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For decades, a variety of predictive approaches have been proposed and evaluated in terms of their prediction
capability for Alzheimer’s Disease (AD) and its precursor — mild cognitive impairment (MCI). Most of them
focused on prediction or identification of statistical differences among different clinical groups or phases,
especially in the context of binary or multi-class classification. The continuous nature of AD development and
transition states between successive AD related stages have been typically overlooked. Though a few progression
models of AD have been studied recently, they were mainly designed to determine and compare the order of
specific biomarkers. How to effectively predict the individual patient’s status within a wide spectrum of
continuous AD progression has been largely understudied. In this work, we developed a novel learning-based
embedding framework to encode the intrinsic relations among AD related clinical stages by a set of meaning-
ful embedding vectors in the latent space (Disease2Vec). We named this process as disease embedding. By Dis-
ease2Vec, our framework generates a disease embedding tree (DETree) which effectively represents different
clinical stages as a tree trajectory reflecting AD progression and thus can be used to predict clinical status by
projecting individuals onto this continuous trajectory. Through this model, DETree can not only perform efficient
and accurate prediction for patients at any stages of AD development (across five fine-grained clinical groups
instead of typical two groups), but also provide richer status information by examining the projecting locations
within a wide and continuous AD progression process. (Code will be available: https://github.com/qidianzl/Di
sease2Vec.)

1. Introduction heterogeneity of AD: earlier studies suggested that the gap between

cognitive function and brain pathology (i.e., cognitive reserve) is typi-

Alzheimer’s disease (AD) is the most common cause of dementia that
cannot be prevented, cured, or even slowed. Earlier studies have shown
that AD pathogenesis involve widespread alterations in brain structure
and/or function, such as hippocampi [1], gray matter atrophy [2], white
matter disruption [3] and abnormal functional connectivity in default
mode network (DMN) [4]. Based on these brain alterations, many ap-
proaches have been developed for early diagnosis of AD and its pro-
dromal stage — mild cognitive impairment (MCI), such as voxel-based
analysis [5], tract-based spatial statistics [6], and recently developed
machine learning/deep learning-based models [7-9]. However, as a
neurodegenerative disorder with a long pre-clinical period, the spec-
trum of AD spans from clinically asymptomatic to severely impaired
[10]. For example, heterogeneity in clinical presentation, rate of atrophy
and cognitive decline [11] may occur in the prodromal stage of AD [12].
Furthermore, individual variations may also contribute to the

cally larger in highly educated individuals [13]. In general, traditional
predictive approaches (e.g., classification-based models) may be limited
in describing the continuum of AD development and individual varia-
tions in clinical prediction. To address this potential limitation, hypo-
thetical models [14] for AD progression have been proposed and
followed by various progression studies using cross-sectional or
short-term follow-up dataset. These attempts include regression-based
models [15], event-based models [16] and other computational
models [17]. Nevertheless, most of them were designed to determine the
order of biomarkers. Because these models consider different measures
or biomarkers separately, they create a different trajectory for each
biomarker. Consequently, different models and assumptions may lead to
inconsistent results and interpretations [16]. More importantly, previ-
ous AD progression models are based on population analysis, they
cannot be directly used for individualized diagnosis and prediction.
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Recent advancements in deep learning have brought about a para-
digm shift in representation learning, leading to the emergence of
powerful embedding techniques across various domains. Notably, word
embedding methods have made remarkable contributions in the field of
natural language processing (NLP) [18]. These methods aim to generate
dense, continuous vector representations of words, effectively repre-
senting and capturing the complex semantic relationships among them.
That is, the words sharing similar semantic meanings can be projected as
the vector representations that are closely situated in a high-dimensional
space. These embedding methods have demonstrated exceptional per-
formance across a range of downstream tasks [18]. Similarly, a
groundbreaking approach known as cortex2vector [19] has recently
been introduced. This method focuses on encoding the cortical folding
patterns into a group of anatomically meaningful embedding vectors. By
leveraging this technique, the anatomical similarity of different brain
landmarks can be effectively represented by the similarity of their cor-
responding embedding vectors. The core idea underlying these embed-
ding methods lies in the direct shaping of the latent space (embedding
space), aligning it with the semantic space. By mapping complex data
into the latent space, different positions within this space correspond to
distinct semantic or anatomical information. This alignment enables
efficient representation and analysis of complex relationships and
therefore enhances our ability to explore and understand intricate data
structures.

