
SIAM J. SCI. COMPUT. © 2023 Society for Industrial and Applied Mathematics
Vol. 45, No. 6, pp. A2945–A2972

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I:
FRAMEWORK AND FULLY IMPLICIT-EXPLICIT COLLOCATION

METHODS⇤

TOMMASO BUVOLI† AND BEN S. SOUTHWORTH‡

Abstract. In this paper we generalize the polynomial time integration framework to additively
partitioned initial value problems. The framework we present is general and enables the construction
of many new families of additive integrators with arbitrary order-of-accuracy and varying degree
of implicitness. In this first work, we focus on a new class of implicit-explicit polynomial block
methods that are based on fully implicit Runge–Kutta methods with Radau nodes and that possess
high stage order. We show that the new fully implicit-explicit (FIMEX) integrators have improved
stability compared to existing IMEX Runge–Kutta methods, while also being more computationally
e�cient due to recent developments in preconditioning techniques for solving the associated systems
of nonlinear equations. For PDEs on periodic domains where the implicit component is trivial to
invert, we will show how parallelization of the right-hand side evaluations can be exploited to obtain
significant speedup compared to existing serial IMEX Runge–Kutta methods. For parallel (in space)
finite element discretizations, the new methods can achieve orders of magnitude better accuracy than
existing IMEX Runge–Kutta methods and/or achieve a given accuracy several times times faster in
terms of computational runtime.

Key words. additive integrators, linearly implicit, implicit-explicit, fully implicit Runge–Kutta,
general linear methods

MSC codes. 65L04, 65L05, 65L06

DOI. 10.1137/21M1446988

1. Introduction. Many problems in science and engineering can be modeled
using high-dimensional systems of ordinary di↵erential equations. These equations
typically arise from the mathematical description of physical phenomena or from the
spatial discretization of partial di↵erential equations. Solving these systems amounts
to integrating an initial value problem (IVP)

y
0(t) = f(t, y(t)), y(t0) = y0.(1.1)

In practice, it is common to additively partition the right-hand side, f(t, y), into m

components,

f(t, y) =
mX

k=1

f
{k}(t, y).(1.2)

A simple example is a discretized advection-di↵usion-reaction equation where each
physical process is represented by a separate term.

⇤Submitted to the journal’s Methods and Algorithms for Scientific Computing section September
17, 2021; accepted for publication (in revised form) July 14, 2023; published electronically November
29, 2023.

https://doi.org/10.1137/21M1446988
Funding: The second author was supported by the Laboratory Directed Research and Devel-

opment program of Los Alamos National Laboratory as a Nicholas C. Metropolis Fellow and under
project 20220174ER. The first author was funded in part by the NSF grant DMS-2012875.

†Department of Mathematics, Tulane University, New Orleans, LA 70118 USA (tbuvoli@
tulane.edu).

‡Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 USA
(southworth@lanl.gov).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A2945

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/21M1446988
mailto:tbuvoli@tulane.edu
mailto:tbuvoli@tulane.edu
mailto:southworth@lanl.gov

A2946 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

The solution of any additively partitioned system can be numerically approxi-
mated using an additive integrator that treats each component f

{k}(t, y) di↵erently
[22, 33, 40]. This can be particularly e�cient for solving multiscale, multiphysics
problems where the optimal method di↵ers across the components, or where it is
prohibitively expensive to treat the full operator f(t, y) implicitly. A canonical exam-
ple is a linear advection-di↵usion equation, where the di↵usion places severe explicit
timestep restrictions, but fully implicit solves for advection-di↵usion discretizations
are significantly more challenging than for pure di↵usion. An additive integrator can
treat the di↵usion implicitly and the advection explicitly, addressing each of these
problems. If the right-hand side consists of two components and an additive integra-
tor treats the first implicitly and the second explicitly, then the integrator is frequently
called an implicit-explicit (IMEX) method.

Two closely related classes of integrators are linearly implicit methods and W-
methods that, respectively, utilize an exact or approximate local Jacobian of f(t, y)
at each timestep [29, Chapter IV, Section 7] [15, 1, 27]. Given the solution at the
nth timestep yn = y(tn), we can rewrite the system (1.1) as an additively partitioned
system with m= 2,

f
{1}(t, y) = Jny, and f

{2}(t, y) = f(t, y)� Jny,(1.3)

where Jn approximates or is equal to the local Jacobian @f
@y (tn, yn). Any additive

integrator that treats f{1}(t, y) implicitly and f
{2}(t, y) explicitly reduces to a linearly

implicit method.
In the past three decades, the construction of additive integrators has been an ac-

tive area of research that has produced a range of methods, including linear multistep
methods (LMMs) [6, 23, 46], Runge–Kutta (RK) methods [5, 33, 37, 40, 31, 34], and
general linear methods (GLMs) [17, 48, 43], including those based on extrapolation
[21, 16]. Each method class has certain benefits and drawbacks. Additive LMMs have
a low computational cost per timestep, but high-order methods experience instabil-
ities on equations with limited di↵usion. Additive diagonally implicit RK methods
possess good stability and allow for simplified adaptive timestepping, but they are
known to su↵er from order-reduction on sti↵ equations [7]. Moreover, high-order RK
method derivations that rely on nonlinear order conditions grow increasingly di�cult
to construct, and alternative approaches must be considered [21, 37]. GLMs with
good stability and no order-reduction exist, but to avoid increasing the number of
order conditions further, one must typically consider simplified method formulations.

In this paper we will generalize the recently introduced polynomial time integra-
tion framework [9, 14, 10, 13] to include additively partitioned di↵erential equations.
We then demonstrate its utility by introducing a new family of IMEX integrators
where the implicit integrator is a fully implicit collocation method. Selecting a fully
implicit integrator may seem peculiar since these methods are often considered too
slow to be competitive. However, recent developments in block linear and nonlinear
solvers make their use in numerical PDEs quite tractable [18, 38, 26, 32, 39, 45, 44],
even outperforming diagonally implicit RK methods in many cases [45, 44]. Despite
these developments, it is not possible to derive IMEX-RK methods based on the fully
implicit RK methods since the explicit stages would be nonlinearly coupled to the fully
implicit stages. More generally, constructing high-order IMEX-RK schemes is often
nontrivial, as mentioned in [34]. In this work, we will show how the additive poly-
nomial framework provides a natural way to develop fully implicit-explicit (FIMEX)
integrators, which are high-order accurate, and allow us to leverage developments in
fully implicit solvers in the context of additive integration.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2947

More generally, there are two main advantages of the additive polynomial frame-
work that will be explored in this paper. First, the framework simplifies the con-
struction of high-order additive GLMs that do not su↵er from order-reduction on sti↵
equations. Specifically, the polynomial framework makes extensive use of interpolat-
ing polynomials that trivially satisfy nonlinear order conditions and ensure high stage
order. Furthermore, method construction can be done using geometric arguments
that are similar to those used to derive spatial finite di↵erence stencils. Second, the
framework can be used to derive e�cient methods for solving equations that are either
naturally split into multiple terms or where the right-hand side has been rewritten
using an exact or approximate Jacobian. This allows us to simultaneously introduce
a range of new high-order additive and semi-implicit integrators.

This paper is organized as follows. In sections 2 and 3 we, respectively, provide
short introductions to additive integrators and the polynomial framework. In section
4 we generalize the polynomial framework for additively partitioned di↵erential equa-
tions, and in section 5 we develop new classes of FIMEX methods and study their
stability. Last, section 6 demonstrates the improved accuracy and e�ciency of the
new integrators for solving partial di↵erential equations.

2. Additive integrators. Additive integrators are a class of methods for solving
the partitioned initial value problem (1.1), (1.2). In this section, we give a short
introduction to additive integrators for equations with two partitions (m= 2), where

y
0 = f

{1}(t, y) + f
{2}(t, y), y(t0) = y0.(2.1)

We assume that the term f
{1}(t, y) is sti↵ (i.e., a small stepsize is required for any

explicit method when solving y
0 = f

{1}(t, y)), while the term f
{2}(t, y) is nonsti↵.

In such a scenario it is desirable to consider integrators that only treat f{1}(t, y)
implicitly. One approach for deriving additive methods is to integrate (2.1) and then
approximate the resulting integrals for each term separately,

y(tn+1) = y(tn) +

Z tn+1

tn

f
{1}(t, y(t))dt

| {z }
treat implicitly

+

Z tn+1

tn

f
{2}(t, y(t))dt

| {z }
treat explicitly

.(2.2)

One of the simplest additive integrators can be derived by taking an implicit one-sided
approximation for f

{1}(t, y), and an explicit one-sided approximation for f
{2}(t, y).

This produces the IMEX-Euler method

yn+1 = yn + hf
{1}
n+1 + hf

{2}
n ,(2.3)

where the stepsize h= tn+1�tn. Higher-order IMEX-LMMmethods [6, 23] use higher-
order polynomial approximations constructed from previous solution values, while the
output of a higher-order IMEX-RK method [5, 33, 40, 34] is a linear combination of
newly computed stage values. IMEX-GLMs [17, 48, 43] combine both ideas by using
previous solution values and new stages.

When using any IMEX method there are a range of choices for f{1} and f
{2} that

a↵ect the computational cost and stability of the integrator. For a semilinear system
y
0 =Ly+N(t, y), with a nonsti↵ nonlinearity, it is natural to let

f
{1}(t, y) =Ly, f

{2}(t, y) =N(t, y).(2.4)

For a more general nonlinear system y
0 = A(t, y) + B(t, y) that naturally splits into

two components, A(t, y) and B(t, y), several choices for the numerical splitting include
the following:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2948 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

1. Fully implicit in A(t, y):

f
{1}(t, y) =A(t, y), f

{2}(t, y) =B(t, y).(2.5)

2. Linearly implicit in A(t, y):

f
{1}(t, y) =

@A

@y
(tn, yn)y, f

{2}(t, y) =B(t, y) +A(t, y)�
@A

@y
(tn, yn)y.

(2.6)

3. Linearly implicit in A(t, y) and B(t, y):

f
{1}(t, y) =


@A

@y
(tn, yn) +

@B

@y
(tn, yn)

�
y,

f
{2}(t, y) =B(t, y) +A(t, y)�


@A

@y
(tn, yn) +

@B

@y
(tn, yn)

�
y.

(2.7)

4. Linearly implicit in Jn (Jn approximates the full or partial Jacobian at t= tn):

f
{1}(t, y) = Jny, f

{2}(t, y) =B(t, y) +A(t, y)� Jny.(2.8)

For additional clarity we write the formulas for the IMEX-Euler method (2.3) using
three of the proposed partitionings:

partitioning (2.4) yn+1 = (I � hL)�1(yn + hN(tn, yn)),

partitioning (2.5) yn+1 = yn + hA(tn+1, yn+1) + hB(tn, yn),

partitioning (2.8) yn+1 = (I � hJn)
�1(yn + hA(tn, yn) + hB(tn, yn)).

Selecting a fully implicit partitioning generally leads to improved stability but requires
a nonlinear solve at each timestep. Conversely, a linearly implicit choice only requires
a linear solve at each step, but the method may have inferior stability properties,
especially if Jn does not closely approximate the local Jacobian.

