L)

Check for
updates

Measurement of Embedding Choices on Cryptographic API
Completion Tasks

YA XIAO, WENJIA SONG, and SALMAN AHMED, Virginia Tech, USA
XINYANG GE, Databricks, USA
BIMAL VISWANATH, NA MENG, and DANFENG (DAPHNE) YAO, Virginia Tech, USA

In this article, we conduct a measurement study to comprehensively compare the accuracy impacts of mul-
tiple embedding options in cryptographic API completion tasks. Embedding is the process of automatically
learning vector representations of program elements. Our measurement focuses on design choices of three
important aspects, program analysis preprocessing, token-level embedding, and sequence-level embedding. Our
findings show that program analysis is necessary even under advanced embedding. The results show 36.20%
accuracy improvement, on average, when program analysis preprocessing is applied to transfer bytecode
sequences into API dependence paths. With program analysis and the token-level embedding training, the
embedding dep2vec improves the task accuracy from 55.80% to 92.04%. Moreover, only a slight accuracy ad-
vantage (0.55%, on average) is observed by training the expensive sequence-level embedding compared with
the token-level embedding. Our experiments also suggest the differences made by the data. In the cross-app
learning setup and a data scarcity scenario, sequence-level embedding is more necessary and results in a more
obvious accuracy improvement (5.10%).

CCS Concepts: « Computing methodologies — Machine learning; - Software and its engineering; «
Security and privacy — Software and application security;

Additional Key Words and Phrases: Neural code completion, embedding, deep learning, neural networks,
program analysis, API dependency, cryptography, secure coding, Java

ACM Reference format:

Ya Xiao, Wenjia Song, Salman Ahmed, Xinyang Ge, Bimal Viswanath, Na Meng, and Danfeng (Daphne) Yao.
2024. Measurement of Embedding Choices on Cryptographic API Completion Tasks. ACM Trans. Softw. Eng.
Methodol. 33, 3, Article 56 (March 2024), 30 pages.

https://doi.org/10.1145/3625291

1 INTRODUCTION

Code embedding refers to the process of transforming the program elements into continuous
vectors [5, 24, 59]. This transformation is important for deep learning, as the subsequent model

This work was supported by the National Science Foundation under Grant No. CNS-1929701 and the Virginia Common-
wealth Cyber Initiative (CCI).

Authors’ addresses: Y. Xiao, W. Song, S. Ahmed, B. Viswanath, N. Meng, and D. (Daphne) Yao, Virginia Tech, Blacks-
burg; e-mails: {yax99, wenjia7, ahmedms, vbimal, nm8247, danfeng}@vt.edu; X. Ge, Databricks, Redmond; e-mail:
aegiryy@gmail.com.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike International

4.0 License.

© 2024 Copyright held by the owner/author(s).
1049-331X/2024/03-ART56
https://doi.org/10.1145/3625291

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

https://orcid.org/0000-0002-4030-811X
https://orcid.org/0009-0002-9597-3587
https://orcid.org/0000-0003-0290-5367
https://orcid.org/0000-0001-6030-2068
https://orcid.org/0000-0002-6559-9689
https://orcid.org/0000-0002-0230-5524
https://orcid.org/0000-0001-8969-2792
https://doi.org/10.1145/3625291
http://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3625291
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3625291&domain=pdf&date_stamp=2024-03-15

56:2 Y. Xiao et al.

Table 1. The Overview of Our Comparative Settings

Program analysis preprocessing
Bytecode Program slices API dependence paths
Token-level byte2vec vs. one-hot slice2vec vs. one-hot dep2vec vs. one-hot
embedding (w/LSTM) (w/LSTM) (w/LSTM)
Sequence-level | byteBERT vs. byte2vec | sliceBERT vs. slice2vec | depBERT vs. dep2vec
embedding (w/Transformer) (w/Transformer) (w/Transformer)

Each cell shows the embedding and machine learning model we use for the cryptographic API completion. We have
comparisons between three program analysis preprocessed sequences, token-level embeddings vs. one-hot, and
sequence-level embeddings vs. token-level embeddings.

training and inference are performed on the embedding vectors [10, 17, 40, 52, 54]. Despite much
progress in this area [5, 18, 20, 24, 29, 36, 48, 59], it is still unclear the effectiveness and advantages
of different embedding designs. A side-by-side comparison would help one better design neural
network-based methodologies and harness their power for embedding-based applications.

Our work uncovers the impacts of multiple embedding design choices on the API completion
task, a foundational question in Al-based software engineering, through comprehensive compar-
ative experiments. API completion aims to predict the next API method given the previous code
sequence. It is a basic building block for many software engineering tasks, including code repair
and code generation. In our experiments, we choose a specific application scenario, cryptographic
API completion. Cryptographic APIs are widely known to be error-prone [1, 30, 42, 55, 57]. Misuses,
such as predictable random numbers and insecure hash algorithms, severely threaten software se-
curity. Thus, this task is more challenging and not well handled by existing solutions because,
beyond correctness, security is also required. By experimenting on these challenging APIs, we
observe and report the accuracy impacts of different embedding choices.

There are usually three key steps for training code embedding vectors. First, programs are pre-
processed into certain representations (e.g., bytecode, control flow graphs) that contain meaning-
ful features. This is usually achieved by program analysis techniques. Based on the preprocessed
representations, a basic embedding training vectorizes every single token by gathering its context
information across the entire corpus, which is referred to as token-level embedding. Beyond embed-
ding a single token, an extra step could be conducted to produce embedding vectors for a given
sequence, which is called sequence-level embedding in our article. It requires an extra sequence
model pretraining compared with the basic token-level embedding. Therefore, we identify design
choices of the three main aspects: (i) program analysis preprocessing, (ii) token-level embedding, and
(iii) sequence-level embedding to compare, as shown in Table 1. Such comparison is missing in the
literature and needs to be systematically performed.

Our first comparison group focuses on the impacts of program analysis preprocessing. Pro-
gram analysis is often used to process programs before embedding [4, 9, 23, 58]. This preprocessing
is important, as it decides what information is used for embedding training. For example, Henkel
et al. [24] extract symbolic traces for embedding while the state-of-the-art code embeddings (e.g.,
GraphCodeBERT [22], inst2vec [7]) leverage data flows from graph representations to embed pro-
gram elements. In our work, we compare three program representations—bytecode, program slices,
and API dependence paths—obtained with different program analysis strategies for embedding. We
explain why the three representations are selected in Section 3.1.

Our second comparison group examines the impacts of token-level embedding. We make
comparisons between token-level embedding and the one-hot encoding baseline. One-hot encod-
ing is a basic vectorization approach that indexes N tokens and represents the ith token by an
N-dimensional vector that includes a single 1 at the ith dimension and 0s for other dimensions.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:3

Compared with it, token-level embedding, such as word2vec [31-33], is expected to result in low-
dimensional semantic-aware vectors that could benefit the downstream task training. By the ex-
perimental comparison, we observe how much accuracy improvement the token-level embedding
can gain.

Our third comparison group learns the impacts of sequence-level embedding (also called
contextualized embedding). We make comparisons between sequence-level embeddings and
token-level embeddings. Compared with token-level embedding, sequence-level embedding is
more advanced, because the polysemy issue is handled by assigning different vectors for different
occurrences of a token. However, it also requires an extra expensive sequence language model and
pretraining process to achieve that. For example, the state-of-the-art natural language sequence-
level embedding BERT [17] is obtained by pretraining the Transformer [51] neural network.
Our experimental comparisons aim to answer at what level the advantage of sequence-level
embedding is over token-level embedding. Figure 2 concludes the workflow how we generate the
one-hot vectors, token-level embeddings, and sequence-level embeddings.

To evaluate embeddings with different design choices, we perform API completion tasks on our
Java cryptographic API benchmark. Our benchmark is composed of Java cryptographic code col-
lected from 79,887 Android apps. To ensure verifiability and reproducibility, our Java cryptographic
API benchmark is publicly available on GitHub.!

Next, we explain our research questions along with the comparative experiments designed to
answer them.

RQ1: What are the accuracy impacts of token-level embedding obtained from bytecode,
slices, and API dependence paths in cryptographic API completion, respectively? To an-
swer this question, we pretrain three token-level embeddings, byte2vec, slice2vec, and dep2vec on
bytecode, slices, and API dependence paths, respectively. Bytecode, program slices, and API de-
pendence paths are the outcome of different program analysis preprocessing. The obtained em-
beddings are compared with the basic setting, one-hot encoding, with corresponding program
analysis preprocessing,.

RQ2: What are the accuracy impacts of sequence-level embedding obtained from byte-
code, slices, and API dependence paths in cryptographic API completion, respectively?
To answer this question, we pretrain three sequence-level embeddings, byteBERT, sliceBERT, and
depBERT on bytecode, slices, and API dependence, respectively. They are fine-tuned for the cryp-
tographic API completion and compared with an identical Transformer neural network without
the pretraining knowledge.

RQ3: Are our embeddings effective for cryptographic API completion on new apps? To
answer this, we perform the experiments not only under the basic within-app setting, but also
under the cross-app setting. In the within-app setting, sequences are extracted from Android apps
and randomly split for training and testing. In the cross-app setting, new Android apps are used
to test the model.

RQ4: How well does the state-of-the-art general purpose code embedding work for cryp-
tographic API completion? Besides the program analysis and embedding choices we covered
in Table 1, we further evaluate two state-of-the-art code embeddings, GraphCodeBERT [22] and
CodeBERT [20], for cryptographic API completion. They are two general purpose source code
embedding models pretrained by Microsoft on six programming languages paired with natural
language. We fine-tune the two pretrained models for our API completion task and form an end-
to-end comparison.

https://github.com/Anya92929/DL-crypto-api-auto-recommendation

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

https://github.com/Anya92929/DL-crypto-api-auto-recommendation

56:4 Y. Xiao et al.

Our major findings include:

— Our findings show that program analysis preprocessing plays a significant role in crypto-
graphic API embedding and completion. For both token-level embedding and sequence-level
embedding, the API dependence paths produce higher prediction accuracy, compared with
slices and bytecode. With program analysis, the token-level embedding dep2vec achieves
an accuracy 36% higher than byte2vec. The sequence-level embedding depBERT achieves an
accuracy 45.86% higher than byteBERT without program analysis preprocessing.

— Our findings show that applying embeddings with program analysis significantly improves
task accuracy compared with the one-hot baseline (no embedding). On dependence paths,
the token-level embedding dep2vec and sequence-level embedding depBERT, both outper-
form the one-hot encoding baseline by the accuracy boost of 6% and 7%, respectively, al-
though sequence-level embedding is slightly (0.55%) better than token-level embedding in
our experiments. Considering the expensive cost of sequence-level embedding, token-level
embedding is more desirable.

— Our findings show that the improvements derived from program analysis and embedding
are valid for cryptographic API completion on new apps. In the cross-app learning scenario,
the program analysis guided embeddings depBERT and dep2vec still achieve good accuracy
at 95.75% and 93.58%, respectively. Another observation is the advantage of depBERT over
dep2vec is slightly more obvious by the 2.17% accuracy boost compared with 0.55% in the
basic setting. The sequence-level embedding depBERT is most recommended to be used in
the data scarce situation, as the largest improvement (5.10%) of depBERT compared with
dep2vec is observed on the smallest task dataset with 26,357 dependence paths.

