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A B S T R A C T   

For decades, a variety of predictive approaches have been proposed and evaluated in terms of their prediction 
capability for Alzheimer’s Disease (AD) and its precursor – mild cognitive impairment (MCI). Most of them 
focused on prediction or identification of statistical differences among different clinical groups or phases, 
especially in the context of binary or multi-class classification. The continuous nature of AD development and 
transition states between successive AD related stages have been typically overlooked. Though a few progression 
models of AD have been studied recently, they were mainly designed to determine and compare the order of 
specific biomarkers. How to effectively predict the individual patient’s status within a wide spectrum of 
continuous AD progression has been largely understudied. In this work, we developed a novel learning-based 
embedding framework to encode the intrinsic relations among AD related clinical stages by a set of meaning
ful embedding vectors in the latent space (Disease2Vec). We named this process as disease embedding. By Dis
ease2Vec, our framework generates a disease embedding tree (DETree) which effectively represents different 
clinical stages as a tree trajectory reflecting AD progression and thus can be used to predict clinical status by 
projecting individuals onto this continuous trajectory. Through this model, DETree can not only perform efficient 
and accurate prediction for patients at any stages of AD development (across five fine-grained clinical groups 
instead of typical two groups), but also provide richer status information by examining the projecting locations 
within a wide and continuous AD progression process. (Code will be available: https://github.com/qidianzl/Di 
sease2Vec.)   

1. Introduction 

Alzheimer’s disease (AD) is the most common cause of dementia that 
cannot be prevented, cured, or even slowed. Earlier studies have shown 
that AD pathogenesis involve widespread alterations in brain structure 
and/or function, such as hippocampi [1], gray matter atrophy [2], white 
matter disruption [3] and abnormal functional connectivity in default 
mode network (DMN) [4]. Based on these brain alterations, many ap
proaches have been developed for early diagnosis of AD and its pro
dromal stage – mild cognitive impairment (MCI), such as voxel-based 
analysis [5], tract-based spatial statistics [6], and recently developed 
machine learning/deep learning-based models [7–9]. However, as a 
neurodegenerative disorder with a long pre-clinical period, the spec
trum of AD spans from clinically asymptomatic to severely impaired 
[10]. For example, heterogeneity in clinical presentation, rate of atrophy 
and cognitive decline [11] may occur in the prodromal stage of AD [12]. 
Furthermore, individual variations may also contribute to the 

heterogeneity of AD: earlier studies suggested that the gap between 
cognitive function and brain pathology (i.e., cognitive reserve) is typi
cally larger in highly educated individuals [13]. In general, traditional 
predictive approaches (e.g., classification-based models) may be limited 
in describing the continuum of AD development and individual varia
tions in clinical prediction. To address this potential limitation, hypo
thetical models [14] for AD progression have been proposed and 
followed by various progression studies using cross-sectional or 
short-term follow-up dataset. These attempts include regression-based 
models [15], event-based models [16] and other computational 
models [17]. Nevertheless, most of them were designed to determine the 
order of biomarkers. Because these models consider different measures 
or biomarkers separately, they create a different trajectory for each 
biomarker. Consequently, different models and assumptions may lead to 
inconsistent results and interpretations [16]. More importantly, previ
ous AD progression models are based on population analysis, they 
cannot be directly used for individualized diagnosis and prediction. 
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Recent advancements in deep learning have brought about a para
digm shift in representation learning, leading to the emergence of 
powerful embedding techniques across various domains. Notably, word 
embedding methods have made remarkable contributions in the field of 
natural language processing (NLP) [18]. These methods aim to generate 
dense, continuous vector representations of words, effectively repre
senting and capturing the complex semantic relationships among them. 
That is, the words sharing similar semantic meanings can be projected as 
the vector representations that are closely situated in a high-dimensional 
space. These embedding methods have demonstrated exceptional per
formance across a range of downstream tasks [18]. Similarly, a 
groundbreaking approach known as cortex2vector [19] has recently 
been introduced. This method focuses on encoding the cortical folding 
patterns into a group of anatomically meaningful embedding vectors. By 
leveraging this technique, the anatomical similarity of different brain 
landmarks can be effectively represented by the similarity of their cor
responding embedding vectors. The core idea underlying these embed
ding methods lies in the direct shaping of the latent space (embedding 
space), aligning it with the semantic space. By mapping complex data 
into the latent space, different positions within this space correspond to 
distinct semantic or anatomical information. This alignment enables 
efficient representation and analysis of complex relationships and 
therefore enhances our ability to explore and understand intricate data 
structures. 

