IEEE TRANSACTIONS ON SOFTWARE ENGINEERING

Specializing Neural Networks for Cryptographic
Code Completion Applications

Ya Xiao, Wenjia Song, Jingyuan Qi, Bimal Viswanath, Patrick McDaniel, Fellow, IEEE,
and Danfeng (Daphne) Yao, Fellow, IEEE

Abstract—Similarities between natural languages and programming languages have prompted researchers to apply neural network
models to software problems, such as code generation and repair. However, program-specific characteristics pose unique prediction
challenges that require the design of new and specialized neural network solutions. In this work, we identify new prediction challenges in
application programming interface (API) completion tasks and find that existing solutions are unable to capture complex program
dependencies in program semantics and structures. We design a new neural network model Multi-HyLSTM to overcome the newly
identified challenges and comprehend complex dependencies between API calls. Our neural network is empowered with a specialized
dataflow analysis to extract multiple global APl dependence paths for neural network predictions. We evaluate Multi-HyLSTM on 64,478
Android Apps and predict 774,460 Java cryptographic API calls that are usually challenging for developers to use correctly. Our
Multi-HyLSTM achieves an excellent top-1 APl completion accuracy at 98.99%. Moreover, we show the effectiveness of our design

choices through an ablation study and have released our dataset.

Index Terms—API completion, neural networks, program dependencies

1 INTRODUCTION

Code completion is an important building block for many
software engineering tasks, including code generation and
program repair. Inspired by the success of natural language
modeling [1], [2], [3], [4], [5], neural network based code
completion has received much attention [6], [7], [8]. Early
efforts [9], [10], [11] treated programs as a sequence of
source code tokens and built statistical language models on
the sequential context for the next token generation. While
promising, these approaches are unable to guarantee syntax
and semantic correctness and hence fail to generate high-
quality code [12].

With the increasing data abundance and training re-
sources, more advancements are achieved by increasing the
language model size and training data. For example, the
recently published code generation engines, AlphaCode [13]
and Github Copilot [14], are powered with extremely large
language models pretrained on available GitHub code. To
increase the quality of the generated code, they often generate
a large number of (e.g., 100) candidates and rely on task-
specific filtering or searching techniques (e.g., unit tests) to
find the correct one. However, these approaches that require
well-designed post-processing might not be applicable for
tasks without clear filtering conditions. To improve the top-1
accuracy of the neural networks, program-specific challenges
need to be carefully addressed. Towards this direction,
many studies [7], [15], [16], [17], [18] proposed solutions

e Ya Xiao, Wenjia Song, Jingyuan Qi, Bimal Viswanath, and Danfeng
(Daphne) Yao are with the Department of Computer Science, Virginia Tech,
Blacksburg, VA, 24060.

E-mail: {yax99, wenjia7, jingyql, vbimal, danfeng}@ut.edu

e Patrick McDaniel is with the School of Computer, Data and Information
Sciences at the University of Wisconsin-Madison.

E-mail: mcdaniel@cs.wisc.edu

that incorporate program syntax or semantic properties.
Some studies focus on representing programs as structural
representations, such as syntax trees [7], [15], [16], [19], [20] or
graphs that show the program'’s control flow or data flow [21],
[22], [23]. Moreover, some studies applied formal language
grammar (e.g., context-free grammar, attribute grammar)
working with neural networks to guide the code generation
process [17], [24].

Despite these recent advances, the prediction accuracy
in some code completion tasks is low, in particular, the API
completion problem. For example, our experiments validate
that a state-of-the-art commercial code completion tool
Codota [25] only achieves 64.9% accuracy in recommending
the next cryptographic API method. Figures 1 (a) and (b)
have slightly different code contexts and require two distinct
cryptographic API methods. However, Codota gives the
same recommendation for both of them, resulting in an
incorrect suggestion for (b). This indicates that it cannot
identify the slight change in the program context and make
correct suggestions accordingly. Another state-of-the-art
neural network-based API completion solution SLANG [26]
also only obtains an accuracy of around 77.4% in our study.

We choose to focus on cryptographic API completion
because they are well known to be complex, low-level, and
error-prone [27], [28], [29], even for experienced develop-
ers [30]. Thus, a high-accuracy cryptographic API completion
solution would be necessary. Such an effort is complementary
to developing vulnerability screening tools [31], [32] and
benchmarks [33], [34], [35].

In the context of Java cryptographic API completion,
our analysis finds that the root cause of the low prediction
accuracy is the lack of ability to learn program dependencies.
Thus, we design a neural network solution that understands
program dependencies, with the help of specialized static
analysis. We identify two previously unreported program-

9 public class CipherRecTest{
10 public void encrypt(ByteBuffer inB, ByteBuffer outB, SecretKey key
11
12 String algo = "AES/CBC/PKCS5Padding";//Encryption algorithm
13 Cipher c = Cipher.getInstance(algo); //Create a cipher
14 Predict
15 //Expected next API (Feed encryption key)
16 // c.init(Cipher.ENCRYPT_MODE, key);
17 cils
18 init(int i, Key key) 46% void
19 doFinal (byte[] bytes) byte[]
20 b getIV() byte[]
21 L update(byte[] bytes, int i, int il,.. int
init(int i, Key key, AlgorithmPara.. void

9 public class CipherRecTest{

10 public void encrypt(ByteBuffer inB, ByteBuffer outB, SecretKey key
11
12 String algo = "AES/CBC/PKCS5Padding";//Encryption algorithm
13 Cipher ¢ = Cipher.getInstance(algo); //Create a cipher
14 c.init(Cipher.ENCRYPT_MODE, key); //Feed encryption key
15 Predict
16 //Expected next API (Encrypt data from input buffer)
17 X //c.update(inB,outB);
18 C.
19 init(int i, Key key) 46% void
20 Iy doFinal(byte[] bytes) byte[]
21 b getIv() byte[]
update (byte[] bytes, int i, int i1,.. int

init(int i, Key key, AlgorithmPara.. void

(a) A correct example of Codota completion

(b) An incorrect example of Codota completion

Fig. 1. APl completion and accuracy. (a) Codota’s recommendation for Line 17 is correct. (b) Codota’s recommendation for Line 18 is wrong. The
code context for (a) and (b) differs at Line 14, but Codota gives identical predictions for them.

ming language-specific challenges. The first challenge is
how to recognize global dependencies. A code location can
have dependencies that locate far away from the current
location, even out of the current method or class, which is
referred to as global dependencies in this paper. We found
that the impact of global dependencies is often neglected
by existing solutions, especially when they are less frequent.
In our study, BERT and LSTM often fail to recognize the
long but low-frequency dependence sequences when their
shorter subpart is much more frequent but suggests a wrong
prediction. To address it, we design a global dependence-
enhancing mechanism that involves program analysis and a
new neural network HyLSTM. Program analysis extracts the
global dependencies. Our new neural network is sensitive
to these global dependencies, even for low frequency API
sequences.

We also identify a second prediction challenge on the
multi-path nature of program dependencies. There are
many functionally similar APIs that share most of their
predecessors. We found that the existing approaches of
representing program context sequentially have difficulty
distinguishing these APIs and are problematic. We design a
new multi-path neural network architecture to aggregate the
impacts of multiple dependence paths to make predictions.
Our ultimate model is named Multi-HYLSTM.

We extensively evaluate our Multi-HyLSTM design with
Java cryptographic code extracted from Android apps. Our
evaluation as well as case studies demonstrate that our ap-
proach Multi-HyLSTM is effective in making more accurate
API suggestions, substantially advancing the state-of-the-art
solutions.

Our major contributions are summarized as follows.

o We identified two previously unreported challenges for
neural networks to predict code. We experimentally
validated the limitation of common models in learning
program dependencies, including BERT (Bidirectional
Encoder Representations from Transformers) and LSTM
(Long Short-Term Memory) models. We performed an in-
depth manual analysis of the failed test cases to identify
the weaknesses and gave case studies to document these
new challenges.

e We designed a new neural network, referred to as
Multi-HyLSTM, to overcome the challenges of learning
the global dependencies and multi-path dependencies.
Multi-HyLSTM includes two major features, a multi-
path architecture and a global dependence-enhancing

learning module named HyLSTM. This neural network
works together with our program context representation,
API dependence graph construction, and multi-path
extraction algorithm, to accurately capture the program
dependencies for an API call.

o We conducted a comprehensive experimental evaluation.
We collected 64,478 Android Apps and identified 774,460
cryptographic API callsites from them. We conducted
an extensive ablation study to validate the effectiveness
of our design choices. Our solution, Multi-HyLSTM,
outperforms its intermediate counterparts with a high
top-1 accuracy at 98.99%. We also experimentally com-
pared Multi-HyLSTM with two general-purpose API
completion tools SLANG [26] and Codota [25].