— The state-of-the-art general purpose source code embedding solutions GraphCodeBERT and
CodeBERT are insufficient in our cryptographic API completion tasks with a low accuracy
0f 59.94%. Experiments still show the advantage of applying program analysis preprocessing
in their embedding solutions. GraphCodeBERT substantially outperforms its non-program-
analysis counterpart CodeBERT by an accuracy boost of 20.07%, on average. The exper-
iments also suggest the method-level context is more recommended than the class-level
context for cryptographic API completion.

Significance of research contributions. Our work provides the first quantitative and systematic
comparison of the prediction accuracy of multiple API embedding approaches for neural network-
based code completion. Our rigorous experiments provide new empirical results that have not
been previously reported, including how various domain-specific program analyses improve data-
driven predictions. These quantitative findings help guide and design more powerful and accurate
code completion solutions, leading to high quality and low vulnerability software projects in prac-
tice. As cryptographic API completion is more difficult and requires a deeper understanding of
the code context, we expect our observations to be valid and useful for general code completion
tasks as well. We keep the general evaluation as our further work. We also publish our new cryp-
tographic API benchmark along with our deep learning models to help future research.

2 BACKGROUND
We provide the background of embedding and the cryptographic API completion task. We catego-

rize embedding vectors into token-level embeddings and sequence-level embeddings.

2.1 Token-level Embedding

Token-level embeddings, such as word2vec [31-33], FastText [8, 25], GloVe [39], assign one nu-
meric vector to represent a token. In our work, we follow the skip-gram [31, 32] algorithm to train

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:5

token-level embeddings for API methods and constants. Specifically, a three-layer linear neural
network is used to automatically learn the embeddings of all tokens in an embedding sequence
corpus. The token (API method or constant) to be embedded is the input, and the tokens before
and after it within a sliding window are used as the labels to train the neural network. During the
embedding process, the entire embedding corpus is scanned and all the tokens and their neigh-
bors are used for training. After that, the latent vector at the hidden layer is kept as the embedding
of the input token. In this way, a token’s embedding vector is determined by the statistics of its
neighboring tokens in a large corpus.

2.2 Sequence-level Embedding

Sequence-level embedding assigns a vector for every occurrence of a token. In other words, a
token is represented with different vectors when it appears in different sequences. To generate
this contextualized vector, not only the token itself but also other tokens in a given sequence are
used. There is a neural network-based language model to take a sequence as input and output the
embedding vectors of every token in this sequence. For example, the GPT family [41], BERT [17],
RoBERTa [28], are sequence-level embeddings generated from Transformer neural networks. The
sequence-level embedding ELMo [40] is generated from a BiLSTM neural network. This neural
network is pretrained with carefully crafted tasks for producing the sequence-level embedding.
Therefore, it is also referred to as a pretrained language model. The sequence-level embedding of
a token is dynamically generated by the pretrained language model.

To apply the sequence-level embeddings for downstream tasks, a common way is to use the
pretrained model that produces sequence-level embedding as the initial states. An extra application
layer is added after the embedding layer, and the entire model is fine-tuned with extra data for a
specific downstream task.

2.3 Cryptographic API Completion

We evaluate different embeddings in cryptographic API completion. API completion refers to a
task that suggests one or more next API methods given a preceding sequence of API elements (i.e.,
API methods and constants). We define two types of cryptographic API completion tasks, i.e., next
API completion and next API sequence completion. The former aims to predict one API method in
the next line while the latter produces a sequence of API methods to invoke sequentially.

3 OUR MEASUREMENT SETTING

We perform comparative experiments to answer our research questions. As shown in Table 1, we
compare different design choices of program analysis preprocessing, token-level embedding, and
sequence-level embedding.

3.1 Program Analysis Preprocessing Strategies

We examine the impacts of using program analysis to guide the embedding. There could be unlim-
ited program analysis strategies to extract different program sequences. Specifically, we compare
three types of program sequences: (i) bytecode, (ii) program slices, and (iii) API dependence paths.
The bytecode is from Android apps without program analysis. The program slices are obtained by
conducting interprocedural backward slicing on bytecode. Moreover, the API dependence paths
are extracted from API dependence graphs we construct on program slices with the dataflow de-
pendence between the API calls. We select these three because they embody the increasing levels
of program analysis guidance.

Bytecode sequences. We extract the API sequences directly from the Android bytecode. For each
method implementation, we extract the API methods and constants used in it into one sequence.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

56:6 Y. Xiao et al.

String.getBytes()

’) . . “SHA-256" “SHA-512"
MessageDigest.getinstance(String) MessageDigest.getInstance(String)
i
String.getBytes| UG A YEEN MessageDigest.getInstance(String) l
“SHA-256" g getbytes) SHA 256 _)
MessageDigest.g‘etlnstance(String) MessageDigest.getlnstance(String)
MessageDigest.getInstance(Strin String.getBytes|
geDigest.g (String) "SHA£512" g-getBytes()
M Digest.digest A .
“SHA-512" essageDigest.digest() MessageDigest.digest(byte[]) MessageDigest.digest(byte[])
(a) Two bytecode sequences (b) Slice sequence (c) API dependence graph

Fig. 1. APl and constant sequences from bytecode, program slices, and APl dependency graphs.

There is no ordering between sequences collected from different method implementations. Based
on our observation, the order of the API methods and constants in these sequences is close to their
order in the source code. We cover the bytecode option because it reflects the effect of embedding
without program analysis guidance.

Program slices. We apply a program analysis strategy, interprocedural backward slicing, to obtain
program slices. The slicing starts from the variables used with a cryptographic API invocation. By
backwardly tracing the data flows reaching these variables, all the code statements influencing
the API invocation are kept while irrelevant code statements are excluded. When reaching the
entry point of the current method, we jump to its callers to continue the backward tracing until
the tracked data facts are empty or there is no caller found. In this way, the influencing code
context beyond a local method is also collected. When meeting a self-defined method (i.e., a method
that is written by the developer and is not provided by Java libraries) call, we replace it with its
implementation code if available. An example of program slices is shown in Figure 1(b). A major
difference between program slices and bytecode is that the irrelevant predecessors are removed
by program analysis.

API dependence paths. With program analysis, the code semantic information, such as program
dependencies, can be extracted. We perform the API dependence graph construction and extract
the API dependence paths for embedding. The API dependence graphs are built through dataflow
analysis. We add the data dependence edges between API calls on slices. An example of our API
dependence graph is shown in Figure 1(c). It uses an API or a constant as a node. Two nodes
having the data dependence (def-use) relationship are connected directly. The API dependence
paths are covered in our measurement as a representative of the state-of-the-art code semantic-
based approaches. [7, 22].

Experimental setup of program analysis preprocessing. We implement an interprocedural, context-
and field-sensitive dataflow analysis to achieve our backward slicing and API dependence graph
construction. The analysis is implemented with the Java program analysis framework Soot [50].
Soot takes the Android bytecode as input and transforms it into an intermediate representation
(IR) Jimple. The program analysis (i.e., slicing or API dependence graph construction) is performed
on Jimple IR. We use Soot 2.5.0, Java 8, and Android SDK 26.1.1.

3.2 Token-level Embedding Settings

We perform the token-level embedding training to produce vectors for tokens in an embedding
vocabulary, as illustrated in Figure 2(b).

Cryptographic code identification. All the embeddings are produced from the cryptographic code
corpus we extract from decompiled Android APKs. We refer to the code implemented with
cryptographic API calls as cryptographic code. To identify cryptographic code from an Android
App, we first search all the cryptographic API callsites within the codebase. All the method

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks

56:7

One-hot encoding Get the list of all unique APIs and The one-hot coded vectors are then
(no embedding) convert into vectors. used as model inputs.
Helps convert data into model input. puts.
Each vector has 1 at corresponding seqt
API sequences extracted position and Os at all other positions. q (AL ol of of o of o[o]
from program analysis (oA ol e[o] o[o] o
(o[o[4 o o[o o[]
Al [iTefo e o oo o]
seq1 seq2 [o[o[o[4] o o o] o]
A2 [o[To[oleloo]e] DEDDEDED
M M " elololefelelo[o) seq2 [[o[o[o[o[o] o[o]
[T o[o[o] o[o[o[o]
noR A [a[o[o[a]o[o]o]o]
[oefoa o o o o] P EEEEED
A3 AB AS [ofoJo[o400 o] (o[o] o] o] o] 1] o[9]
A4 AT AB [ofoJoo o 4o e] [o[ol o] o[e[o[i] 0]
A5 A8 A7 [o[ofofo]o[o]1]0] (el o[o[of of of o[3]
A8 ﬂﬂnﬂﬂﬂﬂﬂ The dimension of each vector is the
total number of unique APls.
(a) Workflow of generating one-hot encoded vectors.

Token-level embedding
Learns the co-occurrence of tokens.

For a given sequence, we extract
nearby API pairs within a window
size (e.g., 2) as training samples

API sequence (seq1) Training samples

Ell-T-] s
(A2, A1)
(A2, A3)
(A2, Ad)

n
.n

(A3, A1), (A3, A2)
(A3, Ad), (A3, A5)

(A4, A2)
(na 29)
[o[elol=Ta] QoA

Use the samples to train a skip-gram model. The
size of hidden layer is a hyperparameter. The size of
the output layer is the number of unique APls.

Output layer

Hidden layer

A2

A3

A4

A5

A6

A7

A8

nearby APl is A1

The trained hidden layer weight
matrix contains the embedding
vectors for all APls.

Probability that A1 EE.:\:‘
2 CEET
A I
Mo [(EH
A W
6 [ITE
A EED
s EIEE

The embedding dimension is the
size of the hidden layer.

(b) Workflow of training token-level embedding using skip-gram.

Q, I I heddi

Understands the context of the
entire sequences.

Sequence-level embedding further
considers the position of tokens

[=[<[=]]
+

!

e EiEE

Token
embedding

Position
embedding

Masked Language Model (MLM)

We randomly selected 30% of tokens for the model

to predict (masked) during pretraining.

80% of the time, the tokens are replace with a
special token:

e.g. A1A2A3A4A5
L A1A2A3[MASK] A5

10% of the time, the tokens are replace with a
random token:

e.g.,A1A2 A3 A4 A5

L A1A2A3A7A5
10% of the time, the tokens are kept:

e.g.,A1A2 A3 A4 A5

L A1A2A3A4A5

Input vectors

(Token embedding +
Position embedding)

pretrain

(With MLM and
Transformer layers)

Sequence-level
embeddings
(contextual embeddings)

(c) Workflow of training sequence-level embedding using BERT.

Fig. 2. Workflow of generating one-hot encoded vectors, token-level embedding, and sequence-level embed-
ding. Here, we aim to show the high-level idea of the process and what information each type of embedding
carries. We refer interested readers to the original paper of Word2Vec [32] and BERT [17] for technical

details.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

56:8 Y. Xiao et al.

