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Abstract—Caching can be leveraged to significantly improve
network performance and mitigate congestion. However, char-
acterizing the optimal tradeoff between routing cost and cache
deployment cost remains an open problem. In this paper, for
a network with arbitrary topology and congestion-dependent
nonlinear cost functions, we aim to jointly determine the
cache deployment, content placement, and hop-by-hop rout-
ing strategies, so that the sum of routing cost and cache
deployment cost is minimized. We tackle this mixed-integer
nonlinear problem starting with a fixed-routing setting, and
then generalize to a dynamic-routing setting. For the fixed-
routing setting, a Gradient-combining Frank-Wolfe algorithm
with (%, 1)-approximation is presented. For the general dynamic-
routing setting, we obtain a set of KKT conditions, and devise
a distributed and adaptive online algorithm based on these
conditions. We demonstrate via extensive simulation that our
algorithms significantly outperform a number of baselines.

Index Terms—Caching, Routing, Information-centric network

I. INTRODUCTION

Caching, by bringing popular data objects closer to con-
sumers, is recognized as one of the most efficient ways to
mitigate bandwidth bottlenecks and reduce delay in modern
content delivery networks. However, as a resource, network
caches typically neither have prescribed sizes, nor are provided
for free. The network operator may pay a cost to deploy
caches of elastic sizes across the network (e.g. rent from
service providers or purchase and install manually), if doing
so yields satisfactory improvement in network performance.
Therefore, a rational network operator may seek to quantify
the tradeoff between cache deployment costs and network
performance metrics. In this paper, by formulating and solving
the problem of joint routing and caching with elastic cache
sizes, we explicitly investigate this important tradeoff.

The multi-commodity routing problem with arbitrary net-
work topology and nonlinear costs is optimally solved [1],
and the caching problem with fixed path and cache capacities
is solved with 1 — % approximation [2]-[5]. Recently, routing
and caching have been considered jointly as they are highly
coupled. i.e., we wish to cache on the routing path, and to
route to a cache site. Jointly-designed routing and caching
strategies can reduce routing costs significantly compared to
those designed separately [6]. Joint optimization of routing
and caching is studied in various networking contexts, such
as content delivery networks (CDNs) [7]-[9] and information-
centric networks (ICNs) [10], [11]. Using the idea of back-
pressure [12], a throughput-optimal dynamic forwarding and

caching algorithm for ICN is proposed by [13]. Approximation
solutions are proposed for joint routing and caching with
linear costs in bipartite graphs [7], or with arbitrary network
topology [6]. Nevertheless, the optimal routing and caching
with arbitrary topology and nonlinear costs remains an open
problem. A heuristic algorithm was proposed for this problem
[14], however, without an analytical guarantee.

On the other hand, optimization over elastic cache sizes has
drawn significant attention in recent years. This corresponds
to the demand of rapidly growing small content providers who
tend to lease storage from elastic CDNs, e.g., Akamai Aura,
instead of purchasing and maintaining storage by themselves.
One line of work focused on jointly optimizing cache de-
ployment and content placement subject to a cache budget
constraint [15]-[22]. Another line considered the tradeoff
between cache deployment costs and cache utilities, so that
the budget itself is optimized to pursue a maximum gain [23]-
[28]. In the latter line, almost all cache utilities are defined as
functions of cache hit count or ratio. Whereas, in a network of
arbitrary topology and congestion-dependent nonlinear costs,
a higher cache hit count or ratio does not necessarily yield a
lower routing cost. It is more directly in the network operator’s
interest to achieve lower routing costs, e.g., lower user latency
or link usage fee. For example, requests served with a hit ratio
1 at distant servers could incur severer network congestion
and thus a higher average delay, compared to requests served
locally with a lower hit ratio [29].

To our knowledge, the tradeoff between routing cost and
cache deployment cost remains an open problem. In this paper,
we fill this gap by minimizing a total cost — the sum of
routing cost and cache deployment cost. This paper differs
from previous works as we simultaneously (i) assume an
arbitrary multi-hop network topology, (ii) adopt a hop-by-hop
routing scheme with congestion-dependent nonlinear costs,
(iii) consider elastic cache sizes with nonlinear deployment
costs, (iv) achieve tradeoff between network performance and
cache deployment costs instead of operating with a fixed
budget, and (v) directly incorporate routing costs as the
performance metric instead of cache utilities.

We consider a cache-enabled content delivery network with
stochastic, stationary request arrivals. Requests are routed hop-
by-hop until they reach a cache hit. Content items are then sent
back to requesters along the reverse path. Costs are incurred
on the links due to transmission, and at the nodes due to cache
deployment. We aim to minimize the total cost by devising a
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distributed and adaptive online algorithm that determines the
routing and caching strategies simultaneously.

We study the proposed problem first in a fixed-routing
special case, and then in the general dynamic-routing setting.
For the fixed-routing case, we achieve a (%, 1) approximation
by the Gradient-combining Frank-Wolfe algorithm [30]. The
general case, to our knowledge, has no known constant factor
approximation due to the loss of submodularity. Nevertheless,
inspired by [1], we propose a method with strong theoretical
insight by presenting and modifying the KKT conditions. It
suggests each node handles arrival requests in a way that
achieves minimum marginal cost — either by forwarding to
a nearby node or by expanding the local cache.

The main contributions of this paper are as follows:

« We propose a novel mathematical framework unifying
cache deployment, content placement and routing for
arbitrary network topology and nonlinear costs. We for-
mulate a mixed-integer cost minimization problem.

« With fixed-routing, we recast the problem as submodular
+ concave maximization, where a Gradient-Combining
Frank-Wolfe algorithm achieves an 1 — % approximation.

« In the general case, we obtain the KKT necessary condi-
tion, and develop a modification to the KKT condition.

o« We propose a distributed adaptive gradient projection
algorithm that converges to the modified condition, and
compare proposed algorithms against baselines in multi-
ple scenarios through extensive simulation.