Inspired by the abovementioned remarkable successes of embedding 
methods, in this work, we designed a new learning-based embedding 
framework to encode the entire AD progression by a set of meaningful 
embedding vectors in the latent space (Disease2Vec). By employing this 
approach, the latent space is aligned with the AD progression trajectory, 
allowing for the representation of intrinsic relationships between 
different clinical stages through the learned embedding vectors. Fig. 1 
provides a visual depiction of the core idea behind our framework. 
During the training process, we introduce a novel ordered embedding 
method that shapes the latent space in alignment with the disease 
development process. This results in a set of learnable embeddings for 
different clinical groups. These group embedding vectors are orderly 
arranged in the latent space, directly corresponding to different stages of 
disease progression. To effectively capture individuality, we transform 
the input features of individuals into the latent space to obtain indi
vidual embeddings. Through the learning process, the distribution of 
these individual embeddings in the space reflects the corresponding 
individual’s clinical status within the entire disease development pro
cess. The proposed framework jointly learns the clinical group embed
dings and individual embeddings to better shape the latent space. As a 
result, we obtain a tree-based trajectory within the latent space, known 
as the Disease Embedding Tree (DETree). This trajectory effectively 

integrates AD progression modeling and individual prediction. During 
the prediction process, new individuals can be projected onto the 
continuous trajectory of the learned DETree. This allows our model not 
only to assign clinical groups to new patients but also to indicate their 
clinical status throughout the entire development process, spanning 
from normal cognition (NC) to AD. With the learned DETree, our model 
achieves a relatively high classification accuracy – 77.8% for multi-class 
classification (NC vs. SMC vs. EMCI vs. LMCI vs. AD), compared to other 
established machine learning/deep learning methods [7,13,20–28]. 
Furthermore, the proposed DETree framework is versatile and can be 
adapted to a wide range of neurodevelopmental, neurodegenerative, 
and psychiatric disorders that exhibit multiple clinical stages during the 
development. 

2. Materials and methods 

2.1. Data 

2.1.1. Datasets description and data pre-processing 
In this work, we used 266 subjects (60 NC, 34 SMC, 51 EMCI, 62 

LMCI and 59 AD) from the ADNI dataset (http://adni.loni.usc.edu/). 
Each subject has both structure MRI (T1-weighted) and resting state 
fMRI (rs-fMRI) data. For T1-weighted MRI, FOV 
= 240 × 256 × 208 mm3, voxel size = 1.0 mm isotropic, and TR 
= 2.3 s. The rs-fMRI data has 197 volumes, FOV 
= 220 × 220 × 163 mm3, voxel size = 3.3 mm isotropic, TR = 3 s, TE 
= 30 ms and flip angle = 90◦. We followed the standardized pre- 
processing procedures adopted in [29,30] for imaging data. Specif
ically, we applied skull removal for both T1 and rs-fMRI modalities. And 
for rs-fMRI images, the first 6 volumes were discarded during pre
processing procedures to ensure magnetization equilibrium. Then we 
applied spatial smoothing, slice time correction, temporal 
pre-whitening, global drift removal and band pass filtering 
(0.01–0.1 Hz). All these preprocessing steps are implemented using 
FMRIB Software Library (FSL) (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) 
FEAT. For T1 images, we conducted segmentation by FreeSurfer pack
age (https://surfer.nmr.mgh.harvard.edu/). After the segmentation, we 
adopted the Destrieux Atlas for ROI labeling, and the brain cortex is 
partitioned into 148 regions. 