Inspired by the abovementioned remarkable successes of embedding
methods, in this work, we designed a new learning-based embedding
framework to encode the entire AD progression by a set of meaningful
embedding vectors in the latent space (Disease2Vec). By employing this
approach, the latent space is aligned with the AD progression trajectory,
allowing for the representation of intrinsic relationships between
different clinical stages through the learned embedding vectors. Fig. 1
provides a visual depiction of the core idea behind our framework.
During the training process, we introduce a novel ordered embedding
method that shapes the latent space in alignment with the disease
development process. This results in a set of learnable embeddings for
different clinical groups. These group embedding vectors are orderly
arranged in the latent space, directly corresponding to different stages of
disease progression. To effectively capture individuality, we transform
the input features of individuals into the latent space to obtain indi-
vidual embeddings. Through the learning process, the distribution of
these individual embeddings in the space reflects the corresponding
individual’s clinical status within the entire disease development pro-
cess. The proposed framework jointly learns the clinical group embed-
dings and individual embeddings to better shape the latent space. As a
result, we obtain a tree-based trajectory within the latent space, known
as the Disease Embedding Tree (DETree). This trajectory effectively
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integrates AD progression modeling and individual prediction. During
the prediction process, new individuals can be projected onto the
continuous trajectory of the learned DETree. This allows our model not
only to assign clinical groups to new patients but also to indicate their
clinical status throughout the entire development process, spanning
from normal cognition (NC) to AD. With the learned DETree, our model
achieves a relatively high classification accuracy — 77.8% for multi-class
classification (NC vs. SMC vs. EMCI vs. LMCI vs. AD), compared to other
established machine learning/deep learning methods [7,13,20-28].
Furthermore, the proposed DETree framework is versatile and can be
adapted to a wide range of neurodevelopmental, neurodegenerative,
and psychiatric disorders that exhibit multiple clinical stages during the
development.

2. Materials and methods
2.1. Data

2.1.1. Datasets description and data pre-processing

In this work, we used 266 subjects (60 NC, 34 SMC, 51 EMCI, 62
LMCI and 59 AD) from the ADNI dataset (http://adni.loni.usc.edu/).
Each subject has both structure MRI (T1-weighted) and resting state
fMRI (rs-fMRI) data. For T1-weighted MRI, FOV
= 240 x 256 x 208 mm®, voxel size = 1.0 mm isotropic, and TR
=2.3s. The rs-fMRI data  has 197  volumes, FOV
=220 x 220 x 163 mm3, voxel size = 3.3 mm isotropic, TR = 3 s, TE
=30ms and flip angle =90°. We followed the standardized pre-
processing procedures adopted in [29,30] for imaging data. Specif-
ically, we applied skull removal for both T1 and rs-fMRI modalities. And
for rs-fMRI images, the first 6 volumes were discarded during pre-
processing procedures to ensure magnetization equilibrium. Then we
applied spatial smoothing, slice time correction, temporal
pre-whitening, global drift removal and band pass filtering
(0.01-0.1 Hz). All these preprocessing steps are implemented using
FMRIB Software Library (FSL) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/)
FEAT. For T1 images, we conducted segmentation by FreeSurfer pack-
age (https://surfer.nmr.mgh.harvard.edu/). After the segmentation, we
adopted the Destrieux Atlas for ROI labeling, and the brain cortex is
partitioned into 148 regions.

2.1.2. Generation of functional connectivity

We calculated averaged fMRI signal for each brain region. Previous
studies [31,32] suggested that for rs-fMRI 14 time points (when TR=2 s)
are sufficient to capture functional dynamic patterns. To enlarge the
dataset, we divided the signal into four non-overlapping segments and
each segment has 45 time points. We used Pearson Correlation
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Fig. 1. Training: we used functional connectivity as input and learned a Disease Embedding Tree (DETree) to model the entire progression of AD in the latent space.
In the tree structure, each small bubble represents a single subject, and the colors indicate different clinical groups, including normal control — NC (green), significant
memory concern — SMC (yellow), early MCI — EMCI (orange), late MCI — LMCI (pink) and AD (red). Each edge in the DETree indicates that the connecting two nodes
have higher similarity in the latent space. The five larger bubbles represent the learned group embeddings. Prediction: During the prediction, new patients will be
projected into the latent space which are represented as scattered bubbles. The color of the bubble indicates the true label, the location of the bubble shows its state in
the entire development process from NC to AD, and the prediction of the bubble is based on the nearest group embedding.
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Coefficient to calculate functional connectivity for each of the four
groups of the signal segments and obtained four functional connectivity
matrices for each subject. These functional connectivity matrices were
vectorized and used as input of our model.

2.2. Method overview

We proposed a DETree framework to represent the continuum of AD
development process as a tree structure embedded in a latent space.
Here, an embedding is an abstract representation defined in latent space
that is associated with a specific clinical stage (group embedding) or a
specific individual (individual embedding). We parameterized a set of
group embeddings as hidden variables in latent space (Section 2.3) and
used the order information of clinical groups (NC - SMC — EMCI —
LMCI — AD) to guide the embedding process (Section 2.4). In general,
the proposed model aims to learn a deep representation of the input
signals in a latent space that is specially optimized for both tasks
simultaneously: the individual prediction and the AD progression
learning. As a result, on the learned tree structure, the patients with
similar clinical status are close and distant otherwise. Moreover, DETree
can predict the clinical stage for a new patient by projecting it to the
appropriate location on the learned tree structure (Section 2.4). Next, we
will present the details of DETree and its predictive capability for new
patients.

2.3. Disease embedding learning

Let{(x;,y:)}, be the training data consisting of n labeled data with
the i input x; € % and class label y; € {1, ..., C} with C disease stages.
To maintain representative instances for different disease stages, we
parameterized and learned a set of embeddings in the latent space and
used embedding matching for classification.