II. MODEL AND PROBLEM FORMULATION

Cache-enabled network. We model a cache-enabled network
by a directed graph G = (V,&), where V is the set of
nodes and £ is the set of directed links. We assume for
any (i,7) € &, (j,i) € & also. For node ¢ € V, let
N(i) = {jeV|ij)e&} ={jeV|(yi) e} denote the
neighbors of i.

Let C denote the set of content items, i.e., the catalog.
We assume all items are of equal size Ljenm = 1.' Items
are permanently kept at their designated servers, without
consuming the servers’ cache space. Let set S C V be the
designated server(s) for item k& € C. Nodes have access to
caches of elastic size, and can optionally store content items
by consuming corresponding cache space. We denote node ¢’s
cache decisions by x; = [z;(k)]rkec, where the binary decision
x;(k) € {0,1} indicates whether node i chooses to cache item
k (i.e., z;(k) = 1 if node 4 caches item k, and 0 if not). We
denote the global caching decision by & = [z;(k)]icy kec.

Request and response routing. Packet transmission in G is
request driven. We use (i, k) to denote the request made by
node i for item k, and assume that request packets of (i, k)
are generated by ¢ at a (quasi-stationary) rate r;(k) (request
packet/sec) called the exogenous request input rate. Let r =
[ri(k)]iev kec. Request packets are routed in a hop-by-hop
manner using only local information Let ¢;(k) be the total

IContents files of non-equal sizes can be partitioned into file chunks of
equal size, and each file chunk is treated as a different item in C.

2 2 @® :node
|_| : cache
UO (elastic size)
Ou lﬁ : content item
U @ == : response flow

Fig. 1: An example network. Node 1 makes requests for
item A, B and C, designated servers are at node 2, 3 and
4, respectively. Node 6, 7, 8 cache the items. Requests are
forwarded hop-by-hop. Responses shown by colored arrows
fetch the items back to 1 along the reverse path of request.

g=W,¢) Network graph G, set of nodes V' and links &

N(3) Set of neighbors of node 4

C,Sg Set of content items; Designated servers of item k
oij (k) Routing variable from node ¢ to j for item k

ri (k) Exogenous input request rate for item k at node ¢
ti(k) Total request arrival rate of item k at node ¢
fij(k),Fij Flow rate of item k and total flow rate on link (4, j)
D;;(Fij) Communication cost (e.g. queueing delay) on (z, )
zi(k) Cache decision of node 4 for item k

X, Bi(X;) | Cache occupancy and deployment cost at node 4
yi(k), Y; Continuous cache variables and occupancy

T(p,y) Network aggregated cost

G(y) Caching gain for fixed-routing case

055 (k) Marginal cost due to increase of f;; (k)

0; (k) Minimum marginal cost for ¢ to handle requests of k.

TABLE I: Major notations

request arrival rate for item % at node ¢. That is, ¢;(k) includes
node i’s exogenous request input rate r;(k), and the rate of
endogenously arrival requests forwarded from other nodes to
node . Of the request packets for item k that arrive at node ¢, a
fraction of ¢;;(k) € [0,1] is forwarded to neighbor j € N (7).
Thus for any i € V and k € C?,

Lilk) =rilk) + > ti(k)65(k), (1)

where ¢;;(k) = 01if (4,5) & £. We denote ¢’s routing strategy
by ¢; = [¢i;(k)]ljev kec, and let ¢ = [¢;; (k)] jev kec-

Request packets for k terminate at i if i € Sy or z;(k) =
1. When a request packet terminates, a response packet is
generated. The response packet delivers the requested item
back to requester along the same path taken by the request
packet, in the reverse direction.> An example network is shown
in Fig. 1. The following holds for all ¢ € V and k € C,

1, ifid Sk,

2
0, ificSy. @

wik) +) o, 0 k) =

Routing and cache costs. Costs are incurred on the links due
to packet transmission or packet queueing, and at the nodes

2We remark that the decision variables are only @ and ¢, whereas ¢;(k)
is not decision variable. In the absence of caching and for a given ¢, the
uniqueness of ¢;(k), i.e., the existence of a unique solution to equation (1),
is shown by Theorem 1 [1] with mild assumptions.

3Such mechanism is implemented in ICN with the Forwarding Interest Base
(FIB) and Pending Interest Table (PIT) [13]. We assume different request
packets for the same item are recorded and routed separately.
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due to cache deployment. Since the size of request packets
is typically negligible compared to the size of responses
carrying content items, we consider only the link cost caused
by responses. Let f;;(k) be the rate of responses (response
packet/sec) traveling through link (7, j) carrying item k. Recall
that Liem = 1, then f;;(k) equals to the flow rate (bit/sec)
on link (4,7) due to item k. Let F}; be the total flow rate

n (i,7). Since each request packet forwarded from i to j
must fetch a response packet travelling through (4, 4), we have
fﬂ(k) = tl(k)(i)” (k), and Fij = ZkEC f”(k) We denote by
D;;(F;j) the flow-dependent routing cost on link (4,5), and
assume the cost function D;;(-) is continuously differentiable,
monotonically increasing and convex, with D;;(0) = 0. Such
D;;(-) subsumes a variety of existing cost functions, including
linear cost (transmission delay), link capacity constraints. It
also incorporates congestion-dependent performance metrics.
For example, let u;; be the service rate of an M/M/1 queue,
then D;;(Fi;) = F;j/ (pij — Fij) gives the average number of
packets waiting in the queue or being served [31]. By Little’s
Law, the aggregated cost is proportional to the expected system
delay of packets. The cache occupancy at node 7 is given
by X; = > ,ccwi(k). We denote by B;(X;) the cache
deployment cost at node 4, and assume B;(-) to be contin-
uously differentiable, monotonically increasing and convex,
with B;(0) = 0. The cache deployment cost can represent the
expense to buy/rent storage (e.g., [23], [24], [26]), or be used
to approximate traditional hard cache capacity constraints.