We have also published a large-scale Java cryptographic
code dataset ! that can be used as a benchmark to evaluate
API completion model accuracy.

2 PROGRAM
LENGES

In this section, we use examples to illustrate the code
prediction challenges associated with semantic dependencies
in programming languages.

DEPENDENCE SPECIFIC CHAL-

Definition 2.1 (Global dependence). We use global depen-
dence of a program point p to refer to the code instructions
that p depends on but locate outside of the wrapping method
of p.

Global Dependence Challenge. In programs, global depen-
dencies widely exist. Locating far away, they need to be
carefully extracted and covered by the neural network input.
Moreover, we observed that some API patterns (i.e., API call
subsequences) appear much less frequently than their shorter
variants, as demonstrated in Figure 2 (a). The subsequence
(a1,b,c,dy) is a rare case compared with its variant subse-
quence (b, ¢, d2) that does not include the global dependence
a1. However, under the existence of a1, the last token d; is
the correct choice, instead of d,. The high-frequency short
pattern (e.g., b, ¢, d2) makes it difficult for neural networks
to recognize the low-frequency longer impacts from global
dependencies. Our experiments show that both LSTM and
BERT [5], [36] cannot deal with it (Section 4.2).

To address this issue, we present a new sequential model
HyLSTM by modifying the LSTM loss function (Section 3.3.1).

https:/ /github.com/ Anya92929/DL-crypto-api-auto-recommendation

https://github.com/Anya92929/DL-crypto-api-auto-recommendation

Two API dependence graphs When need it to predict g;

Dependence paths | Frequency LST™M HyLSTM (Ours) P, P p, Pi Known Prediction
Known — — Py b 513 Py b C
ay,b,c, dy Low Loss Prediction Loss Prediction a o a o)) Py (a,d,f) g10r gz
az.b,c,dy avbe [bbad) | dp X |hb,od)+ld) | d v & oe & be e P0dD| giorg
as,b,c,dy A azb,c |L(bcdy) | dp V |Lbcd))+1(d2) | d, V f f / Ps (c1.ef) 9 v
High . . . ; Y Multi-path
|) o L prediction | Py, Pz, Ps 9 v
anb.c,d anbc [Lbiedy) | do V [Lbed) +l(dy) | d V (Ours)

(a) A high-frequency code pattern
(b,c,dy) and its low-frequency
variant (a4, b, ¢, dy).

initially, HyLSTM gives a larger loss to correct it.

(b) HyLSTM gives the correct prediction for d;. When predicted wrong

(c) Two functional-similar APIs (g, and
g2) in almost identical dependence
context.

(d) Multi-path combination achieves the
accurate prediction

Fig. 2. Examples illustrating dependence challenges in code completion and how we address them.

Our idea is to give a strong signal to the model about the
different patterns. We strategically amplify the importance of
the last token (e.g., node d; and ds) in the entire sequence to
calculate the sequence loss. Our experiments verify that this
new amplified loss function in HyLSTM makes the model
better at identifying low-frequency variants (Section 4.2.1).
We refer to this new loss function as far-near loss.

Multi-path Dependence Challenge. Some functionally similar
API methods are difficult to be distinguished, because
their predecessors overlap substantially. For example, new
String (bytel]) and Base64 .Encoder. encodeToString

(byte[]) both work for encoding byte arrays into a
String after the identical Cipher decryption operations.
The shared dependence paths make them indistinguishable.
As demonstrated in Figure 2 (c), the API methods g; and ¢
work in similar program contexts. They have two identical
dependence paths P; and P». To distinguish them, a critical
path P5; must be captured and highlighted. We present a new
multi-path architecture that can recognize their differences.
Compared with a sequential model that takes a single path or
a mixed context sequence as inputs, our architecture models
every single path separately and aggregates their impacts.

3 OUR APPROACH

We give the API completion task definition and describe our
approach and the details.

API Completion Task. Given a program context C' =
(x1,22,...,2,—1) where C is composed of a sequence
of API elements (i.e., API methods and constants)
(x1,22,...,%n_1), the task is to suggest the next API method
call z,, based on the given context C'

Return type

javax.crypto.Cipher: javax.crypto.Cipher getlnstance(java.lang.String
L) \) \

Class name APl name Argument type

Fig. 3. An example of an embedded API method

Fig. 3 illustrates an example of an API method. We
identify the API signature in Android byte code and regard
every API signature as a unique token, i.e., each line is a
token; each token is delimited by the new line symbol. Our
dataset involves 4,543 tokens, including 3,739 API methods
and 804 constants, covering standard Java cryptography
libraries and associated Android API. Because of this API
signature-based tokenization, our work does not have any
out-of-vocabulary (OOV) situation.

3.1

Our approach takes advantage of both the program analysis
and a neural network to make accurate API completion
predictions. The program analysis part works to gather
accurate dependence relationships between the API calls
of the given program context. With the accurate dependence
information, our neural network part is trained on a large
code corpus to learn the conditional probability p(z,|C).

Instead of making the sequential language modeling, our
approach decomposes the program context C' as a couple
of paths reaching to the targeted location, as shown in
Equation 1.

Overview of Our Approach

R(C):P17P23"'7Pk (1)

where R(.) represents our program analysis preprocessing
in Section 3.2. P; denotes an extracted dependence path.
Next, we calculate the conditional probability as:

p(xn|C) = p(an|(P1, Py, ..., Py))
= M(p(zn|P1), p(en|P2); - .., p(xn| Pr))

where M (.) is a function that accepts the probability given
each path and generates the overall conditional probability.

As Equation 2, our neural network, Multi-HyLSTM,
includes two major components. One calculates the con-
ditional probability given a single path p(z,|P;). The second
component acts as the function M (.) to aggregate the impacts
of every single path.

@)

3.2 Dataflow based Context Extraction

We apply a specialized dataflow analysis to process
the given program context and generate neural network
features. The neural network features are a couple of data
dependence paths between API calls. To make an accurate
analysis, we use the dataflow analysis algorithm of the
static analyzer CryptoGuard [31], which achieves high
precision in cryptographic code screening. By performing
the dataflow analysis, we have multiple steps to get the API
dependence paths from the Android byte code, including
INTERPROCEDURAL BACKWARD SLICING, API DEPENDENCE
GRAPH CONSTRUCTION, and MULTI-PATH SELECTION.

INTERPROCEDURAL BACKWARD SLICING. We perform an
interprocedural backward slicing to gather program slices
from the Android byte code. A program slice is a subset
of program statements that have influences on a speci-
fied value. Our specialized dataflow analysis is conducted
for the purpose of interprocedural backward slicing. The

analysis starts at the program point where a targeted API
method call happens. The analysis traces the data flow
backwardly and collects all the program statements that
have dependence relationship with the starting point. To
guarantee the global dependences are captured, our analysis
is interprocedural, which goes beyond the method boundary
and collects dependence paths across the entire program.
When encountering a code statement invoking a self-defined
method created by the developer, the analysis jumps into the
implementation body of the invoked method and replaces
it with its implementation code. In this way, the extracted
context is composed of the API method calls from standard
libraries and eliminates the self-defined methods that only
exist in the current program. Finally, the obtained program
slice preserves all the code statements contributing to the
targeted API call. All the irrelevant code statements are
removed in the outcome.

API DEPENDENCE GRAPH CONSTRUCTION. Next, we lever-
age the data flow information we gathered during the
dataflow analysis to further construct an API dependence
graph. First of all, we give definitions for the concepts used
in our API dependence graph construction.

Definition 3.1 (API call node). An API call node refers to
an API method call as well as the analyzed information
associated with it. Each API call node records 1) the container
method the API call locates in, 2) the code statement
that includes the invoked API method and the associated
variables (i.e., object reference, arguments, and return values),
3) the control dependence of this invocation statement. An
example is demonstrated as Node 8 in Figure 4.

Definition 3.2 (API dependence edge). An API dependence
edge connects two API call nodes when there is a data flow
from one API call node to the other with no intervening
API call node. The data flow is composed of a variable
chain rq, 72, ... r, where the variable r; is data dependent
on its predecessor 7;_;. The edge records the start and
end variables of this chain, that is, the variable flowing
out of the start API call node and the variable flowing
in the destination API call node. An example of the edge
information is demonstrated in Figure 4.

Definition 3.3 (API dependence graph). An API dependence
graph G = (V, E) is a graph composed of a set of API call
nodes V and API dependence edges E.

The API dependence graph is constructed on the slice
obtained from the interprocedural backward slicing. First, we
treat every code statement in a slice as a regular code state-
ment node. Then, we add data dependence edges between
the regular nodes according to the data flow information.
The data dependence edge exists between two nodes when a
node uses a variable whose value is defined or changed by
the other node. Next, we remove all the nodes that do not
include an API method call or constants from the graph and
only keep the API call nodes. If there exists a path of removed
regular nodes between two API call nodes, we connect the
two API call nodes directly with an API dependence edge. As
a result, we obtain an API dependence graph that explicitly
draws the dependence between API elements.