First, we learned a non-linear function h(x, 8) : .#%—.%" to transform
any given input x € #¢ to a latent space .#* with learnable model
parameter 6 to obtain individual embedding. And then, we defined a set
of clinical group embeddings as & = {e;; € #*|i=1,2,...,C;j=1,2, ...
,K} where K is the number of the embeddings in each class. With the
help of the non-linear transformation function h(x,0) and the set of
embeddings & in the latent space, we can make prediction for any given
data. Specifically, given an input data x € %%, we first generated its
representation (individual embedding) h(x,6) in latent space, then we
compared the individual embedding with all clinical group embeddings
and classified it to the category y, which is the nearest clinical group that
the embedding belongs to:

. . 2
y= argmin _min, [/otx.0) — ey M

The network parameters 6 and clinical group embeddings & can be
trained jointly in an end-to-end manner, which can make the model
h(x, 0) and clinical group embeddings interact with each other for better
performance. To train the model, we need to define a proper loss func-
tion such that 1) it is differentiable with respect to 6 and &, and 2) it
should be closely related to the classification accuracy.

Embedding Learning Based Cross Entropy Loss. In our DETree
model, we used distance to measure the similarity between the indi-
vidual embeddings and the clinical group embeddings. The class label of
the clinical group embedding e;; can be denoted by y;j, to indicate the jh
embedding of class y;. Thus, the probability of an input x belongs to class
¥i (i.e., e;; is the nearest embedding of x) is formulated as:

o exp{ —a|[h(x,0) — ey HZ}
P(yiylx) = S0 S exp] —allh(x.0) — ev

®))

8

where a is a hyper-parameter that controls the hardness of distance in
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probability assignment. Given the definition of P(yi j

x) , we can further

define the probability of an input x belonging to the category c €
{1,2,...,C} as:

Plel) = Y77 P(vesl) ®

Then, we defined a classification loss function based on the proba-
bility P(c|x) and named it as embedding learning based cross entropy
loss given by:

Zel(6):07) =~ £3C e = y)logh(ch) @
where indicator function I(c =y) is 1 if predicator ¢ =y is true and
0 otherwise.

From (2), (3) and (4), we can see that optimizing the embedding
based cross entropy loss essentially corresponds to decreasing the dis-
tance between the individual embedding h(x, 6) of input sample x and
the clinical group embedding vector, which comes from the true cate-
gory of x. By this way, the distance of two input samples at the same
disease stage will be small in the latent space, and the disease related
representative clinical group embeddings can be automatically learned
from data.

To improve the generalization performance and prevent over-fitting,
we also proposed a new embedding-based regularization term:

2

L oal(5,3):08) = |[h(x,0) — e, || ®)

where ey, is the closest group embedding of h(x,#) with class label y.
The regularization term pulls the individual embedding h(x, #) of input
sample x close to its corresponding clinical group embedding, making
the individual embeddings within the same class more compact, so it is
beneficial for classification.

2.4. Ordered Embedding Constraint

The class labels y provides not only the separability of their inputs,
but also the underlying relationship of the clinical groups, which cor-
responds to different disease stages during the progression of AD. It is
generally assumed that the ordering of the clinical groups is NC — SMC
— EMCI - LMCI — AD. Even though the ordering of each input sample
is unknown, the ordering of the classes can still provide valuable in-
formation to guide the embedding learning. To take advantage of this
prior knowledge, we constructed an affinity matrix .«/ = [a(i i j)} €

NN for the similarity among embedding class labels. N = C x K is the
total number of embeddings, where C is the number of clinical stages
and K is the number of the embeddings in each class. a;;; ;) = 1 if the

(i, j)‘h embedding and the (7, j')th embedding are from the same class, that
isy: =y, agj) ¢4 = 0.5 if yi is the neighbor of y; in the ordering of class
labels, and 0 otherwise.

To leverage this prior information for learning the path of AD pro-
gression, we added an additional neural network layer with softmax
function onto the embeddings to link the clinical group embeddings and
the different classes (stages) of AD. As a result, the output probability of
clinical group embedding e;; belonging to the class c is formulated as:
Ol‘(eij;W7 b) _ ixp{(wzef-j_'_b‘) } 6)

Sexpl (W/eiy +bi) }

where {W,,b;} are the parameters of the neural network layer. The final
prediction is:

yij = argmax O, (ei.j§ W, b) 7
ce{1,2,:C}

According to (6) and (7), the classification loss of clinical group
embeddings is defined as:
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;/’/(e,j;w,b):fé Ce=i) log O(ey;W.b) (8)

Then, we proposed the following regularization term to incorporate
the ordering information of the class labels in terms of the affinity matrix
.o/ based on the manifold assumption: if two labels are similar, their
probabilities of predictions should be close. The regularization term is
then formulated as:

L e 7(EW,b) = trace(OL,0) )

where O = [01;04;++;0¢] € #°*K and 0, = [Oc (eij; W, b) }{ij} €
GV ) e, L, = 7 —.o/ is the graph Laplacian matrix of ./ and 7 =

diag (Z;:yc/i j) )
Together with (4), (5), (8), (9) in hand, we are now ready to
formulate our DETree model with the loss function defined as:

=YL 08 ) + DL 2al(3:07) | 47y

C
i=1 i=1

K
X Zy, (eijs W,b) + 6L (€W, b) (10)
j=1

This loss function (10) is derivable with respect to 6, ¢, W and b. The
whole model can be trained in an end-to-end manner. Once the model is
trained, the latent space will demonstrate a clear alignment with the
different stages of AD progression. The clinical group embeddings will
be organized in a meaningful sequence within the latent space, and the
distances between individual embeddings will accurately capture the
relatedness of disease states among corresponding individuals
throughout the entire course of the disease. To visually represent the
intricate relationships among individuals and offer a clear depiction of
each individual’s position throughout the disease progression, we
attempt to create a structured tree-like representation based on these
learned embeddings. In this tree structure, individuals that share similar
disease states are connected by edges, providing a visual reflection of the
disease’s developmental process. To achieve this, we initiated the pro-
cess by computing pairwise distances between individual embeddings,
resulting in an n x n distance matrix, where n is the number of embed-
dings. Subsequently, upon the obtained distance matrix we generated a
minimum spanning tree using Kruskal’s algorithm. Within the tree
structure, the connecting individuals have shortest latent distances and
share similar disease status. This approach effectively provides a visual
and structural representation of the disease progression, facilitating a
deeper understanding of the relationships among individuals at different
stages of the disease and their positions within the progression. We
named it Disease Embedding Tree (DETree).

For a new patient x, the DETree can provide two sets of predictions.
Firstly, we can obtain the probabilities of assigning the new patient x to
each of the given clinical groups using (3). Based on these probabilities,
we can make the best prediction regarding the clinical group that patient
x belongs to. Secondly, DETree enables us to determine the location of
the individual patient within the learned tree using the function h(x, 6).
This location reflects the specific stage in the progression of AD where
the patient is situated. By utilizing these predictions, we can gain
valuable insights into both the patient’s clinical group assignment and
their disease progression stage.

3. Results
3.1. Experimental Setting
3.1.1. Data Setting
In this work, we used 266 subjects (60 NC, 34 SMC, 51 EMCI, 62

LMCI, 59 AD) in our experiment. Based on Section 2.1 each subject has
four functional matrices and we obtained 1064 data samples in total. In
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our experiments, the training, validation, and testing datasets were split
according to subjects, that is, four matrices of the same subject will be
divided into the same dataset. As the functional matrix is symmetric, to
reduce the redundant data, we used the vectorized upper triangle of
each matrix as input features.

3.1.2. Model setting

In this work, the non-linear function h(x, §) was implemented by 6-
layer fully connected network. The dimensions of the fully connected
network are 1024-512-256-64-16-k, where k is the dimension of the
latent space (Section 2.3). We tested k = 5, 10, 15, 20, 25. We showed
the results of k = 25 which gives the best classification performance in
Section 3.2 and Section 3.3, and compared the results of k = 5, 10, 15, 20
and 25 in Section 3.4. Activation function Relu and Batchnorm were
used at each layer. C =5 is the number of classes (NC/SMC/EMCl/
LMCI/AD). For each class, we initialized one learnable group embedding
(K = 1). We conducted hyper-parameter tuning for a, f, y, and & by
searching a grid of powers of 10 within the range of 10~* to 10!. The
selection of the best hyper-parameter values was based on the perfor-
mance of models using the training and validation datasets, resulting in
a=1.0,4=0.001,y = 1.0 and 6 = 1.0. The entire model was trained in
an end-to-end manner. Adam optimizer was used to train the whole
model with standard learning rate 0.001, weight decay 0.01, and mo-
mentum rates (0.9, 0.999).

3.2. Classification performance

In this section, we showed the classification performance of the
proposed DETree. For fair comparisons, we used two strategies to
compare the proposed method with other widely used methods. Firstly,
we repeated experiments 5 times with random seeds to compare the
results with other four broadly used machine learning methods
including support vector machine (SVM), k-nearest neighbors (KNN),
logistic regression and random forest. We conducted grid searching
using training and validation datasets to select the best model parame-
ters for the four models. As a result, the SVM with linear kernel, regu-
larization strength = 0.8, the KNN with k = 9, the logistic regression
with Ibfgs solver, 12 regularization, regularization strength = 1.2, and
random forest with 100 trees obtained the optimal performance. The

classification performance was measured by F; scores: F; =2 x

precisionxrecall
precision-+recall

and accuracy (Acc). The results are showed in Table 1. We
can see that the F; score of DETree model is over 0.75 which is more
than 10% higher than the second-best results. And for some classes it can
reach 0.80, which is outstanding in multi-class classification of AD and
significantly outperforms the other four methods.

Secondly, we compared the multi-class classification performance
with latest deep learning methods on AD and reported the results in
Table 2. As shown in Table 2, [20] obtains a very high F; score for AD
group, however the F; scores for other groups are considerably lower.
Although the total accuracy of [24] is slightly higher than our results
(0.780 >0.778), it is important to note that they only considered three
classes, whereas our approach encompasses five classes in this study. In
comparison with these methods, our proposed approach not only ach-
ieves a high overall accuracy but also maintains high accuracies for each
class without significant disparities.

3.3. The learned disease embedding tree

In addition to its outstanding classification performance, our
DETree’s most significant contribution lies in the introduction of a novel
ordered embedding method to direct shape the latent space (embedding
space). Through this method, the latent space is effectively aligned with
the AD progression trajectory and a tree structure is learned to model the
entire spectrum of AD progression. To evaluate the effectiveness of this
method, we analyzed the results from two different perspectives.
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Table 1

Classification Performance of DETree and Four Traditional Machine Learning Methods. The orange shade and blue shade highlight the best and the second-best results,
respectively.