Problem formulation. We aim to jointly optimize cache
decisions and routing strategies to minimize the total cost. To
construct a relaxation to this mixed-integer problem, suppose
that variables x;(k) are independent Bernoulli random vari-
ables. Let v be the corresponding joint probability distribution
defined over matrices in {0,1}/V/*I¢l and denote by P, [],
E,[-] the probability and expectation w.r.t. v, respectively. Let
yi(k) € [0,1] be the (marginal) probability that node ¢ caches
item k, namely, y;(k) = P,[z;(k) = 1] = E,[x;(k)], and let
Yy = [yi(k)]iev kec. Taking expectation w.r.t. v, (2) becomes

| 1 g s
yl(kHZg‘ev%(k){o, if i €S @

Let f”(k)ly = Ey[f”(k‘)] and Fij|y = EV[FZ‘J‘] denote the
expected link flow rates, and ¢;(k)|, = E,[t;(k)]. Then, as
long as (3) holds, we have f;;(k)ly = ti(k)|y¢:;(k), and
ti(k)ly = ri(k)+ > ey tj(k)|ly@ji(k), sharing the same form
as (1). Therefore, without ambiguity, we use I}; to denote
Fijly in the rest of the paper, and let Y; = >, . v:(k) denote
the expected cache occupancy. The relaxed joint routing and
content placement problem is cast as

min T(¢,y) = Y Dij(Fi;)+ > Bi(Y:)

(i,7)€€ %
subject to 0 < ¢;;(k) <1, V(i,j)e& kel 4
0<yi(k)<1, VieVkeC

(3) holds.

Note that we do not explicitly impose any constraints
for link or cache capacity in (4), since they are already
incorporated in the cost functions. We tackle (4) first in a
fixed-routing setting (Section III), and then a general dynamic-
routing setting (Section IV).

III. SPECIAL CASE: FIXED-ROUTING

The fixed-routing case refers to scenarios where the routing
path of a request is fixed or pre-determined regardless of
caching schemes. Namely, if node ¢ is not a designated server
of item k, the request packets of k arriving at ¢ can only
be forwarded to one pre-defined next-hop neighbor of . We
denote such a next-hop node of i for k as j;(k).*

In the fixed-routing case, problem (4) reduces to

min T(y)= Y Dij(F;)+ Y Bi(Y:)
Y (i,4)€E icV
subjectto 0<y; <1, VkeC(,i¢& Sk, (5)

¢Zj(k> — {1 — Yi, if 4 g Skaj = ]Z(k)7

0, otherwise.

Let p,; be the routing path from node v to a des-
ignated server s € &Si. Path p,; is a node sequence
(L P2 P, where ply = v, plh*l = s, and
pi-;l = jpi) (k) for I = L 7|pvk| —1. We say (Zvj) € Duk
for a link (i, j) if 7 and j are two consecutive nodes in pyy.
If i € pyg, let I, , (7) denote the position of ¢ on path p,,

. l % . .
ie., p," " = i. We assume every path p,; is well-routed,

i.e., no routing loop is formed, and no intermediate node is a
designated server of k. Therefore, in terms of item k, the rate

of request packets that are generated by node v and arrive at

node i is given by 7, (k) ;7;’“1(2)71 1=y, (k)) if i € pyr,
vk

and 0 if ¢ & pyi. Then the link flow rates are given by

fﬂ(k) - Zvi(i,j)epvk ro(k) ij;kl(l) (1 B ypi)/k (k)) - ©

We denote by T'(0) the cost when y = 0, i.e., the total
routing costs when no cache is deployed, and we assume
T'(0) is finite. Then problem (5) is equivalent to maximizing
a “caching gain” G(y):

max G(y) = A(y) — B(y)
Vk e C,i ¢ Sy

(7
subject to 0 < y;(k) <1,

where A(y) and B(y) are given by
Ay) =T(0) - Z(i,j)ef D;j(Fij), Bly) = Ziev B;(Y;).

Lemma 1. Problem (7) is a “DR-submodular + concave”
maximization problem. Specifically, A(y) is non-negative
monotonic DR-submodular > in y, and B(y) is convex in y.

“4For simplicity, we only discuss fixed single-path routing. The solution can
be seamlessly generalized to fixed multipath routing, i.e., when ¢;;(k) are
fixed to non-integer values satisfying (2), by splitting a multipath request into
multiple single-path requests.

SDR-submodular function is a continuous generalization of submodular
functions with diminishing return. See [32] for more information.
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Algorithm 1: Gradient-Combining Frank-Wolfe
Input: Integer N > 1
Result: Cache strategy y°* for fixed-routing case
Start with n =0, let £ = N~3.
Set y(© to be y;(k) = 0 for all i,k.
do
Let s(") =
arg maxo<y<1 (y, VA (y(")) — QVB(y("))>.
Let y+t1) = (1 — )y + 25,
for n=0,1,--- ,N —1;
Find the best among {y©, ...y}, let
Yo = AT MAX ¢ [0) ... ()} G(y) .

DR-submodular + concave maximization problems have
been systematically studied recently by Mitra et al. [30].
Problem (7) falls into one of the categories in [30], where a
Gradient-Combining Frank-Wolfe (GCFW) algorithm (Algo-
rithm 1) guarantees a (%, 1) approximation, i.e., the solution
achieves a % ratio of the submodular part and a 1 ratio of the
concave part of the objective at the optimal solution.

Theorem 1 (Theorem 3.10 [30]). We assume G is L-smooth,
i.e.,, VG is Lipschitz continuous. For N > 1, let y* be an
optimal solution to (7) and y°*' be the solution generated by
Algorithm 1, then it holds that

1-¢

2

where L is the Lipschitz constant of VG, € =
is the total step number.

