ∈ pvk,

and 0 if i ̸∈ pvk. Then the link flow rates are given by

fji(k) =
∑

v:(i,j)∈pvk

rv(k)
∏lpvk

(i)

l′=1

(

1− ypl′

vk

(k)
)

. (6)

We denote by T (0) the cost when y = 0, i.e., the total

routing costs when no cache is deployed, and we assume

T (0) is finite. Then problem (5) is equivalent to maximizing

a “caching gain” G(y):

max
y

G(y) = A(y)−B(y)

subject to 0 ≤ yi(k) ≤ 1, ∀k ∈ C, i ̸∈ Sk

(7)

where A(y) and B(y) are given by

A(y) = T (0)−
∑

(i,j)∈E
Dij(Fij), B(y) =

∑

i∈V
Bi(Yi).

Lemma 1. Problem (7) is a “DR-submodular + concave”

maximization problem. Specifically, A(y) is non-negative

monotonic DR-submodular 5 in y, and B(y) is convex in y.

4For simplicity, we only discuss fixed single-path routing. The solution can
be seamlessly generalized to fixed multipath routing, i.e., when φij(k) are
fixed to non-integer values satisfying (2), by splitting a multipath request into
multiple single-path requests.

5DR-submodular function is a continuous generalization of submodular
functions with diminishing return. See [32] for more information.

1473Authorized licensed use limited to: Northeastern University. Downloaded on October 09,2024 at 00:29:03 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Gradient-Combining Frank-Wolfe

Input: Integer N > 1
Result: Cache strategy yout for fixed-routing case

Start with n = 0, let ε = N− 1
3 .

Set y(0) to be yi(k) = 0 for all i,k.

do

Let s(n) =
argmax0≤y≤1

〈

y,∇A
(

y(n)
)

− 2∇B(y(n))
〉

.

Let y(n+1) = (1− ε2)y(n) + ε2s(n).
for n = 0, 1, · · · , N − 1;

Find the best among
{

y(0), · · · ,y(N)
}

, let

yout = argmax
y∈{y(0),··· ,y(N)} G(y) .

DR-submodular + concave maximization problems have

been systematically studied recently by Mitra et al. [30].

Problem (7) falls into one of the categories in [30], where a

Gradient-Combining Frank-Wolfe (GCFW) algorithm (Algo-

rithm 1) guarantees a (12 , 1) approximation, i.e., the solution

achieves a 1
2 ratio of the submodular part and a 1 ratio of the

concave part of the objective at the optimal solution.

Theorem 1 (Theorem 3.10 [30]). We assume G is L-smooth,

i.e., ∇G is Lipschitz continuous. For N > 1, let y∗ be an

optimal solution to (7) and yout be the solution generated by

Algorithm 1, then it holds that

G(yout) ≥
1− ε

2
A(y∗)−B(y∗)− ε ·O (L|V||C|) .

where L is the Lipschitz constant of ∇G, ε = N−1/3 and N
is the total step number.

By (6), the gradient ∇B(y) in Algorithm 1 can be calcu-

lated as
∂B(y)
∂yz(k)

= B′
z(Yz), and ∇A(y) is given by

∂A(y)

∂yz(k)
= tz(k)

∑

(i,j)∈pzk

D′
ji(Fji)

∏lpzk (i)

l′=2

(

1− ypl′

zk

(k)
)

.

The linear program in Algorithm 1 can be solved by selecting

z and k with
∂A(y)
∂yz(k)

− 2 ∂B(y)
∂yz(k)

> 0 and letting corresponding

elements in s(n) be 1, while keeping others 0.

IV. GENERAL CASE: DYNAMIC-ROUTING

The analysis in Section III unfortunately does not apply to

the general dynamic-routing case (i.e., when routing is dy-

namically and adaptively adjusted jointly with caching), since

the DR-submodularity no longer holds when φ is not fixed.

In this section, we tackle the general case of problem (4) with

a node-based perspective first used in [1] and subsequently in

[14], [33]. We first present a set of KKT necessary optimality

conditions for (4), then give a modification to the KKT

conditions that overcome certain saddle points. We show that

the modified conditions yield a bounded gap from the global

optimum, then provide further discussion and corollaries.

KKT necessary condition. Following [1], we start by giving

closed-form partial derivatives of T (φ,y). For caching strat-

egy y, it holds that ∂T
∂yi(k)

= B′
i(Yi).

For routing strategy φ, the marginal cost due to increase of

φij(k) equals a sum of two parts, (1) the marginal cost due

to increase of Fji since more responses are sent from j to i,
and (2) the marginal cost due to increase of rj(k) since node

j needs to handle more request packets. Formally,6

∂T

∂φij(k)
= ti(k)

(

D′
ji(Fji) +

∂T

∂rj(k)

)

, (8)

where the term ∂T/∂ri(k) is the marginal cost for i to handle

unit rate increment of request packets for k. This equals

a weighted sum of marginal costs on out-going links and

neighbors, namely,

∂T

∂ri(k)
=

∑

j∈N (i)
φij(k)

(

D′
ji(Fji) +

∂T

∂rj(k)

)

. (9)

By (3), value of ∂T/∂ri(k) is implicitly affected by yi(k),
e.g., it holds that ∂T/∂ri(k) = 0 if i ∈ Sk or yi(k) = 1.7

Theorem 2. Let (φ,y) be an optimal solution to problem (4),

then for any i ∈ V , j ∈ N (i) and k ∈ C,

B′
i(Yi)

{

= λik, if yi(k) > 0,

≥ λik, if yi(k) = 0,

ti(k)

(

D′
ji(Fji) +

∂T

∂rj(k)

)

{

= λik, if φij(k) > 0,

≥ λik, if φij(k) = 0,

(10)

where λik is given by

λik = min

{

B′
i(Yi), min

j∈N (i)
ti(k)

(

D′
ji(Fji) +

∂T

∂rj(k)

)}

.