2.1.2. Generation of functional connectivity 
We calculated averaged fMRI signal for each brain region. Previous 

studies [31,32] suggested that for rs-fMRI 14 time points (when TR=2 s) 
are sufficient to capture functional dynamic patterns. To enlarge the 
dataset, we divided the signal into four non-overlapping segments and 
each segment has 45 time points. We used Pearson Correlation 

Fig. 1. Training: we used functional connectivity as input and learned a Disease Embedding Tree (DETree) to model the entire progression of AD in the latent space. 
In the tree structure, each small bubble represents a single subject, and the colors indicate different clinical groups, including normal control – NC (green), significant 
memory concern – SMC (yellow), early MCI – EMCI (orange), late MCI – LMCI (pink) and AD (red). Each edge in the DETree indicates that the connecting two nodes 
have higher similarity in the latent space. The five larger bubbles represent the learned group embeddings. Prediction: During the prediction, new patients will be 
projected into the latent space which are represented as scattered bubbles. The color of the bubble indicates the true label, the location of the bubble shows its state in 
the entire development process from NC to AD, and the prediction of the bubble is based on the nearest group embedding. 
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Coefficient to calculate functional connectivity for each of the four 
groups of the signal segments and obtained four functional connectivity 
matrices for each subject. These functional connectivity matrices were 
vectorized and used as input of our model. 

2.2. Method overview 

We proposed a DETree framework to represent the continuum of AD 
development process as a tree structure embedded in a latent space. 
Here, an embedding is an abstract representation defined in latent space 
that is associated with a specific clinical stage (group embedding) or a 
specific individual (individual embedding). We parameterized a set of 
group embeddings as hidden variables in latent space (Section 2.3) and 
used the order information of clinical groups (NC → SMC → EMCI → 
LMCI → AD) to guide the embedding process (Section 2.4). In general, 
the proposed model aims to learn a deep representation of the input 
signals in a latent space that is specially optimized for both tasks 
simultaneously: the individual prediction and the AD progression 
learning. As a result, on the learned tree structure, the patients with 
similar clinical status are close and distant otherwise. Moreover, DETree 
can predict the clinical stage for a new patient by projecting it to the 
appropriate location on the learned tree structure (Section 2.4). Next, we 
will present the details of DETree and its predictive capability for new 
patients. 

2.3. Disease embedding learning 

Let{(xi, yi)}
n
i=1 be the training data consisting of n labeled data with 

the ith input xi ∈ R d and class label yi ∈ {1, …, C} with C disease stages. 
To maintain representative instances for different disease stages, we 
parameterized and learned a set of embeddings in the latent space and 
used embedding matching for classification. 

First, we learned a non-linear function h(x, θ) : R d→R k to transform 
any given input x ∈ R d to a latent space R k with learnable model 
parameter θ to obtain individual embedding. And then, we defined a set 
of clinical group embeddings as E =

{
ei,j ∈ R k⃒

⃒i = 1, 2, …, C; j = 1, 2, … 
, K

}
where K is the number of the embeddings in each class. With the 

help of the non-linear transformation function h(x, θ) and the set of 
embeddings E in the latent space, we can make prediction for any given 
data. Specifically, given an input data x ∈ R d, we first generated its 
representation (individual embedding) h(x, θ) in latent space, then we 
compared the individual embedding with all clinical group embeddings 
and classified it to the category y, which is the nearest clinical group that 
the embedding belongs to: 

y = argmin
i∈{1,2,⋯C}

min
j∈{1,2,⋯K}

⃦
⃦h(x, θ) − ei,j

⃦
⃦2

2 (1) 

The network parameters θ and clinical group embeddings E can be 
trained jointly in an end-to-end manner, which can make the model 
h(x, θ) and clinical group embeddings interact with each other for better 
performance. To train the model, we need to define a proper loss func
tion such that 1) it is differentiable with respect to θ and E , and 2) it 
should be closely related to the classification accuracy. 