Table 2. The Library Sources of Our Embedding APls

Source # of embedded APIs

java.security 510
javax.crypto 166

Java platform | java.io 138
java.lang 259
others 374

Android platform 486

Third parties 1,827

signatures within the Java package java.security and javax.crypto (see Table 2) are included in
our search list. Then, we start from these cryptographic API callsites to find other standard API
calls happening before a cryptographic API callsite as its context. However, there might be differ-
ent accurate levels and scopes of the context according to preprocessing. In bytecode sequences,
we can only extract all the previous API calls within the same method of a cryptographic callsites
as its context. When program analysis technique is applied, we are able to generate more mean-
ingful API call context based on its program dependency. In our experiments, a cryptographic API
callsite and its program-wide dependency code is extracted as an inter-procedural (cross-method)
program slice. The entire slice are regarded as cryptographic code and all the previous API calls
within this slice will be gathered as the context of a cryptograhpic API call.

Embedding vocabulary. The embedding vocabulary is collected during the cryptographic code
identification. The vocabulary initially includes the standard JAVA cryptographic APIs. Then, we
scan the App and perform interprocedural backward slicing from the detected cryptographic API
callsites as entry points. In this way, the vocabulary expands with all the encountered API calls
and constants during backward program slicing. When an API call is encountered, we first check
whether it is a self-defined method.? If it is, then the analysis jumps into the implementation of this
method according to the interprocedural slicing algorithm. Otherwise, the API method will be col-
lected as an element in our vocabulary. For the collected API methods, we further filter those that
appear less than five times. For constants, we manually identified 104 reserved string constants
used as the arguments of cryptographic APIs. Other constants that appear more than 100 times
in the slices are also kept in the embedding vocabulary. Finally, we have a vocabulary of 4,543
tokens (3,739 APIs and 804 constants). The API methods include the standard APIs from Java and
Android platforms, as well as some third-party APIs that cannot be inlined because of recursion or
phantom methods (whose bodies are inaccessible during the analysis). Table 2 shows the library
distribution of these API methods.

We train the skip-gram embedding model [32] to obtain the word2vec-like embedding. With dif-
ferent program analysis preprocessing, three types of token-level embeddings—byte2vec, slice2vec,
and dep2vec—are produced.

— byte2vec is the baseline embedding version that applies word2vec [31, 32] directly on the
bytecode corpus.

— slice2vec is the embedding with the inter-procedural backward slicing as the pre-processing
method.

— dep2vec applies API dependence graph construction to guide the embedding training.

2The method defined and implemented by developers within this program.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:9

Experimental setup for token-level embeddings. We follow the convention of the natural language
embedding word2vec to set hyperparameters. The embedding vector length is 300. The sliding
window size for neighbors is 5. We also applied subsampling and negative sampling to randomly
select 100 false labels to update in each batch. Based on our preliminary experiments, we train
embeddings with a mini-batch size of 1,024. The embedding terminates after 10 epochs, because
we did not observe significant improvement by longer epochs and smaller batch size. Our embed-
ding model is implemented using Tensorflow 1.15. Training runs on the Microsoft AzureML GPU
clusters, which support distributed training with multiple workers. We use a cluster with 8 worker
nodes. The VM size for each node is the (default) standard NCé.

3.3 Sequence-level Embedding Settings

We obtain sequence-level embeddings by applying the method of training the well-known natural
language embedding BERT [17] on program sequences, as shown in Figure 2(c).

byteBERT vs. sliceBERT vs. depBERT. On bytecode, program slices, and API dependence paths, we
obtained three different versions of BERT embeddings for API elements: byteBERT, sliceBERT, and
depBERT. These BERT-like API embeddings are produced by pretrained Transformer neural net-
works. We apply the masked language modeling (MLM) task to pretrain them. MLM is a task
that reconstructs language sequences with masked tokens. It predicts the missing tokens for a
given sequence with random masks. The masked tokens in the input sequence are either replaced
by a special token [MASK] or an arbitrary random token in the vocabulary or kept in original
sequences. We set the probabilities of the three situations as 80%, 10%, and 10% and follow the
convention in NLP. The masked tokens are randomly selected with a probability of 30%, and one
sequence is limited to having two masked tokens at most. These are similar to the setting of the
MLM for training BERT [17]. We discard the next sentence prediction (NSP) of BERT, as there
is no corresponding concept of the “next sentence” between two code sequences. Three types
of sequence-level embeddings are trained with identical hyperparameters. Same with the LSTM
training with token-level embedding, the neural network is trained for 10 epochs with a batch size
of 1,024. When training the Transformer model, the input tokens are represented as our token-
level embedding. To apply these sequence-level embeddings in cryptographic API completion, the
pretrained neural networks are fine-tuned by the given task-specific data.

Training parameters. Due to the resource constraint, we cannot thoroughly try every possible
parameter combination (grid search). Instead, we select the optimal parameters with some
preliminary experiments. We considered different numbers of epochs (up to 20), batch sizes (512,
1,024), and learning rates (0.1, 0.01, 0.001). Choosing different learning rates improves the accuracy
by no more than 0.02. After training for 10 epochs, the accuracy increment is less than 0.001
for each extra epoch. Therefore, we chose the final set of parameters (10 epochs, 0.001 learning
rate, and 1,024 batch size) to achieve a balance between computational resources and model
performance.

For the pretraining of our byteBERT, sliceBERT, and depBERT models, we choose the ratio of
masking strategies (80%, 10%, and 10%) following the original BERT paper. We choose the mask
ratio of 30% because some of the sequences are short and we want each sample having one or two
masked tokens. As those parameters are optimized by the authors of BERT, they are also the most
commonly used settings in the NLP field.

Differential evolution (DE) is not a common practice in choosing hyperparameters for deep
learning models, while it is more frequently used for tuning kernel parameters for SVM. Applying
DE on top of LSTM models and evaluating its impact on model performance can form an interesting
research topic by itself. We leave this extension as our future research direction.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

56:10 Y. Xiao et al.

Table 3. Overview of Our Datasets

Dataset | App SetID | Apps | Experiments |

. Embedding
Basic 1 16,048 API Completion
2 64,478 Embedding
3 11,997 | API Completion
Advanced 4 1,819 | API Completion
5 1,055 | API Completion
6 538 | API Completion

Table 4. Embedding Corpora Statistics of the Basic Dataset

Dependence
paths
of tokens 28,887,852 12,341,912 38,817,046

Corpora Bytecode Slices

3.4 Dataset Overview

We conduct experiments on Android apps collected from the Google Play store. We choose the
Android platform because of its widespread use and popularity among users. We collect apps from
various categories to ensure the dataset reflects a diverse usage of Java cryptographic API in prac-
tice. According to the way we split data for training and testing, we have a basic dataset and an
advanced cross-app data setup. Table 3 gives an overview.

3.4.1 Basic Data Split Setting. The basic dataset is composed of 16,048 Android apps from three
categories, 5,176 apps from the business category, 4,581 Apps from the communication category,
and 6,291 apps from the finance category. From these apps, we extracted 707,775 API sequences
from bytecode, 926,781 API sequences from program slices, and 566,279 API sequences from API
dependence graphs. The number of tokens in the three types of sequences is shown in Table 4. The
tokens refer to the APIs or constants in our embedding vocabulary.

For embedding, we use all of the API sequences to produce the token-level embeddings and
sequence-level embeddings. For API completion tasks, we randomly split all the sequences for
training and testing following the ratio of 4:1.

3.4.2 Advanced Data Split Setting. We create an advanced dataset to enable cross-app learning
and validate our findings on new apps. Under this setup, the collected apps are split for embedding
and API completion tasks, respectively. This guarantees that the apps used for API completion
tasks are not seen in the embedding training phase. Our embedding experiments are conducted on
64,478 apps (app set 2), which are much more than the app sets 3, 4, 5, and 6 that we used for API
completion tasks. This consideration is because embeddings are often pretrained with huge data
volumes and released for fine-tuning with smaller task-specific datasets in the real world. Then,
the apps for API completion tasks are split into training and testing sets. This guarantees that the
apps used for testing are never seen in the training. Compared with the basic dataset, the cross-app
setting is more practical and challenging. It evaluates whether the model trained on a set of apps
can be applied to new apps.

In addition, to observe the impacts of the task data volume, we perform API completion training
and testing on four app sets (app sets 3, 4, 5, 6) varying in data sizes. The largest one, App set 3,
is a diverse App set including 11,997 apps from 12 App categories. Besides, there are three smaller

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:11

Table 5. Top-1 Accuracy of the Next APl Token Completion on the Basic Dataset

LSTM Bytecode Slices Dependence Paths
Units | 1-hot [byteZvec 1-hot ‘sliceZvec 1-hot I dep2vec

64 49.78% | 48.31% | 66.39% | 78.91% 86.00% 86.33%
128 53.01% | 53.52% | 68.51% | 80.57% 84.81% 87.75%
256 5491% | 54.59% | 70.35% | 82.26% 84.57% 91.07%
512 | 55.80% | 55.96% | 71.78% | 83.35% | 86.34 % | 92.04%

Table 6. Accuracy of the Next APl Sequence Completion on the Basic Dataset

] Bytecode l Slices l Dependence Paths l
’ 1-hot | byte2vec | 1-hot [slice2vec | 1-hot | dep2vec |
| 43.61% | 44.63% | 64.10% | 85.02% | 82.94% | 89.23% |
We use the LSTM-based sequence model with a hidden layer size of 256 for this task.

App sets (App sets 4, 5, 6) consisting of 1,819 apps from the personalization category, 1,055 apps
from the social category, and 538 apps from the weather category.

Data duplication. For both the basic and advanced dataset, we deduplicate the data in the class file
level to guarantee that the reused class files (e.g., libraries) only appear once when extracting the
bytecode sequences. However, we did not deduplicate the program slices and the API dependence
paths extracted by program analysis. The presence of duplicate slices or paths in the training set
suggests common coding patterns. The frequency of API occurrence helps the embedding model
learn their relationship. Different source code could follow a similar cryptographic function usage
pattern in some cases, as many security principles do not change for various scenarios. Letting
the model directly learn the processed highly frequent sequences can significantly reduce the ex-
pensive data size and training resource requirement. Moreover, since the apps we collected are all
real-world apps, this duplication should also hold for apps in the wild and will not affect the per-
formance after deployment. In the cross-app experiments, our goal is to show the model does not
make predictions because of the duplicated code sequences from the same app. If a usage pattern
is general across multiple apps, then it is reasonable to keep their duplicated occurrence in our
dataset [2].

4 EVALUATION RESULTS

In this section, we report the accuracy of the cryptographic API completion to compare the impacts
of different embedding choices and answer our research questions (RQs). In the evaluation, we
calculate top-1 accuracy that only considers the correctness of the top-1 prediction of the model. It
is calculated as the number of correct top-1 predictions over the total number of predictions. The
top-1 prediction is considered correct if it matches the ground truth from the sequence itself. For
API dependence paths from a graph, there might be multiple correct answers due to the branches

of the graph.

4.1 Performance Improvement from Token-level Embedding (RQ1)

The impact of applying token-level embedding (RQ1) is measured by comparing it with one-hot
encoding on bytecode, slices, and dependence paths, respectively. The accuracies of the API
completion tasks are shown in Tables 5 and 6, and a comparison is shown in Figure 3. We visu-
alize the accuracy differences brought by various design choices, namely, applying token-level

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

56:12 Y. Xiao et al.