(11)

Theorem 2 presents the KKT necessary conditions for

problem (4). The proof is omitted due to space limitation.

Modified condition. Note that condition (10) is not sufficient

for global optimality (even for the pure-routing problem, i.e.,

with y fixed to 0). A counterexample is provided in [1]. A

cause of such non-sufficiency is the degenerate case where

ti(k) = 0, in which λik is always 0 and (10) always holds,

regardless of routing strategies [φij(k)]j∈V . Note that when

ti(k) = 0, it is always optimal to set yi(k) = 0 since no

request packets for item k ever arrive at node i. Note also that

ti(k) appears repeatedly in (11) for all j ∈ N (i). To this end,

we propose condition (12) as a modification to (10), and show

that a bounded gap on the total cost is promised if (12) holds.

Theorem 3. Let (φ,y) be feasible to problem (4), such that

for all i ∈ V , j ∈ N (i) and k ∈ C,

B′
i(Yi)

{

= ti(k)δi(k), if yi(k) > 0,

≥ ti(k)δi(k), if yi(k) = 0,

D′
ji(Fji) +

∂T

∂rj(k)

{

= δi(k), if φij(k) > 0,

≥ δi(k), if φij(k) = 0,

(12)

6To formally derive (8) and (9) in detail, please refer to Theorem 2 in [1].
7If no routing loops are formed, ∂T/∂ri(k) can be computed recursively

by (9), staring from nodes i ∈ Sk or with yi(k) = 1.

1474Authorized licensed use limited to: Northeastern University. Downloaded on October 09,2024 at 00:29:03 UTC from IEEE Xplore. Restrictions apply.

where δi(k) is given by 8

δi(k) = min

{

B′
i(Yi)

ti(k)
, min
j∈N (i)

(

D′
ji(Fji) +

∂T

∂rj(k)

)}

.

(13)

Let (φ†,y†) be any feasible solution to (4). Then,

T (φ†,y†)− T (φ,y) ≥
∑

i∈V

∑

k∈C
δi(k)

(

yi(k)− y†i (k)
)(

t†i (k)− ti(k)
)

.
(14)

Proof sketch. It holds that T (φ,y) = D(φ) + B(y) where

D(φ) ≡
∑

(i,j) Dij(Fij) and B(y) ≡
∑

i Bi(Yi). It can be

shown that B(y) is convex in y, and D(φ) is geodesically

convex in φ if r > 0. For any feasible (φ†,y†), following the

technique in Theorem 3 [1], we show that
∑

(j,i)

D′
ji(Fji)

(

F †
ji − Fji

)

≥
∑

i,k

(

yi(k)− y†i (k)
)

t†i (k)δi(k).

By the convexity of B(y), we show that
∑

i

B′
i(Yi)

(

Y †
i − Yi

)

≥
∑

i,k

ti(k)δi(k)
(

y†i (k)− yi(k)
)

.

Then (14) holds by combining the above. □

To the best of our knowledge, (14) is the first provable

bound for minimizing the sum of a convex function and a

geodesic convex function. Note that (12) implies yi(k) = 0
if ti(k) = 0, since the increasing and convex assumption of

Bi(·) requires B′
i(Yi) > 0 if Yi > 0. Condition (12) is a

more restrictive version of the necessary condition (10). Any

feasible (φ,y) satisfying (12) must also satisfy (10).

Unlike [1], [33], condition (12) is still not sufficient for

global optimality. Nevertheless, it is practically efficient to

minimize the total cost in a distributed manner according to

(12). We next provide further discussion upon condition (12).

Intuitive interpretation. To provide an intuitive interpretation

of the modified condition, let δij(k) denote the marginal cost

due to increase of flow rate fji(k), that is, the marginal cost

if node i forwards additional requests of unit rate to node j.

Then similar to (8) and (9), δij(k) is given by

δij(k) =
∂T

∂fji(k)
= D′

ji(Fji) +
∂T

∂rj(k)
. (15)

Next, we define a virtual cached flow as fi0(k) =
ti(k)yi(k), i.e., the expected rate of request packets for item k
that terminate at node i due to i’s caching strategy. Let δi0(k)
denote the marginal cost due to increase of fi0(k), namely,

δi0(k) =
∂T

∂fi0(k)
=

∂T

ti(k)∂yi(k)
=

B′
i(Yi)

ti(k)
. (16)

By (3), δi0(k) gives the marginal cache deployment cost if

i wishes to increase yi(k) so that the total request packets

forwarded to its neighbors is reduced by unit rate. Therefore,

by (13), we have

δi(k) = min
j∈{0}∪N (i)

δij(k). (17)

8In the calculation of δi(k), we assume B′
i(Yi)/ti(k) = ∞ if ti(k) = 0.

That is, δi(k) gives the minimum marginal cost for node i to

handle request packets for item k. Condition (12) then suggests

that each node handles incremental arrival requests in the way

that achieves its minimum marginal cost – either by forwarding

to neighbors, or by expanding its own cache. In other words,

we say it is “worthwhile” to deploy cache for k at i if δi0(k) <
minj∈N (i) δij(k), and “not worthwhile” otherwise.

Even though condition (12) is neither a necessary condition

nor a sufficient condition, Corollary 1 implies that it must have

non-empty intersection with the global optima of (4).

Corollary 1. For any optimal solution (φ∗,y∗) to (4), there

exists a corresponding (φ,y) satisfying condition (12), such

that y = y∗ and φij(k) = φ∗
ij(k) for all i, k with t∗i (k) > 0.