G(y™) > A(y™) = B(y") —e- O (L]V][C]) .-

N3 and N

By (6), the gradient VB(y) in Algorithm 1 can be calcu-

lated as S2Ws = B/(Y.), and VA(y) is given by
0A(y) - ’ lpzk(i)
Ay (k) t=(k) Z(i,j)Epzk DiEn 11,2 (1 — U (k)) '

The linear program in Algorithm 1 can be solved by selecting
z and k with A((’]’c)) -2 ()B((y)) > 0 and letting corresponding

elements in s(™) be 1, while keeping others 0.

IV. GENERAL CASE: DYNAMIC-ROUTING

The analysis in Section III unfortunately does not apply to
the general dynamic-routing case (i.e., when routing is dy-
namically and adaptively adjusted jointly with caching), since
the DR-submodularity no longer holds when ¢ is not fixed.
In this section, we tackle the general case of problem (4) with
a node-based perspective first used in [1] and subsequently in
[14], [33]. We first present a set of KKT necessary optimality
conditions for (4), then give a modification to the KKT
conditions that overcome certain saddle points. We show that
the modified conditions yield a bounded gap from the global
optimum, then provide further discussion and corollaries.

KKT necessary condition. Following [1], we start by giving
closed-form partial derivatives of T'(¢,y). For caching strat-
egy v, it holds that % = Bl(Y;).

For routing strategy ¢, the marginal cost due to increase of
¢;j(k) equals a sum of two parts, (1) the marginal cost due
to increase of I7; since more responses are sent from j to i,
and (2) the marginal cost due to increase of r;(k) since node
j needs to handle more request packets. Formally,®

oT oT

=t;(k) | D%;(F}; +>,

gt = 50 (PHFR+ 52
where the term 07'/0r;(k) is the marginal cost for i to handle
unit rate increment of request packets for k. This equals
a weighted sum of marginal costs on out-going links and

neighbors, namely,
or or

- (k) (D (F) + ——— ).
ori(k) ZjGN(i)¢J( )< ji(F5) + 8rj(k)> ©)
By (3), value of 0T/0r;(k) is implicitly affected by y;(k),

e.g., it holds that 9T /0r;(k) = 0 if i € S or y;(k) = 1.7

Theorem 2. Let (¢, y) be an optimal solution to problem (4),
then for any i € V, j € N(i) and k € C,

BI(Y) {: ik, ifyi(k; >0,

®)

> Niks if yi(k

7

or if ¢ij(k) >0 "
‘ , = Ajky L i >0,
tz<k) (DJZ(F ) 87‘J( )) {> )\1]@, lf(lsm(k) 0’
where \;i;, is given by
. / ! 8T
i (B0, gy 0 (D350 + 575 )}
. j
(11)

Theorem 2 presents the KKT necessary conditions for
problem (4). The proof is omitted due to space limitation.

Modified condition. Note that condition (10) is not sufficient
for global optimality (even for the pure-routing problem, i.e.,
with y fixed to 0). A counterexample is provided in [1]. A
cause of such non-sufficiency is the degenerate case where
t;(k) = 0, in which \; is always 0 and (10) always holds,
regardless of routing strategies [¢;;(k)];jey. Note that when
t;(k) = 0, it is always optimal to set y;(k) = 0 since no
request packets for item k ever arrive at node i. Note also that
t;(k) appears repeatedly in (11) for all 5 € A/(4). To this end,
we propose condition (12) as a modification to (10), and show
that a bounded gap on the total cost is promised if (12) holds.

Theorem 3. Let (¢, y) be feasible to problem (4), such that
forallieV, j e N(i) and k € C,

= ti(k)di(k),  if yi(k) >0
B(Y){ e
S
/ T — z s 1 1]
D5ilFi) + 5o { 5;(k), zfdn]()

%To formally derive (8) and (9) in detail, please refer to Theorem 2 in [1].
7If no routing loops are formed, T'/9r; (k) can be computed recursively
by (9), staring from nodes i € Sy, or with y; (k) = 1.
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where §;(k) is given by 8

o (BUY) (o OT
k) = min S5 min (25050 + 507 ) }('m
Let (¢',y") be any feasible solution to (4). Then,
T(¢',y") ~T(¢,y) >
(14)

Zzev Zkec ‘ (

Proof sketch. Tt holds that T'(¢p,y) = D(¢) + B(y) where
D(¢) = > ;) Dij(Fij) and B(y) = >, B;i(Y;). It can be
shown that B(y) is convex in y, and D(¢) is geodesically
convex in ¢ if » > 0. For any feasible (¢>T7 y'), following the
technique in Theorem 3 [1], we show that

> D(Fs) (Bl = Fie) 2 3 (wik) = vl (1)) ¢ ()3 (k).

(3,%) bk
By the convexity of B(y), we show that

> B (v -v) = Zt i) (5 k) = (k) ).

Then (14) holds by comblnlng the above. O

To the best of our knowledge, (14) is the first provable
bound for minimizing the sum of a convex function and a
geodesic convex function. Note that (12) implies y;(k) = 0
if t;(k) = 0, since the increasing and convex assumption of
B;(+) requires B.(Y;) > 0 if ¥; > 0. Condition (12) is a
more restrictive version of the necessary condition (10). Any
feasible (¢, y) satisfying (12) must also satisfy (10).

Unlike [1], [33], condition (12) is still not sufficient for
global optimality. Nevertheless, it is practically efficient to
minimize the total cost in a distributed manner according to
(12). We next provide further discussion upon condition (12).