In the sections that follow we will first review the polynomial time integration
framework and then generalize it so that we can construct new high-order additive
integrators for (2.1) using any of the proposed partitionings (2.4)–(2.8).

3. Polynomial time integrators. The polynomial time integration framework
[9, 14] is based on continuous polynomials in time that are constructed by fitting
through solution or derivative values. The values may be known (i.e., input values)
or unknown (i.e., future stage values or outputs), with the latter leading to implicit
equations and ultimately implicit methods. Within the family of classical time inte-
gration methods, we can interpret polynomial time integrators as parametrized GLMs
whose inputs and outputs approximate the solution at a set of scaled nodes {zj}. The
nodes zj may be positive, negative, or zero, and the scaling factor is a positive number
called the node radius r. Note that the node radius introduces an additional degree
of freedom that complements the stepsize h.

The input and output values of a polynomial integrator, along with the associated
derivatives, are represented using the notation

input (solutions): y
[n]
j ⇡ y(tn + rzj),

output (solutions): y
[n+1]
j ⇡ y(tn + rzj + h),

input derivatives: f
[n]
j := f(tn + rzj , y

[n]
j)⇡ y

0(tn + rzj),

output derivatives: f
[n+1]
j := f(tn + rzj + h, y

[n+1]
j)⇡ y

0(tn + rzj + h).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2949

h = r �

r
input nodes

output nodes
t

Fig. 1. A diagram showing the input and output nodes for a polynomial integrator with three
equispaced input and output nodes (e.g., zj = {�1,0,1}). The node set is scaled by the node radius
and the distance between the inputs and outputs is proportional to the extrapolation factor ↵.

Since the polynomials that make up polynomial methods are expressed in local
coordinates (3.2), it is convenient to also parametrize the stepsize h in terms of the
node radius. We therefore let

h= r↵,(3.1)

where the constant ↵ is called the extrapolation factor. In Figure 1 we show a visual-
ization of the parameters r, h, and ↵ for a method with three real-valued, equispaced
nodes {zj}.

In this work we look at methods with real-valued quadrature nodes {zj} that are
scaled relative to the interval [�1,1]. This choice is inspired by the fact that nearly
all of the theoretical analysis relating to orthogonal polynomials and interpolation is
conducted on this interval. However, when implementing a polynomial integrator it
is typically simpler to translate the nodes to the interval [0,2] such that the leftmost
node at ⌧ = 0 is located at t = t0, where the initial condition for (1.1) is provided.
Translating the nodes only a↵ects temporal locations of the inputs, as determined by
(3.2), and has no e↵ect on the method coe�cients.

The name polynomial integrator originates from the fact that all the method
coe�cients are derived using interpolating polynomials, known as ODE polynomials.

All ODE polynomials approximate the Taylor series of the solution in local coordinates
⌧ , where

t(⌧) = r⌧ + tn.(3.2)

The general form for an ODE polynomial of degree g with expansion point b is

p(⌧ ; b) =
gX

j=0

aj(b)(⌧ � b)j

j!
,(3.3)

where the constants {aj(b)} are called approximate derivatives since they approximate

the derivatives of the solution in local coordinates such that aj(b)⇡
dj

d⌧j y(t(⌧))
���
⌧=b

=

r
j
y
(j)(t(b)) (the factor of r originates from the transformation into local coordinates

(3.2)). Each approximate derivative aj(b) is computed by di↵erentiating interpolating
polynomials that are constructed using any subset of the method’s inputs, outputs,
and stages and the corresponding derivatives. The order of the polynomial method
is directly related to the degree of its ODE polynomials and the order of the interpo-
lating polynomials that are used to construct the associated approximate derivatives
[9, sect. 3.6]. As a consequence, the order of accuracy is always bounded below by
min(gmin, � � 1), where gmin is the minimum degree of the ODE polynomials and �

is the minimum degree of all the polynomials that determine the approximate deriv-
atives.

A general formulation for the approximate derivatives aj(b) is described in [9, 14];
here we will only describe two important subfamilies:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2950 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

1. Adams ODE polynomials are constructed using two Lagrange interpolating
polynomials Ly(⌧) and Lf (⌧) that, respectively, satisfy solution values or
derivative values at the method’s input, output, or stage nodes. Specifically,
Ly(⌧)⇡ y(t(⌧)) interpolates at least one solution value, and Lf (⌧)⇡ ry

0(t(⌧))
is a polynomial of degree g � 1 that interpolates g derivative values. The
approximate derivatives are then

a0(b) =Ly(b) and aj(b) =
d
j�1

Lf

d⌧ j�1
(b), j = 1, . . . , g.(3.4)

By substituting (3.4) into (3.3) and noting that p
0(⌧ ; b) = Lf (⌧), we can

express an Adams ODE polynomial in the equivalent integral form

p(⌧ ; b) =Ly(b) +

Z ⌧

b
Lf (⇠)d⇠.(3.5)

We now see that an Adams ODE polynomial approximates the integral equa-
tion of an initial value problem where the expansion point b is the location of
the initial condition in local coordinates.

2. Backward di↵erence formula (BDF) ODE polynomials are constructed using
a polynomial Hy(⌧) ⇡ y(t(⌧)) of degree g that interpolates g solution val-
ues and whose derivative H

0
y(⌧) interpolates a single derivative value. The

approximate derivatives are given by

aj(b) =
d
j
Hy

d⌧ j
(b) =) p(⌧ ; b) =Hy(⌧)8b.(3.6)

Note that BDF polynomials do not depend on the expansion point b.
When presenting polynomial methods, it is convenient to introduce a set contain-

ing all the data values that can be used to construct the interpolating polynomials
that determine the approximate derivatives aj(b) in the ODE polynomial (3.3). This
set is called the ODE dataset, and in the case of classical polynomial methods, it
simply contains the method’s inputs, outputs, and stages and their derivatives, along
with the corresponding temporal nodes. An ODE dataset of size w is denoted as

D(r, tn) = {(⌧j , yj , rfj)}
w
j=1 , where yj ⇡ y(t(⌧j)), fj = f(t(⌧j), yj).(3.7)

Using all the previous definitions, the formula for any polynomial method with s

stages and q outputs can be written compactly as

Yi = pj(cj(↵); bj(↵)), j = 1, . . . , s,

y
[n+1]
j = pj+s(zj + ↵; bj+s(↵)), j = 1, . . . , q,

(3.8)

where Yi denote stage values, cj(↵) are stage nodes in local coordinates, and pj(⌧ ; b)
are ODE polynomials constructed from an ODE dataset of size w = 2q + s that
contains the method’s inputs, stage values, and outputs. The associated temporal
nodes of the method’s ODE datasets (3.7) are, respectively,

⌧j =

8
<

:

zj , 1 j  q,

cj�q(↵), q+ 1 j  q+ s,

zj�q�s + ↵, q+ s < j  2q+ s.

(3.9)

We remark that our definition of stages di↵ers from the standard convention used for
GLMs and RK methods. Specifically, if one recasts the method (3.8) as a GLM, then
the outputs y[n+1]

j also double as additional stage values; in other words, (3.8) will be
a GLM with s+ q stages. By avoiding the standard convention we allow for a more
compact method definition and avoid method coe�cient duplication.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2951

Using the general formulation (3.8), it is possible to derive many di↵erent families
of polynomial integrators. One example is polynomial block methods (PBMs) from
[14], which are characterized by s= 0 and will be the primary focus of this paper due to
their simpler structure. Additional examples include well-known time integrators like
BDFs, Adams–Moulton methods, and collocation methods, which can all be expressed
as PBMs with a fixed ↵. In the following subsection we show how to write fully implicit
collocation methods in the polynomial framework. The resulting formulation will be
used again in section 5 to construct new additive polynomial integrators.

3.1. Collocation methods and Radau IIA. Collocation metho ds [28, Chap-
ter II, Section 7] are time integrators based on polynomial quadrature that can also be
expressed as fully implicit RK methods. Well-known examples include the A-stable
Gauss methods [8, sect. 342] and the L-stable Radau IIA methods [30] that, respec-
tively, achieve orders of 2� and 2��1, where � is the number of stages. An additional
benefit of these methods is that they both satisfy B-stability [29, 47].

Suppose that we seek an approximate solution of (1.1) at t = tn + h given an
initial condition yn = y(tn). To derive a collocation method, we can approximate
the solution y(t) using a polynomial py(t) that satisfies the initial condition at t= tn

and the di↵erential equation at a set of m collocation points tn,j such that p0y(tn,j) =
f(tn,j , py(tn,j)). These constraints lead to the fully implicit nonlinear system

py(tn,j) = yn +

Z tn,j

tn

�X

j=1

`j(t)f(tn,j , py(tn,j))

| {z }
pf (t)

dt, j = 1 . . . ,m,(3.10)

where `j(t) =
Q

k 6=j(t�tn,k)/(tn,j�tn,k) is the jth Lagrange basis polynomial and pf (t)
is a Lagrange interpolating polynomial for the solution derivative y0(t). If we compare
the right-hand side of (3.10) to the Adams ODE polynomial integral formulation
(3.5), we see that py(t(⌧)) is equivalent to an Adams ODE polynomial p(⌧ ; b) with
b = ⌧(0) = tn, Ly(⌧) = yn, and Lf (⌧) = rpf (t(⌧)). Therefore, by appropriately
defining an ODE dataset and node set {zj}, we can express any collocation method
(3.10) as a one-step polynomial integrator (i.e., (3.8) with q= 1, s= �) whose output
is computed using a single Adams ODE polynomial.

However, for the purposes of this paper we will instead rewrite a collocation
method as a multivalued PBM (i.e., (3.8) with q > 1 and s= 0) that advances the full
“block” solution at the set of collocation points forward in time by h. To simplify the
derivation we focus solely on a Radau IIA method with � � 1 stages and show how
this integrator can be reexpressed as a PBM with fixed ↵ and q = �. Though such a
formulation may seem unnecessarily verbose, we will use the multivalued inputs (i.e.,
solutions at collocation points from the previous timestep) in section 5 to construct
a new class of additive IMEX integrators.

We start by selecting the PBM nodes

{zj}
q
j=1 = {�1,2x1 � 1, . . . ,2xq�1 � 1},(3.11)

where xj is the jth zero of the polynomial dq�2

dxq�2 (xq�2(x�1)q�1). Our first quadrature
node is z1 = �1 and the remaining nodes are the q � 1 Radau nodes scaled on the
interval x 2 [�1,1]. In Figure 2(a), we illustrate the input and output nodes for a
method with q= 3.

The outputs of the PBM will all be computed using a single Adams ODE poly-
nomial (3.5). Since we want a method based on implicit Radau quadrature, we select

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2952 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

� = 2

� > 2

� < 2 IRK input

IRK stages

IRK output

(a) PBM input and output nodes (b) Equivalent RK inputs, outputs, stages

h = r �

Fig. 2. Illustration of input nodes and output nodes for the PBM with nodes (3.11) and
q = 3, such that {zj} = {�1,�1/3,1}. The grey lines show the time axis which flows to the right.
(a) An illustration of the temporal nodes for the input and outputs for three di↵erent values of ↵.
When ↵ = 2 the last input node overlaps with the first output node. (b) A illustration relating the
inputs and outputs of the PBM (3.12) with b= 1 and ↵= 2 to the input, output, and stage values of
an IRK method.