Method F1
Acc (All)
All AD LMCI EMCI SMC CN

SVM  0.658+0.05 0.684+0.06 0.641£0.05 0.630:0.05  0.659£0.05  0.675+0.04  0.672+0.03

KNN  0.52640.05 0.42740.09 0.576£0.05 0.546£0.07  0.547+0.08  0.535£0.04  0.532+0.04

Logistic ) 1710.03  0.65120.06 0.634£0.04 0.627:0.05  0.649£0.05  0.65120.03  0.649+0.02
Regression

Random

Forast 04224003 0.37740.05  0.51640.07 0.426:0.04  0436:0.06  0.354£0.04  0.428+0.03

DETree 7771001 0.785£0.03 0.76240.03 0.801+0.06 0.765+0.02  0.7730.03  0.7780.02
(segmented)
Table 2

Classification Performance of DETree and Other Deep Learning Methods. cMCI/pMCI: MCI patient who converted to AD within 36 months; sMCI: MCI patients who
didn’t convert to AD within 36 months. EMCI/LMCI: early/late MCI. The orange shade and blue shade highlight the best and the second-best results, respectively.[7,13,

20-26,26,27,28].

Task
Study Modality Participants (n) Method Performance
Amorosoa etal.  Predefined  60AD/60NC/ Deep Random Forest AD vs. cMCI vs. sSMCI vs. NC
(2018) [20] Features 60cMCI/60MCI Fi: 0.805/0.518/0.305/0.525
Zhou et al. MRI, PET, 190AD/226NC/ Multi-modal AD vs. pMCI vs. sSMCI vs. NC
(2018) [21] SNP 157pMCI/205sMCI  Fusion Acc: 0.574/0.622/0.342/0.625
Brand et al. MRI, SNP 412(AD+MCI+NC)  Joint Regression- AD vs. MCI vs. NC
(2019) [22] Classification Fi: 0.566/0.513/0.683
Leietal. MRI 192AD/402MClI/ Multiple Templates, AD vs. MCI vs. NC
(2020) [13] 220NC Adaptive Feature Acc: 0.775
Selection
Wang et al. rs-fMRI 253NC/45EMCI/ Deep Autoencoder LMCI vs. EMCI vs. NC
(2020) [7] 88LMCI Acc: 0.730
Puente-Castro et MRI 297AD/921MCI/ Multi-Plane Features, AD vs. MCI vs. NC
al. (2020) [29] 525NC Transfer Learning Fi: 0.433/0.760/0.616
Liu et al. MRI 90AD/136MCI/ Depthwise Separable AD vs. MCI vs. NC
(2021) [30] 266NC Convolution (kernel Acc: 0.780
size: 3 X 3; maximum
pooling size: 2 x 2)
Xu et al. MRI 85AD/244MC1/ Tresnet, Selective AD vs. MCI vs. NC
(2021) [31] 133NC Kernel module Acc: 0.632
(kernel size: 3 x 3
and 1 x 1)
Lin et al. MRI, PET, 105AD/441MC1/ Linear Discriminant AD vs. MCI vs. NC
(2021) [32] CSF, 200NC Analysis, PCA, Acc: 0.667
genetic Multimodal Fusion
data
Lin et al. MRI, PET, 105AD/200NC/ Linear Discriminant AD vs. pMCI vs. sMCI vs. NC
(2021) [32] CSF, 110pMCI/208sMCI  Analysis, PCA, Acc: 0.573
genetic Multimodal Fusion
data
Mulyadi et al. MRI 1540 Clinically Guided AD vs. MCI vs. NC
(2023) [33] (AD+MCI+NC) Prototype Learning Acc: 0.632
Sudharsan et al.  MRI 80AD/84MCI/80ONC  Regularized Extreme AD vs. MCI vs. NC
(2023) [34] Learning Machine Acc: 0.628
HIADSAALICI Disease Embedding EE— VS{/SS I\Iillg
Liesjpiored] I g(l)gl\c/[c” ST R Fy: 0.785/0.762/0.801/0.765/ 0.773

Acc:

0.778




L. Zhang et al.

Firstly, we conducted analyses from a group-level perspective. The
well-trained model mapped the samples at different disease stages into
the embedding space. We attempted to evaluate the alignment between
embedding space with the AD progression by visualizing the feature
distribution of different clinical groups in the embedding space. Since
the learned DETree is in a high dimensional embedding space (k = 5, 10,
15, 20, 25), we adopted Principal Component Analysis (PCA) to project
high-dimensional features into two-dimensional space. PCA is a
dimensionality reduction technique widely used in data analysis and
machine learning. Its primary objective is to simplify complex datasets
by transforming them into a lower-dimensional form while preserving
the most critical information. The results are shown in Fig. 2(a), where
five subfigures (al to a5) correspond to the results of five runs of our
experiments. From the visualization, it is evident that the feature dis-
tribution corresponding to the five different clinical stages exhibit a
clear order (highlighted by dashed arrows), ranging from NC (green) to
SMC (yellow), EMCI (orange), LMCI (pink), and eventually ends with AD
(red), which is consistent with the AD progression trajectory. This
demonstrates that the embedding space aligns well with the AD pro-
gression. This result indicates that the proposed ordered embedding
method is effective in capturing the progression of AD in the embedding
space.