Proof sketch. The corresponding (φ,y) can be constructed by

letting y = y∗, and φij(k) = φ∗
ij(k) for i, k such that t∗i (k) >

0. For i, k with t∗i (k) = 0, pick one j ∈ N (i) such that j ∈

argminj′∈N (i)

(

D′
j′i(F

∗
j′i) +

∂T∗

∂rj′ (k)

)

and let φij(k) = 1. □

Corollary 2. Let (φ,y) be a feasible solution to (4) and

satisfy (12). Let (φ†,y†) be a feasible solution to (4), such that

for all i ∈ V and k ∈ C, either y†i (k) = yi(k) or t†i (k) = ti(k).
Then it holds that T (φ,y) ≤ T (φ†,y†).

Corollary 2 follows from Theorem 3. It implies that (12) is

sufficient for optimizing φ when y is fixed, and for optimizing

y when ti(k) are unchanged. An example is shown in Fig. 2,

where the caches always receive the same amount of request

packets (i.e., unchanged ti(k)), and the routers can not cache

at all (i.e., unchanged yi(k)).

users caches router network content providers

Fig. 2: A special scenario that (12) yields a global optimal

solution. Single-layered caches are equipped near users.

Corollary 3. Let (φ,y) be a feasible solution to (4) and

satisfy (12). Let (φ†,y†) be a feasible solution to (4), such

that either φ† ≥ φ or φ† ≤ φ.9 Then it holds that

T (φ,y) ≤ T (φ†,y†).

Corollary 3 also follows from Theorem 3. For i, k such that

yi(k) ̸= 1, let ρij(k) = φij(k)/ (1− yi(k)) be the conditional

routing variable, i.e., the probability of a request packet being

forwarded to j given the requested item is not cached at i. In

practical networks, the routing and caching mechanisms are

usually implemented separately, and the routing is only based

on ρij(k) instead of φij(k). Corollary 3 contains a special

case where ρ†ij(k) = ρij(k) for all i, j, k, but yi(k)
† ≥ yi(k)

for all i, k (or yi(k)
† ≤ yi(k) for all i, k). This special case

9For v1, v2 of same dimension, we denote by v1 ≥ v2 if every element
of v1 is no less than the corresponding element in v2. Similarly as v1 ≤ v2.

1475Authorized licensed use limited to: Northeastern University. Downloaded on October 09,2024 at 00:29:03 UTC from IEEE Xplore. Restrictions apply.

implies that if condition (12) is met, the total cost cannot

be lowered by only caching more items (i.e., only increasing

yi(k) for some i and k), or only removing items from caches

(i.e., only decreasing yi(k) for some i and k), while keeping

the conditional routing variables unchanged.

V. ONLINE ALGORITHM

Although Algorithm 1 achieves a constant factor approxima-

tion for the fixed-routing case, it is offline and centralized. In

practical networks, request patterns are unknown a prior and

may vary with time, thus an online adaptive and preferably

distributed algorithm is needed. In this section, we present a

distributed online algorithm for the general dynamic routing

case that converges to condition (12). The algorithm does

not require prior knowledge of exogenous rates ri(k) and

designated servers Sk, and is adaptive to slow variation in

ri(k) and cost metrics Dij(·), Bi(·).

Algorithm overview. We partition time into periods of dura-

tion L ∗ Tslot. A period consists of L slots, each of duration

Tslot. In t-th period, node i keeps its routing and caching

strategies (φt
i,y

t
i) unchanged. At the m-th slot of t-th period

(1 ≤ m ≤ L), node i rounds yt
i into integer caching decisions

x
t,m
i with E[xt,m

i] = yt
i.

10 The last slot in each period is

called update slot, during which nodes update their routing

and caching strategies in a distributed manner. We postpone

the discussion of randomized rounding techniques to Section

V, and now focus on the update of strategies φt and yt.

Our algorithm is a gradient projection variant. Each node

updates its strategies during the update slot of t-th period by

φt+1
i = φt

i +∆φt
i, yt+1

i = yt
i +∆yt

i. (18)

The update vectors ∆φt
i and ∆yt

i are calculated by

∆φt
ij(k) =











−φt
ij(k), if j ∈ Bt

i(k)

−min
{

φt
ij(k), αe

t
ij(k)

}

, if j ̸∈ Bt
i(k), e

t
ij(k) > 0

St
i (k)/N

t
i (k), if j ̸∈ Bt

i(k), e
t
ij(k) = 0

∆yt
i(k) =

{

−min
{

yt
i(k), αe

t
i0(k)

}

, if eti0(k) > 0

St
i (k)/N

t
i (k), if eti0(k) = 0

(19)
where Bt

i(k) is the set of blocked nodes to suppress routing
loops, α is the stepsize, and11

eti0(k) = δti0(k)− δti(k), etij(k) = δtij(k)− δti(k), ∀j ̸∈ Bt
i(k),

N t
i (k) =

∣

∣

∣

∣

{

j ∈ N (i)\Bt
i(k)

∣

∣etij(k) = 0
}

∣

∣

∣

∣

+ ✶δt
i0(k)>0,

St
i (k) =

∑

j ̸∈Bt
i
(k) : et

ij
(k)>0

∆φt
ij(k) + ∆yt

i(k)✶δt
i0(k)>0,

(20)

The intuitive idea is to transfer routing/caching fractions from

non-minimum-marginal directions to the minimum-marginal

ones. δtij(k) and δti0(k) are calculated as in (15) and (16). But

slightly different from (17), due to the existence of Bt
i(k),

δti(k) = min
{

δti0(k),minj∈N (i)\Bt
i
(k) δ

t
ij(k)

}

. (21)

10We suggest refreshing caching decisions multiple times in each period
to better estimate theoretical costs and marginals from actual measurements.
Nevertheless, the algorithm applies to any L ≥ 1.