Lf (⌧) to be the interpolating polynomial that matches all the output derivatives at

the scaled Radau nodes (Lf (zj + ↵) = f
[n+1]
j for j = 2, . . . , q). To maximize the

accuracy of the integration constant Ly(b) we choose Ly(⌧) to be the interpolating

polynomial that matches all the input values (Ly(zj) = y
[n]
j for j = 1, . . . , q). If we

temporarily leave the expansion point b free, then we obtain the PBM

y
[n+1]
j = p(zj + ↵; b) =Ly(b) +

Z zj+↵

b
Lf (s)ds, j = 1 . . . , q.(3.12)

To obtain a one-step Radau IIA collocation we do the following:
1. Select ↵ = 2. The last input node now overlaps with the first output node;

see Figure 2(a). This allows us to use the last input value as an accurate
integration constant for Radau quadrature.

2. Select b = 1. This choice sets the last input y
[n]
q as the integration constant

since Ly(1) = y
[n]
q . Furthermore, y[n+1]

1 = p(z1+2;1) = y
[n]
q , and therefore the

first output is equal to the last input.
The resulting PBM is equivalent to a (2q�3)th-order, one-step Radau IIA collocation
method with stepsize h = 2r. Note that for general b and ↵, the PBM (3.12) is a
(q� 1)th-order, fully implicit multivalued integrator.1

The inputs and outputs of the PBM with ↵= 2 and b= 1 are related to the RK
inputs and stages according to the following table, which is visualized in Figure 2(b).

RK step index ⌫ RK input y⌫ RK output y⌫+1 RK stages

n� 1 yn�1 = y
[n]
1 yn = y

[n]
q Yj�1 = y

[n]
j , j = 2, . . . , q

n yn = y
[n]
q yn+1 = y

[n+1]
q Yj�1 = y

[n+1]
j , j = 2, . . . , q

For clarity we write the PBM for q= 3. The nodes are {zj}= {�1,�1/3,1}, and
the polynomials are

Ly(⌧) =
(t�1)(3t+1)

4 y
[n]
1 �

9(t2�1)
8 y

[n]
2 + (t+1)(3t+1)

8 y
[n]
3 ,

Lf (⌧) =�
3
4 (⌧ � ↵� 1) rf [n+1]

2 + 3
4

�
⌧ � ↵+ 1

3

�
rf

[n+1]
3 .

1Regardless of the fact that we have Radau nodes, selecting general b will not produce a method
with 2� � 3 accuracy. This is due to the fact that our initial condition will only be order q � 1
accurate, and the lower integration bound is di↵erent than the one used for Radau quadrature.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2953

Selecting b= 1 and ↵= 2, and substituting Ly(⌧) and Lf (⌧) into (3.12) yields

y
[n+1]
1 = y

[n]
3 ,

y
[n+1]
2 = y

[n]
3 + 5

6rf
[n+1]
2 �

1
6rf

[n+1]
3 ,

y
[n+1]
3 = y

[n]
3 + 3

2rf
[n+1]
2 + 1

2rf
[n+1]
3 ,

(3.13)

which reduces to a Radau IIA method with stepsize h = 2r (replacing r with h/2
produces the well-known IRK coe�cients). Also note that the first two inputs are not
used to compute the output, and therefore (3.13) is equivalent to a one-step method.

3.2. Iterators. Before introducing additive integrators, we require one addi-
tional concept from the polynomial framework, namely, the idea of an iterator. A
polynomial integrator only advances the solution if the extrapolation factor ↵ is
greater than zero (see Figure 1). If we let ↵ = 0, then we obtain a special method
known as an iterator. Iterators recompute the solution at the current timestep and
certain method constructions share many similarities with predictor corrector block
methods [41] and spectral deferred correction iterations [24, 19]. In [13] iterators were
used in the context of exponential integration to compute initial conditions and cre-
ate composite methods with improved stability. In this work, we will show how these
same ideas can be applied to additive polynomial integrators.

4. Additive polynomial integrators. In this section we introduce the additive
polynomial time integration framework for solving the partitioned system

y
0(t) = f(t, y(t)) =

mX

k=1

f
{k}(t, y(t)).(4.1)

In subsection 4.1 we extend the ODE dataset (3.7) and the ODE polynomial (3.3) from
the unpartitioned system (1.1) to the partitioned system (4.1). Then, in subsection 4.2
we introduce the class of additive PBMs that will provide a starting point for deriving
new integrators in section 5.

4.1. Partitioned ODE datasets and ODE polynomials. A partitioned ODE
dataset contains all the data values that can be used to construct partitioned ODE
polynomials. We can trivially extend the ODE dataset for partitioned equations by
replacing the full right-hand side f(t, y) with all the derivative components f{j}(t, y).

Definition 4.1 (partitioned ODE dataset). A partitioned ODE dataset D(r, s)
of size w is an ordered set of tuples of the form

D(r, s) =
n⇣

⌧j , yj , rf
{1}
j , . . . , rf

{m}
j

⌘ow

j=1
,(4.2)

where t(⌧) = r⌧ + s, yj ⇡ y(t(⌧j)), and f
{k}
j = f

{k}(t(⌧j), yj).

Before generalizing the ODE polynomial it is convenient to first introduce the
notion of a total derivative.

Definition 4.2 (total derivative). A total derivative F approximates the local

ODE solution derivative ry
0(⌧) at a point ⌧ = ⌧̂ , such that F ⇡ ry

0(t(⌧̂)), and is the

sum of m derivative components, that is,

F = rf
{1}
j1

+ rf
{2}
j2

+ · · ·+ rf
{m}
jm

, where ⌧̂ = ⌧j1 = ⌧j2 = · · ·= ⌧jm ,(4.3)

for indices jk 2 {1, . . . ,w} and k= 1, . . . ,m.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2954 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

In other words, a total derivative is the sum of m component derivatives from an ODE
dataset where the kth component derivative approximates rf{k}(t(⌧̂), y(t(⌧̂))).

To generalize the ODE polynomial for partitioned systems, we can reuse (3.3)
and simply modify the rules for computing approximate derivatives.

Definition 4.3 (partitioned ODE polynomial). A partitioned ODE polynomial

of degree g with expansion point b can be expressed as

p(⌧ ; b) =
gX

j=0

aj(b)(⌧ � b)j

j!
,(4.4)

where each approximate derivative aj(b) is computed using values from a partitioned

ODE dataset D(r, s) in one of the following ways:

1. By di↵erentiating a polynomial hj(⌧) that approximates y(t(⌧)); hj(⌧) must

be a polynomial of least degree that interpolates at least one solution value in

D(r, s) and whose derivative h
0
j(⌧) interpolates any number of total derivatives

from Definition 4.2. The jth approximate derivative of the ODE polynomial

is then

aj(b) =
d
j

d⌧ j
hj(⌧)

����
⌧=b

.

2. By di↵erentiating a polynomial lj(⌧) that approximates ry
0(t(⌧)); lj(⌧) is

formed by summing m Lagrange interpolating polynomials so that

lj(⌧) =
mX

k=1

l
{k}
j (⌧),

where l
{k}
j (⌧)⇡ f

{k}(t(⌧), y(t(⌧)). Each of the interpolating polynomials l
{k}
j

must satisfy at least one of the derivative component values; specifically, for

all k there exists at least one index ⌫ 2 {1, . . . ,w}, such that l
{k}
j (⌧⌫) = rf

{k}
⌫ .

The jth approximate derivative is then

aj(b) =
d
j�1

d⌧ j�1
lj(⌧)

����
⌧=b

(only valid for j � 1)

When the number of components m = 1, the formulas for the approximate de-
rivatives reduce to those of the classical ODE polynomials described in [14]. As is
the case for classical ODE polynomials, the family of all additive ODE polynomials
is large. Therefore, to simplify method construction, we focus on two special families
that depend on significantly fewer free parameters.

4.1.1. Special families of partitioned ODE polynomials. We can general-
ize the Adams and BDF subfamilies (3.4) and (3.6) for the partitioned ODE polyno-
mial (4.4). In particular, the following hold:

1. A partitioned Adams ODE polynomial has approximate derivatives

aj(b) =

(
Ly(b), j = 0,
dj�1

d⌧j�1

Pm
k=1L

{k}
f (⌧)

���
⌧=b

, 1 j  g,
(4.5)

where the following hold:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2955

• Ly(⌧) ⇡ y(t(⌧)) is a Lagrange interpolating polynomial that interpolates
only solution data in D(r, s); specifically, for any number of distinct indices
⌫ 2 {1, . . . ,w}, Ly(⌧⌫) = y⌫ .

• Each L
{k}
f (⌧)⇡ rf

{k}(t(⌧), y(t(⌧))) is a Lagrange interpolating polynomial
of degree g�1 that satisfies g data values pertaining to the kth derivative
component; specifically, for g distinct indices ⌫ 2 {1, . . . ,w}, L{k}

f (⌧⌫) =

rf
{k}
⌫ .

Like the classical Adams ODE polynomial (4.6), all partitioned Adams ODE
polynomials can be expressed in integral form as

p(⌧ ; b) =Ly(b) +

Z ⌧

b

mX

k=1

L
{k}
f (⇠)d⇠.(4.6)

2. A partitioned BDF ODE polynomial has approximate derivatives that all
satisfy

aj(b) =
d
j

d⌧ j
Hy(⌧)

����
⌧=b

=) p(⌧ ; b) =Hy(⌧),(4.7)

where Hy(⌧)⇡ y(t(⌧)) is an interpolating polynomial of degree g that satisfies
g� 1 solution values yj , and whose derivative H

0
y(⌧) satisfies one total deriv-

ative F from Definition 4.2; specifically for g distinct indices ⌫ 2 {1, . . . ,w},
Hy(⌧⌫) = y⌫ , and for one index s2 {1, . . . ,w}, H 0

y(⌧s) = F .
If the number of components m= 1, then both formulas reduce to the classical Adams
ODE polynomials (3.4) and the classical BDF ODE polynomials (3.6).

4.2. Additive polynomial block methods. Block methods [41] are multival-
ued integrators that advance a set (or “block”) of points at each timestep. If we take
s= 0 in (3.8), then we obtain a PBM [14, 9, 11]. PBMs are simpler to derive compared
to more general polynomial GLMs since all the ODE polynomials that determine the
outputs are constructed using only input and output data. For this reason, PBMs
were used to introduce both classical polynomial methods [14] and exponential poly-
nomial methods [13]; in this paper we will use PBMs once more to introduce additive
polynomial integrators.

An additive PBM depends on the parameters

q number of inputs/outputs, {zj}
q
j=1 nodes, zj 2C, |zj | 1,

r node radius, r� 0, {bj}
q
j=1 expansion points,

↵ extrapolation factor

and can be written as

y
[n+1]
j = pj(zj + ↵; bj), j = 1, . . . , q,(4.8)

where each pj(⌧ ; b) is a partitioned ODE polynomial built from the partitioned ODE
dataset

D(r, tn) =

8
><

>:

inputs :
n⇣

zj , y
[n]
j , f

{1}[n]
j , . . . , f

{m}[n]
j

⌘oq

j=1
,

outputs :
n⇣

zj + ↵, y
[n+1]
j , f

{1}[n+1]
j , . . . , f

{m}[n+1]
j

⌘oq

j=1
.