Secondly, we conducted analyses at the individual level. For each
subject, the well-trained model mapped the input individual feature to
the embedding space, obtaining the corresponding embedding vector —
h(x,0). To analyze the relationship between subjects, we employed
Kruskal’s algorithm to create a minimum spanning tree over the
embedding vectors (DETree). The results are shown in Fig. 2(b). In this
tree structure, each small bubble represents a single subject, with its
color indicating the clinical group to which the subject belongs. Each
edge in the tree structure indicates higher similarity between the
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connected nodes. The five larger bubbles represent the learned group
embeddings. From the results we can see that, the learned DETree
structure precisely displays a trajectory of AD progression. It starts with
the NC, goes through SMC, EMCI, LMCI and eventually ends with AD.
The DETree captures the underlying progression pattern, demonstrating
its ability to represent the continuous spectrum of AD progression in the
embedding space. Moreover, a significant advantage of DETree over
traditional classification methods is its ability to represent not only
clinical group information but also the specific states of individuals
along the entire disease development process. To further illustrate this,
we mapped the Mini-Mental State Examination (MMSE) score [33] and
the Alzheimer’s Disease Assessment Scale - Cognitive subscale (ADAS--
cog) score [34], two commonly used tools for assessing dementia, to
DETree and presented the results in Fig. 2(c) and (d), respectively. It is
evident from the two score trees that the cognitive impairment severity
shows an increasing trend from normal control (NC) to Alzheimer’s
disease (AD) in both score trees, in alignment with the disease pro-
gression. Furthermore, considerable variabilities exist in the impairment
severity among individuals within the same clinical group. DETree’s
such capability to preserve substantial individuality in AD progression
sets DETree apart as a significant advantage in disease modeling and
enhances its potential utility in clinical applications and personalized
medicine.

In this work, we used functional connectivity to learn the DETree. To
further explore which functional connections contribute most to the
learned tree structure, we sorted them with Laplacian score (LS) [35]. LS
is a robust feature selection technique widely employed in machine
learning and data analysis. It proves particularly useful when dealing
with high-dimensional datasets and tasks that require a deep under-
standing of underlying data structures. LS is grounded in Laplacian
Eigenmaps and Locality Preserving Projection, focusing on the

. ¥
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(da) \ (ds)
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Fig. 2. (a) Visualization of the feature distribution of different clinical groups in the embedding space. (b): DETree learned from multiple clinical groups, including
NC, SMC, EMCI, LMCI, and AD. Each small bubble in the tree represents a single subject color-coded according to their clinical group. Each edge indicates higher
similarity between connected nodes. The five larger bubbles represent the group level embeddings. (c): the Mini-Mental State Examination (MMSE) score [33]
mapped to DETree. (d): the Alzheimer’s Disease Assessment Scale - Cognitive subscale (ADAS-cog) score [34] mapped to DETree. The small bubbles in (c) and (d)

correspond to the small bubbles in (b) at the same location.
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evaluation of features based on their locality preserving power. The
concept behind LS is straightforward: data points that belong to the
same class are typically close to one another. LS uses the nearest
neighbor graph to obtain the local structure of the data and obtains the
LS value of each feature. Features that respect this graph structure will
obtain higher LS values and will be selected. Fig. 3 shows the top 5, 10
and 15 connectivity selected by LS that have the most contributions
during the learning of DETree structure. In each subfigure, the first row
shows the brain regions involved in the connectivity. The second row
shows the connectivity, and the corresponding regions are represented
by bubbles with the same color. Most of the regions in Fig. 3 are reported
in previous studies for the close relationship to AD, such as the regions in
frontal lobe and temporal lobe [7-9].

3.4. Ablation Study

In our DETree model, the hyper-parameter that has the most signif-
icant influence on the DETree structure is k, which represents the
dimension of the embedding space. We conducted experiments with
different values of k, specifically k = 5, 10, 15, 20, and 25, and analyzed
the results from three perspectives: the classification performance,
feature distribution in the latent space, and the learned DETree struc-
ture.

Firstly, we evaluated the influence of k on the classification perfor-
mance. To augment the training dataset and improve model training, the
fMRI signals of each individual in the training and validation datasets
were divided into four non-overlapping segments, effectively quadru-
pling the dataset size. In order to assess whether the segmented methods
impact the performance estimation on the testing dataset, we conducted
experiments in both segmented and unsegmented settings on the testing
datasets and compared the results. These comparisons are presented in
Fig. 4. As depicted in Fig. 4(A) and (B), increasing the value of k leads to
enhanced classification performance in both segmented and unseg-
mented settings on the testing dataset. This improvement is attributed to
the fact that low-dimensional embedding spaces may not fully capture
the intricate relationships within the brain network data, while higher-
dimensional spaces provide a more comprehensive representation of
these relationships, resulting in improved classification performance. To
highlight the distinctions between the segmented and unsegmented
testing dataset settings, we calculated the differences in F; and Acc
measures and presented the results in Fig. 4(C). The findings indicate
that segmented and unsegmented settings exhibit similar classification
performance, with variations within the range of [— 0.05, 0.06].