B) =yl () (¢ k) — )

Intuitive interpretation. To provide an intuitive interpretation
of the modified condition, let d;;(k) denote the marginal cost
due to increase of flow rate fji(k), that is, the marginal cost
if node ¢ forwards additional requests of unit rate to node j.
Then similar to (8) and (9), J;;(k) is given by
3s(h) = 5o o
9f;ji(k) r;(k)
Next, we define a virtual cached flow as fio(k) =
t;(k)y;(k), i.e., the expected rate of request packets for item k

that terminate at node ¢ due to i’s caching strategy. Let ;0 (k)
denote the marginal cost due to increase of f;o(k), namely,

= D};(Fyi) +

15)

o oT _ Bi(Yy)
dio(k) = Ofin(k)  ti(k)oy(k)  ti(k) (16)

By (3), dio(k) gives the marginal cache deployment cost if
¢ wishes to increase y;(k) so that the total request packets
forwarded to its neighbors is reduced by unit rate. Therefore,
by (13), we have

0;(k) = i 0:5(k). 17
B) = e P H) (4
81n the calculation of §;(k), we assume B.(Y;)/t;(k) = oo if t;(k) = 0.

That is, 0;(k) gives the minimum marginal cost for node i to
handle request packets for item k. Condition (12) then suggests
that each node handles incremental arrival requests in the way
that achieves its minimum marginal cost — either by forwarding
to neighbors, or by expanding its own cache. In other words,
we say it is “worthwhile” to deploy cache for k at i if d;0(k) <
min;e s 04 (k), and “not worthwhile” otherwise.

Even though condition (12) is neither a necessary condition
nor a sufficient condition, Corollary 1 implies that it must have
non-empty intersection with the global optima of (4).

Corollary 1. For any optimal solution (¢*,y*) to (4), there
exists a corresponding (¢, y) satisfying condition (12), such
that y = y* and ¢j(k) = ¢3;(k) for all i,k with t; (k) > 0.

Proof sketch. The corresponding (¢, y) can be constructed by
letting y = y*, and ¢;;(k) = ¢;;(k) for i, k such that (k) >
0. For ¢, k with ¢f(k) = 0, pick one j € N (i) such that j €

arg min;e v (;) (D;-/i(F;ii) + 8%,0) and let ¢;;(k) = 1. O

Corollary 2. Let (qb,y) be a feasible solution to (4) and
satisfy (12). Let (czS y') bea feaszble solution to (4), such that
foralli € Vandk € C, either y! (k) = yi(k) or t] (k) = t; (k).
Then it holds that T(¢,y) < T((;SJr yh).

Corollary 2 follows from Theorem 3. It implies that (12) is
sufficient for optimizing ¢ when vy is fixed, and for optimizing
y when t;(k) are unchanged. An example is shown in Fig. 2,
where the caches always receive the same amount of request
packets (i.e., unchanged ¢;(k)), and the routers can not cache
at all (i.e., unchanged y;(k)).
caches router network

users content providers

o8 8
o8-8 —8

Fig. 2: A special scenario that (12) yields a global optimal
solution. Single-layered caches are equipped near users.

Corollary 3. Let (¢,y) be a feasible solution to (4) and
satisfy (12). Let (¢T,yT) be a feasible solution to (4), such
that either d)T > ¢ or qST < @.° Then it holds that

T(¢,y) < T(¢', y").

Corollary 3 also follows from Theorem 3. For ¢, k such that
yi(k) # 1, let p;; (k) = ¢i;(k)/ (1 — yi(k)) be the conditional
routing variable, i.e., the probability of a request packet being
forwarded to j given the requested item is not cached at ¢. In
practical networks, the routing and caching mechanisms are
usually implemented separately, and the routing is only based
on p;;(k) instead of ¢;;(k). Corollary 3 contains a special
case where pl](k) = p;;(k) for all 4,7, k, but y; (k) > y,(k)
for all 4,k (or y;(k)" < y;(k) for all 4, k). This special case

9For v1, vo of same dimension, we denote by v1 > v2 if every element
of v1 is no less than the corresponding element in v2. Similarly as v < va.
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implies that if condition (12) is met, the total cost cannot
be lowered by only caching more items (i.e., only increasing
yi(k) for some 7 and k), or only removing items from caches
(i.e., only decreasing y;(k) for some ¢ and k), while keeping
the conditional routing variables unchanged.

V. ONLINE ALGORITHM

Although Algorithm 1 achieves a constant factor approxima-
tion for the fixed-routing case, it is offline and centralized. In
practical networks, request patterns are unknown a prior and
may vary with time, thus an online adaptive and preferably
distributed algorithm is needed. In this section, we present a
distributed online algorithm for the general dynamic routing
case that converges to condition (12). The algorithm does
not require prior knowledge of exogenous rates r;(k) and
designated servers Sk, and is adaptive to slow variation in
ri(k) and cost metrics D;;(-), Bi(-).

Algorithm overview. We partition time into periods of dura-
tion L x Ty A period consists of L slots, each of duration
Tgot- In t-th period, node ¢ keeps its routing and caching
strategies (¢, y!) unchanged. At the m-th slot of ¢-th period
(1 <m < L), node 7 rounds y‘; into integer caching decisions
xl™ with E[z)"™] = y'.!° The last slot in each period is
called update slot, during which nodes update their routing
and caching strategies in a distributed manner. We postpone
the discussion of randomized rounding techniques to Section
V, and now focus on the update of strategies ¢’ and y.
Our algorithm is a gradient projection variant. Each node
updates its strategies during the update slot of ¢-th period by

¢ =i+ AP,y =y Ay (18)
The update vectors A’ and Ay! are calculated by

—¢5;(k), if j € Bj(k)
A6y = { —min {4, (K), ael, (W)}, if § # BI(k), ety(k) > 0
Si (k)/Ni (k), if j & Bi(k), ei;(k) =0

¢ ) —min{yi(k),aei(k)}, if ejo(k) >0

Auilk) = {Sf(k:) IN(E), if el (k) = 0
(19)

where B! (k) is the set of blocked nodes to suppress routing
loops, « is the stepsize, and'!

elo(k) = (k) — 61(k), eLy(k) = 8L (k) — 8L(k), ¥ & BL(R),
N (k) = \ [ € NO\BL ()€l (k) = 0} | + Lyt 1150,

8ik) = Z;‘ewf(k) et (k)>0 Al (k) + Ay (B)Lst, 190,
(20)
The intuitive idea is to transfer routing/caching fractions from
non-minimum-marginal directions to the minimum-marginal
ones. d/; (k) and dj, (k) are calculated as in (15) and (16). But
slightly different from (17), due to the existence of Bi(k),

o1 (k) = min { ol (k), minje v s 05 (K) ) @D

10We suggest refreshing caching decisions multiple times in each period
to better estimate theoretical costs and marginals from actual measurements.
Nevertheless, the algorithm applies to any L > 1.