Byte code I Dependence paths

Slices
100 -
87.75
w 84.81 80.57
—~ 69.51
X
> 6071 53.01 53.52
g
35 404
[}
1%}
<
20
0 - -
1-hot Token-level embedding

Fig. 3. Comparison of accuracy of with and without token-level embedding and applying different program
analysis preprocessing (based on LSTM-128). The group on the left are results without embedding. The group
on the right are results with token-level embedding. Applying token-level embedding improves the model
performance in all three cases. The three colors represent three different program analysis approaches. With
or without embedding, the dependence path outperforms the other two strategies and the slice outperforms
bytecode. Compared to applying embedding, program analysis preprocessing boosts performance more.

embedding, program analysis preprocessing (i.e., program slicing and API dependence graph
build), or increasing the model sizes in Figure 8 in the Appendix.

Experimental setup for cryptographic API completion tasks. We train LSTM-based models for the
task. For next API completion task, we train the LSTM-based sequence model to accept a sequence
of API methods or constants (¢, t2, . ..,t,-1) and output the next API t,. For next API sequence
completion task, we train the LSTM-based seq2seq (encoder-decoder) model to accept the first half
API sequence (14, 3, . . ., ;) and predict the last half of the sequence (t;+1, tn+2s - - - » f2n)-

We filter our code dataset using CryptoGuard [42], which is a static cryptography API misuse
detection tool. We exclude insecure cryptographic API usage to prevent the embeddings and mod-
els from learning these vulnerable patterns [44]. It also helps eliminate the situations that when
the models predict secure APIs and the ground truth itself (from the original data) is insecure,
such predictions are counted as incorrect answers. This step contributes to a more accurate and
meaningful evaluation of model performance. We limit the maximum number of LSTM steps to
10. We use a batch size of 1,024 and a learning rate of 0.001. The highest accuracy achieved within
10 epochs is recorded. These hyperparameters are selected because no obvious accuracy improve-
ment is observed by longer epochs, smaller batch size, or learning rate. We use the stacked LSTM
architecture with vanilla LSTM cells for the LSTM-based models.

4.1.1 Bytecode vs. Program Slices vs. APl Dependence Paths. Tables 5 and 6 show the accuracy
results of the next API completion and the next API sequence completion, respectively. To uncover
the impact of the program analysis preprocessing, both the token-level embedding (i.e., byte2vec,
slice2vec, dep2vec) and the one-hot encoding baseline are used to train the LSTM models on byte-
code, slices, and dependence paths.

We observe that program analysis preprocessing shows significant benefits. Table 5 shows the
accuracy based on dependence paths is 92%, which is 9% and 36% higher than using slice- and
bytecode-based token-level embedding, respectively. The API completion accuracy with one-hot
encoding is also substantially improved by program analysis. The accuracy with one-hot encoding
increases from 56% on bytecode to 72% on slices, and further to 86% on dependence paths. The
results of the next API sequence completion (Table 6) are also consistent with the conclusion. It

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:13

shows that the accuracy achieved with byte2vec improved by 40.39% with slice2vec, and improved
by 44.60% with dep2vec.

Finding 1: For Crypto API completion with token-level embeddings, program analysis
significantly improves the accuracy by 36.20%,> on average.

4.1.2 Token-level Embedding vs. One-hot Vectors. On each program analysis preprocessing rep-
resentation, we compare the token-level embedding and the one-hot encoding baseline. We ob-
serve significant improvements by applying token-level embeddings on slices and dependence
paths. However, the improvement in bytecode is limited. Table 5 shows that slice2vec improves the
accuracy by 11% from its one-hot baseline. dep2vec improves the accuracy by 6% from its one-hot
baseline. These improvements suggest that slice2vec and dep2vec capture useful information. This
conclusion is also observed in the next API sequence recommendation task. slice2vec and dep2vec
improve the accuracy from their baselines by around 21% and 6%, respectively. In contrast, byte2vec
does not show any significant improvement from its one-hot baseline.

Finding 2: For cryptographic API completion on program slices and API dependence paths,
token-level embedding achieves an average accuracy improvement of 12.02% and 3.97%,
respectively, compared to one-hot vectors.

We also observe higher accuracy achieved by longer LSTM units, which is as expected. However,
the accuracy benefits gained by increasing the model size from LSTM-64 to LSTM-128, from LSTM-
128 to LSTM-256, and from LSTM-256 to LSTM-512, are smaller and smaller.

Overall, the best accuracy is achieved by dep2vec in both tasks, an accuracy of 92.04% in the
next API completion task and an accuracy of 89.23% in the next API sequence completion task. Com-
pared with the basic one-hot encoding on bytecode (no program analysis preprocessing), they
achieve substantial accuracy improvements (36% and 46%, respectively) in both tasks. Although
all the measures, including token-level embedding, program analysis preprocessing, and increas-
ing model sizes, improve the accuracy, the two program analysis preprocessing strategies, program
slicing, and API dependence graph construction, are most effective, resulting in 22.03% and 12.10%
accuracy differences, on average, respectively.

4.2 Performance Improvement from Sequence-level Embedding (RQ2)

Next, we evaluate the effectiveness of sequence-level embedding (RQ2) from the comparison with
token-level embedding on bytecode, slices, and dependence paths, respectively. We fine-tune the
sequence-level embedding (i.e., byteBERT, sliceBERT, or depBERT) with the task-specific training
before applying them to the API completion task. Then, the models are compared with unpre-
trained Transformer networks with token-level embeddings. We use two Transformer neural net-
works with different sizes, namely, Transformer-base and Transformer-small. The Transformer-
base model has 12 hidden layers with size 768 and 12 attention heads. The Transformer-small
model has 4 hidden layers with size 512 and 4 attention heads. Results are shown in Tables 7.
We also show a comparison in Figure 4 and visualize the accuracy differences in Figure 9 in the
Appendix.

4.2.1 Bytecode vs. Program Slices. vs. APl Dependence Paths. Table 7 shows that program anal-
ysis preprocessing is still necessary even with sequence-level embeddings. The accuracy of using

3dep2vec column—byte2vec column in Table 5.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

56:14

Y. Xiao et al.

Table 7. Accuracy of the Next APl Completion with or without Sequence-level Embedding (Pretrain)
on the Basic Dataset

Model Bytecode Slices Dependence Paths
Size Transformer byteBERT Tran.sformer sliceBERT Transformer depBERT
+ byte2vec . + slice2vec . + dep2vec .
. (w. pretrain) . (w. pretrain) . (w. pretrain)
(w/o. pretrain) (w/o. pretrain) (w/o. pretrain)
Small 44.38% 45.21% 83.37% 84.15% 90.96% 91.07%
Base 56.76% 57.59% 84.80% 84.83% 92.80% 93.52%
Byte code mm Dependence paths
Slices
100 92.8 93.52
84.8 84.83

80
§ 9
> 60 56.76 57.5
o
é 40
P

20

0 ; .
No pretrain Sequence-level embedding

Fig. 4. Comparison of accuracy of with and without sequence-level embedding and applying different pro-
gram analysis preprocessing (based on Transformer-base). The group on the left are results without sequence-
level embedding (no pretrain). The group on the right are results with sequence-level embedding (pretrained).
Pretraining slightly improves the model performance in all three cases. The three colors represent three dif-
ferent program analysis approaches. With or without pretraining, the dependence path outperforms the
other two strategies and the slice outperforms bytecode. Compared to applying pretraining, program analy-
sis preprocessing boosts performance more.

bytecode sequences is low (45.21% and 57.59%) compared with program slices and API dependence
paths. With the program analysis, the small and base Transformer neural networks with depBERT
achieve the accuracy of 91.07% and 93.53%, respectively. When there is only token-level embed-
ding, this conclusion still holds. The small and base Transformer neural networks with dep2vec
achieve the accuracy of 90.96% and 92.80%, respectively, which are 46.58% and 36.04% higher than
the byte2vec on bytecode sequences.

Finding 3: For Crypto API completion with sequence-level embedding, program analysis
makes a substantial accuracy improvement of 40.90%,* on average.

According to Figure 4, we observe the impact of program analysis is still the most significant way
to improve the accuracy. The average accuracy differences achieved by program slicing and API
dependence path construction are 33.55% and 7.80%, respectively, which are much more effective
than the sequence-level embedding and a larger Transformer neural network. In Table 7, the small
depBERT that has program analysis preprocessing achieves an accuracy of 91.07%, which is 34.31%
higher than the larger model without program analysis, namely, the base byteBERT.

4depBERT column—byteBERT column in Table 7.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:15

By comparing the Transformer with token-level embeddings in Table 7 and the LSTM with
token-level embeddings in Table 5, we found that the LSTM-512 achieves slightly higher accuracy
than the Transformer-small with a comparable size (hidden size 512).

Finding 4: For Crypto API completion, LSTM-512 shows a 4.22%° accuracy advantage, on
average, over Transformer-small (hidden size 512).

4.2.2 Sequence-level Embedding vs. Token-level Embedding. Sequence-level embeddings only
show slight advantages over token-level embeddings. As shown in Table 7, the accuracy trained
with the sequence-level embeddings is only slightly higher (0.55%, on average) than the Trans-
former neural network with their token-level baselines. One possible reason for this slight im-
provement observed may be attributed to the strong learning ability of the Transformer model.
Through the use of its attention mechanism, the model can effectively learn and comprehend con-
textual information, even with limited embedded information in the input (token-level embedding)
and no pretraining. Another possible reason is the simplicity of programming languages compared
to natural languages. Sequence embedding helps capture the different meanings of the same word
in various positions or contexts. One example is the different interpretations of the word “like” in
the sentence “T like the way you look like.” However, such conditions are less likely to occur in a
programming language, leading to a smaller improvement when being applied to programming
languages than natural languages. Therefore, considering the cost, sequence-level embedding is
not recommended in this case.

Besides, the impact of the neural network size is also more obvious than the impact of applying
sequence-level embedding. As shown in Table 7, the base Transformer improves the accuracy by
12.38%, 1.43%, and 1.84%, on bytecode, slices, and dependence paths, respectively, compared with
the small Transformer.

Finding 5: Although resulting in slight accuracy improvement (0.55%,° on average),
sequence-level embedding is not the first recommended strategy to improve the crypto-
graphic API completion, compared with program analysis and a larger model.

4.3 Cross-app Evaluation (RQ3)

Cross-app learning is a practical scenario in which we expect a pretrained model can be applied to
other projects unseen in the training phase. Therefore, we conduct experiments to verify whether
our conclusions still hold for new apps that never appear in the training.

Tables 8 and 9 show the API completion experiments on our advanced dataset (see Section 3.4),
which follows the cross-app learning scenario. App sets 3, 4, 5, and 6 include apps that generate
task-specific data. For every app category, we randomly select 80% apps of this category to generate
training data and 20% apps to generate testing data. In other words, our training and testing data
is cross-app but within a category.

Tables 8 and 9 compare sequence-level embeddings (i.e., depBERT and byteBERT) with the corre-
sponding token-level embeddings (i.e., dep2vec and byte2vec). DepBERT and byteBERT are Trans-
former neural networks pretrained on app set 2 (see Table 3) with Masked Language Model
(MLM). We use the small Transformer neural network for all the experiments. Figure 10 in the

’Compare the Transformer columns in Table 7 with the byte2vec, slice2vec, and dep2vec columns in Table 5.
®Compare between BERT columns and Transformer columns in Table 7.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

56:16 Y. Xiao et al.