Embedding Learning Based Cross Entropy Loss. In our DETree 
model, we used distance to measure the similarity between the indi
vidual embeddings and the clinical group embeddings. The class label of 
the clinical group embedding ei,j can be denoted by yi,j, to indicate the jth 

embedding of class yi. Thus, the probability of an input x belongs to class 
yi (i.e., ei,j is the nearest embedding of x) is formulated as: 

P
(
yi,j

⃒
⃒x

)
=

exp
{

− α
⃦
⃦h(x, θ) − ei,j

⃦
⃦2

2

}

∑C
l=1

∑K
m=1exp

{
− α

⃦
⃦h(x, θ) − el,m

⃦
⃦2

2

} (2)  

where α is a hyper-parameter that controls the hardness of distance in 

probability assignment. Given the definition of P
(

yi,j

⃒
⃒
⃒x

)
, we can further 

define the probability of an input x belonging to the category c ∈

{1, 2, …, C} as: 

P(c|x) =
∑K

j=1
P

(
yc,j

⃒
⃒x

)
(3) 

Then, we defined a classification loss function based on the proba
bility P(c|x) and named it as embedding learning based cross entropy 
loss given by: 

L E ((x, y); θE ) = −
1
C

∑C

c=1
I(c = y)logP(c|x) (4)  

where indicator function I(c = y) is 1 if predicator c = y is true and 
0 otherwise. 

From (2), (3) and (4), we can see that optimizing the embedding 
based cross entropy loss essentially corresponds to decreasing the dis
tance between the individual embedding h(x, θ) of input sample x and 
the clinical group embedding vector, which comes from the true cate
gory of x. By this way, the distance of two input samples at the same 
disease stage will be small in the latent space, and the disease related 
representative clinical group embeddings can be automatically learned 
from data. 

To improve the generalization performance and prevent over-fitting, 
we also proposed a new embedding-based regularization term: 

L E R ((x, y); θE ) =
⃦
⃦h(x, θ) − ey,∗

⃦
⃦2

2 (5)  

where ey,∗ is the closest group embedding of h(x, θ) with class label y. 
The regularization term pulls the individual embedding h(x, θ) of input 
sample x close to its corresponding clinical group embedding, making 
the individual embeddings within the same class more compact, so it is 
beneficial for classification. 

2.4. Ordered Embedding Constraint 

The class labels y provides not only the separability of their inputs, 
but also the underlying relationship of the clinical groups, which cor
responds to different disease stages during the progression of AD. It is 
generally assumed that the ordering of the clinical groups is NC → SMC 
→ EMCI → LMCI → AD. Even though the ordering of each input sample 
is unknown, the ordering of the classes can still provide valuable in
formation to guide the embedding learning. To take advantage of this 
prior knowledge, we constructed an affinity matrix A =

[
a(i,j),(i′,j′)

]
∈

R N×N for the similarity among embedding class labels. N = C × K is the 
total number of embeddings, where C is the number of clinical stages 
and K is the number of the embeddings in each class. a(i,j),(i′,j′) = 1 if the 

(i, j)th embedding and the (i′, j′)th embedding are from the same class, that 
is yi = yi′, a(i,j),(i′,j′) = 0.5 if yi is the neighbor of yi′ in the ordering of class 
labels, and 0 otherwise. 