11
✶A is the indicator function of A. i.e., ✶A = 1 if A is true, and 0 if not.

Algorithm 2: Gradient Projection (GP)

Input: Loop-free (φ0,y0) with T 0 < ∞, stepsize α
Start with t = 0.

do

Each node i round yt
i into x

t,m
i with Distributed

Randomized Rounding (DRR).
during the m-th slot of t-th period;

do
Each node updates ∂T/∂ri(k) for all k via a a

message broadcasting mechanism.

Each node calculates (20).

Each node updates strategies (φt
i,y

t
i) by (18) (19).

during update slot of t-th period;

In each update slot, to calculate δtij(k) and δti0(k), the value

∂T/∂ri(k) is updated throughout the network with a control

message broadcasting mechanism (see, e.g., [33]). Specifically,

node i receives ∂T/∂rj(k) from all downstream neighbors

(i.e., the nodes j ∈ N (i) with φij(k) > 0), calculates12 its

∂T/∂ri(k) according to (9), and broadcasts ∂T/∂ri(k) to all

upstream neighbors. Such broadcast starts at the designated

servers or nodes with yi(k) = 1, where ∂T/∂ri(k) = 0. The

proposed algorithm is summarized in Algorithm 2. Next, we

discuss the set Bt
i(k).

Loops and blocked nodes. A routing loop refers to node

sequence (l1, l2, · · · , l|l|), such that l1 = l|l| and for some k ∈
C, φlplp+1(k) > 0 for p = 1, · · · , |l|−1. A loop implies that a

strictly positive portion of requests for item k forwarded from

node l1 is sent back to l1 itself. The existence of loops should

be forbidden, as it gives rise to redundant flow circulation and

wastes network resources. Loop-free routing can be guaranteed

by a higher layer [16][26] (e.g., FIB in ICN). If so, we simply

set Bt
i(k) = V\N (i) for all t and k.

In case loop-free routing is not guaranteed by a higher layer

protocol (e.g., in ad-hoc networks), our algorithm can still

prevent the formation of loops by employing a method called

“blocked node set” Bt
i(k), assuming a loop-free initial state φ0

is given. Specifically, during (t+ 1)-th period, node i should

not forward any request of item k to nodes in the set Bt
i(k).

The construction of sets Bt
i(k) falls into two types, static and

dynamic. We next introduce both.

(1) Static sets. The blocked node sets can be pre-determined

and kept unchanged throughout the algorithm, i.e., Bt
i(k) =

Bi(k) for all t ≥ 0. A directed acyclic subgraph of G is

constructed for every item at the beginning of the algorithm, in

which every node has at least one path to a designated server.

We denote the subgraph w.r.t. k ∈ C as G(k) = (V, E(k))
with E(k) ⊆ E . Then the blocked node sets are constructed as

Bi(k) =
{

j ∈ N (i)
∣

∣(i, j) ̸∈ E(k)
}

.

The idea of static blocked node set is commonly adopted,

e.g., in the FIB construction of ICN. The subgraphs G(k) can

12Node i should estimate B′
i(Yi) and D′

ij(Fij) from Yi and Fij . Flow

rate Fij is measured by averaging the first (L− 1) slots of t-th period.

1476Authorized licensed use limited to: Northeastern University. Downloaded on October 09,2024 at 00:29:03 UTC from IEEE Xplore. Restrictions apply.

be calculated efficiently at the network initialization [6], either

in a centralized way (e.g., Bellman-Ford algorithm), or in a

distributed manner (e.g., distance-vector protocol).

(2) Dynamic sets. The sets Bt
i(k) can also be dynamically

calculated as the algorithm proceeds. Compared with the

fixed case, dynamically determined sets may give nodes more

routing options and, therefore, potentially better performance

in terms of total cost. It requires a more elaborate node

blocking mechanism, preferably distributed and efficient. A

classic dynamic node blocking mechanism is presented in [1]

for a multi-commodity routing problem,

Convergence. Since the node blocking mechanism is imple-

mented to suppress loops, Algorithm 2 may not converge to

condition (12) if solution (φ,y) satisfying (12) contains loops.

Nevertheless, Theorem 4 states that the convergence limit still

satisfies a version of (12) with N (i) replaced by N (i)\Bi(k).

Theorem 4. Assume the network starts at (φ0,y0) with T 0 <
∞, and (φt,yt) are updated by Algorithm 2 with a sufficiently

small stepsize α. Then, if static blocked node sets are used, the

sequence
{

(φt,yt)
}∞

t=0
converges to a limit point (φ,y), and

(φ,y) satisfies (12), with N (i) being replaced by N (i)\Bi(k).

Proof sketch. The proof follows the outline of Theorem 2 in

[34]. We first show with sufficiently small stepseize, it holds

T t+1 < T t, unless condition (12) with N (i)\Bi(k) is satisfied.

This is due to the convexity of T w.r.t. a single φi(k) given

all other variables fixed. The stepsize can be found in [1],

[35]. Then, since the feasible set can be shown compact, the

sequence
{

(φt,yt)
}∞

t=0
must have a limit point (φ,y), at

where the objective T can not be further (strictly) improved.

Therefore, condition (12) with N (i)\Bi(k) must hold. □

Algorithm complexity. The computational complexity of GP

is O(|V|2|C|) for each update (for each node O((|dmax|+1)|C|),
with space complexity O((|dmax| + 1)|C|)), where dmax is

the largest out-degree. An additional O(|V|2|C|) occurs if

dynamic blocking is used. As a comparison, typical routing

methods have complexity O(|V|2|C|) and caching algorithm

[4] has complexity O(|C| log |C|). Thus the complexity is not

increased relative to alternating optimization for routing and

caching. During each update slot, node i should calculate

∂T/∂ri(k) for all k. When the network is large, control mes-

sages carrying derivative information may take non-negligible

time and bandwidth to percolate through the network. There

are |E| transmissions of broadcast messages corresponding to

an item in one update slot, and totally |C||E| transmissions

each update slot, with on average |C|/Tslot per link·second

and at most dmax|C| per node. The broadcast messages have

O(1) size, and can be sent in an out-of-band channel. Let tc
be the maximum transmission time for a broadcast message,

and h̄ be the maximum hop number for a request path. Then

the broadcast mechanism requires at most h̄tc for each update.