117 4 is the indicator function of A. i.e., 14 = 1 if A is true, and 0 if not.

Algorithm 2: Gradient Projection (GP)

Input: Loop-free (¢, y°) with T° < oo, stepsize o

Start with ¢t = 0.

do

Each node i round y! into =™ with Distributed
Randomized Rounding (DRR).

during the m-th slot of t-th period,

do

Each node updates 0T'/0r;(k) for all k via a a
message broadcasting mechanism.

Each node calculates (20).

Each node updates strategies (qbf,yﬁ) by (18) (19).

during update slot of t-th period,

In each update slot, to calculate d7; (k) and djy(k), the value
0T /0r; (k) is updated throughout the network with a control
message broadcasting mechanism (see, e.g., [33]). Specifically,
node ¢ receives 07'/0r;(k) from all downstream neighbors
(i.e., the nodes j € N(i) with ¢;;(k) > 0), calculates'? its
0T /Or; (k) according to (9), and broadcasts 9T'/Jr;(k) to all
upstream neighbors. Such broadcast starts at the designated
servers or nodes with y;(k) = 1, where 91'/0r;(k) = 0. The
proposed algorithm is summarized in Algorithm 2. Next, we
discuss the set B (k).

Loops and blocked nodes. A routing loop refers to node
sequence (l1,la,--- 1)), such that I; = [}; and for some k €
C, b1,1,,,(k) >0forp=1,--- |l = 1. A loop implies that a
strictly positive portion of requests for item k forwarded from
node [; is sent back to [; itself. The existence of loops should
be forbidden, as it gives rise to redundant flow circulation and
wastes network resources. Loop-free routing can be guaranteed
by a higher layer [16][26] (e.g., FIB in ICN). If so, we simply
set BL(k) = V\N (i) for all ¢ and k.

In case loop-free routing is not guaranteed by a higher layer
protocol (e.g., in ad-hoc networks), our algorithm can still
prevent the formation of loops by employing a method called
“blocked node set” B! (k), assuming a loop-free initial state ¢’
is given. Specifically, during (¢ + 1)-th period, node i should
not forward any request of item k to nodes in the set B (k).
The construction of sets B! (k) falls into two types, static and
dynamic. We next introduce both.

(1) Static sets. The blocked node sets can be pre-determined
and kept unchanged throughout the algorithm, i.e., Bi(k) =
B;(k) for all ¢t > 0. A directed acyclic subgraph of G is
constructed for every item at the beginning of the algorithm, in
which every node has at least one path to a designated server.
We denote the subgraph w.rt. k& € C as Guy = (V,Ew))
with £ C &. Then the blocked node sets are constructed as
Bi(k) = {7 € N()|(i,5) & Exy }-

The idea of static blocked node set is commonly adopted,
e.g., in the FIB construction of ICN. The subgraphs G(; can

12Node i should estimate B;(Y;) and Di;(Fi;) from Y; and Fj;. Flow
rate F;; is measured by averaging the first (L — 1) slots of ¢-th period.
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be calculated efficiently at the network initialization [6], either
in a centralized way (e.g., Bellman-Ford algorithm), or in a
distributed manner (e.g., distance-vector protocol).

(2) Dynamic sets. The sets B!(k) can also be dynamically
calculated as the algorithm proceeds. Compared with the
fixed case, dynamically determined sets may give nodes more
routing options and, therefore, potentially better performance
in terms of total cost. It requires a more elaborate node
blocking mechanism, preferably distributed and efficient. A
classic dynamic node blocking mechanism is presented in [1]
for a multi-commodity routing problem,

Convergence. Since the node blocking mechanism is imple-
mented to suppress loops, Algorithm 2 may not converge to
condition (12) if solution (¢, y) satisfying (12) contains loops.
Nevertheless, Theorem 4 states that the convergence limit still
satisfies a version of (12) with N () replaced by N (¢)\B; (k).

Theorem 4. Assume the network starts at (¢°,y°) with T° <
oo, and (@', y') are updated by Algorithm 2 with a sufficiently
small stepsize o. Then, if static blocked node sets are used, the
sequence {((ﬁt, yt)}zo converges to a limit point (¢,y), and
(¢, y) satisfies (12), with N (i) being replaced by N (i)\B; (k).