To leverage this prior information for learning the path of AD pro
gression, we added an additional neural network layer with softmax 
function onto the embeddings to link the clinical group embeddings and 
the different classes (stages) of AD. As a result, the output probability of 
clinical group embedding ei,j belonging to the class c is formulated as: 

Oc
(
ei,j; W, b

)
=

exp
{(

WT
c ei,j + bc

) }

∑C
l=1exp

{(
WT

l ei,j + bl
) } (6)  

where {Wl, bl} are the parameters of the neural network layer. The final 
prediction is: 

yi,j = argmax
c∈{1,2,⋯C}

Oc
(
ei,j; W, b

)
(7) 

According to (6) and (7), the classification loss of clinical group 
embeddings is defined as: 
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L O

(
ei,j; W, b

)
= −

1
C

∑C

c=1
I(c = i) log Oc

(
ei,j; W, b

)
(8) 

Then, we proposed the following regularization term to incorporate 
the ordering information of the class labels in terms of the affinity matrix 
A based on the manifold assumption: if two labels are similar, their 
probabilities of predictions should be close. The regularization term is 
then formulated as: 

L O R (E W, b) = trace
(
OLyOT )

(9)  

where O = [O1; O2; ⋯; OC] ∈ R C×(C×K) and Oc =
[
Oc

(
ei,j; W, b

) ]

{i,j} ∈

R 1×(C×K), ∀c, Ly = D −A is the graph Laplacian matrix of A andD =

diag
(∑n

j=1A i,j

)
. 

Together with (4), (5), (8), (9) in hand, we are now ready to 
formulate our DETree model with the loss function defined as: 

L =
∑n

i=1
[L E ((xi, yi); θE ) + βL E R ((xi, yi); θE ) ] + γ

∑C

i=1

×
∑K

j=1
L O

(
ei,j; W, b

)
+ δL O R (E W, b) (10) 

This loss function (10) is derivable with respect to θ, E , W and b. The 
whole model can be trained in an end-to-end manner. Once the model is 
trained, the latent space will demonstrate a clear alignment with the 
different stages of AD progression. The clinical group embeddings will 
be organized in a meaningful sequence within the latent space, and the 
distances between individual embeddings will accurately capture the 
relatedness of disease states among corresponding individuals 
throughout the entire course of the disease. To visually represent the 
intricate relationships among individuals and offer a clear depiction of 
each individual’s position throughout the disease progression, we 
attempt to create a structured tree-like representation based on these 
learned embeddings. In this tree structure, individuals that share similar 
disease states are connected by edges, providing a visual reflection of the 
disease’s developmental process. To achieve this, we initiated the pro
cess by computing pairwise distances between individual embeddings, 
resulting in an n × n distance matrix, where n is the number of embed
dings. Subsequently, upon the obtained distance matrix we generated a 
minimum spanning tree using Kruskal’s algorithm. Within the tree 
structure, the connecting individuals have shortest latent distances and 
share similar disease status. This approach effectively provides a visual 
and structural representation of the disease progression, facilitating a 
deeper understanding of the relationships among individuals at different 
stages of the disease and their positions within the progression. We 
named it Disease Embedding Tree (DETree). 

For a new patient x, the DETree can provide two sets of predictions. 
Firstly, we can obtain the probabilities of assigning the new patient x to 
each of the given clinical groups using (3). Based on these probabilities, 
we can make the best prediction regarding the clinical group that patient 
x belongs to. Secondly, DETree enables us to determine the location of 
the individual patient within the learned tree using the function h(x, θ). 
This location reflects the specific stage in the progression of AD where 
the patient is situated. By utilizing these predictions, we can gain 
valuable insights into both the patient’s clinical group assignment and 
their disease progression stage. 

3. Results 

3.1. Experimental Setting 

3.1.1. Data Setting 
In this work, we used 266 subjects (60 NC, 34 SMC, 51 EMCI, 62 

LMCI, 59 AD) in our experiment. Based on Section 2.1 each subject has 
four functional matrices and we obtained 1064 data samples in total. In 

our experiments, the training, validation, and testing datasets were split 
according to subjects, that is, four matrices of the same subject will be 
divided into the same dataset. As the functional matrix is symmetric, to 
reduce the redundant data, we used the vectorized upper triangle of 
each matrix as input features. 