Definition 3.4 (API dependence path). An API dependence

Node info:

Node id: 8

M: In method 1

S: $r1.<Cipher: void init(int,Key,AlgorithmParameterSpec) > ($r2,8r3,$r4)
Control Dependence: Entry of method 1

Edge info:

Edge from node 13 to 11
Flow Out: $r2 in Method 2
Flow In: $r8 in Method 1

»-| = Selected edge

O Selected node {

Unselected edge

Unselected node

Fig. 4. Multiple paths selection for API completion. We use the information
associated with the nodes and edges to select paths. The goal is to
maximize the coverage for different nearby branches with minimal paths.

path is a sequence of API call nodes that are connected by
the API dependence edges in an API dependence graph.

MULTI-PATH SELECTION. We extract multiple API depen-
dence paths from the API dependence graph. We analyzed
957,151 graphs involved in the experiment; the number of
paths varies from 1 to 798,598. The median number of paths
is 3 and the majority (66%) of the graphs result in 5 or
fewer paths. To avoid path explosion, we limit the number of
selected paths to 5 in our experiments. We also found five is
sufficient, as more paths bring negligible improvement. We
use a greedy strategy to collect paths in an API dependence
graph backwardly. The detailed algorithm is shown in the
pseudo code (See Algorithm 1) in the appendix. Intuitively,
our goal is to maximize the coverage of different nearby
data and control flow branches with a minimal number
of paths. As illustrated in Figure 4, we start from node 11.
There are three edges to node 11 from nodes 8, 10, and 13.
After examining the associated flow-in variables, we find
nodes 8 and 10 deliver identical variable $r1. Thus, we can
select either one of them. In this example, nodes 8 and 13
are selected. They deliver different variables. We continue
this breadth-first backward traversal until the path budget
is used up. After that, we complete each selected branch
to form a path via the depth-first search to an arbitrary
beginning node. This greedy breadth-first approach outputs
the locally optimal choice at every branch from the nearest to
the farthest. The selected paths are used as neural network
inputs.

Note that our prototype cannot distinguish virtual calls.
The capability of distinguishing virtual calls depends on
how precise the call graph is. We use CryptoGuard built on
Soot to perform the dataflow analysis. When CryptoGuard
constructs the call graph, all the potential virtual calls are
added. Our analysis is context-, flow-, and field-sensitive,
however, due to overhead it does not support any point-to
analysis, which is required to handle virtual calls.

3.3 Our Neural Network Design

We design our neural network Multi-HyLSTM based on a
multi-path architecture. In this architecture, each path is
processed by a sequence model, HyLSTM, and the paths are
then aggregated to the prediction outcome.

3.3.1 Global dependence enhancing learning

The purpose of designing HyLSTM is to improve the single-
path modeling. As shown in Figure 2(a), high-frequency
suffix makes the neural network ignore the beginning global
dependencies. Intuitively, we force the model to assign larger
weights to the beginning tokens (e.g., a; in Figure 2) when
needed, making beginning tokens more influential for pre-
dicting the API (e.g., d1). This is achieved by strengthening
the different supervision signals (the last token) in the entire
sequence.

HyLSTM differs from regular LSTM based language
modeling in its architecture and loss function. We illustrate
the HyLSTM architecture in Figure 5. It includes two parallel
projection layers FC'L; and F'C Ly after the LSTM cells. In
contrast, regular LSTM based sequence learning only has
the FC'Ly layer. We use the output of F'CL; to generate
our target (i.e.,, the recommended API method), given a
dependence path.

sequence loss

i S X2 e
slT SZT Tsn
FCL2 |
ho! hy] Thn_1
LSTM — LSTM LSTM —
f 1 1
LSTM —> LSTM LST™
S L
Xo X1 Xn-1

Fig. 5. Target amplification in HyLSTM with our new far-near loss function.
Through the extra FCL; and o,, similar input sequences followed
by different z,, are supervised by stronger signals to highlight their
differences.

We use h; to represent the LSTM hidden state at the ¢-th
timestep. In the forward propagation, h; is processed by
a fully connected layer FCL, to generate the next token at
every timestep.

51 ho By
72| = softmax(fn Wa + B) 3)
Sn hn—1 By

where Wy and B; are the weights and bias for FCL,,
respectively. s; represents the output of FCLy at the i-th
timestep.

In HyLSTM, we add a fully connected layer FCL; that
accepts h,_; that is the LSTM hidden state at the last
timestep as Equation 4.

on, = softmax(h,_1 W1 + By) 4)
where W is a weight matrix, B; is the bias vector for FCL;,
and o,, is the output of the projection layer FCL;.

During the backward propagation, our far-near loss
integrates the losses from the two projection layers as in
Equation 5. Thus, the neural network is supervised simul-
taneously by the outputs of both FCL; and FCLy. When a
low-frequency path differs from a high-frequency path at the
n-th step after a shared subsequence, the extra FCL; would
enhance their differences at the hidden state h,,_;, while
maintaining their similarity at other intermediate h;. To the
best of our knowledge, none of the existing related solutions

uses a combination of token-level loss and sequence-level
loss together.

The new far-near loss [}, is defined as:
n

Ih =aL(on,z,) + (1 —) Z @)
i=1

where L(-) is the cross entropy loss between the output and
label. We set the weight o to be 0.5 in our experiments.

When low-frequency sequences were initially predicted
wrong due to its misleading high-frequency suffix, HyLSTM
produces a larger loss than regular LSTM to correct it and
treat the beginning tokens more seriously in our evaluation.
Besides evaluating HyLSTM against regular LSTM models,
we also compare it with BERT in Section 4.

3.3.2 Our multi-path architecture

Aggregation

Path ey e, €k
embedding ccoo0e (00000 xxxx
Subnet 1 Subnet 2 Subnet k
[Hytstm | [Hystm | - [HyisT™ |
L o K ¥ i
Y Y X
Token-level ! :
embedding ! XX XX
o000
Py

Fig. 6. Multi-path code suggestion architecture based on aggregating
path embeddings

We further design a new multi-path architecture to
incorporate parallel sequence modeling, aiming to address
the multi-path dependence challenge. As shown in Figure 6,
this architecture includes several identical subnets, each of
which is a model, HyLSTM. These parallel subnets are fol-
lowed by an aggregation layer to output the API suggestion.
Compared with the graph-based neural networks, our multi-
path architecture is not limited by the graph size, thus can
achieve better efficiency and scalability.

The training of our Multi-HyLSTM includes two phases:
single-path pretraining, and multi-path finetuning. To better
calculate the conditional probability p(z,|P;), we pretrain
the subnet (i.e., HyLSTM) on all single paths. Every token
of a path is represented as the word2vec-like embedding
trained on the dependence path corpus. The output layer
of HyLSTM before the softmax activation e; represents the
embedding of the entire path.

€ = hp_1W1 + By (6)
where h,_1, Wi, and B, are the last timestep’s hidden
state of HyLSTM, the weights and bias of F'C'L,, respectively.

The pretrained HyLSTM is used as the initial state
of Multi-HyLSTM. We add an average pooling layer to
aggregate these path embeddings e; into one vector. The
softmax classifier is applied to generate the conditional
probability:

k
p(zn|C) = softmax(z e;/k)

i=1

@)

where C' is the program context, ,, is the predicted API call,
and k is the number of input paths.

Under the multi-path architecture, HyLSTM is jointly
updated with the following layers towards the task-specific
distribution. The multi-path architecture successfully high-
lights the minor difference in the process of code suggestion.
Candidate tokens having similar probabilities in some paths
can now be accurately differentiated. We evaluated this multi-
path architecture on the sequence model BERT and HyLSTM
in Section 4.2.2.

4 EXPERIMENTAL EVALUATION

We conduct API completion experiments on Java crypto-
graphic code to compare the top-1 recommendation accuracy
of our Multi-HyLSTM and alternative approaches.

Dataset and baselines. We collect 64,478 Android apps covering
21 categories from Google Play Store to form our dataset.
We filter these Android apps with a state-of-the-art code
screening tool CryptoGuard [31] and identify 774,460 Java
cryptographic API method callsites that are used properly
in codebase. These Android apps are processed with our
program analysis at each cryptographic API callsite location
to extract their dependence contexts, — the API dependence
paths.