Proof sketch. The proof follows the outline of Theorem 2 in
[34]. We first show with sufficiently small stepseize, it holds
T < Tt unless condition (12) with N'(¢)\B; (k) is satisfied.
This is due to the convexity of 7" w.r.t. a single ¢, (k) given
all other variables fixed. The stepsize can be found in [1],
[35]. Then, since the feasible set can be shown compact, the
sequence {(d)t,yt)}:io must have a limit point (¢,y), at
where the objective T' can not be further (strictly) improved.
Therefore, condition (12) with A (7)\B;(k) must hold. O

Algorithm complexity. The computational complexity of GP
is O(|V|?|C|) for each update (for each node O((|dmax|+1)|C|),
with space complexity O((|dmax| + 1)|C|)), where dmax is
the largest out-degree. An additional O(|V|?|C|) occurs if
dynamic blocking is used. As a comparison, typical routing
methods have complexity O(|V|?|C|) and caching algorithm
[4] has complexity O(|C|log|C|). Thus the complexity is not
increased relative to alternating optimization for routing and
caching. During each update slot, node ¢ should calculate
0T /Or; (k) for all k. When the network is large, control mes-
sages carrying derivative information may take non-negligible
time and bandwidth to percolate through the network. There
are |€| transmissions of broadcast messages corresponding to
an item in one update slot, and totally |C||€| transmissions
each update slot, with on average |C|/Tyo per link-second
and at most dpm.x|C| per node. The broadcast messages have
O(1) size, and can be sent in an out-of-band channel. Let ¢,
be the maximum transmission time for a broadcast message,
and h be the maximum hop number for a request path. Then
the broadcast mechanism requires at most ht,. for each update.

We remark that single node computation workload is not
affected by |V| if dmax is bounded by a constant. The update
may fail if control message delay toh exceeds Ty, or if per-
second control message |C|/Tyo exceeds the control channel

capacity. If so, we can use longer slots, or allow some nodes
to perform updates every multiple periods. Meanwhile, if |C|
is large, the computation and communication overhead can be
significantly reduced by applying our algorithm only to the
most popular items.

Distributed randomized rounding. The continuous caching
strategy y is rounded to caching decision x in each slot.
The rounding can be done with a naive probabilistic scheme,
ie., 2™ (k) is a Bernoulli random variable with p = yt (k).
However, such a heuristic rounding method may generate large
or drastically changing cache sizes. Various advanced rounding
techniques exist (see [36]-[38]). If all Y; are integer, the
deterministic pipage rounding [37] and the randomized swap
rounding [39] guarantee the actual routing cost after rounding
is no worse than the relaxed result, while keeping X; = Y.
However, such techniques are centralized.

A distributed rounding method is proposed by [4], each
node independently operates without knowledge of closed-
form T'(¢,y). We extend this method to non-integer Y;, and
refer to it as Distributed Randomized Rounding (DRR). With
such a rounding algorithm, it is guaranteed that the expected
flow rates and cache sizes meet the relaxed value, and the
actual cache size at each node is within 1 of the expected
value.

Lemma 2. If '™ are rounded from y' by DRR, then
Elzj(k)] = yi(k), VieV,keC,

‘Zkec zi(k) = Zkec yf(k)‘ <1, Viev,
E[Fij‘(¢t7mt,7yl)] = Fij|(¢t7yt)7 V(i,j) € €.

The proof of Lemma 2 is omitted. Since D;;(-) and B;(-)
are convex, combining with Jensen’s Inequality, it holds that
E[T(¢" z"™)] > T (¢" E[z*™]) = T(¢',y'). Suppose
|D;j(z) — Dy (y)| < Myj;|lz — y|®, the performance loss due
to Jensen gap is bounded as |E[D;;(Fi;)] — Ds; (E[F;;])| <
M;;o8, where o, is the a-moment of Fj;, determined by
packet dispatching mechanism. We demonstrate in Section VI
that, with a proper randomized packet forwarding mechanism,
the costs measured in the real network will not deviate too
much from the theoretical result T'(¢", y*).

VI. SIMULATION

Simulator setting. We simulate the proposed algorithms and
other baseline methods in various network scenarios with a
packet-level simulator available at [40]. We denote by R the
set of requests in the network. For each request (i, k), the
requester ¢ is uniformly chosen in V, and the requested item k
is chosen in the catalog C with a Zipf-distribution of parameter
1.0. The exogenous request rates 7;; for all requests are
uniformly random in interval [1.0,5.0]. For each (i,k) € R,
node ¢ sends request packets for item k in a Poisson process
of rate r;(k). For each item k € C, we assume |Sy| = 1 and
choose the designated server uniformly randomly in all nodes.
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Fig. 3: Normalized total cost 1" across network scenarios. The actual delay values of GP for each case are marked.

To ensure relatively steady flow rates, we adopt a roken-
based randomized forwarding. i.e., node ¢ keeps a token
pool, where the number of tokens for neighbor j is in
proportion to ¢;;(k). Each request arriving at ¢ is forwarded
consuming one token, and the token pool is refreshed when
empty. We monitor the network status every Tinonitor- FlOWS
F;; are measured by averaging during past Tionitor- We let
Dij(Fij) = diFyj + di,F7 + d;F}, which is a 3-order
expansion of Fy;/(1/d;; — Fij). We use D;;(0) = d;; as link
weights, representing the unit-flow cost with no congestion,
for non-congestion-dependent methods. We let B;(Y;) = b;Y;,
where b; is the unit cache price at ¢. Parameters d;; and b; are
uniformly selected from the interval in Table II.

Simulated scenarios and baselines. We simulate multi-
ple synthetic or real-world network scenarios in Table II.
connected-ER is a connectivity-guaranteed Erd6s-Rényi
graph, where bi-directional links exist for each pair of nodes
with probability p = 0.07. grid-100 and grid—-25 are 2-
dimensional 10 x 10 and 5 x 5 grid networks. full-tree is
a full binary tree of depth 6. Fog is a full 3-ary tree of depth
4, where children of the same parent is concatenated linearly
[41]. This topology is dedicated to formulating fog-caching
and computing networks. GEANT is a pan-European data
network for the research and education community [42]. LHC
(Large Hadron Collider) is a prominent data-intensive comput-
ing network for high-energy physics applications. DTelekom
is a sample topology of Deutsche Telekom company [42].
small-world (Watts-Strogatz small world) is a ring graph
with additional short-range and long-range edges.