3.1.2. Model setting 
In this work, the non-linear function h(x, θ) was implemented by 6- 

layer fully connected network. The dimensions of the fully connected 
network are 1024–512–256–64–16-k, where k is the dimension of the 
latent space (Section 2.3). We tested k = 5, 10, 15, 20, 25. We showed 
the results of k = 25 which gives the best classification performance in 
Section 3.2 and Section 3.3, and compared the results of k = 5, 10, 15, 20 
and 25 in Section 3.4. Activation function Relu and Batchnorm were 
used at each layer. C = 5 is the number of classes (NC/SMC/EMCI/ 
LMCI/AD). For each class, we initialized one learnable group embedding 
(K = 1). We conducted hyper-parameter tuning for α, β, γ, and δ by 
searching a grid of powers of 10 within the range of 10−4 to 101. The 
selection of the best hyper-parameter values was based on the perfor
mance of models using the training and validation datasets, resulting in 
α = 1.0, β = 0.001, γ = 1.0 and δ = 1.0. The entire model was trained in 
an end-to-end manner. Adam optimizer was used to train the whole 
model with standard learning rate 0.001, weight decay 0.01, and mo
mentum rates (0.9, 0.999). 

3.2. Classification performance 

In this section, we showed the classification performance of the 
proposed DETree. For fair comparisons, we used two strategies to 
compare the proposed method with other widely used methods. Firstly, 
we repeated experiments 5 times with random seeds to compare the 
results with other four broadly used machine learning methods 
including support vector machine (SVM), k-nearest neighbors (KNN), 
logistic regression and random forest. We conducted grid searching 
using training and validation datasets to select the best model parame
ters for the four models. As a result, the SVM with linear kernel, regu
larization strength = 0.8, the KNN with k = 9, the logistic regression 
with lbfgs solver, l2 regularization, regularization strength = 1.2, and 
random forest with 100 trees obtained the optimal performance. The 
classification performance was measured by F1 scores: F1 = 2 ×

precision×recall
precision+recall and accuracy (Acc). The results are showed in Table 1. We 
can see that the F1 score of DETree model is over 0.75 which is more 
than 10% higher than the second-best results. And for some classes it can 
reach 0.80, which is outstanding in multi-class classification of AD and 
significantly outperforms the other four methods. 

Secondly, we compared the multi-class classification performance 
with latest deep learning methods on AD and reported the results in  
Table 2. As shown in Table 2, [20] obtains a very high F1 score for AD 
group, however the F1 scores for other groups are considerably lower. 
Although the total accuracy of [24] is slightly higher than our results 
(0.780 >0.778), it is important to note that they only considered three 
classes, whereas our approach encompasses five classes in this study. In 
comparison with these methods, our proposed approach not only ach
ieves a high overall accuracy but also maintains high accuracies for each 
class without significant disparities. 

3.3. The learned disease embedding tree 

In addition to its outstanding classification performance, our 
DETree’s most significant contribution lies in the introduction of a novel 
ordered embedding method to direct shape the latent space (embedding 
space). Through this method, the latent space is effectively aligned with 
the AD progression trajectory and a tree structure is learned to model the 
entire spectrum of AD progression. To evaluate the effectiveness of this 
method, we analyzed the results from two different perspectives. 
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Table 1 
Classification Performance of DETree and Four Traditional Machine Learning Methods. The orange shade and blue shade highlight the best and the second-best results, 
respectively.  