Table 8. Accuracy of the Next APl Completion with or without Sequence-level Embedding
(Pretrain) on Dependence Paths of the Advanced Dataset (Cross-app Learning)

Transformer depBERT
App Set | # of cases + dep2vec . Improvement
. (w. pretrain)
(w/o. pretrain)
3 813,737 97.23% 98.24% 1.01%
4 97,224 98.66% 99.54% 0.88%
5 88,143 95.09% 96.78% 1.69%
6 26,357 83.34% 88.44% 5.10%
Ave. 256,363 93.58% 95.75% 2.17%

Table 9. Accuracy of the Next APl Completion with or without Sequence-level
Embedding (Pretrain) on Bytecode Sequences of the Advanced Dataset
(Cross-app Learning)

Transformer
byteBERT
App Set | # of cases + byte2vec yte . Improvement
. (w. pretrain)
(w/o. pretrain)
3 7,275,324 79.72% 80.00% 0.28%
4 814,551 86.91% 87.21% 0.30%
5 840,381 77.46% 77.96% 0.50%
6 220,543 65.05% 67.41% 2.36%
Ave. 2,287,700 77.29% 78.15% 0.86%

Appendix shows the accuracy differences achieved by program analysis and sequence-level em-
bedding on App sets 3, 4, 5, and 6, respectively.

We observe similar conclusions with the basic dataset about program analysis. The experiments
on API dependence paths (Table 8) again show significant advantages compared with bytecode se-
quences (Table 9). Program analysis preprocessing makes significant accuracy differences (16.95%,
on average) in all situations.

A minor difference we observe is that sequence-level embedding brings more obvious improve-
ment than on the basic dataset. As shown in Table 8, the average improvement of applying the
sequence-level embedding is 2.17%. This indicates that sequence-level embedding is more signif-
icant when we train our models in the cross-app scenario. We observe that the sequence-level
embedding substantially improves the accuracy for small data sizes. It achieves an accuracy 5.10%
higher than the Transformer with dep2vec.

From Table 9, we also observe the improvement of applying sequence-level embedding byteBERT
on bytecode sequences. However, without program analysis, the improvements (0.86%, on average)
are quite small.

Finding 6: In the cross-app setting, sequence-level embedding achieves more obvious ac-
curacy improvements (2.17%, on average) compared with the basic data split setting. We
recommend using sequence-level embedding in cross-app learning when the data size is
small.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:17

Table 10. Accuracy of the Next APl Completion by Fine-tuning the
General Purpose Pretrained Model GraphCodeBERT and CodeBERT

App GraphCodeBERT CodeBERT
Set | Method-level | Class-level | Method-level | Class-level
Context Context Context Context
4 60.45% 39.87% 41.72% 30.82%
5 64.53% 37.83% 41.29% 31.80%
6 54.84% 35.25% 36.60% 31.32%
Ave. 59.94% 37.65% 39.87% 31.31%

4.4 Comparison with State-of-the-art (RQ4)

Besides the design choices we covered, we further experiment on two state-of-the-art sequence-
level embeddings, GraphCodeBERT [22] and CodeBERT [20]. GraphCodeBERT and CodeBERT are
general-purpose code embedding models pretrained by Microsoft. They adopt the Transformer-
based neural architecture and pretrain it on CodeSearchNet dataset, which includes 2.3 million
functions of six programming languages paired with natural language description. The differences
between them are their code preprocessing parts and sequence-level embedding tasks. CodeBERT
treats code as a sequence of tokens and is pretrained MLM. GraphCodeBERT uses program analy-
sis to extract dataflow information as input and is pretrained by two extra structure-aware tasks
introduced by the authors.

Table 10 shows the next API completion experiments on our app sets 4, 5, and 6. We decompiled
.apk files into source code for the neural network inputs, although there might be lost information
due to obfuscation. However, the amount of information loss caused by obfuscation is equal to
our three methods (i.e., bytecode sequences, slices, and dependence paths), CodeBERT, and Graph-
CodeBERT. Therefore, we think it still forms a fair comparison. For each cryptographic API call,
we extract two types of source code context for it: the method-level context and the class-level
context. The former extracts the previous code within the wrapper method where the target call
locates while the latter collects the previous code lines found in the same class of the target call.
We fine-tune the two models with our data for 10 epochs with batch size 16. We use this setting
because no substantial improvement is observed by longer epochs or smaller batch sizes.

Finding 7: The state-of-the-art general purpose pretrained models only achieve a low ac-
curacy (59.64% by GraphCodeBERT, on average) for cryptographic API completion. The
program analysis preprocessing and the method-level context are recommended.

We have three observations from Table 10. First, the best accuracy is achieved by GraphCode-
BERT with the method-level context. However, the accuracy is still at a low level, an average of
59.94%. Second, GraphCodeBERT substantially outperforms CodeBERT in identical data and con-
text settings. When using method-level context, GraphCodeBERT has an accuracy of 20.07% higher
accuracy than CodeBERT, on average. When using class-level context, GraphCodeBERT achieves
6.34% higher accuracy, on average. This confirms our findings 1 and 3 that program analysis con-
tributes a substantial improvement to the embeddings. Another observation is that method-level
context is much better than class-level context. With GraphCodeBERT, the method-level context
outperforms the class-level context by 22.29% accuracy improvement, on average. With CodeBERT,
the method-level context results in an 8.80% higher accuracy, on average. The reason might be that
the class-level context includes much more irrelevant information and makes the prediction worse.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

56:18 Y. Xiao et al.

Furthermore, with the rapid development of large language models, their application in code
completion and code repair has been discussed widely. Recent work [45] evaluates ChatGPT, a
conversational language model, on bug fixing and code repairing in Python. The results show that
ChatGPT is able to fix 19 out of 40 simple bugs, comparable to other state-of-the-art solutions.
However, while the results look promising, the queries are simple code snippets that have a few
lines. It remains unclear how well ChatGPT can parse complex code context in large programs. Its
performance in identifying vulnerable code (beyond simple syntactic and logic bugs) and provid-
ing secure code suggestions by itself could form an interesting research topic. Other large language
model-powered code completion tools, such as Copilot, have also been published in recent years.
These models are trained with a huge amount of source code without any program analysis pre-
processing. Due to limited resources, we are unable to train comparable models from scratch on
program analysis processed data. We leave those comparisons as our further work.

We summarize our major findings from experiments.

— Program analysis preprocessing is very important even with advanced embedding options.
With all the embedding options (sequence-level embedding, token-level embedding, or one-
hot encoding), program analysis makes big improvements in API completion accuracy. With-
out program analysis, the best accuracy on bytecode with the most advanced byteBERT is
only 57.59%. With the API dependence graph construction, depBERT on dependence paths
achieves the highest accuracy of 93.52% on the basic dataset.

— Applying token-level embedding in API completion task training makes substantial
improvement on program analysis process code corpora. On slices and dependence paths,
the LSTM models trained with the token-level embedding slice2vec and dep2vec show
significant accuracy improvements by 12% and 5%, respectively, compared with the one-hot
vectors.

— The accuracy improvement of sequence-level embedding (0.55%, on average) is not obvious
under the basic setting. Hence, we do not recommend sequence-level embedding in that
case. Meanwhile, we observe more significant improvements (5.10%) in sequence-level
embedding under the cross-app scenario when the task-specific data size is small (App set
6). Thus, we recommend it for cross-app scenarios with small task-specific data.

4.5 Analogy Tests of Token-level Embedding

We perform the analogy tests to intuitively show the quality of token-level embeddings. Besides
the impact on downstream tasks, good embedding vectors should also reflect the semantics of a
token and its relationship with other tokens. In natural language processing, the quality of embed-
ding is usually evaluated through analogous pairs (e.g., men — women = king — queen) [31-33].
Therefore, following the practice in the natural language field, we design a few analogy tests to
help understand the quality of API embeddings based on different program analysis methods. In
our work, we define analogous pairs as two pairs of APIs or constants, (a and a’) with (b and b’),
having a high degree of relational similarity (i.e., analogous) in terms of some programming prop-
erty. For Java cryptographic code, we identify four categories of analogous pairs as follows. We
show examples in Table 11.

Direct Dependency. For two APIs where one always accepts the other’s output, they form a pair
having a direct dependency. For example, after a KeyGenerator instance is created by KeyGenerator
.getInstance(.), it always needs to be initialized through KeyGenerator.init(.). The analogous
relation could also be found between KeyStore.getInstance(.) and KeyStore.load(.) where the
latter loads the required information to the KeyStore instance created by the former. We view the
two pairs as analogous pairs under this category.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:19

Table 11. Four Categories of Analogous Pairs We Define among APl Methods and Constants

Category Examples of Analogous Pairs # of analogies
ay javax.crypto.KeyGenerator: javax.crypto.KeyGenerator getInstance(java.lang.String)
Direct ai javax.crypto.KeyGenerator: void <init>(int) 4
Dependency bl java.security.KeyStore: java.security.KeyStore getInstance(java.lang.String)
b{ java.security.KeyStore: void load(java.io.InputStream,char[])
az javax.crypto.KeyGenerator: javax.crypto.KeyGenerator getInstance(java.lang.String)
Semantic aé javax.crypto.KeyGenerator: javax.crypto.SecretKey generateKey() 4
Symmetry bz java.security.KeyPairGenerator: java.security.KeyPairGenerator getInstance(java.lang.String)
bé java.security.KeyPairGenerator: java.security.KeyPair generateKeyPair()
as | "Aes"
Argument aé javax.crypto.KeyGenerator: javax.crypto.KeyGenerator getInstance(java.lang.String) 4
Symmetry b3 | "Rsa"
bé java.security.KeyPairGenerator: java.security.KeyPairGenerator getInstance(java.lang.String)
as Jjavax.crypto.Cipher: byte[] doFinal(byte[])
Syntactic a; javax.crypto.Cipher: int doFinal(byte[],int) 2
Variants b4 javax.crypto.Mac: byte[] doFinal(byte[])
b; javax.crypto.Mac: void doFinal(byte[],int)

We give a representative example for each category, where two pairs (a and a’ vs. b and b’) have a high degree of
relational similarity (i.e., analogous) in terms of some programming property. For each category, the number of
analogies used in our top k evaluation (Table 12) is also shown.

Semantic Symmetry. For two classes KeyGenerator and KeyPairGenerator, the former generates
secret keys for symmetric cryptography while the latter generates keys for asymmetric cryptogra-
phy. There is a symmetry relationship between their APIs. For example, they both have the APIs
getInstance(String) to create instances and APIs to generate the key.

Argument Symmetry. There is an analogous relation between API - constant pairs. For ex-
ample, symmetric cipher "AES" can be passed to javax.crypto.KeyGenerator: javax.crypto.
KeyGenerator getInstance(java.lang.String) asan argument. For asymmetric ciphers, "RSA" and
API java.security.KeyPairGenerator: java.security.KeyPairGenerator getlInstance(java.lang
.String) have a similar relation.

Syntactic Variants. Some APIs share the same name but differ in their full signatures. These APIs
are functionally equivalent but have different types of arguments or return values. We name them
syntactic variants. For example, there are several APIs with the same name doFinal(.) of the Java
class Cipher and Java class MAC.

Based on the analogous pairs, we define 14 tests. We calculate the vector of the embedded object
b’ based on the other three vectors of a, a’, and b. If the actual embedding vector of b’ appears in
the top k nearest list of the calculated one (ideal value of b’), then we say this analogy achieves
rank k. Examples of how to calculate rank k are shown in Figure 5. The results of the 14 tests for
dep2vec, slice2vec, and byte2vec are listed in Table 12.