We remark that single node computation workload is not

affected by |V| if dmax is bounded by a constant. The update

may fail if control message delay tch̄ exceeds Tslot, or if per-

second control message |C|/Tslot exceeds the control channel

capacity. If so, we can use longer slots, or allow some nodes

to perform updates every multiple periods. Meanwhile, if |C|
is large, the computation and communication overhead can be

significantly reduced by applying our algorithm only to the

most popular items.

Distributed randomized rounding. The continuous caching

strategy y is rounded to caching decision x in each slot.

The rounding can be done with a naive probabilistic scheme,

i.e., xt,m
i (k) is a Bernoulli random variable with p = yti(k).

However, such a heuristic rounding method may generate large

or drastically changing cache sizes. Various advanced rounding

techniques exist (see [36]–[38]). If all Yi are integer, the

deterministic pipage rounding [37] and the randomized swap

rounding [39] guarantee the actual routing cost after rounding

is no worse than the relaxed result, while keeping Xi = Yi.

However, such techniques are centralized.

A distributed rounding method is proposed by [4], each

node independently operates without knowledge of closed-

form T (φ,y). We extend this method to non-integer Yi, and

refer to it as Distributed Randomized Rounding (DRR). With

such a rounding algorithm, it is guaranteed that the expected

flow rates and cache sizes meet the relaxed value, and the

actual cache size at each node is within 1 of the expected

value.

Lemma 2. If xt,m are rounded from yt by DRR, then

E[xt
i(k)] = yti(k), ∀i ∈ V, k ∈ C,

∣

∣

∣

∑

k∈C
xt
i(k)−

∑

k∈C
yti(k)

∣

∣

∣
< 1, ∀i ∈ V,

E[Fij

∣

∣

(φt,xt,m)
] = Fij

∣

∣

(φt,yt)
, ∀(i, j) ∈ E .

The proof of Lemma 2 is omitted. Since Dij(·) and Bi(·)
are convex, combining with Jensen’s Inequality, it holds that

E
[

T (φt,xt,m)
]

≥ T
(

φt,E[xt,m]
)

= T (φt,yt). Suppose

|Dij(x)−Dij(y)| ≤ Mij |x − y|α, the performance loss due

to Jensen gap is bounded as |E[Dij(Fij)]−Dij(E[Fij])| ≤
Mijσ

α
α , where σα is the α-moment of Fij , determined by

packet dispatching mechanism. We demonstrate in Section VI

that, with a proper randomized packet forwarding mechanism,

the costs measured in the real network will not deviate too

much from the theoretical result T (φt,yt).

VI. SIMULATION

Simulator setting. We simulate the proposed algorithms and

other baseline methods in various network scenarios with a

packet-level simulator available at [40]. We denote by R the

set of requests in the network. For each request (i, k), the

requester i is uniformly chosen in V , and the requested item k
is chosen in the catalog C with a Zipf-distribution of parameter

1.0. The exogenous request rates rik for all requests are

uniformly random in interval [1.0, 5.0]. For each (i, k) ∈ R,

node i sends request packets for item k in a Poisson process

of rate ri(k). For each item k ∈ C, we assume |Sk| = 1 and

choose the designated server uniformly randomly in all nodes.

1477Authorized licensed use limited to: Northeastern University. Downloaded on October 09,2024 at 00:29:03 UTC from IEEE Xplore. Restrictions apply.

connected-ER grid-100 full-tree Fog0.00
0.25
0.50
0.75
1.00

LRU + SP + Uniform
LRU + SP + MinCost
CostGreedy + SP

LFU + SP + Uniform
LFU + SP + MinCost
AC-N + SP

AC-R + Uniform
AC-R + MinCost
GCFW + SP

MinDelay + Uniform
MinDelay + MinCost
GP

GEANT LHC DTelekom small-world0.00
0.25
0.50
0.75
1.00

305.03

2330.13

573.38

1316.59

215. 23

292.26

780.46

767. 65

Fig. 3: Normalized total cost T across network scenarios. The actual delay values of GP for each case are marked.

To ensure relatively steady flow rates, we adopt a token-

based randomized forwarding. i.e., node i keeps a token

pool, where the number of tokens for neighbor j is in

proportion to φij(k). Each request arriving at i is forwarded

consuming one token, and the token pool is refreshed when

empty. We monitor the network status every Tmonitor. Flows

Fij are measured by averaging during past Tmonitor. We let

Dij(Fij) = dijFij + d2ijF
2
ij + d3ijF

3
ij , which is a 3-order

expansion of Fij/(1/dij −Fij). We use D′
ij(0) = dij as link

weights, representing the unit-flow cost with no congestion,

for non-congestion-dependent methods. We let Bi(Yi) = biYi,

where bi is the unit cache price at i. Parameters dij and bi are

uniformly selected from the interval in Table II.