We compare our Multi-HyLSTM with two types of base-
lines on this dataset. First, we compare Multi-HyLSTM with
two state-of-the-art API completion tools SLANG [26] and
Codota [25]. SLANG is an academic API completion solution
that combines static analysis and statistical language models
to generate API method recommendations. We reproduce
the static analysis preprocessing and neural network training
of SLANG. Due to the long preprocessing time of SLANG,
we conduct experiments on a subset of our entire dataset,
16,048 apps from 3 app categories (Business, Finance, and
Communication). Overall, there are 36,029 cryptographic API
callsites identified (see Figure 7). We train SLANG and our
Multi-HyLSTM on the same data for comparison. Moreover,
we compare the trained Multi-HyLSTM with a published
commercial API completion tool Codota [25]. Codota can
be used as a plugin in most of the mainstream IDEs. We
manually evaluate Codota plugin in the Intelli] IDE on 245
cryptographic API callsites (see Table 1) collected from 9
randomly selected Android apps. Our Multi-HyLSTM is also
evaluated on these 245 test cases. Second, we conducted an
ablation study (see Table 5) on the 774,460 cryptographic
API method calls extracted from 107,282 Android apps. The
ablation study evaluates our neural network design. The
Multi-HyLSTM is compared with the intermediate solutions
that remove either of our design choices.

We also tried to compare with the code completion
solution BAYOU [16], NSG [24] and the large-scale pretrained
programming language model CODEGPT [8]. However, the
code of BAYOU and NSG cannot be successfully replicated.
The CODEGPT that is pretrained on the subtoken level is
difficult to be finetuned for our task, because it is hard to
know which subtokens in its output sequence correspond to
our target API method.

For all the training experiments, we randomly select 1/5
of the data as the test cases and train the baselines and our
model with the other 4/5 cases. We train these models for 10

epochs with batch size 1,024. We record the highest accuracy
the model achieves within 10 epochs. Although our baselines
(e.g. SLANG, Codota) are not designed for cryptographic
APIs, we think their data-driven approach should make them
generalize to our domain specific data.

4.1 Comparison with Existing Tools

We compare our Multi-HyLSTM with two state-of-the-art
API completion tools, SLANG [26] and Codota [25]. We show
the average top-1 accuracy across all testcases as defined
in Equation 8, where 7 is the number of testcases and the
binary value accuracy; is the top-1 accuracy of case; (1 for
correct and 0 for incorrect).

n
D il accuracy;

Avg_accuracy = " ®)

Comparison with SLANG. SLANG uses a different program
analysis preprocessing to extract the context (named object
histories) for prediction. It combines the n-gram and RNN
models to generate the probability of the next API method
call. Figure 7 shows the top-1 accuracy of SLANG and our
approach. We choose the hidden layer size of SLANG and
our approach from 128, 256, and 512. With each hidden
layer size setting, we also adjust SLANG with 3-, 4-, 5-gram
model 2. Our approach shows significant advantages over
SLANG in all settings. The highest top-1 accuracy of SLANG
is 77.44%, achieved with RNN-256. The n-gram model shows
no impact on the top-1 accuracy. Our models achieve the best
accuracy at 91.41% under Multi-HyLSTM with hidden layer
size 512, achieving an improvement of 18% compared with
SLANG.

100

o o>

7]] e [

ok & O
80 192492 2 NN Ho ™ 4o o

60 -

PERCREREE)

404

tril o

B 1 Multi-HyLSTM

Y XY SLANG with 3-gram

F =1 SLANG with 4-gram

ke [Z3 SLANG with 5-gram
-

20 A

Recommendation Accuracy (%)

EREREREREREREY

°
‘.’-?ﬁ' ° 1
128 256 512
Hidden Layer Size

Fig. 7. The top-1 accuracy of SLANG and our approach on APl comple-
tion

Comparison with Codota. Codota is a commercial Al code
completion plugin, which is adopted by mainstream IDEs in-
cluding Intelli], Eclipse, Android Studio, VS Code, etc. Given
an incomplete code statement with an object with a dot in an
IDE, Codota displays a ranked list of the recommended API
methods associated with the object. We randomly selected
245 cryptographic API method invocations from 9 Android
applications as the test cases. We decompiled the 9 apps into
source code and load them into Intelli] IDE with Codota.
Then, we manually triggered Codota recommendation by

2Raychev et al choose 3-gram and hidden layer size 40 for RNN in
[26]

TABLE 1
The top-1 accuracy of Codota and our Multi-HyLSTM on 245 randomly selected Java Cryptographic APl invocation test cases. Codota gives
recommendations based on the previous code and the return value. We show our accuracy under both conditions (i.e., w/o and with the return value).

Multi-HyLSTM (Our approach) Accuracy

App Category | # of Test Cases | # of apps | Codota Accuracy w/o return value | _ with return value
Business 66 3 66.67% 89.39% 98.49%
Finance 99 3 65.66% 90.91% 97.98%

Communication 80 3 62.5% 86.25% 97.59%
Total 245 9 64.9% 88.98% 97.96%

removing the method name after the dot. Table 1 shows our
approach has a significant accuracy improvement compared
with Codota. The top-1 accuracy of the 245 cases is improved
from 64.90% to 88.98%. Note that codota takes not only the
previous context but also the return value type to decide the
recommendation, whereas our approach only relies on the
previous code. Thus, we further measure our accuracy if the
return type is specified. We manually checked the return type
to filter out the incompatible candidates. Our top-1 accuracy
(last column in Table 1) rises to 97.96% if the return type is
given, resulting in 51% improvement.

4.2 Ablation Study

We conduct an ablation study to evaluate the effectiveness of
the two design components of our neural network, HyLSTM,
and the multi-path architecture. All of these neural networks
work with identical program analysis preprocessing that
extracts the API dependence paths as the neural network
inputs. We noticed that many dependence paths may have
multiple correct choices for the next API method calls.
This could happen when there are branches in the API
dependence graphs. All of them are regarded as correct
answers when counting the accuracy. Therefore, we introduce
a new metric, referred to as in-set accuracy for this ablation
study. We define in-set accuracy as the accuracy of top-1
recommendations that fall in a reasonable next API method
set. The reasonable next API method set is collected based
on all the situations that ever happen in our collected API
dependence graphs.

4.2.1 HyLSTMvs. LSTM

To evaluate the effectiveness of our HyLSTM, we compare it
with two regular LSTM models, the LSTM sequence model
trained with the token-level loss and the LSTM sequence
model trained with the sequence-level loss. The token-level
loss only considers the output at the last timestep, while
the sequence-level loss is the loss calculated on the entire
sequence, including the recurrent outputs at every timestep
during training. As shown in Figure 5, HyLSTM has two
parallel projection layers. One produces the token-level loss
and the other produces the sequence-level loss. HyLSTM
uses our new far-near loss combining both of them. The
three models use identical LSTM cells with a hidden layer
size of 256.

Table 2 shows the average in-set accuracy of our HyL-
STM and the two regular LSTM models. Overall, HyLSTM
achieves the best in-set accuracy at 93% compared with two
LSTM models. We further analyze the capabilities of the three
models by breaking down the test cases into two groups,

7

TABLE 2
The average in-set accuracy of HyLSTM for the next API
recommendation. Acc.(U) is the in-set accuracy for the test cases with
unknown features. Acc.(K) is the in-set accuracy for the test cases with
known features. Acc.(A) refers to the in-set accuracy for all the test cases.

LSTM LSTM
Lal =l (token-level loss) | (sequence-level loss)
[Acc(U) | 56.94% | 4321% | 57.13%]
Acc(K) | 99.86% 99.81% 96.98%
Acc.(A) 93.00% 90.77% 90.62%

the test cases with unknown features and the test cases with
known features. The features refer to the API dependence
paths we extracted from the Android apps. The test cases
with known features mean their extracted input features (i.e.,
API dependence paths) are identical to the extracted features
of certain cases in the training phase. The test cases with
unknown features suggest that there are new dependence
paths that never appear in the training code corpus.

It is more challenging for a neural network to handle
unknown dependence paths. From Table 2, we observe
HyLSTM outperforms the LSTM with token-level loss for
unknown test cases. HyLSTM substantially improves the
accuracy from 43.21% to 56.94% — a 31.78% improvement.

100 Test set 2 Test set 3
X [7] 1T *{7
* R HyLSTM b]
X e * g
90 "] CZ LSTM-token ol — [Aoh A
(e o q blal LSTM-sequence * * °
—~ * ° e e] °
X @0 > ° * ° * °
= * o e o e] o
> * X ° * ° * °
3 704 K * ° * e o °] °
© * > * ° * * ° * °
o * * ° * e ° b 3] °
35 w ° \ofRal ° * g * ° * o
o oo *| oo * o * ° e o oA o
[v] * ° X ° * ° * ° * °
< *| o o * ° * ° e o °] °
c 50
2 Test set 5
5 w0 v o1
G
e * e]
S o - = *
[* ° W P i | o
c ™ ° * * °
* o e e] °
€ o0 * ° * ° * °
o * * ° e ° e] °
] - i ° * ° * o
@ 70 *| oo * ° * e ° e] °
o * ° ™ ° * * ° * °
* oo * o * e Wi o e | o
60 * ° I~ ©° * ©° * ° * ©°
* o o * ° * ° e ° b] °
L 4 o L4 o - o * o * o
*| oo * ° * ° e o ° b] °
Acc.(U) Acc.(K) Acc.(U) Acc.(A) Acc.(K)

Fig. 8. The average in-set accuracy of HyLSTM and two regular LSTM
models tested with four new app sets. LSTM-sequence represents the
LSTM model with sequence-level loss, while LSTM-token represents the
LSTM model with token-level loss.