In this small-scale analogous pairs evaluation, dep2vec performs the best. dep2vec achieves the
best rank 12 times of the 14 test cases. slice2vec does well in some cases but performs poorly in
the syntactic variants category. This is likely because the syntactic variant APIs usually appear in
different contexts in slices, making slice2vec fail to recognize their similarity. For other more com-
plicated relationships such as semantic symmetry or argument symmetry, the APIs and constants
belonging to a pair often appear far away from each other in the code, increasing the difficulty of
the test.

5 CASE STUDIES AND DISCUSSION

In this section, we provide a few case studies and discuss the practical design implications derived
from our experiments.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

56:20 Y. Xiao et al.

a a Closest point rank: & Closest point rank:
. » / .
. 1. b P 1. bl
b A 2. bl P 2. b2
/ideal b 3 B © Jideal b’
2 3 4. .. a’ 100. b
! H
b b/’ b .
. . rank = 1 ¢ l
(top rank, rank = 100
good analogy)

. . PP ; (low rank,
analogous pairs (a,a’) and (b,b") given (a,a’) and b, calculate the ideal gthfe relatlor;al S'T;:'afgy 'T IO‘IN' ¥ would bad analogy)
should have high relational similarity ~ value of 5 =b—a+a’ © tar away from the ideal value
(a—a) = (b-b) find the closest points to the ideal b’

Fig. 5. Example of relational similarity of analogous pairs and how embedding rank is calculated. Generally,
top rank implies the target embedding vector is of high quality, reflecting the semantics of the API well.

Table 12. The Rank k of 14 Analogous Pairs in
Different Embedding Vectors

Rank k (of correct vector)

Category dep2vec slice2vec byte2vec

2 2 50

Direct 2 4 14
Dependency 3 13 41
1 2 42

2 65 2

Semantic 20 3 8
Symmetry 9 204 385
4 239 355

Argument 1 94 5
Symmetry 1 49 16

15 84 2
Syntactic 9 95 249
Variants 2 326 191
9 278 419
Average 5.7 104 127

Smaller k suggests more accurate embedding
vectors that better maintain analogous relationships.
dep2vec outperforms others in most cases.

5.1 Case Studies

To help interpret how program analysis and embedding vectors help API completion, we show
several case studies.

Case Study 1. This case study is on the effectiveness of the API dependence graph construction.
Figure 6(a) shows a slice-based test case that is mispredicted by both slice2vec and its one-hot
baseline. For digest calculation, it is common for MessageDigest.update(.) to be followed by
MessageDigest.digest(.), appearing 6,697 times in training. However, Figure 6(a) shows a reverse
order, which is caused by the if-else branch shown in Figure 6(b). When MessageDigest.update
(.) appears in an if branch, there is no guarantee which branch would appear first in slices. This
reverse order is less frequent, appearing 1,720 times in training. Thanks to the API dependence
graph construction, this confusion is eliminated, which predicts this case correctly.

Case Study 2. This case study is on the ability to recognize new previously unseen test cases. The
slices in Figures 7(a) and 7(b) slightly differ in the arguments of the first APL slice2vec makes the
correct predictions in both cases, while its one-hot baseline fails in Figure 7(a). MessageDigest
.getInstance(String) appears much more frequent than MessageDigest.getInstance(String,
Provider) in our dataset. Specifically, the former API appears 207,321 times, out of which 61,047

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:21

Input

String.getBytes()

MessageDigest.getInstance(.)
“SHA-256"
MessageDigest.digest(.)

Next token (Ground truth):
MessageDigest.update(.)

MessageDigest.getinstance(.)

if condition

| MessageDigest.update(.) |

Prediction (with 1-hot encoding)
SecretKeySpec.<init>(.)

MessageDigest.digest(.)

Prediction (with slice2vec)
SecretKeySpec.<init>(.)

(a) (b)

Fig. 6. Case Study 1. (a) A slice sequence that is predicted incorrectly. (b) The model trained on APl depen-
dence graphs makes the correct prediction.

Input Input
MessageDigest.getInstance(String,Provider) ~ MessageDigest.getInstance(String)
“SHA-512" “SHA-512"

MessageDigest.reset(.)

MessageDigest.reset(.)

Next token (Ground truth):
MessageDigest.digest(.)

Next token (Ground truth):
MessageDigest.digest(.)

Prediction (with 1-hot encoding)
MessageDigest.getInstance(String)

Prediction (with 1-hot encoding)
MessageDigest.digest(.)

Prediction (with slice2vec)
MessageDigest.digest(.)

Prediction (with slice2vec)
MessageDigest.digest(.)

(a) (b)

Fig. 7. Case Study 2. (a) A test case that is correctly predicted with slice2vec, but incorrectly with a one-hot
vector. (b) A test case similar to (a), but both slice2vec and one-hot give the correct prediction.

times are followed by the expected next token MessageDigest.digest(.). In contrast, the latter
API—where one-hot fails—only appears 178 times, none of which is followed by MessageDigest.
digest(). In slice2vec, the cosine similarity between MessageDigest.getInstance(String,Provider
) and MessageDigest.getInstance(String) is 0.68.” This similarity, as the result of slice2vec em-
bedding, substantially improves the model’s ability to make inferences and recognize similar-yet-
unseen cases.

5.2 Practical Design Implications

Our findings empirically demonstrate that, among various design choices, applying program anal-
ysis brings the most significant improvement in the cryptographic code completion task, up to
45.8%. While upgrading to larger models and increasing model sizes also boost the accuracy, the
significance of improvements is not comparable to applying semantically meaningful preprocess-
ing. We observe only a 2.45% improvement when upgrading the Transformer model size. While

7For one-hot vectors, this similarity is 0.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

56:22 Y. Xiao et al.

large language models substantially changed the natural language processing field, applying them
to programming languages as is may not be ideal. As shown in Section 4.2.2, pretraining provides
only trivial enhancement to the model performance. This result suggests that instead of consum-
ing high computational power for a slight boost, one should consider how to incorporate the most
effective information for the prediction tasks.

Another key contribution of our article is the comparison between different program analysis
strategies. The evaluation reveals that the dependence path brings the best accuracy. A possible
reason could be that the analysis goes beyond the method boundary and collects dependence paths
across the entire program. In this way, all information related to the target API is preserved in the
path and gets embedded into the input. Therefore, a key step in building a code completion model
is to incorporate program analysis, and the dependence path is a recommended method.

After deploying a code completion tool, a practical use scenario is to predict the next tokens
on uncompleted programs. There exist more challenges when applying program analysis to code
under development. Incorporating methods such as partial program analysis (PPA) [15, 16] is
an important next step.

Soundness. Our conclusions are based on a rigorous approach with carefully controlled exper-
iments. For the three dimensions, program analysis, token-level embedding, and sequence-level
embedding, we measure the impact of a specific design by comparing the API completion trained
with or without it.

Limitations. We briefly discuss our limitations and threats to validity. First, we perform security
sanitization to filter insecure code in our dataset. However, security sanitization relies on a static
analyzer that may not be perfect. Second, we apply static analysis to extract program slices and
dependence paths. However, static analysis tends to overestimate execution paths. Thus, the slices
and dependence paths used for learning might not necessarily occur. Third, we do not try other
embedding techniques such as ELMo [40]. We met an incompatibility issue when adapting the
published ELMo code for our API completion task. The published code requires outdated libraries
such as TensorFlow v1.2 and CUDA 8, while our learning environment only supports CUDA 9 or
later. We will consider adding more embedding models in the future. Last, our work focuses on
Java cryptographic APIs. The generalizability to other languages, such as Python, is out of the
scope of this work.

An internal threat to validity is that we use identical training hyperparameters for all the API
completion experiments. When applying different program analysis and embedding techniques,
we train neural networks with identical training hyperparameters. We did not tune hyperparame-
ters to find the best practices for every case. An external threat to validity comes from the dataset
we use in the measurement. We only perform API completion experiments with Java cryptographic
API benchmark, although the embedding method is for general purposes. We choose Java cryp-
tographic APIs, because it is complicated and the code completion task is more challenging. Our
future work will extend the benchmark with more diverse APIs to confirm our results.

6 RELATED WORK

There are two main branches of code embedding solutions.

Embedding without program analysis. First, a line of research develops pure data-driven solutions
on general source code tokens without program analysis [3, 12, 14, 20, 26, 27, 46, 49]. They train
neural network solutions to take as input programs that are treated as sequences of source code
tokens. In Reference [12], Buratti et al. claimed that the language model built on top of raw source
code is able to discover abstract syntax tree (AST) features automatically.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:23

Embedding with program analysis. Second, some studies (e.g., References [4, 9, 23, 58]) leverage
the program structural information through program analysis. For example, the authors of Refer-
ence [58] learned code embedding after constructing the graph representations (e.g., control flow
graphs, data flow graphs) of code. Hellendoor et al. [23] advocated a hybrid embedding method
that considers both the graph structure and the raw sequences to overcome the size limit of graphs.
To remove noises in code, Henkel et al. performed intra-procedural symbolic execution first and
trained embedding vectors of symbolic abstractions from symbolic traces [24]. However, there
have not been systematic studies on how various hybrid approaches compare with a pure data-
driven approach or with each other, in terms of downstream task performance.

Since there are various program intermediate representations (IRs) under program analysis,
the embedding objects also vary from approach to approach. For example, Henkel et al. obtained
embeddings for self-defined symbolic abstractions. Ding et al. [18] obtained embedding vectors
asm2vec for assembly code instructions. Ben-Nun et al. [7] embedded LLVM IR instructions of
code. Although the idea of leveraging the program structural information in embeddings is iden-
tical, these embeddings for low-level instructions or LLVM IRs cannot be directly compared with
embeddings for API elements. Our dep2vec and depBERT can be viewed as graph-based embedding
approaches applied to API elements.

A line of work focuses on API embeddings and related tasks [6, 11, 13, 19, 21, 35, 36, 56]. Our
work also lies in this category. Nguyen et al. [35, 36] use API sequences in source code to pro-
duce embeddings for Java APIs and C# APIs. Using these vectors, they successfully mapped the
semantic similar Java APIs with C# APIs. Our byte2vec can be viewed similarly to it, as our API
call sequences from bytecode are similar to their source code order. Chen et al. [13] trained the
API embedding based on the API description (name and documents) and usage semantics. The ob-
tained API embeddings are used to infer the likely analogical APIs between third-party libraries.
However, these solutions employ embeddings to help map analogical APIs, which is different from
our task, API completion. In API completion work [34, 37, 38, 43, 47], there is either no discussion
about the impacts derived from different embedding options.

7 CONCLUSION

Our measurement study, including the new benchmark, provides deep insights into the strengths
and weaknesses of neural network techniques in the context of code completion. Our quantita-
tive experimental results highlight the importance of program-specific analysis, which brings the
most significant improvement for the code completion task, even with powerful data-driven deep
learning approaches. The direct application of neural network approaches originally designed for
natural languages may not give optimal accuracy, as programming languages have unique charac-
teristics. Therefore, we emphasize the need for careful consideration and appropriate preprocess-
ing when adapting natural language processing techniques for code-related tasks. Our ongoing
and future work is on designing new neural architectures specific to software engineering tasks.