Table 2 
Classification Performance of DETree and Other Deep Learning Methods. cMCI/pMCI: MCI patient who converted to AD within 36 months; sMCI: MCI patients who 
didn’t convert to AD within 36 months. EMCI/LMCI: early/late MCI. The orange shade and blue shade highlight the best and the second-best results, respectively.[7,13, 
20–26,26,27,28].  
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Firstly, we conducted analyses from a group-level perspective. The 
well-trained model mapped the samples at different disease stages into 
the embedding space. We attempted to evaluate the alignment between 
embedding space with the AD progression by visualizing the feature 
distribution of different clinical groups in the embedding space. Since 
the learned DETree is in a high dimensional embedding space (k = 5, 10, 
15, 20, 25), we adopted Principal Component Analysis (PCA) to project 
high-dimensional features into two-dimensional space. PCA is a 
dimensionality reduction technique widely used in data analysis and 
machine learning. Its primary objective is to simplify complex datasets 
by transforming them into a lower-dimensional form while preserving 
the most critical information. The results are shown in Fig. 2(a), where 
five subfigures (a1 to a5) correspond to the results of five runs of our 
experiments. From the visualization, it is evident that the feature dis
tribution corresponding to the five different clinical stages exhibit a 
clear order (highlighted by dashed arrows), ranging from NC (green) to 
SMC (yellow), EMCI (orange), LMCI (pink), and eventually ends with AD 
(red), which is consistent with the AD progression trajectory. This 
demonstrates that the embedding space aligns well with the AD pro
gression. This result indicates that the proposed ordered embedding 
method is effective in capturing the progression of AD in the embedding 
space. 

Secondly, we conducted analyses at the individual level. For each 
subject, the well-trained model mapped the input individual feature to 
the embedding space, obtaining the corresponding embedding vector – 
h(x, θ). To analyze the relationship between subjects, we employed 
Kruskal’s algorithm to create a minimum spanning tree over the 
embedding vectors (DETree). The results are shown in Fig. 2(b). In this 
tree structure, each small bubble represents a single subject, with its 
color indicating the clinical group to which the subject belongs. Each 
edge in the tree structure indicates higher similarity between the 

connected nodes. The five larger bubbles represent the learned group 
embeddings. From the results we can see that, the learned DETree 
structure precisely displays a trajectory of AD progression. It starts with 
the NC, goes through SMC, EMCI, LMCI and eventually ends with AD. 
The DETree captures the underlying progression pattern, demonstrating 
its ability to represent the continuous spectrum of AD progression in the 
embedding space. Moreover, a significant advantage of DETree over 
traditional classification methods is its ability to represent not only 
clinical group information but also the specific states of individuals 
along the entire disease development process. To further illustrate this, 
we mapped the Mini-Mental State Examination (MMSE) score [33] and 
the Alzheimer’s Disease Assessment Scale - Cognitive subscale (ADAS-
cog) score [34], two commonly used tools for assessing dementia, to 
DETree and presented the results in Fig. 2(c) and (d), respectively. It is 
evident from the two score trees that the cognitive impairment severity 
shows an increasing trend from normal control (NC) to Alzheimer’s 
disease (AD) in both score trees, in alignment with the disease pro
gression. Furthermore, considerable variabilities exist in the impairment 
severity among individuals within the same clinical group. DETree’s 
such capability to preserve substantial individuality in AD progression 
sets DETree apart as a significant advantage in disease modeling and 
enhances its potential utility in clinical applications and personalized 
medicine. 

In this work, we used functional connectivity to learn the DETree. To 
further explore which functional connections contribute most to the 
learned tree structure, we sorted them with Laplacian score (LS) [35]. LS 
is a robust feature selection technique widely employed in machine 
learning and data analysis. It proves particularly useful when dealing 
with high-dimensional datasets and tasks that require a deep under
standing of underlying data structures. LS is grounded in Laplacian 
Eigenmaps and Locality Preserving Projection, focusing on the 