Test on new apps. The excellent performance on the test
cases with known features does not suggest overfitting,
because our model can successfully handle test cases from

TABLE 3
Statistics of the test cases with known and unknown features in different
test sets. Test set 1 is the original test set used in Table 2. 20% of the
API dependence paths extracted from the 16,048 apps are used for
testing while the other 80% are used for training. Test sets 2, 3, 4, and 5
are new apps that are never used during training.

Input a Input b
“PBEWithHmacSHA256AndAES_128" “AES/CBC/PKCS5Padding”

Cipher.getinstance(String) Cipher.getinstance(String)
Cipher.init(int, Key, AlgorithmParameterSpec) ﬂ Cipher.init(int, Key, AlgorithmParameterSpec)

15 vs. 485
Cipher.doFinal(byte[]) Cipher.doFinal(byte[])

50vs. 1308
Next token (Ground truth): 77v5.13653 Next token (Ground truth):
PKCS8EncodedKeySpec.<init>(byte[]) I <java.lang.String.<init>(byte[])>

Prediction (LSTM): ®
<java.lang.String.<init>(byte[])>

Prediction (LSTM): ‘

Subsequence | <java.lang.String.<init>(byte[])>

Teg)set Number of apps gﬁ;rrfé‘:ﬁ:n?;‘;s New App?
1 16,048 92,135 17,512 No
2 107 3,494 1,387 Yes
3 263 13,176 6,020 Yes
4 454 13,111 5,669 Yes
5 2,993 109,836 50,324 Yes

new apps. To validate it, we test the three models with new
apps that are never used in the training phase. We gather
four extra Android app sets from different Android app
categories, weather, social, personalization, and 12 other
categories mixed together. We use the four app sets to reduce
the bias from the app categories. Table 3 shows their statistics
as well as the original test set. Compared with the original
test set, the percentage of the test cases with unknown
features grows in the new test sets. In the original test set
(Test set 1), the unknown group accounts for 15.97% of the
test cases. In the total of the four new test sets, the test cases
with unknown features account for 31.23% of the test cases.

Figure 8 shows the average in-set accuracy on the four
new test sets. The average results of them are displayed in
Table 4. Results show that our HyLSTM outperforms the
two regular LSTM models on all four new test sets. On
test cases with unknown features (denoted by U), HyLSTM
gives an obvious advantage over the LSTM models. This
experiment shows that the accuracy for the test cases with
unknown features substantially increases when testing with
the new apps. Overall, HyLSTM achieves an accuracy of
92.37%, which is substantially higher than the LSTM model
with the sequence-level loss and slightly higher than the
LSTM with the token-level loss.

TABLE 4
The average in-set accuracy of HyLSTM and the two regular LSTM
models tested on four new test sets composed of new Android apps.

LSTM LSTM
BEALTILAL (token-level loss) | (sequence-level loss)
[Acc. (U) | 7640% | 70.78% [66.17%]
Acc. (K) | 99.34% 98.91% 91.77%
Acc. (A) 92.37% 90.36% 83.99%

Case Study 1. This case verifies that our HyLSTM is better
at identifying the global dependence that is low-frequency:.
Figure 9 (a) shows a test case predicted incorrectly by regular
LSTM, but correctly predicted by our HyLSTM. The wrong
prediction of LSTM is due to the more frequent shorter
patterns in Figure 9 (b). In contrast, HyLSTM successfully
differentiates similar inputs (a) and (b).

4.2.2 Multi-path vs. sequential architecture

We compare our multi-path architecture with their single-
path counterparts in API completion. In Table 5, we test

frequency

Prediction (HyLSTM): Prediction (HyLSTM):
PKCS8EncodedKeySpec.<init>(byte[]) <java.lang.String.<init>(byte[])>

(a) (b)

Fig. 9. Case Study 1, (a) A test case that is predicted incorrectly by
regular LSTM and correctly by HYLSTM. (b) A test case that follows the
frequent short pattern thus got correct prediction by both regular LSTM
and our HyLSTM.

two versions of the Multi-HyLSTM design. Multi-HyLSTM
(avg.) uses the average pooling to aggregate multiple paths
embeddings, as described in Sec. 3.3.2, while Multi-HyLSTM
(att.) uses an attention-based aggregation. Multi-HyLSTM
models are compared with its single-path version HyLSTM,
and two other alternative approaches DepBERT and Multi-
BERT. DepBERT is the neural network of BERT [36] pre-
trained on our dependence paths corpus with the masked
language modeling task. Multi-BERT is where DepBERT
replaces HyLSTM. To be fair in our comparison, we also
pretrained our HyLSTM on the same dataset. All of these
pretrained models are finetuned by our API completion task.

Multi-path vs. Single-path. Both Multi-HyLSTM and Multi-
BERT are more accurate compared with their single-path
counterparts. The in-set accuracy is improved from 95.79%
of HyLSTM to 98.99% of Multi-HyLSTM, and from 92.49% of
DepBERT to 95.78% of Multi-BERT. More importantly, multi-
path aggregation gives significant accuracy improvement
on unknown cases— by 11.53% for HyLSTM and 36.50% for
DepBERT.

Average Aggregation vs. Attention Aggregation. We also com-
pare the average aggregation approach with the more
complicated attention-based aggregation in Multi-HyLSTM.
In attention-based aggregation, we replace the averaged
path embeddings 3", e;/k in equation (7) with 3% we;,
where weight w; is the attention learned through training.
Results in Table 5 show no significant benefit of the attention
mechanism. For the unknown cases, the average aggregation
achieves a slightly higher accuracy of 83.02% compared with
80.71% of the attention aggregation. Their overall accuracy is
similar.

Improvement from path embedding. The single-path pretraining
can benefit accuracy, especially for unknown cases. Com-
pared with the basic HyLSTM in Table 2, HyLSTM with
the extra path embedding improves the in-set accuracy by
30.74% for unknown cases.

HyLSTM vs. DepBERT. HyLSTM is better at API completion
compared with DepBERT. HyLSTM increases the in-set
accuracy by 33.57% for unknown cases from DepBERT.
This can be attributed to our specialized global dependence
enhancing learning. With the far-near loss, HyLSTM is forced
to pay more attention to the long but low-frequency API
sequence even if the more frequent shorter dependence
exists.

Case Study 2. Figure 10 demonstrates how the multi-

TABLE 5
Comparison between multi-dependence suggestion and sequential suggestion. U, K, and A stand for the average in-set accuracy for unknown cases,
known cases, and all cases, respectively.

‘ M“lt‘(al‘g_];STM M“"‘(?g}STM (paﬂ?g;izggmg) ‘ DepBERT ‘ Multi-BERT
[[Acc.(U) | 83.02%] 80.71%] 74.44% [5573% [76.07%
[[Acc.(K) | 99.59%] 99.74%] 99.84% [9948% [96.52%
[Acc.(A) | 98.99% | 99.06%] 95.79% | 9249% | 95.78%
Input paths: Top 3 suggestions by single path TABLE 6
“AES” Cipher.init(int, Key) ® Number of test cases in the four test sets used in the cross-app

Path1 SecretKeyFactory.getinstance(String)

SecretKeyFactory.generateSecret(KeySpec)

Mac.init(Key)
Cipher.init(int,Key,AlgorithmParameterSpec)

Cipher.init(int,Key,AlgorithmPar

experiments.