Simulated scenarios and baselines. We simulate multi-

ple synthetic or real-world network scenarios in Table II.

connected-ER is a connectivity-guaranteed Erdős-Rényi

graph, where bi-directional links exist for each pair of nodes

with probability p = 0.07. grid-100 and grid-25 are 2-

dimensional 10×10 and 5×5 grid networks. full-tree is

a full binary tree of depth 6. Fog is a full 3-ary tree of depth

4, where children of the same parent is concatenated linearly

[41]. This topology is dedicated to formulating fog-caching

and computing networks. GEANT is a pan-European data

network for the research and education community [42]. LHC

(Large Hadron Collider) is a prominent data-intensive comput-

ing network for high-energy physics applications. DTelekom

is a sample topology of Deutsche Telekom company [42].

small-world (Watts-Strogatz small world) is a ring graph

with additional short-range and long-range edges.

We implement proposed GCFW (Algorithm 1), GP (Algo-

rithm 2), and multiple baselines summarized in Table III. LRU

(Least Recently Used [43]) and LFU (Least Frequently Used

[44]) are traditional cache eviction algorithms. SP (Shortest

Path) routes request packets on the shortest path to a desig-

nated server. AC-R (Adaptive Caching with Routing) is a joint

routing/caching algorithm proposed by [6]. It uses probabilistic

routing among top kSP = 3 shortest paths. MinDelay

is another hop-by-hop joint routing/caching algorithm with

convex costs [14]. It uses the Frank-Wolfe algorithm with

stepsize 1 for integer solutions. Uniform uniformly adds

TABLE II: Simulated network scenarios

Topologies |V| |E| |C| |R| dij bi

connected-ER 50 256 80 200 [0.05, 0.1] [5, 10]
grid-100 100 358 100 400 [0.05, 0.1] [20, 40]
full-tree 63 124 50 150 [0.05, 0.1] [20, 30]

Fog 40 130 50 200 [0.05, 0.1] [30, 50]
GEANT 22 66 40 100 [0.05, 0.1] [10, 15]
LHC 16 62 30 100 [0.1, 0.15] [10, 15]

DTelekom 68 546 100 300 [0.1, 0.2] [10, 20]
small-world 120 720 100 400 [0.05, 0.1] [10, 20]
grid-25 25 80 30 100 0.1 10

TABLE III: Implemented algorithms and functionalities

Algorithm cache deployment content placement routing

LRU/LFU ✓

SP ✓

AC-R ✓ ✓

MinDelay ✓ ✓

Uniform ✓

MinCost ✓

CostGreedy ✓ ✓

AC-N ✓ ✓

GCFW ✓ ✓

GP ✓ ✓ ✓

cache capacities by 1 at all nodes in each period. MinCost

is a heuristic cache deployment algorithm. It adds the cache

capacity by 1 at the node with the highest total cache miss

cost in every period13. CostGreedy is a heuristic joint cache

deployment and content placement method. It greedily sets

yi(k) = 1 for the node-item pair (i, k) with the largest single-

item cache miss cost in every period. AC-N (Adaptive Caching

with Network-wide capacity constraint) is a cache deployment

and content placement method with a network-wide cache

budget [15]. We add budget by 1 and re-run AC-N each period.

We set Tslot = 10, y0 = 0, L = 20, and start with the

shortest path. When using Uniform or MinCost, the corre-

sponding content placement method is re-run every period to

accommodate new cache capacities. For methods other than

GCFW and GP, we run the simulation for a sufficient duration

13MinCost is in fact a cache miss cost-weighted cache hit maximization.

1478Authorized licensed use limited to: Northeastern University. Downloaded on October 09,2024 at 00:29:03 UTC from IEEE Xplore. Restrictions apply.

LRU + Uniform
LFU + Uniform

AC-R + Uniform
MinDelay + Uniform

LRU + MinCost
LFU + MinCost

AC-R + MinCost
MinDelay + MinCost

CostGreedy
AC-N

GCFW
GP

0 50 100 150 200 250 300
Iteration number

Fig. 4: Number of iterations

till convergence in grid-25

LRU + Uniform
LFU + Uniform

AC-R + Uniform
MinDelay + Uniform

LRU + MinCost
LFU + MinCost

AC-R + MinCost
MinDelay + MinCost

CostGreedy
AC-N

GCFW
GP

0 500 1000 1500 2000
CPU time

Fig. 5: CPU time till conver-

gence in grid-25

0 20 40 60 80 100
Period

300

400

500

600

700

800

900

1000

To
ta

l c
os

t

GCFW+SP (measured)

GCFW+SP (theoretical)

GP (measured)

GP (theoretical)

Fig. 6: Measured and theo-

retical costs in grid-25

0 1 2 3 4 5 6 7
Cache price (cost per unit cache)

0

20

40

60

80

100

120
Total cache size

Link cost

Cache cost

Fig. 7: Trade-off between

cache cost and routing cost

� = 0, � = 1345 � = 10, � = 552 � = 20, � = 410 � = 100, � = 307
Fig. 8: Link flow and cache size evolution in grid-25 by GP. Link width and node size are respectively in proportion to

link flow and node cache size. t is the period number and T is the measured total cost.

and record the total cost of the lowest-cost period. For GCFW

and GP, we measure steady-state total costs after convergence.

For GCFW, we set N = 100. For GP, we use dynamic node

blocking, set stepsize α = 0.01 and run for Tsim = 20000.

Results and analysis.

(1) Cost reduction. We summarize the (normalized) mea-

sured total costs in Fig. 3. We divide the methods into three

groups. Fig. 3 shows that the second group outperforms the

first group, and is outperformed by the third group, implying

that heuristic utility-based cache deployment methods are bet-

ter than not optimizing, but can be further improved by jointly

considering content placement and routing. The proposed

algorithm GP outperforms other methods in all scenarios,

reducing the total cost by up to 44.8% (on average 29.3%).

Moreover, the improvement of GP is significant in scenarios

with more routing choices (e.g., grid-100), and diminishes

when routing choice is limited (e.g., full-tree).