Any additive PBM can be written in coe�cient form as

y[n+1] =A(↵)y[n] + r

mX

k=1

B{k}(↵)f{k}[n] + r

mX

k=1

C{k}(↵)f{k}[n+1]
,(4.9)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2956 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

where the matrices A(↵), B{k}(↵), C{k}(↵) 2 Rq⇥q, are of dimension q ⇥ q, and
the solution vectors and kth derivative component vectors are defined using y[n] =
[y[n]1 , . . . , y

[n]
q]T and f{k}[n]j = [f{k}[n]

1 , . . . , f
{k}[n]
q]T . Any additive polynomial PBM

can be recast as an additive GLM whose parameters are parametrized in terms of the
extrapolation parameter ↵. We show this in section SM4 for the doubly partitioned
case when m= 2.

Last, additive PBMs are just one example of the more general class of additive
polynomial GLMs, described in the following remark.

Remark 4.4 (additive polynomial GLMs). The formula for an additive polynomial
method with s stages and q outputs is equivalent to (3.8) except that each pj(⌧ ; b)
is now a partitioned ODE polynomial constructed from the partitioned ODE dataset
that containing the method’s input, output, and stage values. The family of additive
polynomial GLMs is vast, and therefore we cannot provide a detailed exploration of
such methods in this work. However, in section 5.2 we will see one example of an
additive polynomial GLM that is constructed by composing multiple PBMs.

4.3. Linear stability. Linear stability analysi s [30, Chapter IV, Section 2]
characterizes the behavior of a time integrator applied to the Dahlquist test problem
y
0 = �y and is essential for determining which types of problems cause instabilities. To

study the linear stability properties of an additive integrator, we use the partitioned
Dahlquist equation [6, 40, 31]

y
0 =

mX

k=1

�ky, y(0) = y0,(4.10)

where �ky represents the kth component and �k 2 C. The nonlinear problem (4.1)
reduces to the partitioned Dahlquist equation if all f{k}(t, y) are autonomous, diag-
onalizable linear operators that share the same eigenvectors. We note that this will
rarely hold true in practice; nevertheless, this type of analysis is useful for studying
and comparing the stability properties of additive methods.

When applied to (4.10), the additive polynomial integrator (4.9) reduces to the
matrix iteration

y[n+1] =M(z1, z2, . . . , zm,↵)y[n]
,(4.11)

where y[n]
k = y

[n]
k , k = 1, . . . , q, M:Cm

⇥R+
!Cq⇥q, zj = h�k, and h is the timestep.

The stability region S is the subset of Cm
⇥ R+, where M(z1, . . . , zm,↵) is power

bounded, so that

S =

⇢
z2Cm

,↵2R+
| sup
n2N

kM(z1, . . . ,zm,↵)nk<1

�
.(4.12)

Therefore, the method is stable if the eigenvalues of M(z1, . . . , zm,↵) lie inside the
closed unit disk, and any eigenvalues of magnitude one are nondefective. In section 5
we will study the stability of additive polynomial integrators with m = 2 and define
several two-dimensional subsets of S that are useful for visualizing the stability region.

5. Constructing FIMEX polynomial integrators based on Radau IIA.
The additive polynomial framework enables the construction of additive PBMs for the
general partitioned equation (4.1). However, in this introductory work we will focus
on constructing FIMEX methods for the simpler doubly partitioned equation (2.1),
where f

{1} is treated implicitly and f
{2} is treated explicitly. In particular, we will

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2957

introduce a family of arbitrary-order FIMEX integrators that are based on the fully
implicit Radau IIA methods described in section 3.1.

To introduce a FIMEX method with an implicit part that is equivalent to Radau
IIA, we start by reusing the nodes (3.11), where we assume that q � 2. As in sec-
tion 3.1, we construct a PBM whose outputs are all computed using a single Adams
ODE polynomial p(⌧ ; b) such that

y
[n+1]
j = p(zj + ↵; bj), j = 1, . . . , q.(5.1)

Since we are considering an additive integrator for two component systems, the Adams
polynomial is now doubly partitioned. To obtain an IMEX integrator, we must treat
the first component implicitly and the second component explicitly, that is,

p(⌧ ; b) =Ly(b) +

Z ⌧

b
L
{1}
f (⇠)d⇠

| {z }
implicit approx.

+

Z ⌧

b
L
{2}
f (⇠)d⇠

| {z }
explicit approx.

.(5.2)

If we want an implicit component that is equivalent to Radau IIA, then we must
select Ly(⌧), L

{1}
f (⌧), b, and ↵ identically to what was done in section 3.1, namely,

the following hold:
• Ly(⌧) is the polynomial of degree q � 1 that interpolates all q inputs, such

that Ly(zj) = y
[n]
j , j = 1, . . . , q.

• L
{1}
f (⌧) is the polynomial of degree q � 2 that interpolates the last q � 1

output component derivatives f
{1}[n+1]
j such that L{1}

f (zj + ↵) = rf
{1}[n+1]
j ,

j = 2, . . . , q.
• The extrapolation factor is ↵= 2 and the lower integration bound is b= 1.

To form the explicit approximation, we now make use of the input derivative compo-
nents f{2}[n]

j . We propose two di↵erent strategies for selecting L
{2}
f (⌧):

1. Use only the derivative components at the input Radau nodes ; let L{2}
f (⌧) be

a polynomial of order q� 2 that satisfies

L
{2}
f (zj) = rf

{2}[n]
j , j = 2, . . . , q.(5.3)

2. Use all input derivative components; let L
{2}
f (⌧) be a polynomial of order

q� 1 that satisfies

L
{2}
f (zj) = rf

{2}[n]
j , j = 1, . . . , q.(5.4)

Both choices for L{2}
f (⌧) lead to the multivalued FIMEX method

y
[n+1]
j = y

[n]
q +

Z zj+2

1
L
{1}
f (⇠) +L

{2}
f (⇠)d⇠, j = 1, . . . , q,(5.5)

where the implicit component is equivalent to Radau IIA; notice that if f{2}(t, y) = 0,
then L

{2}
f (⌧) = 0 and (5.5) is equivalent to (3.12). The order-of-accuracy of (5.5)

is equal to the minimum order-of-accuracy of the implicit and explicit component.
Because the implicit component is equivalent to Radau IIA with q � 1 stages, its
order-of-accuracy is 2q� 3. Depending on whether we choose the polynomial (5.3) or
(5.4) the explicit component, respectively, has an order of q�1 or q. Therefore, for all
q > 2, the explicit component determines the overall accuracy and the higher-order

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2958 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

t1
[n] t 2

[n] t 2
[n+1] t3

[n+1]

r
h = 2r

t

f
 {2}[n+1]
2

f
 {2}[n+1]
3

L{1}(t)

t 3
[n] t1

[n+1]
or

Implicit Component L{1}(t)F Explicit Component L{2}(t)F

f
 {2}[n]
2

f
 {2}[n]
3

L{2}(t)

t
t1

[n] t 2
[n] t 2

[n+1] t3
[n+1]t 3

[n] t1
[n+1]

or

Output Formula: y
[n+1]
j = y

[n]
3 +

t
[n+1]

j

t
[n]

3

L
{1}
f (t) + L

{2}
f (t)dt

Fig. 3. An illustration depicting the polynomials in global time t that determine the outputs of
the polynomial FIMEX-Radau method (5.5) with q = 3 and nodes {zj}= {�1,�1/3,1}. The nodes

t
[n]
j are the nodes zj in global coordinates at the nth timestep such that t

[n]
j = tn + rzj .

polynomial is desirable. However, in section 5.3 we will see that the higher-order
polynomial also leads to inferior stability properties.

From here on, we will refer to the FIMEX method with (5.3) as FIMEX-Radau
and the FIMEX method with (5.4) as FIMEX-Radau*. In Figure 3 we present an
illustration of the polynomials L{1}

f (⌧) and L
{2}
f (⌧) for a FIMEX-Radau method with

q= 3, and below we also show the coe�cients for the method:

y
[n+1]
1 = y

[n]
3 ,

y
[n+1]
2 = y

[n]
3 + 5

6rf
{1}[n+1]
2 �

1
6rf

{1}[n+1]
3 �

1
6rf

{2}[n]
2 + 5

6rf
{2}[n]
3 ,

y
[n+1]
3 = y

[n]
3 + 3

2rf
{1}[n+1]
2 + 1

2rf
{1}[n+1]
3 �

3
2rf

{2}[n]
2 + 7

2rf
{2}[n]
3 .

(5.6)

Notice that if f{2}(t, y) = 0, then (5.6) is equivalent to (3.13).
Any FIMEX-Radau or FIMEX-Radau* method with q nodes can be written in

the coe�cient form

y[n+1] =Ay[n] + rB{1}f{1}[n+1] + rB{2}f{2}[n],(5.7)

where A, B{1}, B{2}
2 Rq⇥q. In supplementary materials section SM1.1 we provide

the coe�cients for q= 2,3,4, along with a MATLAB script for initializing coe�cients
for larger q. When q= 2, the FIMEX-Radau method is equivalent to the IMEX-Euler
method (2.3), while FIMEX-Radau* treats the the implicit component with backward
Euler and the explicit component with second-order Adams–Bashforth. For q > 2,
the nonlinear implicit equations that arise in both FIMEX-Radau methods (5.7) are
analogous to those that arise in standard Radau IIA integration, with a modified
right-hand side derived from the explicit component (i.e., linear and nonlinear solvers
developed for fully implicit RK [18, 38, 26, 32, 39, 45, 44] naturally apply to FIMEX-
Radau).

Note that the method construction described here also applies to di↵erent node
sets. For example, if we had selected Legendre nodes, then the implicit component
would be equivalent to that of the fully implicit Gauss methods. However, Radau
nodes have the advantage that they lead to an L-stable implicit component. Last,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2959

this method construction shares many similarities with the exponential PBM methods
based on Legendre nodes from [13]. Loosely speaking, we have traded the exponential
for a fully implicit approximation and switched from Legendre nodes to Radau nodes.

5.1. A FIMEX-Radau iterator for obtaining initial conditions. PBMs
with q > 1, including (5.5), require multiple inputs at the first timestep. Though a
one-step method can be used to compute these solution values, it may not always be
possible to match the order of a starting method with that of the PBM. In [13] we
proposed to use an iterator (a polynomial method with ↵= 0 described in section 3.2)
to compute the initial conditions of exponential PBMs. The iterator used a discrete
exponential Picard iteration to improve the accuracy of an approximate solution. We
can reuse the same idea in the context of additive integrators. In fact, it is always
possible to construct a polynomial iterator that improves the accuracy of solution
values relative to one or more highly accurate inputs [9, Chap. 6.2].