Secondly, we assessed the impact of k on the feature distribution in
the embedding space, particularly its alignment with the AD progression
process. The results are displayed in Fig. 5. Notably, as we varied the
value of k from 5 to 25, the feature distribution of the five clinical groups
consistently maintained the order from NC to SMC, EMCI, LMCI, and
eventually AD. This alignment of embedding space with the AD pro-
gression trajectory demonstrates that the choice of k does not affect the
feature distribution in the embedding space. This indicates that our
proposed ordered embedding method exhibits excellent robustness
across different dimensions of embedding space. The flexibility to
choose different dimensions of the embedding space enhances the po-
tential of the proposed model in adapting to diverse data characteristics

7 ’f&@&i;
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and complexities, making it applicable to a wide range of applications.
Thirdly, we explored the impact of k on the learned DETree structure
and presented the results in Fig. 6. From Fig. 6 we can see that if k is too
small (corresponding to lower dimensional embedding space), the distances
among different embeddings tend to be small (highlighted by blue circle).
As aresult, the corresponding embeddings exhibit high similarities. This
leads to insufficient dissimilarity between embeddings, which can limit
the capability of DETree in representing multiple clinical stages in AD
progression and compromise its prediction performance when esti-
mating new samples. These findings are consistent with the results in
Fig. 4, where lower-dimensional spaces exhibited inferior classification
performance compared to higher-dimensional embedding spaces.

3.5. Reproducibility and Generalizability

To evaluate the reproducibility of our proposed model across
different datasets and its generalizability to different tasks, we collected
the most recent released subset of ADNI, including 145 subjects (40 NC:
22 females, 18 males, 73.64+7.03 yrs.; 28 progressive MCI (pMCI): 13
females, 15 males, 72.44+7.43 yrs.; 42 stable MCI (sMCI): 18 females,
14 males, 71.32+£6.94 yrs.; and 35 AD: 15 females, 20 males,
72.93+8.56 yrs.). The pMCI group includes patients who progressed to
AD within 36 months [20,21], while sMCI consists of individuals who
did not progress. We divided the 145 subjects (dataset-2) into training,
validation, and testing datasets. For the training and validation datasets,
we employed the same four-segment approach as in dataset-1. However,
in the testing dataset, we used an unsegmented setting. Using a similar
experimental setup as in dataset-1, we conducted a series of experi-
ments, repeating each experiment 5 times with different random seeds.
Our objective was to evaluate the performance of the proposed DETree
model with varying embedding dimensions (k) for the new classification
task: NC vs. sMCI vs. pMCI vs. AD. We evaluated the model’s perfor-
mance from three perspectives: classification performance (Fig. 7),
feature distributions in the latent space (Fig. 8), and the learned DETree
structures (Fig. 9).

As shown in the results, increasing the value of k leads to improved
classification performance, consistent feature distributions in the latent
space, and larger distances among different embeddings within the
learned DETree structure. These findings are consistent with the con-
clusions drawn from dataset-1, indicating that the DETree model ex-
hibits excellent reproducibility and generalizability. However, it’s worth
noting that in the new classification task, our model achieved a
maximum accuracy of 0.708, slightly lower than the 0.777 accuracy
obtained in task-1 based on dataset-1. This drop in accuracy can be
attributed to the introduction of new categories, sMCI and pMCI, which
replaced EMCI and LMCI from task-1. This observation is consistent with
the results in Table 2, where tasks related to MCI progression, as dis-
cussed in references [20,21,26], typically exhibit slightly lower classi-
fication accuracy compared to other works. This discrepancy may be due
to the increased challenge of distinguishing between sMCI and pMCI
compared to the previous EMCI and LMCI categories. Nevertheless, even
in this context, our model consistently outperforms other models in the
MCI progression task [20,21,26].
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Fig. 3. Top connectivity that contributes most to the learned DETree structure. In each block, the top and bottom rows display the involved brain regions and

connectivity, respectively.
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(A) Classification Performance under Different Embedding Dimensions (Segmented)
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(B) Classification Performance under Different Embedding Dimensions (Unsegmented)
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Fig. 4. (A) and (B): Classification performance of various dimensions of the embedding space in two testing dataset settings. (C): The differences in F; and Acc

measures of two settings.

4. Conclusion and discussion

In this study, we introduced a novel DETree framework that seam-
lessly integrates individual prediction with AD progression modeling.
The learned DETree structure effectively represents the trajectory of AD
progression and achieves an impressive prediction performance of over
77.8% for multiple AD-related stages. One of the key strengths of our
approach is its ability to not only predict the clinical status of individual
patients but also provide valuable information about their specific state
within the entire spectrum of AD progression. We summarize the

advantages and limitations of our current work and provide some in-
sights for future research.

4.1. Advantages

4.1.1. DETree is a general framework for modeling continuous diseases
development

In this work, we only applied DETree to Alzheimer’s disease, but it is
a versatile framework that can be extended to a wide range of diseases.
The proposed DETree framework allows for flexibility in implementing
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Fig. 5. Visualization of the feature distribution of different clinical groups in the embedding space with varying dimensions: NC — green, SMC - yellow, EMCI - orange,

LMCI - pink, and AD - red.

Fig. 6. Different DETree structures learned in the embedding space with varying dimensions. The blue circles are used to highlight the embeddings from different

clinical groups with small distance.

non-linear function h(x,#), making it adaptable to any disease that ex-
hibits multiple clinical stages during its development. Researchers can
choose a suitable model architecture for h(x,6) implementation and
input relevant features into the model based on the specific disease and
tasks at hand. More important, by modifying the affinity matrix .27, the
prior knowledge about the disease can be easily introduced into the
DETree model.