(2) Convergence. To analyze the behavior of proposed algo-

rithms, we present more refined experiments on the scenario

grid-25. Fig. 4 and Fig. 5 compares the iteration number

for convergence and algorithm CPU time for grid-25, re-

spectively. They imply that GP consumes more time compared

to simple heuristic caching policies (e.g., LRU), and less time

compared to nested-looped alternating methods (e.g., AC-N).

Fig. 6 shows the convergence trajectory of measured and

theoretical total cost by GCFW+SP and GP in grid-25.

Measured cost refers to actual link costs measured on links and

actual cache costs calculated from cache sizes after rounding.

Theoretical cost refers to the flow-level cost T given by (4),

calculated using the pre-given input rates [ri(k)] and (φt,yt).
The consistency of theoretical and measured costs implies that

with continuous relaxation and rounding, our theoretical model

accurately reflects the real network behavior.

(3) Congestion mitigation. The ability to mitigate network

congestion is expected to be an important feature of the

proposed algorithms, as non-linear traffic-dependent link costs

are considered. Fig. 8 illustrates the evolution of link flows and

cache sizes across the network as GP goes on. The requests and

designated servers are randomly generated according to our

previous assumptions and Table II. We observe that severe link

congestion is gradually mitigated by properly tuning routing

and caching strategies.

(4) Routing-caching tradeoff. As a fundamental motivation

of this paper, we investigate the tradeoff between routing cost

and cache deployment cost in grid-25. We set the link cost

to be linear and plot in Fig. 7 the optimized link and cache

costs as well as the corresponding total cache size against

different unit cache cost bi. We observe that, with a very

high unit cache cost, no cache is deployed. As the unit cache

cost dropping, the total cache size increases, the total cost

decreases, and the cache cost takes a gradually more significant

portion of the total cost.

VII. CONCLUSION

We minimize the sum of routing cost and cache deploy-

ment cost over caching and routing strategies for arbitrary

topology and nonlinear costs. In the fixed-routing special case,

the objective is a DR-submodular + concave function, and

propose a Gradient-combining Frank-Wolfe algorithm with

(12 , 1) approximation. For the general case, we propose the

KKT condition and a modification. The modified condition

suggests each node handles arrival requests in a way that

achieves minimum marginal cost. We propose a distributed and

adaptive online algorithm for the general case that converges

to the modified condition. We demonstrate in simulation

that our proposed algorithms significantly outperform baseline

methods in multiple network scenarios.

1479Authorized licensed use limited to: Northeastern University. Downloaded on October 09,2024 at 00:29:03 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] R. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE transactions on communications, vol. 25, no. 1,
pp. 73–85, 1977.

[2] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 8402–8413, 2013.

[3] K. Poularakis and L. Tassiulas, “On the complexity of optimal content
placement in hierarchical caching networks,” IEEE Transactions on

Communications, vol. 64, no. 5, pp. 2092–2103, 2016.

[4] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” IEEE/ACM Transactions on Networking, vol. 26, no. 2, pp.
737–750, 2018.

[5] U. Feige, “A threshold of ln n for approximating set cover,” Journal of

the ACM (JACM), vol. 45, no. 4, pp. 634–652, 1998.

[6] S. Ioannidis and E. Yeh, “Jointly optimal routing and caching for arbi-
trary network topologies,” in Proceedings of the 4th ACM Conference

on Information-Centric Networking, 2017, pp. 77–87.

[7] M. Dehghan, B. Jiang, A. Seetharam, T. He, T. Salonidis, J. Kurose,
D. Towsley, and R. Sitaraman, “On the complexity of optimal re-
quest routing and content caching in heterogeneous cache networks,”
IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1635–1648,
2016.

[8] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in 2010 Proceedings IEEE INFOCOM.
IEEE, 2010, pp. 1–9.

[9] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5g wireless networks,” IEEE Transactions on

Wireless Communications, vol. 15, no. 4, pp. 2995–3007, 2016.

[10] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman,
“A survey of information-centric networking,” IEEE Communications

Magazine, vol. 50, no. 7, pp. 26–36, 2012.

[11] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3,
2014.

[12] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” in 29th IEEE Conference on Decision and

Control. IEEE, 1990, pp. 2130–2132.

[13] E. Yeh, T. Ho, Y. Cui, M. Burd, R. Liu, and D. Leong, “Vip: A
framework for joint dynamic forwarding and caching in named data
networks,” in Proceedings of the 1st ACM Conference on Information-

Centric Networking, 2014.

[14] M. Mahdian and E. Yeh, “Mindelay: Low-latency joint caching and
forwarding for multi-hop networks,” in 2018 IEEE International Con-

ference on Communications (ICC). IEEE, 2018, pp. 1–7.

[15] V. S. Mai, S. Ioannidis, D. Pesavento, and L. Benmohamed, “Optimal
cache allocation under network-wide capacity constraint,” in Inter-

national Conference on Computing, Networking and Communications

(ICNC). IEEE, 2019.

[16] H. Liu and R. Han, “A hierarchical cache size allocation scheme
based on content dissemination in information-centric networks,” Future

Internet, vol. 13, no. 5, p. 131, 2021.

[17] J. Kwak, G. Paschos, and G. Iosifidis, “Elastic femtocaching: Scale,
cache, and route,” IEEE Transactions on Wireless Communications,
2021.

[18] J. Yao and N. Ansari, “Joint content placement and storage allocation in
c-rans for iot sensing service,” IEEE Internet of Things Journal, vol. 6,
no. 1, pp. 1060–1067, 2018.

[19] B. Dai, Y.-F. Liu, and W. Yu, “Optimized base-station cache allocation
for cloud radio access network with multicast backhaul,” IEEE Journal

on Selected Areas in Communications, vol. 36, no. 8, pp. 1737–1750,
2018.