We can obtain a fully implicit iterator by replacing ↵ = 2 with ↵ = 0 in (5.5) so
that the upper integration bound is just zj . However, this iterator steps backward in
time, which introduces additional complications. By modifying the method construc-
tion so that bj = �1, we can avoid integrating backward in time. This leads to the
iterator

y
[n+1]
j = y

[n]
1 +

Z zj

�1
L
{1}
f (s) +L

{2}
f (s)ds, j = 1 . . . , q,(5.8)

which uses the Radau IIA coe�cients for both the implicit and explicit parts. For
example, when q= 3, we obtain the method

y
[n+1]
1 = y

[n]
1 ,

y
[n+1]
2 = y

[n]
1 + 5

6rf
{1}[n+1]
2 �

1
6rf

{1}[n+1]
3 + 5

6rf
{2}[n]
2 �

1
6rf

{2}[n]
3 ,

y
[n+1]
3 = y

[n]
1 + 3

2rf
{1}[n+1]
2 + 1

2rf
{1}[n+1]
3 + 3

2rf
{2}[n]
2 + 1

2rf
{2}[n]
3 .

(5.9)

Note that both the implicit and explicit coe�cients in the iterator (5.9) are identical
to the implicit coe�cients in the propagator (5.6). If y[n]1 is of order 2q� 3 or higher,
then every application of the iterator (5.8) will improve the order-of-accuracy of all
other solution values by one, up to a maximum order of 2q � 3. Moreover, when a
repeatedly applied iteration converges, then the PBM outputs are equivalent to the
output and stage values of a fully implicit Radau IIA method with q� 1 stages.

We can therefore use (5.8) to compute initial conditions in the following way.
We first consider an iterator with quadrature points on the interval [0,2], instead of
[�1,1]. The method has identical coe�cients, but the first input node at z1 = 0 is
now located at t = t0, where the initial condition for (1.1) is provided (i.e., y[0]1 =
y(rz1 + t0) = y0). Next we obtain a zeroth-order estimate for the solution at all the
input nodes by temporarily assuming a constant solution such that y[n]j = y0. Last, we
repeatedly apply the iterator to improve the accuracy of the zeroth-order estimate.
This procedure provides an accurate initial solution at the times t = t0 + rzj for
j = 1, . . . , q and can be written abstractly as

y[0] =M
(c), cj = y0, j = 1, . . . q,(5.10)

where c is the initial zeroth-order approximation, and M
(c) is the iterator method

applied the  times to initial condition c such that M(c) =M(M(. . . (M(c)))). For
a FIMEX-Radau or FIMEX-Radau* method, the iterator should be, respectively,
applied a minimum of = q � 1 and = q times at the first step to match the order
of the explicit component.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2960 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

5.2. Composite FIMEX-Radau methods. The method (5.5), with L
{2}
f (⌧)

selected using (5.3), pairs a fully implicit integrator of order 2q � 3 with an explicit
integrator of order q�1. Therefore, the combined order is limited to q�1. Using (5.4)
improves the order by one, but the imbalance in accuracy between the implicit and
explicit components remains. One strategy for increasing accuracy further is to use a
composite method that first advances the timestep with the propagator (5.6) and then
corrects the output of the propagator  times using the iterator (5.9). This idea of
composite PBMs was introduced in [13] for exponential integrators and shares many
similarities with spectral deferred correction methods [24, 37, 10]. In the following
sections we show how the same idea leads to composite additive integrators with
improved stability and accuracy properties.

The composite method can be written abstractly as

y[n+1] =M
(P (y[n])),(5.11)

when P (·) denotes the propagator (5.5), where L
{2}
f is selected using (5.3) or (5.4),

and M
(·) denotes  applications of the iterator (5.8). We will refer to this composite

method as FIMEX-Radau(q,) if P is (5.3) and FIMEX-Radau⇤(q,) if P is (5.4);
q is the number of nodes and  is the number of iterator applications. Since each
application of the iterator improves the accuracy order by one, the associated order-
of-accuracy for these methods is

FIMEX-Radau(q,) : min(2q� 3, q� 1 + ),(5.12)

FIMEX-Radau*(q,) : min(2q� 3, q+ ).(5.13)

Last, it is important to note that when using iterative methods to solve the implicit
equations (as in numerical PDEs), the implicit solve for the iterator will typically
be significantly faster than the propagator, due to a very good initial guess. That
is, rather than advance a set of solutions forward in time by h like a propagator, an
interator simply increases the accuracy of the current solutions by one.

5.3. Linear stability. We now discuss the linear stability properties of FIMEX-
Radau⇤ and FIMEX-Radau. If we select the splitting (2.4), then the stability region
of the additive integrator is equivalent to that of the Radau IIA method used for
the implicit component. Because all Radau IIA methods are L-stable [30, Chapter
IV, Section 5], both FIMEX methods will have excellent stability. For the remaining
splittings (2.4)–(2.6) we must instead consider the four dimensional stability region

S = {z1, z2 2C |⇢ (M(z1, z2,↵= 2)) 1} ,(5.14)

where ⇢(·) denotes the spectral radius. Due to the high-dimensionality of S, it is
convenient to consider two-dimensional slices that are formed by fixing z1;

S(z1) = {z2 2C |⇢ (M(z1, z2,↵= 2)) 1} .(5.15)

The magnitude and argument of the complex number z1, respectively, determine the
sti↵ness of the implicit component and the degree of di↵usion.

In the PDE setting, arg(z1) = ⇡/2 approximately represents a skew-symmetric
advection discretization, while arg(z1) = ⇡ approximately represents a symmetric
positive-definite di↵usion discretization. An intermediate value, arg(z1) 2 (⇡/2,⇡),
approximately represents a mix of advection and di↵usion. However, the stability
region S(z1) will not be symmetric along the real z1 axis (i.e., S(z1) 6= S(z⇤1)). In

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2961

contrast all real-valued discretizations of PDEs have spectrums that are symmetric
about the imaginary axis. We therefore consider the stricter stability region

Ŝ(z1) = {z2 2C | max [⇢ (M(z1, z2,↵= 2)) , ⇢ (M(z⇤1 , z2,↵= 2))]< 1} .(5.16)

Last, it is also useful to consider the region

S̃(✓) =
�
z2 2C,� 2R+

| max
⇥
⇢
�
M(�ei✓, z2,↵= 2)

�
, ⇢

�
M(�ei✓, z2,↵= 2)

�⇤
,

(5.17)

which contains all the z2 values that ensure stability for any z1 = �e
i! in the wedge

� � 0 and ✓ ! 2⇡� ✓.
To present important subsets of the full stability region S we overlay multiple

contours of the Ŝ(z1), where we take arg(z1) 2 {⇡,
3⇡
4 ,

⇡
2 } and |z1| 2 {0,3,6}. These

choices of arg(z1), respectively, approximate an implicit linear component with dif-
fusion, a mix of di↵usion and oscillation, and pure oscillation. In Figure 4 we show
these stability regions for the composite method FIMEX-Radau*(4,) from (5.11)
with  = 0,1,2. When  = 0 the FIMEX-Radau*(4,0) method is equivalent to the
FIMEX-Radau* method (5.5) with q= 4.

 = 0  = 1  = 2

a
rg
(z

1
)
=

⇡
a
rg
(z

1
)
=

3
⇡ 4

a
rg
(z

1
)
=

⇡ 2

]

|z1| = 0 |z1| = 3 |z1| = 6

Fig. 4. Stability regions for composite FIMEX-Radau*(q = 4,). Each colored contour rep-
resents a di↵erent stability region Ŝ(z1) defined in (5.16). The gray region is the stability region
S̃(arg(z1)) described in (5.17). (Color images are available online.)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2962 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

The stability regions for FIMEX-Radau* are largest for the di↵usive case with
arg(z1) = ⇡ and smallest for the oscillatory case with arg(z1) = ⇡/2. For each of
the three values of arg(z1), the FIMEX-Radau*(4,) stability regions always enclose
the imaginary axis. Despite the fact that FIMEX-Radau* is equipped with a fully
implicit propagator, the stability regions grow slowly in |z1| and are very small when
arg(z1) =

⇡
2 . However, even a single application of the iterator leads to significantly

larger linear stability regions for all three values of arg(z1). Last, in Figure SM1
of the supplemental materials we also show the equivalent stability regions for the
composite FIMEX-Radau method; overall we see that using a lower-order polynomial
approximation for the explicit component leads to improved stability.

6. Numerical experiments. We investigate the e�ciency of FIMEX-Radau
and FIMEX-Radau* methods by conducting three types of numerical experiments.
First, we study the performance of the integrators on PDEs with periodic domains
where inverting the implicit component is trivial. Then, we compare both method
families on a finite-element discretization of a nonperiodic problem, where solving the
fully implicit system requires special care [26, 32, 39, 45, 44]. Last, we numerically
investigate order-reduction on the singularly perturbed Van der Pol equation.

For certain spatial discretizations, such as spectral methods, and/or solvers that
are di�cult to parallelize, the FIMEX-Radau methods allow for certain types of paral-
lelization that are not feasible using existing IMEX-RK methods. For example, when
considering periodic domains with Fourier discretizations, the implicit component is
trivial to invert, and the majority of the cost is due to the nonlinear function eval-
uations. In subsection 6.1 we demonstrate how parallelization of nonlinear function
evaluations can be applied to obtain highly accurate solutions in significantly less time.
More generally, there are situations such as when solver performance degrades in par-
allel or when finite element construction and nonlinear function evaluations can be
very expensive, where the additional parallelization provided by these FIMEX-Radau
can be exploited.

Conversely, with finite element discretizations and scalable solvers, spatial paral-
lelism is often very e↵ective. In subsection 6.3 we investigate the e�ciency of FIMEX-
Radau methods with traditional spatial parallelism on a problem where function eval-
uations are relatively cheap and time parallelism is not needed.

6.1. PDEs with periodic boundary conditions. In this experiment we eval-
uate the accuracy and e�ciency of composite FIMEX-Radau* methods (5.11) on the
dispersive Korteweg–De Vries (KDV) equation with periodic boundary conditions.
For comparison we also include results for IMEX-RK integrators of orders one to
four; specifically the (1,1,1) and (2,3,2) methods from [5, sects. 2.1 and 2.5] and
the ARK3(2)4L[2]SA and ARK4(3)6L[2]SA from [33]. The numerical experiment is
identical to one found in [13, 10] and is only briefly described below:

The KDV equation from [10, 13]

@u

@t
=�


�
@
3
u

@x3
+

1

2

@

@x
(u2)

�
,

u(x, t= 0) = cos(⇡x),

x2 [0,2],

where � = 0.022. This equation is integrated to time t = 3.6/⇡ using a 512 point
Fourier spectral discretization.

6.1.1. Implementation details. We solve the KDV equation in Fourier space
where the initial value problem has the form y0 =Ly+N(t,y), where L is an N ⇥N

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2963

diagonal matrix that includes the discretized linear di↵erential operator. For dealias-
ing we apply the standard 3/2 rule that zeros out the top third of the spectrum. The
reference solution yref is computed using a 32nd-order exponential spectral deferred
correction method [10], and the relative error in our convergence and e�ciency studies
is defined as ky� yrefk1/kyrefk.