4.1.2. DETree exhibits versatility beyond the realm of classification tasks
With minor adjustments to the additional neural network layer in
Section 2.4, DETree can seamlessly extend its applicability to regression
problems. For instance, by substituting the discrete clinical labels with
continuous clinical scores, such as the MMSE score [33], the existing
classification framework can be readily transformed into a robust
regression-based model. A straightforward approach to achieve this is as
follows: We take the feature and score pairs {(x;, s;) }i_, asinput to traina
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Classification Performance under Different Embedding Dimensions (Unsegmented)
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Fig. 7. Classification performance of various dimensions of the embedding space based on dataset2.

Fig. 8. Visualization of the feature distribution of different clinical groups in the embedding space with varying dimensions based on dataset2.

non-linear function h(x, 6) : %#9—.%*, with learnable model parameter 6.

This transforms any given input x € .%¢ to a latent space .%*. Based on
the latent feature h(x,#), we will integrate two tasks: clinical score
prediction and disease progression representation. This means h(x, 6) is
influenced by both tasks, allowing it to capture key information related
to both scores and disease progression simultaneously. To implement
the prediction task, we can train a submodule g(x, W;, b;) to predict the
clinical score as follows: s; = g(h(x;,0), Wr,b;), and a regression loss .,
=15 (si— s{)2 can be used to control the regression learning.
Regarding the disease progression task, we can utilize a ranking loss
function [36]. In contrast to other loss functions like Cross-Entropy Loss
or Mean Square Error Loss, which aim to directly predict a label, a value,
or a set of values based on an input, Ranking Losses focus on predicting
relative distances between inputs, commonly referred to as metric
learning. Specifically, let x = {x1,...,x,} be the objects that need to be
ranked, associated with multi-level ratings denoted as L = {I(1),...,l(n)},
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where each [(i) € {ry,...,r} and signifies the label of x; [36]. In our
work, the rating (i) is the clinical score of x;. In the ranking context,
when [(i) > I(j), it implies that object x; should take precedence over x; in
the ranking order. Let .7 represent the class of functions, and f € .7
denote a specific ranking function. The objective is to learn the optimal
ranking function from training data by minimizing a specific loss func-
tion. This loss function is defined based on the objects, their associated
labels, and the ranking function itself. Several methodologies have been
proposed to facilitate the learning of this optimal ranking function,
including pointwise approaches [37,38], pairwise approaches [39,40],
and e listwise approaches [41,42]. Moreover, it’s worth delving deeper
into exploring the integration of disease-related prior knowledge to
tailor a ranking function that better aligns with the demands of our
specific task. This is an avenue that deserves further investigation in our
future work.
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Fig. 9. Different DETree structures learned in the embedding space with varying dimensions based on dataset2.

5. Limitations and future work

The current work has focused on a specific choice of the
embedding number - K, for each class. In Section 2.3, we provide a
general form of group embeddings as & = {e;; € %k|i =1,2,...,Gj=
1,2,...,K} where K is the number of the embeddings in each class and
could be equal to or greater than 1. However, for the particular appli-
cation addressed in this study, K is intentionally set to 1. It’s important
to note that in many scenarios, the choice of K can be a subject for more
in-depth exploration. For example, in the case of specific diseases where
individuals in the same disease stage exhibit diverse clinical symptoms,
the choice of K becomes crucial. In such cases, the objective is that each
of the K learned embeddings will capture the specific features associated
with the varying clinical symptoms observed at the same disease stage.
It’s essential to emphasize that, given the potential subtle differences
among patients in the same disease stage, a significant amount of data is
required to adequately train the model for each clinical response.

Current work only covers single modality.

Due to the scarcity of multi-modal data, where each subject is
required to have multiple modalities of data, such as both structural and
functional image data, the sample size drastically decreases. Conse-
quently, we have only focused on utilizing a single modality for this
study. Previous studies [43,44] suggest that functional abnormalities
may precede structural alterations, making functional data more suit-
able for a comprehensive modeling of the entire AD progression process.
Therefore, we chose to use functional connectivity data in this study. In
the future, as we acquire sufficient multi-modal data, extending our
current model to accommodate multiple modalities becomes feasible by
treating each modality as a distinct view. Specifically, we can tailor a
modality-specific model for each modality, mapping the original data
into a unified embedding space from its unique perspective. This flexible
strategy not only effectively conceals heterogeneities and in-
consistencies between modalities, such as variations in numerical
values, dimensions, and representations, but also allows us to optimize
the model architecture for each modality to capture its specific char-
acteristics most effectively. For instance, recent advancements in Large
Language Models (LLMs) have demonstrated impressive achievements

11

in various domains [45-49], including NLP and Computer Vision (CV).
We can leverage these pre-trained LLMs on large datasets as feature
extractors and fine-tune them to adapt to healthcare data. This enables
us to fully exploit the remarkable generalization and feature extraction
capabilities of these large models. Through this approach, we can
harness cutting-edge models and technologies from the NLP and CV
domains to study brain diseases effectively. By integrating NLP and CV
advancements into our research on brain diseases, we have the oppor-
tunity to gain new insights and breakthroughs that were previously not
attainable. This interdisciplinary approach opens up exciting possibil-
ities for the advancement of neuroscience and healthcare research.
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