[20] X. Peng, J. Zhang, S. Song, and K. B. Letaief, “Cache size allocation
in backhaul limited wireless networks,” in 2016 IEEE International

Conference on Communications (ICC). IEEE, 2016, pp. 1–6.

[21] A. Liu and V. K. Lau, “How much cache is needed to achieve
linear capacity scaling in backhaul-limited dense wireless networks?”
IEEE/ACM Transactions on Networking, vol. 25, no. 1, pp. 179–188,
2016.

[22] Y. Xu, Y. Li, T. Lin, Z. Wang, W. Niu, H. Tang, and S. Ci, “A novel
cache size optimization scheme based on manifold learning in content
centric networking,” Journal of Network and Computer Applications,
vol. 37, pp. 273–281, 2014.

[23] W. Chu, M. Dehghan, J. C. Lui, D. Towsley, and Z.-L. Zhang, “Joint
cache resource allocation and request routing for in-network caching
services,” Computer Networks, vol. 131, pp. 1–14, 2018.

[24] M. Dehghan, L. Massoulie, D. Towsley, D. S. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” IEEE/ACM

Transactions on Networking, vol. 27, no. 3, pp. 1013–1027, 2019.
[25] R. T. Ma and D. Towsley, “Cashing in on caching: On-demand contract

design with linear pricing,” in Proceedings of the 11th ACM Conference

on Emerging Networking Experiments and Technologies, 2015, pp. 1–6.
[26] J. Ye, Z. Li, Z. Wang, Z. Zheng, H. Hu, and W. Zhu, “Joint cache size

scaling and replacement adaptation for small content providers,” in IEEE

Conference on Computer Communications. IEEE, 2021.
[27] D. Carra, G. Neglia, and P. Michiardi, “Elastic provisioning of cloud

caches: A cost-aware ttl approach,” IEEE/ACM Transactions on Net-

working, vol. 28, no. 3, pp. 1283–1296, 2020.
[28] G. Xiong, S. Wang, G. Yan, and J. Li, “Reinforcement learning for

dynamic dimensioning of cloud caches: A restless bandit approach,”
IEEE/ACM Transactions on Networking, 2023.

[29] W. Chu, Z. Yu, J. C. Lui, and Y. Lin, “Jointly optimizing throughput and
content delivery cost over lossy cache networks,” IEEE Transactions on

Communications, vol. 69, no. 6, pp. 3846–3863, 2021.
[30] S. Mitra, M. Feldman, and A. Karbasi, “Submodular+ concave,” Ad-

vances in Neural Information Processing Systems, vol. 34, pp. 11 577–
11 591, 2021.

[31] D. Bertsekas and R. Gallager, Data networks. Athena Scientific, 2021.
[32] A. A. Bian, B. Mirzasoleiman, J. Buhmann, and A. Krause, “Guaranteed

non-convex optimization: Submodular maximization over continuous
domains,” in Artificial Intelligence and Statistics. PMLR, 2017, pp.
111–120.

[33] J. Zhang, Y. Liu, and E. Yeh, “Optimal congestion-aware routing and
offloading in collaborative edge computing,” in 2022 20th International

Symposium on Modeling and Optimization in Mobile, Ad hoc, and

Wireless Networks (WiOpt). IEEE, 2022, pp. 1–8.
[34] Y. Xi and E. M. Yeh, “Node-based optimal power control, routing,

and congestion control in wireless networks,” IEEE Transactions on

Information Theory, vol. 54, no. 9, pp. 4081–4106, 2008.
[35] D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational

Research Society, vol. 48, no. 3, pp. 334–334, 1997.
[36] M. Mahdian, A. Moharrer, S. Ioannidis, and E. Yeh, “Kelly cache

networks,” IEEE/ACM Transactions on Networking, vol. 28, no. 3, pp.
1130–1143, 2020.

[37] A. A. Ageev and M. I. Sviridenko, “Pipage rounding: A new method of
constructing algorithms with proven performance guarantee,” Journal of

Combinatorial Optimization, vol. 8, no. 3, pp. 307–328, 2004.
[38] G. Calinescu, C. Chekuri, M. Pal, and J. Vondrák, “Maximizing a

monotone submodular function subject to a matroid constraint,” SIAM

Journal on Computing, vol. 40, no. 6, pp. 1740–1766, 2011.
[39] C. Chekuri, J. Vondrák, and R. Zenklusen, “Dependent randomized

rounding via exchange properties of combinatorial structures,” in 2010

IEEE 51st Annual Symposium on Foundations of Computer Science.
IEEE, 2010, pp. 575–584.

[40] J. Zhang, “Elastic-Caching-Networks.” [Online]. Available:
https://github.com/JinkunZhang/Elastic-Caching-Networks

[41] K. Kamran, E. Yeh, and Q. Ma, “Deco: Joint computation scheduling,
caching, and communication in data-intensive computing networks,”
IEEE/ACM Transactions on Networking, 2021.

[42] D. Rossi and G. Rossini, “Caching performance of content centric net-
works under multi-path routing (and more),” Relatório técnico, Telecom

ParisTech, vol. 2011, pp. 1–6, 2011.
[43] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:

Modeling, design and experimental results,” IEEE journal on Selected

Areas in Communications, vol. 20, no. 7, pp. 1305–1314, 2002.
[44] M. Arlitt, L. Cherkasova, J. Dilley, R. Friedrich, and T. Jin, “Evaluating

content management techniques for web proxy caches,” ACM SIGMET-

RICS Performance Evaluation Review, vol. 27, no. 4, pp. 3–11, 2000.

1480Authorized licensed use limited to: Northeastern University. Downloaded on October 09,2024 at 00:29:03 UTC from IEEE Xplore. Restrictions apply.