Since the matrix L is diagonal, the implicit solve for a fully implicit propagator
or iterator (5.7) amounts to inverting N decoupled q ⇥ q systems of the form (I �
rLkkB{2})x = b for k = 1, . . . ,N . To save computational time the matrix inverses
for propagators and iterators are precomputed and stored at the first timestep so
that an implicit solve can be done using N , q ⇥ q matrix multiplications. Since this
operation is cheap, the dominant computational cost is due to the nonlinear function
evaluations.

FIMEX-Radau integrators benefit from time parallelism since the nonlinear func-
tion evaluations and output computations can be computed simultaneously. To quan-
tify the benefits of parallelism, we created both serial Fortran implementations of the
integrators and parallel Fortran implementations using OpenMP. A FIMEX-Radau
method with q nodes requires q independent function evaluations that can be com-
puted simultaneously using q shared or distributed memory processes/threads. In
contrast an IMEX-RK method requires sequential evaluation of the nonlinear term
at each stage, and therefore this type of parallelization is not possible. However,
all methods can benefit from spatial parallelization where the FFT evaluations are
computed using multiple threads. For the purposes of this experiment we will only
investigate time parallelism and compute all FFT evaluations using one thread.

Our Fortran code can be found in [12], and all the timing results presented in
this subsection were produced on a 14 core, 2.0Ghz Intel Xeon E5-2683 v3 with
hyper-threading enabled.

6.1.2. Results and discussion. In Figure 5 we present results for the KDV
equation solved using composite FIMEX-Radau*(q,2) methods with q = 2,3,4,5.

Order of Accuracy:

Integrator Family:

Fig. 5. Accuracy and precision diagrams comparing composite FIMEX-Radau⇤(q,2) with q =
2,3,4,5 to IMEX-RK on the KDV equation. All curves start at the first stable timestep. The parallel
and serial time plots, respectively, show run times for composite FIMEX-Radau⇤(q,2) methods with
and without OpenMP parallelization. The dashed lines of increasing slope in the accuracy plot,
respectively, correspond to first-, third-, fifth-, and seventh-order convergence, which are the expected
orders of convergence (5.13) for FIMEX-Radau⇤.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2964 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

We select = 2 since the linear stability regions from Figure 4 revealed that FIMEX-
Radau*(q,0) have comparatively poor stability for nondi↵usive equations. Overall the
FIMEX-Radau*(q,2) integrators performed excellently, with the serial, seventh-order
FIMEX-Radau*(5,2) outperforming all the other methods for any accuracy below
10�2. When using OpenMP parallelism with five threads, the FIMEX-Radau*(5,2)
is the most e�cient method across all accuracies and is capable of obtaining the
solution with a relative error of 10�2 approximately two times faster than any RK
method. For more accurate solutions with errors below 10�4, the di↵erence was even
more significant and FIMEX-Radau*(5,2) was able to obtain the solution approxi-
mately thirty times faster than IMEX-RK4. For lower-order methods, the third-order
FIMEX-Radau*(3,2) method exhibited increased fourth-order convergence through-
out most of the stepsize range. This enabled the method to be more e�cient than
the IMEX-RK4 method, despite only requiring the storage of three solution vectors
instead of the five needed by the RK method. Last, if very inaccurate solutions are
su�cient, then the FIMEX-Radau*(2,1) method was both more e�cient and more
stable than the IMEX-RK1 (or equivalently FIMEX-Radau(2,0)) method.

6.2. Numerically investigating order-reduction. In this experiment we nu-
merically investigate order-reduction for the composite FIMEX-Radau and FIMEX-
Radau⇤ method (5.11) by solving the Van der Pol equation [30, p. 403]

y
0
1 = y2,

y
0
2 =

(1� y
2
1)y2 � y1

✏
,

y1(0) = 2,

y2(0) =�
2
3 + 10

81✏�
292
2187✏

2
�

1814
19683✏

3
,

(6.1)

integrated to time t= 0.5. We consider ✏ values ranging from ✏= 1 to ✏= 10�8. When
the sti↵ness parameter ✏ is small, this equation is known to cause order-reduction for
IMEX-RK methods [5, 7, 33, 35, 31, 34].

We integrate the Van der Pol equation using composite methods (5.11), where
the propagator uses (5.3) or (5.4), q 2 {3,4,5}, and 2 {0,1,2}. The equation’s right-
hand side is split in two di↵erent ways. A semi-implicit splitting treats the first
component explicitly and the second component implicitly; this same splitting was
used in [31, 5, 7, 35, 33, 34]. We also consider the semilinear splitting (2.8), where Jn
is the exact Jacobian of the right-hand side at the nth timestep.

To verify FIMEX-Radau(q,) and FIMEX-Radau⇤(q,) methods, we estimate
their convergence rates as a function of ✏ using the approach proposed in [34]. Specifi-
cally, we solve (6.1) using 30 logarithmically spaced stepsizes ranging from h= 0.25 to
h= 10�4 and then compute a linear least-squares fit of log(error) versus log(stepsize).
Error for an approximate solution y is measured using ky � yrefk1, where yref was
computed using the MATLAB ode15s integrator. For the semi-implicit splitting we
set the tolerance of our Newton iteration to 10�12 and use the MATLAB backslash
function to solve the associated linear systems. For the linearly implicit system we
also use the MATLAB backslash function to solve the linear systems at each timestep.

In Figure 6 we show convergence rate plots and convergence diagrams for the
FIMEX-Radau⇤(q,) methods with each splitting. Convergence diagrams for di↵erent
✏ values are shown in Figure SM2 of the supplemental materials. We also show a
convergence rate plot and convergence diagrams for the FIMEX-Radau(q,) in Figure
SM3. There are several important points regarding the results:

• The FIMEX-Radau⇤ and FIMEX-Radau methods are stable across the full
range of stepsizes for both splittings. The linearly implicit splitting does not
require a nonlinear solve at each step, leading to improved computational

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2965

Semi-Implicit Splitting Linearly-Implicit Splitting

Fig. 6. Approximate overall convergence rates for the Van der Pol equation (6.1) as a function
of ✏ for the FIMEX-Radau⇤ method with a semi-implicit splitting or a linearly implicit splitting.

e�ciency. In contrast, all the IMEX-RK methods we tested from [34, 33]
required substantially smaller timesteps to remain stable with the linearly
implicit splitting (see the supplemental Figure SM4).

• For small ✏, each application of the iterator raises the order of convergence
by approximately one. When using a semi-implicit splitting, we see a signifi-
cantly decreased convergence rate for Radau(q,2) and Radau⇤(q,2) methods
when ✏ is between 10�2 and 10�4. However the extra iteration improves accu-
racy significantly. For example, from the convergence diagrams for ✏= 10�3

in Figures SM2 and SM3, we see that methods with  = 2 are always more
accurate than those with  = 1 or  = 0, despite their reduced convergence
rates.

• The estimated convergence rates are consistently smaller than the expected
orders-of-accuracy (5.12) and (5.13). This is due to minor order-reduction at
stepsizes h� 0.1 (less than five total timesteps). By including this data in our
least-squares fits we see lower overall convergence rates. If we only consider
h< 0.1, then we would observe expected convergence (for example, we can see
that the convergence curves for h < 0.1 match the dashed convergence-order
lines in the diagrams in Figures SM2 and SM3).

• The convergence rates for FIMEX-Radau⇤(3,2) and FIMEX-Radau(3,2) with
a linearly implicit splitting are unusually high. This is due to rapid conver-
gence at coarse timesteps that leads to higher than expected overall conver-
gence. Nevertheless, for su�ciently small stepsizes, the convergence limits to
third-order (e.g., see the convergence diagram for ✏ = 10�3 in Figures SM2
and SM3).

• The FIMEX-Radau⇤(5,0) method with a linearly implicit splitting did not
converge at large timesteps (though it was stable). Increasing  to one re-
solves the issue.

6.3. DG advection-di↵usion-reaction. Here we consider the time-dependent
advection-di↵usion-reaction equation

ut +r · (�u� ✏ru) + �u
2 = f,(6.2)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2966 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

where �(x, y) := (1,1)T is the velocity field and ✏ and � constant di↵usion and reaction
coe�cients.

We discretize (6.2) in space using discontinuous Galerkin finite elements over the
spatial domain ⌦ = [0,1]⇥ [0,1]. Dirichlet boundary conditions are weakly enforced
on @⌦, advection terms are upwinded [20], and di↵usion terms are treated with the
symmetric interior penalty method [3, 4]. Let Vh be the DG finite element space
consisting of piecewise polynomials of degree p defined locally on elements of the
spatial mesh T . The resulting finite element problem is to find uh 2 Vh such that, for
all vh 2 Vh,
Z

⌦
@t(uh)vh dx�

Z

⌦
uh� ·rhvh dx+

Z

�
cuh� · [[vh]]ds+

Z

⌦
rhuh ·rhvh dx+

Z

⌦
�uhv

2
h dx

�

Z

�
{rhuh} · [[vh]]ds�

Z

�
{rhvh} · [[uh]]ds+

Z

�
�[[uh]] · [[vh]]ds=

Z

⌦
fvh dx,

where rh is the broken gradient, � denotes the skeleton of the mesh, {·} and [[·]]
denote the average and jump operators, respectively, and cuh is used to denote the
upwind numerical flux. The parameter � is the interior penalty parameter, important
for a stable discretization [4], which we set to �= (p+ 1)2/h.

The discretization is implemented in the MFEM finite element library [2]. Classi-
cal algebraic multigrid (AMG) in the hypre library [25] (BoomerAMG) is used to solve
the implicit equations, with Falgout coarsening, classical interpolation, a strength tol-
erance of 0.2, and hybrid parallel Gauss–Seidel relaxation. For the Radau schemes,
we must solve an implicit system analogous to that which arises in fully implicit RK
methods. We wrap the AMG solver with the block preconditioning for fully implicit
RK methods developed in [45, 44] to solve the Radau stage equations. We use fourth-
order elements in space, with mesh spacing hx ⇡ 0.0078 leading to expected spatial
accuracy ⇠O(10�9). We consider two problems and splittings:

1. No reaction: treat advection explicitly and di↵usion and source term implic-
itly (subsection 6.3.1).

2. � = 10: treat nonlinear reaction explicitly and advection-di↵usion implicitly
(subsection 6.3.2).

All simulations are run on 4 dual socket Intel Xeon Gold 6152 22-core processors (i.e.,
44 cores/node).

6.3.1. Advection-di↵usion. This section considers no reaction (� = 0) and an
additive splitting of (6.2) treating the advection explicitly and di↵usion implicitly.
We choose the forcing function f(x, y, t) such that the analytical solution is given by
u⇤(x, y, t) = sin(2⇡x(1� y)(1 + 2t)) sin(2⇡y(1� x)(1 + 2t)). Here we solve all linear
systems to a relative residual tolerance of 10�12. All simulations are run to final
(simulation) time tf =2 with 120 total MPI processes.