APPENDICES
A HYPERPARAMETER SELECTION IN OUR MEASUREMENT STUDY

There are many hyperparameters in our measurement study. Within each comparison group, we
keep identical hyperparameters to guarantee a fair comparison.

A.1 Hyperparameters for Training LSTM

With specific embeddings, we need to train a neural network model (e.g., LSTM or Transformer) to
perform API completion. For those comparisons, we choose the number of epochs, learning rate,

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

56:24 Y. Xiao et al.

and batch size through some preliminary experiments. We train the LSTM model with slice2vec
with different batch sizes, and learning rates, and check their accuracies within 20 epochs.

Based on our observation in Table 13, the accuracy differences between batch sizes 1,024 and
512 are slight. We use batch size 1,024 to reduce the training time. We compare the LSTM trained
with learning rates of 0.001, 0.01, and 0.1. Their difference is also small. Therefore, we use batch
size 1,024 and a learning rate of 0.001 for all of the training tasks for API completion. For epoch,
we found that the accuracy improvement after epoch 10 is negligible.

Table 13. The Prediction Accuracies Obtained by LSTM
with slice2vec with Different Hyperparameters

Batch size | Learning rate | Epoch | Accuracy
1,024 0.001 1 0.47
512 0.001 1 0.48
1,024 0.01 1 0.48
1,024 0.1 1 0.49
1,024 0.001 10 0.83
1,024 0.001 20 0.83

A.2 Hyperparameters for GraphCodeBERT and CodeBERT Training

We fine-tune the pretrained model GraphCodeBERT and CodeBERT on our dataset. To determine
the batch size, we try different batch size options in fine-tuning GraphCodeBERT on our dataset
6. The accuracy results after 10 epochs are shown in Table 14.

Table 14. The Prediction Accuracies
Obtained by GraphCodeBERT
Fine-tuned with Different Batch

Size Options
Batch size | Epoch | Accuracy

512 10 0.38
256 10 0.48
128 10 0.51

64 10 0.53

32 10 0.54

16 10 0.55

8 10 0.55

Table 14 suggests that a smaller batch size could result in higher accuracy. When we decrease
the batch size from 512 to 16, the prediction accuracy keeps increasing. However, it also shows
that batch size 16 is good enough as smaller batch size 8 results in no improvement. Therefore, we
apply batch size 16 to all the comparative experiments on GraphCodeBERT and CodeBERT.

A.3 Impact of Different Design Choices on Prediction Accuracy

We report the improvement brought by different design choices, including embedding strategies,
program analysis preprocessing, and model size, on the API completion task prediction accuracy
(Figures 8-10).

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:25

Improvement from applying token-level embedding

LSTM size
64 128 256 512

Byte code- -1.47 0.57 -0.32 0.16

Program slices- 12.52 12.06 11.91 11.57 10 -5 0 5 10 15 20 25 30
Accuracy Difference(%)

Dependence. 33 294 6.50 5.70
paths

(a) Token-level embedding over one-hot encoding
(Acc - -Acc

token-level embedding no embedding)

Improvement from applying different program analyses

LSTM size LSTM size
64 128 256 512 64 128 256 512
No Embedding 16 61 | 15.50 15.44 15.98 No Embedding SEIGHH 116,30 14.22 | 14.56
(One-hot) (One-hot)
Token-level _ Token-level _
Embedding 30.60 | 27.05 | 27.67 | 27.39 Embedding 7.42 7.18 8.81 8.69
b) Program slice over byte code (c) Dependence paths over program slice
(Accslice Accbyte code) (Accdependence path - Accslice)

Improvement from applying different sizes of LSTM models

& & &

& b"’: &’5; & eﬁ%

P S @y S @(7 €

@ﬁ&" Q“%\& £ @gb"* Q@Z‘\\& Sk @*::b@ Q<°2'\~° Sk

NoEmb.. 353 212 -1.19 1.90 1.84 -0.24 0.89 1.43 1.77
(One-hot)

Token-level. 537 166 1.42 1.07 1.69 3.32 1.37 1.09 0.97
Embedding

(d) LSTM-128 over LSTM-64 (e) LSTM-256 over LSTM-128 (f) LSTM-512 over LSTM-256
(ACCLSTM-’IZS - ACCLSTM-64) (ACCLSTM—ZSB - ACCLSTM—1 28) (ACCLSTM—512 - ACCLSTM—ZSG)

Fig. 8. The accuracy differences of token-level embedding, program analysis preprocessing, and increasing
model sizes. (a) shows the accuracy difference of token-level embedding, which are the accuracies achieved
with token-level embedding minus the accuracies achieved without token-level embedding. (b) shows the
accuracy difference of program slicing, which is the accuracies achieved on program slices minus the accu-
racies achieved on bytecode sequences. (c) is the accuracy difference of APl dependence graph construction,
which is the accuracies on APl dependence paths minus those on program slices. (d) (e) (f) are accuracy
differences of increasing the LSTM hidden vector size from 64 to 128, from 128 to 256, and from 256 to 512,

respectively.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

56:26 Y. Xiao et al.

Improvement from applying different program analyses
40
Transformer model size Transformer model size

Small Base Small Base

w/o seq-level w/o seq-level
embedding- 7.59 8.00 Nt her 33.99 |128:04 k20

(no pretrain) (no pretrain)
r10

w seqg-level w seg-level
embedding- 6.92 8.69 IR 39.94 2724 Lo

(pretrain) (pretrain)

(a) Program slice over byte code (b) Dependence paths over program slice

(%)@duaiayig Adeandoy

(ACCince - ACbete code) (ACCdependence path - Accslice)
Improvement from applying Improvement from applying
sequence-level embedding different sizes of Transformer models

& @
N S
S & & ¥
Co S ° G S
o RNE KP ¢ 2F KP
g @*&b Ly R B Y R
N /
°© w/o seq-level
8 small- 0.83 0.78 0.11 embedding 112 38" 1,43 1.84
IS (no pretrain)
@
£ level
o w seq-leve
B Base- 0.83 0.03 0.72 embedding” 12.38 0.68 2.45
© (pretrain)
|_
(c) Sequence-level embedding (d) Transformer-base over
over token-level embedding Transformer-small
(Accsequence-level embedding - ACCno pretrain) (ACCTransformer-base - ACCTransformer-small)

Fig. 9. The accuracy differences of sequence-level embedding, program analysis preprocessing, and increas-
ing model sizes. (a) shows the accuracy difference of slicing, which are the accuracies achieved on program
slices minus the accuracies achieved on byte code sequences. (b) is the accuracy difference of APl depen-
dence graph construction, which is the accuracies on APl dependence paths minus those on program slices.
(c) shows the accuracy difference of applying sequence-level embedding, and (d) is the accuracy differences
between using Transformer-small and Transformer-base neural networks.

A4 Applying Deep Learning to Software Engineering Checklist

In this section, we provide details of our design choices for deep learning models following the
DLA4SE guidelines in Reference [53].

Step 1: Preprocessing and Exploring Software Data. We extract API sequences from 16,048
Android apps for our experiments. Our program analysis preprocessing approaches (i.e., bytecode,
program slices, and dependence graph) yield 708k, 927k, and 566k sequences, respectively (Sec-
tion 3.4). The data size is sufficient for large deep learning models to learn from. We use 80% of the
data for training and 20% for testing.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:27

Improvement from applying Improvement from applying
program analysis preprocessing sequence-level embedding 20
(cross-app learning) (cross-app learning) 5
Dataset # Dataset #

5 3 4 5 6 10

3 4 6
wj/o seqg-level 5
embedding - AN 17.63 | 18.29 Byte code- 0.28 0.30 0.50 2.36
(no pretrain) o
-l | _
embedding JRERY EEPRPINEY Decpendence 101 088 172 5.10 5
(pretrain) paths 10

(a) Dependence paths over byte code (b) Sequence-level embedding over token-level embedding
(Acc - Acc, (Acc -Acc

dependence path byte code) 'sequence-level embedding no pretrain)

(%)a2uauay1g Adeinddy

Fig. 10. The accuracy differences of sequence-level embedding, and program analysis preprocessing one new
App sets 3, 4, 5, 6. (a) shows the accuracy difference of program analysis preprocessing (program slicing +
API dependence graph construction), which are the accuracies achieved on APl dependence paths minus
the accuracies achieved on bytecode sequences. (b) is the accuracy difference of sequence-level embedding,
which is the accuracies achieved with sequence-level embedding minus the accuracies achieved without
sequence-level embedding.

Step 2: Perform Feature Engineering. We use three different strategies to extract API se-
quences from Android apps and train embedding vectors representing the API. The corresponding
API embedding sequences are used as input to the model. The dataset is labeled, as we have the
ground truth for our API prediction tasks. For the token prediction task, the ground truth is the last
API token in the sequence. For the sequence prediction task, the ground truth is the API sequence
following the input sequence. Examples of API sequences generated from the three preprocessing
strategies are shown in Figure 1.

Step 3: Select a Deep Learning Architecture. Because of the sequential nature of the data, we
use deep learning models LSTM and Transformer in our experiment. Both models have been used
for code completion tasks in previous works. We train the models for 10 epochs because, after
10 epochs, the accuracy improvement from each additional epoch is less than 0.001. We provide
details about the hyperparameters used for each experiment in their corresponding section (i.e.,
Section 4.1 for RQ1, 4.2 for RQ2, 4.3 for RQ3, and 4.4 for RQ4).

Step 4: Check for Learning Principles. Our data are composed of Java cryptographic APIs ex-
tracted from Android apps, covering 3,739 unique APIs from various libraries. This variety provides
enough representation of cryptographic API usage. We report the efficiency of program analysis-
aided embedding through comparison with the naive approach (i.e., bytecode).

Step 5: Check for Generalizability. Our experiments are conducted on API sequences extracted
from 12 different categories, covering a wide range of Android apps in practice. This proves that
our results are generalizable to apps for diverse purposes. To confirm our models are not overfitted
to the apps used in training, we further conduct a cross-app evaluation (i.e., 20% of apps are for
testing only). The model accuracies in the cross-app setting are comparable with our basic setting,
verifying there is no overfitting. Last, we compare our embedding approaches with the state-of-the-
art models, namely, CodeBERT and GraphCodeBERT, on the same dataset using the same metric
to support our results.

REFERENCES

[1] Sharmin Afrose, Ya Xiao, Sazzadur Rahaman, Barton P. Miller, and Danfeng Yao. 2022. Evaluation of static vulnerability
detection tools with Java cryptographic API benchmarks. IEEE Trans. Softw. Eng. 49, 2 (2022), 485-497.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

56:28 Y. Xiao et al.

(2]

[3

[t}

[4

[laaw}

[5

—

[7

—

8

[t

[9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine learning models of code. In Proceedings
of the ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and
Software. 143-153.

Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton. 2015. Suggesting accurate method and class
names. In Proceedings of the 10th Joint Meeting on Foundations of Software Engineering. ACM, 38-49.

Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning to represent programs with graphs.
In Proceedings of the International Conference on Learning Representations (ICLR’18).

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learning distributed representations of code.
Proc. ACM Program. Lang. 3, POPL (2019), 1-29.

Rohan Bavishi, Caroline Lemieux, Roy Fox, Koushik Sen, and Ion Stoica. 2019. AutoPandas: Neural-backed generators
for program synthesis. Proc. ACM Program. Lang. 3, OOPSLA (2019), 1-27.