“AES/CBC/PKCS7Padding”
Path 2 / €

Cipher.getinstance(String) Cipher.getBlocksize() Number of Number of Number of
Cipher.doFinal(byte[]) App category
test cases known cases unknown cases

16 Cipher.init(int,Key,AlgorithmP Spec) -

Path 3 secureRandom.nextBytes(byte(]) AlgorithmParameters.init(AlgorithmParameterSpec) Social 71588 3’941 3’647
IvParameterSpec.<init>(byte(]) 0 Weather 1,989 993 996
Next token (Ground truth): Prediction (Multi-path): Personalization 8,260 5,356 2,914
Cipher.init(int,Key,AlgorithmParameterSpec) || Cipher.init(int,Key,AlgorithmParameterSpec) Other Categories 64732 41339 23393

Fig. 10. Case Study 2. A test case that needs multiple paths to predict TABLE 7

correctly. The wrong prediction suggested by Path 1 can be fixed after
aggregating the influences from two extra paths.

path model improves over the single path model. The
label Cipher.init (int,Key,AlgorithmParameterSpec
) and Cipher.init (int,Key) are indistinguishable,
given dependence path 1. Fortunately, paths 2 and
3 provide complementary information to correct it.
To determine the wusage of API method Cipher
instead of
Cipher.init (int,Key), the decisive dependence is
the API call IvParameterSpec.<init> (byte[]) (in
path 3) where IvParameterSpec is a subtype of
AlgorithmParameterSpec. Path 2 also provides an ad-
ditional indicator "AES/CBC/PKCS7Padding" considering
the cryptographic knowledge that AES-CBC mode requires
initial vectors for security. The single-path model (e.g.,
depBERT, HyLSTM) cannot make the correct prediction
when the informative dependencies are not covered.

.init (int, Key,AlgorithmParameterSpec)

4.3 Cross-app Evaluation

We further conduct cross-app experiments to confirm Multi-
HyLSTMs prediction capability on new apps, i.e., never
appearing in the training phase. We use the four datasets
extracted from 12 categories, namely social, weather, person-
alization, and other categories mixed together. The test sets
contain up to 50% unknown cases (Table 6). Among the four
datasets from different categories, Multi-HyLSTM achieved
up to 99.61% in-set accuracy with an average of 98.69% (Table
7). Multi-HyLSTM also showed good performance when
only considering the unknown cases, attaining 95.28% to
99.21% in-set accuracy across the four datasets. One possible
reason for the excellent performance could be that, even if
a combination of multiple paths has never appeared in the
training set, the model learned some parts of these paths
during training and is able to make correct predictions using
this knowledge. These results prove that Multi-HyLSTM is
not overfitted to known apps from the training set and is
able to handle unknown cases from new apps, suggesting
good performance in realistic settings.

The average in-set accuracy of the Multi-HyLSTM model in cross-app
settings, where training and testing cases are selected from different
apps. U, K, and A stand for unknown cases, known cases, and all cases,

respectively.
Social | Weather | Personalization Othel.‘
categories
[Acc. (U) [97.23% [9528% | 99.21% [9732% |
Acc. (K) | 99.95% 100% 99.83% 99.73%
Acc. (A) | 98.64% 97.64% 99.61% 98.86%

4.4 Examples of Sequence Frequencies

We briefly show two example sequences to illustrate the
importance of our HyLSTM design and the new far-near
loss function for countering high frequency influences. In
Figure 11, LSTM predicts this case wrong. The wrong predic-
tion comes from a subsequence that is much more frequent
(5,891 times) than the correct token (4 times). In Figure 12,
LSTMs prediction String.getBytes(String) is wrong. We found
that the 3-gram subsequence (StringBuilder.append(String),
StringBuilder.toString(), String.getBytes(String)) is extremely
frequent (70,244 times) in the training corpus. Our HyLSTM
model predicts both cases correctly.

Input: Sequences Freq.
String.getBytes()

MessageDigest.digest(byte[]) MessageDigest.update(byte[])

o

MessageDigest.update(byte[]) 4

MessageDigest.update(byte(]) MessageDigest.digest(byte[])

MessageDigest.update(byte[])

Next token (Ground truth): .
MessageDigest.digest(byte[]) MessageDigest.update(byte[])
M Digest.update(byte[])

MessageDigest.digest()

5,891

LSTM’s prediction:
MessageDigest.digest()

Fig. 11. An example illustrating that LSTM’s wrong prediction is influenced
by the high-frequency sequence.

We summarize our experimental findings as follows:

o Our Multi-HyLSTM substantially outperforms the state-
of-the-art academic API completion solution SLANG

Input: Sequences | Freq. ‘

StringBuilder: void <init>()
StringBuilder.append(String)
StringBuilder.append(String)
StringBuilder.toString()

StringBuilder.append(String)
StringBuilder.toString()
KeyStore.setCertificateEntry(String, Certificate)

92

Next token (Ground truth):
KeyStore.setCertificateEntry(String, Certificate)

StringBuilder.append(String)
StringBuilder.toString()
String.getBytes(String)

70,244

LSTM’s prediction:
String.getBytes(String)

Fig. 12. Another example illustrating the strong disparity in frequency.

and commercial solution Codota. Multi-HyLSTM
achieves an excellent top-1 accuracy of 91.41%, a 18.04%
improvement over SLANG with the best accuracy of
77.44%. In a manual analysis of 245 test cases compared
with Codota, Multi-HyLSTM achieves the top-1 accuracy
at 97.96%, a 50.94% improvement over Codota with an
accuracy of 64.9%.

Our multi-path architecture excels at recognizing unseen
cases. Multi-HyLSTM and Multi-BERT achieve the in-set
accuracy for unknown cases of 83.02% and 76.07%, im-
proving their single-path counterparts HyLSTM (74.44%)
and DepBERT (55.73%) by 11.53% and 36.50%, respec-
tively.

Our HyLSTM outperforms two regular LSTM models.
It improves the inference capability of the LSTM with
token-level loss by 31.78%.

Performance and runtime. With the distributed training of 8
workers, our training time is significantly improved. Most of
our experiments are completed within 5 hours.
Limitations. First, many static analyses overestimate execu-
tion paths. Thus, some extracted dependence paths might
not necessarily occur, which may lead to a wrong prediction.
However, since our approach relies on multiple paths, we
expect the deep learning model to automatically learn which
path to use by training. Second, the extracted dependence
paths may be incomplete, as we omit recursions in the graph.
We also terminate the path when the depth of call stacks
is beyond 10. However, a previous study experimentally
showed the impact of limited depth exploration to be
negligible in practice [31]. Another limitation is that there
might be difficult to apply static analysis on incomplete
source code that the code developers are writing in IDEs.
The real-world application scenario requires enabling the
partial program analysis that can work with the incomplete
source code.

5 RELATED WORK

We summarize the related work based on the program
representation strategies.

Treating programs as text. Many studies [7], [37], [38], [39], [40]
treat programs as code sequences. Programs are tokenized
into source code token sequences and modeled like textual
sentences. The giga-token models are built by applying n-
gram model [37] or more powerful network models (e.g.,
LSTM, Transformers, GPT-2) [39] on them. However, the
out-of-vocabulary (OOV) issue in program token sequences
is much more severe than in natural languages and requires
advanced tokenization techniques to address [7], [40].

10

Extracting syntactic information as context. When treating
programs as text, syntactical errors are common. Therefore,
abstract syntax trees (ASTs) and probabilistic context free
grammar (PCFG) are widely adopted to enforce the syntax
correctness [41], [42]. However, PCFG is found insufficient
due to the limited context coverage of ASTs. Bielik ef al. [43]
extend PCFG to probabilistic higher order grammar (PHOG)
by enriching its context. Another direction is to use more
powerful neural networks that can automatically identify
significant dependencies from longer contexts [44], [45].

Extracting semantic information as context. To generate code
following the program semantics, a couple of studies [12],
[17], [21], [46] represent programs as graphs. For example,
Allamanis [12] build a graph that uses AST as the back-
bone and adds different types of edges according to their
dataflows. However, compared with ours, the graph based
approaches are highly limited by the graph size. Besides
graphs, grammar-based production rules (e.g., attribute
grammar (AG) [47]) are incorporated to guide the generation
process on graphs or program sketches [17], [24].

Then, according to different completion targets, we
summarize the code completion work as follows.

Completing API methods. Some studies focus on the comple-
tion of invoked API methods to improve the productivity
of developers and solve API related problems [26], [48],
[49], [50]. Program analysis techniques are often applied to
extract API sequences from source code to build language
models. Nguyen et al. presented a graph representation of
the object usage model (GORUM) to represent interactions
between different objects and associated methods [51]. They
built Hidden Markov models for the state of objects and
predict methods [48], [50]. However, these methods may
require building endless Markov models for different object
types. Raychev et al. [26] built RNN and n-gram models on
top of the object histories defined by themselves for API
method recommendation. The object histories consist of the
method call events in the temporal order. Although its top-16
accuracy (96.43%) is pretty good, it only achieves a top-1
accuracy of 69.05%.

Completing variable names. There are a couple of solutions
that target to complete the correct names for variables in
codebase [12], [52], [53], [54]. Allamanis et al. defined two
tasks VARNAMING [54] and VARMISUSE [12] that focus on
completing a code snippet with a “hole” at the location of
a variable. In their approaches, other variables in the local
context are extracted as candidates. These candidates are
ranked with statistical language modeling combined with
program analysis focusing on the variable definition and
usage.