Results in this section indicate the superior stability and accuracy of FIMEX-
Radau* methods over traditional IMEX-RK. However, results are somewhat artificial
in this setting in that (i) there exist fast AMG solvers for advection-di↵usion, even
in the advection-dominated regime [36, 42], and (ii) due to stability issues with the
additive splitting of this discretization shown below, even classical AMG in hypre
[25] works well as-is applied to the advection-di↵usion ratios considered here. That
is, although FIMEX-Radau* methods show advantages over classical IMEX-RK, in
practice one would probably treat this particular problem and discretization implic-
itly. Other related advection-di↵usion equations, however, such as a DG-BDM dis-
cretization of incompressible Navier–Stokes, can be very di�cult to solve implicitly

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2967

(a) IMEX(1,1,1) (b) IMEX(1,2,1)

Fig. 7. Eigenvalues of propagation operator for two first-order IMEX-RK schemes from [5],
with timestep h= 0.004876 given by the advective stability limit. The unit circle is shaded; to ensure
stability, eigenvalues must be inside of the shaded region.

for nontrivial advection, so it is possible FIMEX-Radau* methods have a use in such
advection-di↵usion problems, where implicit treatment is di�cult or not viable (note
that incompressible Navier–Stokes is an index-2 DAE, which introduces other compli-
cations in terms of accuracy; analyzing FIMEX-Radau* methods in the DAE setting
is ongoing work).

First note that the stability of IMEX integration for this discretization is challeng-
ing. Consider two variations in first-order IMEX-RK presented in [5], the IMEX(1,1,1)
and IMEX(1,2,1) schemes. Note that a necessary condition for stability is having the
eigenvalues of the propagation operator bounded < 1 in magnitude. Thus, we con-
sider mesh spacing hx ⇡ 0.03 and directly construct the propagation operators for
the IMEX(1,1,1)- and IMEX(1,2,1)-schemes. Letting ✏ = 1 and h = 0.004876 be the
(numerically determined) forward Euler advective stability limit, eigenvalues for the
two propagation operators are shown in Figure 7. Note that for this moderately small
timestep, RK(1,2,1) is very unstable; numerical tests confirm this in practice, with
the solution rapidly growing by orders of magnitude. In fact, many of the IMEX-
RK schemes proposed in [5] su↵er from similar instabilities with this problem and
discretization. The only schemes from [5] that have demonstrated reasonable sta-
bility here are schemes in which both the implicit and explicit method are sti✏y
accurate. Moving forward, we only consider these schemes, namely, IMEX(1,1,1),
RK(2,2,2), and IMEX(4,4,3) in the notation of [5]. In addition, we consider ESDIRK
ARK3(2)4L[2]SA from [33], which we abbreviate ARK(4,3), and which demonstrates
stability for su�ciently small h.

Figure 8 compares IMEX(1,1,1), IMEX(2,2,2), IMEX(4,4,3) [5], and ARK(4,3)
[33] with FIMEX-Radau*(q,) for q 2 {2,3,4} and 2 {0,1,2}. Plots present solution
accuracy with respect to timestep size, h, and total wallclock time to solution with
respect to accuracy, for two di↵erent di↵usion coe�cients. FIMEX-Radau methods
are the most e�cient in terms of error as a function of runtime to solution for accuracy
/ 10�3. Moreover, for ✏= 0.1 and ✏= 10, the FIMEX-Radau* methods obtain ⇠ 10�5

accuracy, respectively, ⇡ 16⇥ and ⇡ 16⇥ faster than the best IMEX-RK method,
IMEX(4,4,3). In terms of order of convergence, we see that all methods su↵er from
some order-reduction, particularly for ✏ = 10, but FIMEX-Radau* methods retain
much smaller error constants than the IMEX-RK methods.

In terms of wallclock time, each iterator application tends to decrease error
roughly proportionally with its computational cost. However, they also provide im-
proved stability, e.g., for ✏ = 0.1 and FIMEX-Radau*(4,), the method largely di-
verges for  = 0 (except at the smallest h considered, h = 0.005), but applying one

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2968 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

2�6 2�4 2�2

h

10�8

10�6

10�4

10�2

100

�2 -
er

ro
r

slope=1

slop
e=3

slo
pe=

4

4 16 64 256
runtime (s)

10�8

10�6

10�4

10�2

100

�2 -
er

ro
r

(a) ✏ = 0.1

2�6 2�4 2�2

h

10�8

10�6

10�4

10�2

�2 -
er

ro
r

slope=1

slo
pe=

2.5

slo
pe

=4

4 16 64 256
runtime (s)

10�8

10�6

10�4

10�2

�2 -
er

ro
r

(b) ✏ = 10

Fig. 8. `2-accuracy as a function of h and wallclock time to solution.

Table 1
`2-error and runtime for all stable integrators with ✏= 0.01 and h= 0.01.

IMEX(1,1,1) Radau*(2,0) Radau(2,1)

`2-error 0.018 0.009 0.009
Runtime (seconds) 35 37 71

IMEX(4,4,3) Radau(3,1) Radau*(3,2) Radau*(4,2)

`2-error 7.4 · 10�5 2.1 · 10�5 2.6 · 10�6 2.9 · 10�8

Runtime (seconds) 165 122 151 184

or two applications of the iterator yields a stable, high-order method. Now consider
✏= 0.01 and h= 0.01. Results for the only IMEX-RK methods that did not diverge
are shown in Table 1, along with a selection of FIMEX-Radau and FIMEX-Radau*
methods that converge. Note that the one exception is FIMEX-Radau*(2,0), which
again provides improved accuracy over IMEX-Euler, at a relatively trivial cost, and
FIMEX-Radau(2,1), which improves the accuracy of IMEX-Euler via the application
of an iterator. Note that the FIMEX-Radau* methods again provide several orders
of magnitude smaller error than IMEX(4,4,3) for a comparable wallclock time.

6.3.2. Advection-di↵usion-reaction. Here we consider a more practical split-
ting of explicit treatment for a nonlinear reaction with � = 10 and implicit treatment
for the advection-di↵usion equation, with ✏= 0.1. By treating the reaction explicitly,
we do not have to rebuild the implicit AMG solver at every timestep or nonlinear iter-
ation, which for sparse algebraic solvers is often a nontrivial expense. We also compare

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2969

with classical A-stable and L-stable implicit DIRK methods, which use a simplified
Newton iteration linearized about the beginning of each timestep (we found this to
be most e�cient on average, compared with a full Newton iteration, which requires
rebuilding the solver every iteration, or a Picard iteration that lags the nonlinearity).
DIRK methods are prefixed with the stability (A or L) and su�xed with the order,
e.g., LDIRK3 means a third-order L-stable DIRK method. The methods are used as
implemented in the MFEM library [2]. The forcing function is chosen for an exact
solution u⇤(x, y, t) = 1.0/(e10(x+y�t) + 1) for x, y, t2 [0,1].

For a given time integration scheme, we solve the implicit equations to tolerance
10�3 times the order of expected spatial and temporal accuracy based on hx and h to
the appropriate power. This is to ensure systems are solved su�ciently accurately to
achieve discretization error but avoid oversolving (e.g., achieving 10 digits of residual
accuracy for 2 digits of physical accuracy). Note that here we are using left GMRES
acceleration and the preconditioned residual as a stopping tolerance; because the
FIRK preconditioners developed in [45, 44] are proven to result in preconditioned op-
erators with condition number bounded O(1), we expect the preconditioned residual
to provide a very good approximation of the error (of course, with an exact precon-
ditioner the preconditioned residual equals the error); similarly for DIRK methods,
AMG is a very e↵ective preconditioner for this problem. All simulations are run with
64 total MPI processes. The implicit simplified Newton iteration typically requires
4–10 iterations to converge, where each iteration inverts the (simplified) Jacobian to
3 digits relative residual tolerance.

Error as a function of h and total wallclock time are shown in Figure 9. Here we see
that most schemes achieve their expected accuracy (recall the order of Radau⇤(q,) =
q + , up to the order of Radau, given by 2q � 3). Radau⇤(q,0) is less predictable
(e.g., see q = 4,5 for  = 0), but the error constants remain small once a reasonably
small stepsize is chosen. It is possible the order-reduction is due to time-dependent

2�7 2�5 2�3

h

10�9

10�7

10�5

10�3

10�1

101

�2 -
er

ro
r slope=2

slope=3

IMEX(2,2,2)

IMEX(2,3,3)

IMEX(4,4,3)

ARK(4,3)

2�7 2�5 2�3

h

10�9

10�7

10�5

10�3

10�1

101

�2 -
er

ro
r

slop
e=3

slo
pe=

5
slo

pe
=6

Radau*(3,�)

Radau*(4,�)

Radau*(5,�)

(a)

4 16 64 256
runtime (s)

10�9

10�7

10�5

10�3

10�1

101

�2 -
er

ro
r

LDIRK2

LDIRK3

ADIRK3

ADIRK4

4 16 64 256
runtime (s)

10�9

10�7

10�5

10�3

10�1

101

�2 -
er

ro
r

� = 0

� = 1

� = 2

(b)

Fig. 9. `2-accuracy as a function of h and wallclock time to solution. Legends apply to both
images in a row.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

A2970 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

boundary conditions, a known problem with RK methods, as we can also see that
IMEX-RK and DIRK methods don’t quite reach expected third-order converence.
In general, we see that IMEX schemes are advantageous for this problem over DIRK
methods, typically achieving better accuracy for a fixed wallclock time. The di↵erence
is small for classical IMEX-RK methods but more noticable with FIMEX-Radau⇤

methods. For moderate to high accuracies, roughly lower than 10�4, the FIMEX-
Radau⇤ methods are the best solution with respect to wallclock time. It is also worth
pointing out that the asymptotic error constants for FIMEX-Radau⇤ are quite small,
e.g., for third-order methods with a fixed h, FIMEX-Radau⇤ error is 10�100⇥ smaller
than comparable-order IMEX-RK schemes.

7. Summary and conclusion. In the first half of this paper we introduced a
general framework for constructing multivalued or one-step additive polynomial time
integrators with any degree of implicitness. By utilizing interpolating polynomials,
the framework enables the derivation of high-order methods without requiring the so-
lution of nonlinear order conditions (even if the underlying equation has an arbitrary
number of additive partitions). Moreover, by selecting high-order ODE polynomials,
one trivially achieves high stage order that prevents order-reduction on sti↵ prob-
lems. Last, the framework also includes iterators that can be used to compute initial
conditions and to construct composite PBMs with improved stability and accuracy
properties.

The second-half of this paper focused exclusively on FIMEX methods that utilize
Adams ODE polynomials. Specifically we introduced a new class of FIMEX-Radau
integrators, which use a Radau IIA fully implicit component coupled with a parallel
block method for the explicit component. In section 6 we demonstrated the significant
potential of these integrators in practice. In each of our experiments, FIMEX-Radau
methods consistently yielded the most accurate solution compared with other methods
from [5, 33]. Moreover, thanks to recent developments in solvers for fully implicit RK
methods [45, 44], they were also the fastest methods (in terms of total runtime) to
obtain a given accuracy. Furthermore, by using iterators, the composite FIMEX-
Radau methods o↵er a simple way to develop very high-order FIMEX integrators
with low storage cost. We believe these methods are most applicable for problems
where moderate to high accuracy is desired, and one can benefit from the strong
accuracy and stability provided by combining multistep methods and fully implicit
methods (e.g., for time-dependent boundary conditions, or semisti↵ nonlinearities that
one does not want to treat implicitly).