Tal Ben-Nun, Alice Shoshana Jakobovits, and Torsten Hoefler. 2018. Neural code comprehension: A learnable represen-
tation of code semantics. In Proceedings of the International Conference on Advances in Neural Information Processing
Systems. 3585-3597.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2016. Enriching word vectors with subword
information. arXiv preprint arXiv:1607.04606 (2016).

Marc Brockschmidt, Miltiadis Allamanis, Alexander L. Gaunt, and Oleksandr Polozov. 2019. Generative code modeling
with graphs. In Proceedings of the International Conference on Learning Representations.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. arXiv preprint
arXiv:2005.14165 (2020).

Nghi D. Q. Bui, Yijun Yu, and Lingxiao Jiang. 2019. SAR: Learning cross-language API mappings with little knowledge.
In Proceedings of the 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 796-806.

Luca Buratti, Saurabh Pujar, Mihaela Bornea, Scott McCarley, Yunhui Zheng, Gaetano Rossiello, Alessandro Morari,
Jim Laredo, Veronika Thost, Yufan Zhuang, et al. 2020. Exploring software naturalness through neural language mod-
els. arXiv preprint arXiv:2006.12641 (2020).

Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent Long Xiong Ong. 2019. Mining likely analogical APIs across
third-party libraries via large-scale unsupervised API semantics embedding. IEEE Trans. Softw. Eng. (2019).

Matteo Ciniselli, Nathan Cooper, Luca Pascarella, Antonio Mastropaolo, Emad Aghajani, Denys Poshyvanyk, Massim-
iliano Di Penta, and Gabriele Bavota. 2021. An empirical study on the usage of transformer models for code completion.
IEEE Trans. Softw. Eng. 48, 12 (2021), 4818-4837.

Barthélémy Dagenais and Laurie Hendren. 2008. Enabling static analysis for partial Java programs. In Proceedings of
the 23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems Languages and Applications (OOPSLA’08).
Association for Computing Machinery, New York, NY, 313-328. DOLhttps://doi.org/10.1145/1449764.1449790.
Barthélémy Dagenais and Laurie Hendren. 2008. Partial program analysis for Java. Retrieved from http://www.sable.
mcgill.ca/ppa/

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).

Steven H. H. Ding, Benjamin C. M. Fung, and Philippe Charland. 2019. Asm2Vec: Boosting static representation robust-
ness for binary clone search against code obfuscation and compiler optimization. In Proceedings of the IEEE Symposium
on Security and Privacy (SP’19). IEEE, 472-489.

Jan Eberhardt, Samuel Steffen, Veselin Raychev, and Martin Vechev. 2019. Unsupervised learning of API aliasing spec-
ifications. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation.
745-759.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing Qin, Ting Liu,
Daxin Jiang, et al. 2020. CodeBERT: A pre-trained model for programming and natural languages. arXiv preprint
arXiv:2002.08155 (2020).

Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2016. Deep API learning. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering. 631-642.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou, Nan Duan, Alexey Svyatkovskiy,
Shengyu Fu, et al. 2021. GraphCodeBERT: Pre-training code representations with data flow. In Proceedings of the
International Conference on Learning Representations.

Vincent J. Hellendoorn, C. Sutton, Rishabh Singh, and P. Maniatis. 2020. Global relational models of source code. In
Proceedings of the International Conference on Learning Representations.

Jordan Henkel, Shuvendu K. Lahiri, Ben Liblit, and Thomas Reps. 2018. Code vectors: Understanding programs
through embedded abstracted symbolic traces. In Proceedings of the 26th ACM Jjoint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering. 163—-174.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

DOI: https://doi.org/10.1145/1449764.1449790.
http://www.sable.mcgill.ca/ppa/

Measurement of Embedding Choices on Cryptographic APl Completion Tasks 56:29

[25] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016. Bag of tricks for efficient text classifica-
tion. arXiv preprint arXiv:1607.01759 (2016).

[26] Aditya Kanade, Petros Maniatis, Gogul Balakrishnan, and Kensen Shi. 2020. Learning and evaluating contextual em-
bedding of source code. In Proceedings of the International Conference on Machine Learning. PMLR, 5110-5121.

[27] Rafael-Michael Karampatsis and Charles Sutton. 2020. SCElmo: Source code embeddings from language models. arXiv
preprint arXiv:2004.13214 (2020).

[28] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692 (2019).

[29] Antonio Mastropaolo, Nathan Cooper, David Nader Palacio, Simone Scalabrino, Denys Poshyvanyk, Rocco Oliveto,
and Gabriele Bavota. 2022. Using transfer learning for code-related tasks. IEEE Trans. Softw. Eng. (2022).

[30] Na Meng, Stefan Nagy, Danfeng Yao, Wenjie Zhuang, and Gustavo Arango-Argoty. 2018. Secure coding practices
in Java: Challenges and vulnerabilities. In Proceedings of the IEEE/ACM 40th International Conference on Software
Engineering (ICSE’18). IEEE, 372-383.

[31] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781 (2013).

[32] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S. Corrado, and Jeff Dean. 2013. Distributed representations of words
and phrases and their compositionality. In Proceedings of the International Conference on Advances in Neural Informa-
tion Processing Systems. 3111-3119.

[33] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. 2013. Linguistic regularities in continuous space word representa-
tions. In Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 746-751.

[34] Anh Tuan Nguyen, Michael Hilton, Mihai Codoban, Hoan Anh Nguyen, Lily Mast, Eli Rademacher, Tien N. Nguyen,
and Danny Dig. 2016. API code recommendation using statistical learning from fine-grained changes. In Proceedings
of the 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. 511-522.

[35] Trong Duc Nguyen, Anh Tuan Nguyen, and Tien N. Nguyen. 2016. Mapping API elements for code migration with vec-
tor representations. In Proceedings of the IEEE/ACM 38th International Conference on Software Engineering Companion
(ICSE-C’16). TEEE, 756-758.

[36] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N. Nguyen. 2017. Exploring API embedding for
API usages and applications. In Proceedings of the IEEE/ACM 39th International Conference on Software Engineering
(ICSE’17). IEEE, 438-449.

[37] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H. Pham, Jafar M. Al-Kofahi, and Tien N. Nguyen. 2009. Graph-based
mining of multiple object usage patterns. In Proceedings of the 7th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering. 383-392.

[38] Tam The Nguyen, Hung Viet Pham, Phong Minh Vu, and Tung Thanh Nguyen. 2016. Learning API usages from
bytecode: A statistical approach. In Proceedings of the IEEE/ACM 38th International Conference on Software Engineering
(ICSE’16). IEEE, 416-427.

[39] Jeftrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global vectors for word representation.

In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP’14). 1532-1543.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.

2018. Deep contextualized word representations. arXiv preprint arXiv:1802.05365 (2018).

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by

generative pre-training. (2018).

Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz, Murat Kantarcioglu, and Danfeng

Yao. 2019. CryptoGuard: High precision detection of cryptographic vulnerabilities in massive-sized Java projects. In

Proceedings of the ACM SIGSAC Conference on Computer and Communications Security. 2455-2472.

Veselin Raychev, Martin Vechev, and Eran Yahav. 2014. Code completion with statistical language models. In Proceed-

ings of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation. 419-428.

[44] Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. 2020. You autocomplete me: Poisoning vulnera-

bilities in neural code completion. In Proceedings of the 29th USENIX Security Symposium (USENIX Security’20).

Dominik Sobania, Martin Briesch, Carol Hanna, and Justyna Petke. 2023. An Analysis of the Automatic Bug Fixing

Performance of ChatGPT. DOI: https://doi.org/10.48550/ARXIV.2301.08653

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020. Intellicode compose: Code generation

using transformer. In Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering. 1433-1443.

Alexey Svyatkovskiy, Ying Zhao, Shengyu Fu, and Neel Sundaresan. 2019. Pythia: Al-assisted code completion system.

In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2727-2735.

[40

—

(41

—

(42

—

[43

=

(45

=

[46

=

(47

—

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

https://doi.org/10.48550/ARXIV.2301.08653

56:30 Y. Xiao et al.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk, and Gabriele Bavota.
2022. Using pre-trained models to boost code review automation. In Proceedings of the 44th IEEE/ACM International
Conference on Software Engineering (ICSE’22).

Rosalia Tufano, Simone Masiero, Antonio Mastropaolo, Luca Pascarella, Denys Poshyvanyk, and Gabriele Bavota.
2022. Using pre-trained models to boost code review automation. In Proceedings of the 44th IEEE/ACM International
Conference on Software Engineering (ICSE’22). Association for Computing Machinery, New York, NY, 2291-2302. DOI :
https://doi.org/10.1145/3510003.3510621

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundaresan. 2010. Soot: A Java
bytecode optimization framework. In CASCON First Decade High Impact Papers. IBM Corp., 214-224.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. 2017. Attention is all you need. In Proceedings of the International Conference on Advances in Neural
Information Processing Systems. 5998-6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R. Bowman. 2019. GLUE: A multi-task
benchmark and analysis platform for natural language understanding. In Proceedings of the International Conference
on Learning Representations (ICLR’19).

Cody Watson, Nathan Cooper, David Nader Palacio, Kevin Moran, and Denys Poshyvanyk. 2022. A systematic liter-
ature review on the use of deep learning in software engineering research. ACM Trans. Softw. Eng. Methodol. 31, 2,
Article 32 (Mar. 2022), 58 pages. DOI : https://doi.org/10.1145/3485275

Ya Xiao, Wenjia Song, Jingyuan Qi, Bimal Viswanath, Patrick McDaniel, and Danfeng Yao. 2023. Specializing neural
networks for cryptographic code completion applications. IEEE Trans. Softw. Eng. (2023).

Ya Xiao, Yang Zhao, Nicholas Allen, Nathan Keynes, Danfeng Yao, and Cristina Cifuentes. 2023. Industrial experience
of finding cryptographic vulnerabilities in large-scale codebases. Digit. Threats: Res. Pract. 4, 1 (2023), 1-18.

Wenkai Xie, Xin Peng, Mingwei Liu, Christoph Treude, Zhenchang Xing, Xiaoxin Zhang, and Wenyun Zhao. 2020.
API method recommendation via explicit matching of functionality verb phrases. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
1015-1026.

Danfeng Daphne Yao, Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Miles Frantz, Ke Tian, Na Meng, Cristina Ci-
fuentes, Yang Zhao, Nicholas Allen, et al. 2022. Being the developers’ friend: Our experience developing a high-
precision tool for secure coding. IEEE Secur. Privac. 20, 6 (2022), 43-52.

Yaqin Zhou, Shangqing Liu, Jingkai Siow, Xiaoning Du, and Yang Liu. 2019. Devign: Effective vulnerability identifi-
cation by learning comprehensive program semantics via graph neural networks. In Proceedings of the International
Conference on Advances in Neural Information Processing Systems. 10197-10207.

Fei Zuo, Xiaopeng Li, Patrick Young, Lannan Luo, Qiang Zeng, and Zhexin Zhang. 2019. Neural Machine Translation
Inspired Binary Code Similarity Comparison Beyond Function Pairs.

Received 17 August 2022; revised 7 August 2023; accepted 16 August 2023

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 3, Article 56. Pub. date: March 2024.

https://doi.org/10.1145/3510003.3510621
https://doi.org/10.1145/3485275