We implement proposed GCFW (Algorithm 1), GP (Algo-
rithm 2), and multiple baselines summarized in Table III. LRU
(Least Recently Used [43]) and LFU (Least Frequently Used
[44]) are traditional cache eviction algorithms. SP (Shortest
Path) routes request packets on the shortest path to a desig-
nated server. AC-R (Adaptive Caching with Routing) is a joint
routing/caching algorithm proposed by [6]. It uses probabilistic
routing among top ksp = 3 shortest paths. MinDelay
is another hop-by-hop joint routing/caching algorithm with
convex costs [14]. It uses the Frank-Wolfe algorithm with
stepsize 1 for integer solutions. Uniform uniformly adds

TABLE II: Simulated network scenarios

Topologies | VI & el IR dij b;
connected-ER 50 256 80 200  [0.05, 0.1] [5, 10]
grid-100 100 358 100 400 [0.05, 0.11 [20, 40]
full-tree 63 124 50 150  [0.05, 0.1]  [20, 30]
Fog 40 130 50 200 [0.05, 0.1]  [30, 50]
GEANT 22 66 40 100 [0.05, 0.1 [10, 15]
LHC 16 62 30 100 [0.1, 0.15]  [10, 15]
DTelekom 68 546 100 300 [0.1, 0.2] [10, 20]
small-world 120 720 100 400 [0.05, 0.1]  [10, 20]

grid-25 25 80 30 100 0.1 10

TABLE III: Implemented algorithms and functionalities

Algorithm \ cache deployment  content placement  routing
LRU/LFU v
SP v
AC-R v v
MinDelay v v
Uniform v
MinCost v
CostGreedy v v
AC-N v v
GCEW v v
GP v v v

cache capacities by 1 at all nodes in each period. MinCost
is a heuristic cache deployment algorithm. It adds the cache
capacity by 1 at the node with the highest total cache miss
cost in every period'}. CostGreedy is a heuristic joint cache
deployment and content placement method. It greedily sets
y;(k) = 1 for the node-item pair (7, k) with the largest single-
item cache miss cost in every period. AC—N (Adaptive Caching
with Network-wide capacity constraint) is a cache deployment
and content placement method with a network-wide cache
budget [15]. We add budget by 1 and re-run AC—N each period.

We set Ty = 10, y© = 0, L = 20, and start with the
shortest path. When using Uniform or MinCost, the corre-
sponding content placement method is re-run every period to
accommodate new cache capacities. For methods other than
GCFW and GP, we run the simulation for a sufficient duration

13MinCost is in fact a cache miss cost-weighted cache hit maximization.
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link flow and node cache size. ¢ is the period number and 7' is

and record the total cost of the lowest-cost period. For GCFW
and GP, we measure steady-state total costs after convergence.
For GCFW, we set N = 100. For GP, we use dynamic node
blocking, set stepsize o = 0.01 and run for T, = 20000.

Results and analysis.

(1) Cost reduction. We summarize the (normalized) mea-
sured total costs in Fig. 3. We divide the methods into three
groups. Fig. 3 shows that the second group outperforms the
first group, and is outperformed by the third group, implying
that heuristic utility-based cache deployment methods are bet-
ter than not optimizing, but can be further improved by jointly
considering content placement and routing. The proposed
algorithm GP outperforms other methods in all scenarios,
reducing the total cost by up to 44.8% (on average 29.3%).
Moreover, the improvement of GP is significant in scenarios
with more routing choices (e.g., grid-100), and diminishes
when routing choice is limited (e.g., full-tree).

(2) Convergence. To analyze the behavior of proposed algo-
rithms, we present more refined experiments on the scenario
grid-25. Fig. 4 and Fig. 5 compares the iteration number
for convergence and algorithm CPU time for grid-25, re-
spectively. They imply that GP consumes more time compared
to simple heuristic caching policies (e.g., LRU), and less time
compared to nested-looped alternating methods (e.g., AC-N).

Fig. 6 shows the convergence trajectory of measured and
theoretical total cost by GCFW+SP and GP in grid-25.
Measured cost refers to actual link costs measured on links and
actual cache costs calculated from cache sizes after rounding.
Theoretical cost refers to the flow-level cost T given by (4),
calculated using the pre-given input rates [r;(k)] and (o', y*).
The consistency of theoretical and measured costs implies that
with continuous relaxation and rounding, our theoretical model
accurately reflects the real network behavior.

the measured total cost.

(3) Congestion mitigation. The ability to mitigate network
congestion is expected to be an important feature of the
proposed algorithms, as non-linear traffic-dependent link costs
are considered. Fig. 8 illustrates the evolution of link flows and
cache sizes across the network as GP goes on. The requests and
designated servers are randomly generated according to our
previous assumptions and Table II. We observe that severe link
congestion is gradually mitigated by properly tuning routing
and caching strategies.

(4) Routing-caching tradeoff. As a fundamental motivation
of this paper, we investigate the tradeoff between routing cost
and cache deployment cost in grid-25. We set the link cost
to be linear and plot in Fig. 7 the optimized link and cache
costs as well as the corresponding total cache size against
different unit cache cost b;. We observe that, with a very
high unit cache cost, no cache is deployed. As the unit cache
cost dropping, the total cache size increases, the total cost
decreases, and the cache cost takes a gradually more significant
portion of the total cost.

VII. CONCLUSION

We minimize the sum of routing cost and cache deploy-
ment cost over caching and routing strategies for arbitrary
topology and nonlinear costs. In the fixed-routing special case,
the objective is a DR-submodular + concave function, and
propose a Gradient-combining Frank-Wolfe algorithm with
(%, 1) approximation. For the general case, we propose the
KKT condition and a modification. The modified condition
suggests each node handles arrival requests in a way that
achieves minimum marginal cost. We propose a distributed and
adaptive online algorithm for the general case that converges
to the modified condition. We demonstrate in simulation
that our proposed algorithms significantly outperform baseline
methods in multiple network scenarios.
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