Thus far, we have only introduced one class of additive polynomial integrators.
In part two of this work we will introduce new families of diagonally implicit IMEX-
polynomial integrators that are based on the BDF ODE polynomials. In addition, we
point out that Radau and other fully implicit RK methods o↵er a number of unique
advantages and properties that cannot be obtained with other classes of integrators.
Future work will study the potential of FIMEX-Radau and related integrators on
topics such as di↵erential algebraic equations and conservation of invariants which
fully implicit RK methods are uniquely suited for. We also plan to develop strategies
for adaptively controlling the stepsize and the number of iterations  for polynomial
FIMEX collocation methods.

REFERENCES

[1] G. Akrivis, O. Karakashian, and F. Karakatsani, Linearly implicit methods for nonlinear
evolution equations, Numer. Math., 94 (2003), pp. 403–418.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

ADDITIVE POLYNOMIAL TIME INTEGRATORS, PART I A2971

[2] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev,
Y. Dudouit, A. Fisher, T. Kolev, W. Pazner, M. Stowell, V. Tomov, J. Dahm, D.
Medina, and S. Zampini, MFEM: A modular finite element methods library, Comput.
Math. Appl., 81 (2021), pp. 42–74, https://doi.org/10.1016/j.camwa.2020.06.009.

[3] D. N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM
J. Numer. Anal., 19 (1982), pp. 742–760, https://doi.org/10.1137/0719052.

[4] D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini, Unified analysis of discontinuous
Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), pp. 1749–1779,
https://doi.org/10.1137/S0036142901384162.

[5] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for
time-dependent partial di↵erential equations, Appl. Numer. Math., 25 (1997), pp. 151–167.

[6] U. M. Ascher, S. J. Ruuth, and B. T. Wetton, Implicit-explicit methods for time-dependent
partial di↵erential equations, SIAM J. Numer. Anal., 32 (1995), pp. 797–823.

[7] S. Boscarino, Error analysis of IMEX Runge-Kutta methods derived from di↵erential-
algebraic systems, SIAM J. Numer. Anal., 45 (2007), pp. 1600–1621.

[8] J. C. Butcher and N. Goodwin, Numerical Methods for Ordinary Di↵erential Equations,
Vol. 2, Wiley, New York, 2016.

[9] T. Buvoli, Polynomial-Based Methods for Time-Integration, Ph.D. thesis, University of
Washigton, 2018.

[10] T. Buvoli, A class of exponential integrators based on spectral deferred correction , SIAM J.
Sci. Comput., 42 (2020), pp. A1–A27.

[11] T. Buvoli, Constructing Polynomial Block Methods, preprint, arXiv:2011.00671, 2020.
[12] T. Buvoli, Codebase for “Additive Polynomial Time Integrators, Part I: Framework and Fully-

Implicit-Explicit (FIMEX) Collocation Methods,” https://github.com/buvoli/apbm, 2021.
[13] T. Buvoli, Exponential polynomial block methods, SIAM J. Sci. Comput., 43 (2021), pp.

A1692–A1722.
[14] T. Buvoli and M. Tokman, Constructing new time integrators using interpolating polynomi-

als, SIAM J. Sci. Comput., 41 (2019), pp. A2911–A2937.
[15] M. Calvo, J. De Frutos, and J. Novo, Linearly implicit Runge-Kutta methods for advection-

reaction–di↵usion equations, Appl. Numer. Math., 37 (2001), pp. 535–549.
[16] A. Cardone, Z. Jackiewicz, A. Sandu, and H. Zhang, Extrapolation-based implicit-explicit

general linear methods, Numer. Algorithms, 65 (2014), pp. 377–399.
[17] A. Cardone, Z. Jackiewicz, A. Sandu, and H. Zhang, Construction of highly stable implicit-

explicit general linear methods, in Conference Publications, American Institute of Mathe-
matical Sciences, Pasadena, CA, 2015, pp. 185–194.

[18] H. Chen, A splitting preconditioner for the iterative solution of implicit Runge-Kutta and
boundary value methods, BIT, 54 (2014), pp. 607–621.

[19] A. J. Christlieb, C. B. Macdonald, and B. W. Ong, Parallel high-order integrators, SIAM
J. Sci. Comput., 32 (2010), pp. 818–835.

[20] B. Cockburn and C.-W. Shu, Runge-Kutta discontinuous Galerkin methods for convection-
dominated problems, J. Sci. Comput., 16 (2001), pp. 173–261, https://doi.org/10.1023/
a:1012873910884.

[21] E. M. Constantinescu and A. Sandu, Extrapolated implicit-explicit time stepping, SIAM J.
Sci. Comput., 31 (2010), pp. 4452–4477.

[22] G. Cooper and A. Sayfy, Additive methods for the numerical solution of ordinary di↵erential
equations, Math. Comp., 35 (1980), pp. 1159–1172.

[23] G. Dimarco and L. Pareschi, Implicit-explicit linear multistep methods for sti↵ kinetic equa-
tions, SIAM J. Numer. Anal., 55 (2017), pp. 664–690.

[24] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary
di↵erential equations, BIT, 40 (2000), pp. 241–266.

[25] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in
Proceedings of the European Conference on Parallel Processing, Lecture Notes in Comput.
Sci. 2331, 2002, pp. 632–641.

[26] P. E. Farrell, R. C. Kirby, and J. Marchena-Menendez, Irksome: Automating Runge-
Kutta Time-Stepping for Finite Element Methods, preprint, arXiv:2006.16282, 2020.

[27] R. Glandon, M. Narayanamurthi, and A. Sandu, Linearly Implicit Multistep Methods for
Time Integration, preprint, arXiv:2011.10685, 2020.

[28] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Di↵erential Equations I: Nons-
ti↵ Problems, Springer Series in Computational Mathematics, Springer Berlin, Heidelberg,
1993, 528.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1016/j.camwa.2020.06.009
https://doi.org/10.1137/0719052
https://doi.org/10.1137/S0036142901384162
https://arxiv.org/abs/2011.00671
https://github.com/buvoli/apbm
https://doi.org/10.1023/a:1012873910884
https://doi.org/10.1023/a:1012873910884
https://arxiv.org/abs/2006.16282
https://arxiv.org/abs/2011.10685

A2972 TOMMASO BUVOLI AND BEN S. SOUTHWORTH

[29] E. Hairer and G. Wanner, Solving Ordinary Di↵erential Equations II: Sti↵ and Di↵erential-
Algebraic Problems, Springer Series in Computational Mathematics, Springer Berlin,
Heidelberg, 1996, 614.

[30] E. Hairer and G. Wanner, Sti↵ di↵erential equations solved by Radau methods, J. Comput.
Appl. Math., 111 (1999), pp. 93–111.

[31] G. Izzo and Z. Jackiewicz, Highly stable implicit-explicit Runge-Kutta methods, Appl. Numer.
Math., 113 (2017), pp. 71–92.

[32] X. Jiao, X. Wang, and Q. Chen, Optimal and Low-Memory Near-Optimal Preconditioning
of Fully Implicit Runge-Kutta Schemes for Parabolic PDEs, preprint, arXiv:2012.12779,
2020.

[33] C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-
di↵usion–reaction equations, Appl. Numer. Math., 44 (2003), pp. 139–181.

[34] C. A. Kennedy and M. H. Carpenter, Higher-order additive Runge-Kutta schemes for or-
dinary di↵erential equations, Appl. Numer. Math., 136 (2019), pp. 183–205.

[35] A. T. Layton and M. Minion, Implications of the choice of quadrature nodes for Picard
integral deferred corrections methods for ordinary di↵erential equations, BIT, 45 (2005),
pp. 341–373.

[36] T. A. Manteuffel, J. W. Ruge, and B. S. Southworth, Nonsymmetric algebraic multigrid
based on local approximate ideal restriction (`AIR), SIAM J. Sci. Comput., 40 (2018), pp.
A4105–A4130.

[37] M. Minion, Semi-implicit spectral deferred correction methods for ordinary di↵erential equa-
tions, Commun. Math. Sci., 1 (2003), pp. 471–500.

[38] W. Pazner and P.-O. Persson, Stage-parallel fully implicit Runge-Kutta solvers for discon-
tinuous Galerkin fluid simulations, J. Comput. Phys., 335 (2017), pp. 700–717.

[39] M. M. Rana, V. E. Howle, K. Long, A. Meek, and W. Milestone, A New Block Precondi-
tioner for Implicit Runge-Kutta Methods for Parabolic PDE , preprint, arXiv:2010.11377,
2020.

[40] A. Sandu and M. Günther, A generalized-structure approach to additive Runge-Kutta meth-
ods, SIAM J. Numer. Anal., 53 (2015), pp. 17–42.

[41] L. F. Shampine and H. Watts, Block implicit one-step methods, Math. Comp., 23 (1969), pp.
731–740.

[42] A. A. Sivas, B. S. Southworth, and S. Rhebergen, AIR algebraic multigrid for a space-
time hybridizable discontinuous galerkin discretization of advection(-di↵usion), SIAM J.
Sci. Comput., 43 (2021), pp. A3393–A3416.

[43] B. Soleimani and R. Weiner, Superconvergent IMEX peer methods, Appl. Numer. Math., 130
(2018), pp. 70–85.

[44] B. S. Southworth, O. A. Krzysik, and W. Pazner, Fast Solution of Fully Implicit Runge-
Kutta and Discontinuous Galerkin in Time for Numerical PDEs, Part II: Nonlinearities
and DAEs, preprint, arXiv:2101.01776, 2021.

[45] B. S. Southworth, O. A. Krzysik, W. Pazner, and H. D. Sterck, Fast Solution of Fully
Implicit Runge-Kutta and Discontinuous Galerkin in Time for Numerical PDEs, Part I:
The Linear Setting, preprint, arXiv:2101.00512, 2021.

[46] D. Wang and S. J. Ruuth, Variable step-size implicit-explicit linear multistep methods for
time-dependent partial di↵erential equations, J. Comput. Math., 26 (2008), pp. 838–855.

[47] G. Wanner, A short proof on nonlinear A-stability, BIT, 16 (1976), pp. 226–227.
[48] H. Zhang, A. Sandu, and S. Blaise, High order implicit-explicit general linear methods with

optimized stability regions, SIAM J. Sci. Comput., 38 (2016), pp. A1430–A1453.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

10
/0

8/
24

 to
 1

69
.2

36
.2

36
.7

 .
R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/2012.12779
https://arxiv.org/abs/2010.11377
https://arxiv.org/abs/2101.01776
https://arxiv.org/abs/2101.00512

	Introduction
	Additive integrators
	Polynomial time integrators
	Collocation methods and Radau IIA
	Iterators

	Additive polynomial integrators
	Partitioned ODE datasets and ODE polynomials
	Special families of partitioned ODE polynomials

	Additive polynomial block methods
	Linear stability

	Constructing FIMEX polynomial integrators based on Radau IIA
	A FIMEX-Radau iterator for obtaining initial conditions
	Composite FIMEX-Radau methods
	Linear stability

	Numerical experiments
	PDEs with periodic boundary conditions
	Implementation details
	Results and discussion

	Numerically investigating order-reduction
	DG advection-diffusion-reaction
	Advection-diffusion
	Advection-diffusion-reaction

	Summary and conclusion
	References