Completing general tokens. Some studies treated different
functional tokens (e.g., variables, API calls, etc.) identically
and aim to generate an entire code block or function by
continuously generating the next tokens [6], [7], [14], [55].
These approaches often rely on large language models [3]
pretrained with huge amounts of online code. In the code
generating process, optimized search strategies, such as beam
search, are often used to dynamically rank the growing
sequence candidates. However, the generated sequences are
usually evaluated with the BLEU score [56] that is designed
to measure the similarity of two natural language sequences.

This might be problematic since the correctness of the code
sequence is not guaranteed [57].

6 CONCLUSIONS

Data-driven code suggestion approaches need to be deeply
integrated with program-specific techniques, as code and nat-
ural languages have fundamental differences. We proposed
new neural network based API completion techniques to
capture program dependencies. We compared our approach
with the state-of-the-art API completion tools and conducted
extensive studies to evaluate the effectiveness of our two
design choices, the multi-path architecture and global depen-
dence enhancing learning. Our results confirmed that our
approach is effective at capturing the program dependencies
for API completion tasks. Our future work will focus on
enabling real-world code completion applications to help
developers in real-time. Towards this direction, the static
analysis needs to be available on incomplete code and the
neural network inferences to be efficient to meet latency or
throughput requirements.

ACKNOWLEDGMENTS

This work was supported in part by the National Science
Foundation under Grant No. CNS-1929701 and Virginia
Commonwealth Cyber Initiative (CCI).

REFERENCES

[1]]. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” arXiv preprint arXiv:1810.04805, 2018.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “RoBERTa: A robustly optimized
bert pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language
models are few-shot learners,” Advances in neural information
processing systems, vol. 33, pp. 1877-1901, 2020.

Z.Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V.
Le, “XLNET: Generalized autoregressive pretraining for language
understanding,” Advances in neural information processing systems,
vol. 32, 2019.

Z.Dai, Z. Yang, Y. Yang,]. Carbonell, Q. V. Le, and R. Salakhutdinov,
“Transformer-XL: Attentive language models beyond a fixed-length
context,” arXiv preprint arXiv:1901.02860, 2019.

Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou,
B. Qin, T. Liu, D. Jiang et al., “CodeBERT: A pre-trained
model for programming and natural languages,” arXiv preprint
arXiv:2002.08155, 2020.

A. Svyatkovskiy, S. K. Deng, S. Fu, and N. Sundaresan, “IntelliCode
compose: Code generation using transformer,” in Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, 2020, pp.
1433-1443.

S. Lu, D. Guo, S. Ren, J. Huang, A. Svyatkovskiy, A. Blanco,
C. Clement, D. Drain, D. Jiang, D. Tang et al., “CodeXGLUE: A
machine learning benchmark dataset for code understanding and
generation,” arXiv preprint arXiv:2102.04664, 2021.

A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
naturalness of software,” in 2012 34th International Conference on
Software Engineering (ICSE). 1EEE, 2012, pp. 837-847.

A. Hindle, E. T. Barr, M. Gabel, Z. Su, and P. Devanbu, “On the
naturalness of software,” Communications of the ACM, vol. 59, no. 5,
pp. 122-131, 2016.

B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, and
P. Devanbu, “On the “naturalness” of buggy code,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE). IEEE, 2016, pp. 428-439.

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

(10]

[11]

11

(12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to
represent programs with graphs,” in International Conference on
Learning Representations (ICLR), 2018.

Y. Li, D. Choi, J. Chung, N. Kushman,]J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. D. Lago et al., “Competition-level
code generation with alphacode,” arXiv preprint arXiv:2203.07814,
2022.

M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Eval-
uating large language models trained on code,” arXiv preprint
arXiv:2107.03374, 2021.

X. Chen, C. Liu, and D. Song, “Tree-to-tree neural networks for
program translation,” arXiv preprint arXiv:1802.03691, 2018.

V. Murali, L. Qi, S. Chaudhuri, and C. Jermaine, “Neural sketch
learning for conditional program generation,” International Confer-
ence on Learning Representations (ICLR), 2018.

M. Brockschmidt, M. Allamanis, A. L. Gaunt, and O. Polozov,
“Generative code modeling with graphs,” International Conference
on Learning Representations (ICLR), 2019.

S. Black, L. Gao, P. Wang, C. Leahy, and S. Biderman,
“GPT-Neo: Large Scale Autoregressive Language Modeling
with Mesh-Tensorflow,” Mar. 2021, If you use this software,
please cite it using these metadata. [Online]. Available:
https://doi.org/10.5281/zenodo.5297715

J. Li, Y. Wang, M. R. Lyu, and 1. King, “Code completion with neural
attention and pointer networks,” arXiv preprint arXiv:1711.09573,
2017.

E Liu, G. Li, B. Wei, X. Xia, Z. Fu, and Z. Jin, “A self-attentional
neural architecture for code completion with multi-task learning,”
in Proceedings of the 28th International Conference on Program Compre-
hension, 2020, pp. 37-47.

D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu ef al., “GraphCodebBERT: Pre-training code
representations with data flow,” arXiv preprint arXiv:2009.08366,
2020.

Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective
vulnerability identification by learning comprehensive program
semantics via graph neural networks,” in Advances in Neural
Information Processing Systems, 2019, pp. 10197-10207.

M. Allamanis, P. Chanthirasegaran, P. Kohli, and C. Sutton, “Learn-
ing continuous semantic representations of symbolic expressions,”
in Proceedings of the 34th International Conference on Machine Learning-
Volume 70. JMLR. org, 2017, pp. 80-88.

R. Mukherjee, Y. Wen, D. Chaudhari, T. Reps, S. Chaudhuri, and
C. Jermaine, “Neural program generation modulo static analysis,”
Advances in Neural Information Processing Systems, vol. 34, 2021.
“Codota Al Autocomplete for Java and
JavaScript,” https:/ /plugins.jetbrains.com/plugin/
7638-codota-ai-autocomplete-for-java\-and-javascript, 2021.

V. Raychev, M. Vechev, and E. Yahav, “Code completion with
statistical language models,” in ACM Sigplan Notices, vol. 49, no. 6.
ACM, 2014, pp. 419-428.

S. Nadi, S. Kruger, M. Mezini, and E. Bodden, “Jumping through
hoops: Why do Java developers struggle with cryptography APIs?”
in In Proceedings of the 37th International Conference on Software
Engineering (ICSE), 2016.

Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you're looking for: The impact of information
sources on code security,” in In 2016 IEEE Symposium on Security
and Privacy (SP), 2016, pp. 289 — 305.

N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Arango-Argoty,
“Secure coding practices in Java: Challenges and vulnerabilities,” in
2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). IEEE, 2018, pp. 372-383.

Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim, M. L. Mazurek,
and C. Stransky, “Comparing the usability of cryptographic APIs,”
in In 2017 IEEE Symposium on Security and Privacy (SP), 2017, pp.
154 - 171.

S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz,
M. Kantarcioglu, and D. D. Yao, “CryptoGuard: High precision
detection of cryptographic vulnerabilities in massive-sized Java
projects,” in Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2019, pp. 2455-2472.
Y. Xiao, Y. Zhao, N. Allen, N. Keynes, D. D. Yao, and C. Cifuentes,
“Industrial experience of finding cryptographic vulnerabilities in
large-scale codebases,” ACM Digital Threats: Research and Practice
(DTRAP), 2022.

https://doi.org/10.5281/zenodo.5297715
https://plugins.jetbrains.com/plugin/7638-codota-ai-autocomplete-for-java\-and-javascript
https://plugins.jetbrains.com/plugin/7638-codota-ai-autocomplete-for-java\-and-javascript

[33]

[34]

[35]

(36]

[37]

[38]

[39]

(40]

[41]

[42]

[43]

[44]
[45]

[46]

(47]

[48]

[49]

[50]

(51]

(52]

(53]

[54]

[55]

M. Schlichtig, A.-K. Wickert, S. Kriiger, E. Bodden, and M. Mezini,
“CamBench - cryptographic API misuse detection tool benchmark
suite,” 2022, available at https:/ /arxiv.org/pdf/2204.06447 .pdf.

S. Afrose, S. Rahaman, and D. Yao, “CryptoAPI-Bench: A Compre-
hensive Benchmark on Java Cryptographic API Misuses,” in 2019
IEEE Cybersecurity Development (SecDev). 1EEE, 2019, pp. 49-61.
S. Afrose, Y. Xiao, S. Rahaman, B. P. Miller, and D. D. Yao, “Evalua-
tion of static vulnerability detection tools with Java cryptographic
API benchmarks,” IEEE Transactions on Software Engineering (TSE),
2022.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
arXiv preprint arXiv:1706.03762, 2017.

M. Allamanis and C. Sutton, “Mining source code repositories at
massive scale using language modeling,” in 2013 10th Working
Conference on Mining Software Repositories (MSR). IEEE, 2013, pp.
207-216.

J. C. Campbell, A. Hindle, and J. N. Amaral, “Syntax errors just
aren’t natural: Improving error reporting with language models,”
in Proceedings of the 11th Working Conference on Mining Software
Repositories, 2014, pp. 252-261.

H. K. Dam, T. Tran, and T. Pham, “A deep language model for
software code,” arXiv preprint arXiv:1608.02715, 2016.

R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes,
“Big code!= big vocabulary: Open-vocabulary models for source
code,” in 2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 2020, pp. 1073-1085.

C. Maddison and D. Tarlow, “Structured generative models of
natural source code,” in International Conference on Machine Learning.
PMLR, 2014, pp. 649-657.

V. Raychev, P. Bielik, M. Vechev, and A. Krause, “Learning programs
from noisy data,” ACM Sigplan Notices, vol. 51, no. 1, pp. 761-774,
2016.

P. Bielik, V. Raychev, and M. Vechev, “PHOG: Probabilistic model
for code,” in International Conference on Machine Learning. PMLR,
2016, pp. 2933-2942.

C. Liu, X. Wang, R. Shin, J. E. Gonzalez, and D. Song, “Neural code
completion,” 2016.

P. Yin and G. Neubig, “A syntactic neural model for general-
purpose code generation,” arXiv preprint arXiv:1704.01696, 2017.
A. T. Nguyen and T. N. Nguyen, “Graph-based statistical lan-
guage model for code,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 1. 1EEE, 2015, pp. 858-868.
D. E. Knuth, “Semantics of context-free languages,” Mathematical
systems theory, vol. 2, no. 2, pp. 127-145, 1968.

T. T. Nguyen, A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A
statistical semantic language model for source code,” in Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering,
2013, pp. 532-542.

A. T. Nguyen, M. Hilton, M. Codoban, H. A. Nguyen, L. Mast,
E. Rademacher, T. N. Nguyen, and D. Dig, “API code recommen-
dation using statistical learning from fine-grained changes,” in
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, pp. 511-522.

T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen, “Learn-
ing API usages from bytecode: A statistical approach,” in 2016
IEEE/ACM 38th International Conference on Software Engineering
(ICSE). IEEE, 2016, pp. 416-427.

T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and
T. N. Nguyen, “Graph-based mining of multiple object usage
patterns,” in Proceedings of the 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT symposium
on the Foundations of Software Engineering, 2009, pp. 383-392.

V. Raychev, M. Vechev, and A. Krause, “Predicting program
properties from “ big code”,” ACM SIGPLAN Notices, vol. 50, no. 1,
pp. 111-124, 2015.

M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting
accurate method and class names,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. ACM, 2015,
pp- 38-49.

, “Learning natural coding conventions,” in Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of
Software Engineering. ACM, 2014, pp. 281-293.

C. B. Clement, D. Drain, J. Timcheck, A. Svyatkovskiy, and N. Sun-
daresan, “PyMT5: Multi-mode translation of natural language and
Python code with transformers,” arXiv preprint arXiv:2010.03150,
2020.

12

[56]

[57]

K. Papineni, S. Roukos, T. Ward, and W.-]. Zhu, “BLEU: A method
for automatic evaluation of machine translation,” in Proceedings of
the 40th annual meeting of the Association for Computational Linguistics,
2002, pp. 311-318.

S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “CodeBLEU: A method for auto-
matic evaluation of code synthesis,” arXiv preprint arXiv:2009.10297,
2020.

Ya Xiao Dr. Ya Xiao received her Ph.D. degree
in Computer Science from Virginia Tech. Her
research lies in deep learning applications in pro-
gramming language, software security, and cryp-
tography, including code embedding, learning-
based automatic vulnerabilities detection and
repair, neural cryptanalysis. She earned her bach-
elor and master degrees from Beijing University
of Posts and Telecommunications in China.

Wenjia Song Wenjia Song is a Ph.D. student
in Computer Science at Virginia Tech. Her re-
search falls on applications of machine learning
in medical predictions and cybersecurity. More
specifically, in medical field, her focus is on bias
detection and correction of machine learning
models on clinical datasets. In cybersecurity,
her focus is on the detection and analysis of
advanced attack behaviors.

Jingyuan Qi Jingyuan Qi is currently a Ph.D.
student at Virginia Tech. His research interests
include natural language processing (NLP) and
multimodal learning. He received his B.S. from
Virginia Tech, Blacksburg, USA, in 2020.

Bimal Viswanath Dr. Bimal Viswanath is an
Assistant Professor of Computer Science at Vir-
ginia Tech. His research interests are in security.
His ongoing work investigates machine learning
systems through the lens of security. He uses
data-driven methods to understand new threats
raised by advances in machine learning, and also
investigates how machine learning can improve
security of online services. He obtained his PhD
from the Max Planck Institute for Software Sys-
tems, and MS from IT Madras. He also worked

as a Researcher at Nokia Bell Labs before starting an academic position.

https://arxiv.org/pdf/2204.06447.pdf

Patrick McDaniel Dr. Patrick McDaniel is the
Tsun-Ming Shih Professor of Computer Sciences
in the School of Computer, Data and Information
Sciences at the University of Wisconsin-Madison.
Professor McDaniel is a Fellow of IEEE, ACM
and AAAS, a recipient of the SIGOPS Hall of
Fame Award and SIGSAC Outstanding Innova-
tion Award, and the director of the NSF Frontier
Center for Trustworthy Machine Learning. He
also served as the program manager and lead
scientist for the Army Research Laboratory’s
Cyber-Security Collaborative Research Alliance from 2013 to 2018.
Patrick’s research focuses on a wide range of topics in computer and
network security and technical public policy. Prior to joining Wisconsin
in 2022, he was the William L. Weiss Professor of Information and
Communications Technology and Director of the Institute for Networking
and Security Research at Pennsylvania State University.

Danfeng (Daphne) Yao Dr. Danfeng (Daphne)
Yao is a Professor of Computer Science at Vir-
ginia Tech. She is an Elizabeth and James E.
Turner Jr. ’56 Faculty Fellow and CACI Faculty
Fellow. Her research interests include building
cyber defenses, as well as machine learning
for digital health, with a shared focus on accu-
racy and deployment. She creates new models,
algorithms, techniques, and deployment-quality
tools for securing large-scale software and sys-
tems. Her tool CryptoGuard helps large software
companies and Apache projects harden their cryptographic code. She
systematized program anomaly detection in the book Anomaly Detection
as a Service. Her patents on anomaly detection are extremely influential
in the industry, cited by patents from major cybersecurity firms and
technology companies, including FireEye, Symantec, Qualcomm, Cisco,
IBM, SAP, Boeing, and Palo Alto Networks. Dr. Yao is an IEEE Fellow
for her contributions to enterprise data security and high-precision
vulnerability screening. She received her Ph.D. degree from Brown
University (Computer Science), M.S. degrees from Princeton University
(Chemistry) and Indiana University (Computer Science), Bloomington,
B.S. degree from Peking University in China (Chemistry).

APPENDIX

We provide the pseudo code for our multi-path selection

algorithm.

Algorithm 1 MultiPathSelection(k, G, s): Select ¢ (i < k)
paths originating from the s, with the constraint of being as

non-overlapping as possible

1: Input: (k, G, s), where k is the path budget, G is an API
dependence graph, and s is the starting node in G. fg

NN RN RNRKNR R R 2 2 2 92 2 = =
e e S A L R Sl > i e

NONN
® N o

N

denotes the data fact flowing from node a to node b}

Output: C, where C includes i data-flow paths (i < k).}

let () be a queue
.enqueue(s)
mark s as visited
while @ is not empty and Q.length+C.length < n do
n = ().dequeue()
if n has no predecessor then
Collect the path from s to n into C'
end if
for all predecessor p of n in Graph G do
if p is not visited and f,,, is not recorded then
@.enqueue(p)
mark p is visited, fp, is recorded
if ().length +C'length == n then
break
end if
end if
end for

: end while
: for all node n in Q do

while n has predecessors do
Select a predecessor p of n randomly
n=p

end while

collect a path from s to n into C

: end for
: return

14

	Introduction
	Program dependence specific challenges
	Our Approach
	Overview of Our Approach
	Dataflow based Context Extraction
	Our Neural Network Design
	Global dependence enhancing learning
	Our multi-path architecture

	Experimental Evaluation
	Comparison with Existing Tools
	Ablation Study
	HyLSTM vs. LSTM
	Multi-path vs. sequential architecture

	Cross-app Evaluation
	Examples of Sequence Frequencies

	Related Work
	Conclusions
	References
	Biographies
	Ya Xiao
	Wenjia Song
	Jingyuan Qi
	Bimal Viswanath
	Patrick McDaniel
	Danfeng (Daphne) Yao

	Appendix