Fig. 2. (a) Visualization of the feature distribution of different clinical groups in the embedding space. (b): DETree learned from multiple clinical groups, including 
NC, SMC, EMCI, LMCI, and AD. Each small bubble in the tree represents a single subject color-coded according to their clinical group. Each edge indicates higher 
similarity between connected nodes. The five larger bubbles represent the group level embeddings. (c): the Mini-Mental State Examination (MMSE) score [33] 
mapped to DETree. (d): the Alzheimer’s Disease Assessment Scale - Cognitive subscale (ADAS-cog) score [34] mapped to DETree. The small bubbles in (c) and (d) 
correspond to the small bubbles in (b) at the same location. 
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evaluation of features based on their locality preserving power. The 
concept behind LS is straightforward: data points that belong to the 
same class are typically close to one another. LS uses the nearest 
neighbor graph to obtain the local structure of the data and obtains the 
LS value of each feature. Features that respect this graph structure will 
obtain higher LS values and will be selected. Fig. 3 shows the top 5, 10 
and 15 connectivity selected by LS that have the most contributions 
during the learning of DETree structure. In each subfigure, the first row 
shows the brain regions involved in the connectivity. The second row 
shows the connectivity, and the corresponding regions are represented 
by bubbles with the same color. Most of the regions in Fig. 3 are reported 
in previous studies for the close relationship to AD, such as the regions in 
frontal lobe and temporal lobe [7–9]. 

3.4. Ablation Study 

In our DETree model, the hyper-parameter that has the most signif
icant influence on the DETree structure is k, which represents the 
dimension of the embedding space. We conducted experiments with 
different values of k, specifically k = 5, 10, 15, 20, and 25, and analyzed 
the results from three perspectives: the classification performance, 
feature distribution in the latent space, and the learned DETree struc
ture. 

Firstly, we evaluated the influence of k on the classification perfor
mance. To augment the training dataset and improve model training, the 
fMRI signals of each individual in the training and validation datasets 
were divided into four non-overlapping segments, effectively quadru
pling the dataset size. In order to assess whether the segmented methods 
impact the performance estimation on the testing dataset, we conducted 
experiments in both segmented and unsegmented settings on the testing 
datasets and compared the results. These comparisons are presented in  
Fig. 4. As depicted in Fig. 4(A) and (B), increasing the value of k leads to 
enhanced classification performance in both segmented and unseg
mented settings on the testing dataset. This improvement is attributed to 
the fact that low-dimensional embedding spaces may not fully capture 
the intricate relationships within the brain network data, while higher- 
dimensional spaces provide a more comprehensive representation of 
these relationships, resulting in improved classification performance. To 
highlight the distinctions between the segmented and unsegmented 
testing dataset settings, we calculated the differences in F1 and Acc 
measures and presented the results in Fig. 4(C). The findings indicate 
that segmented and unsegmented settings exhibit similar classification 
performance, with variations within the range of [− 0.05, 0.06]. 

Secondly, we assessed the impact of k on the feature distribution in 
the embedding space, particularly its alignment with the AD progression 
process. The results are displayed in Fig. 5. Notably, as we varied the 
value of k from 5 to 25, the feature distribution of the five clinical groups 
consistently maintained the order from NC to SMC, EMCI, LMCI, and 
eventually AD. This alignment of embedding space with the AD pro
gression trajectory demonstrates that the choice of k does not affect the 
feature distribution in the embedding space. This indicates that our 
proposed ordered embedding method exhibits excellent robustness 
across different dimensions of embedding space. The flexibility to 
choose different dimensions of the embedding space enhances the po
tential of the proposed model in adapting to diverse data characteristics 

and complexities, making it applicable to a wide range of applications. 
Thirdly, we explored the impact of k on the learned DETree structure 

and presented the results in Fig. 6. From Fig. 6 we can see that if k is too 
small (corresponding to lower dimensional embedding space), the distances 
among different embeddings tend to be small (highlighted by blue circle). 
As a result, the corresponding embeddings exhibit high similarities. This 
leads to insufficient dissimilarity between embeddings, which can limit 
the capability of DETree in representing multiple clinical stages in AD 
progression and compromise its prediction performance when esti
mating new samples. These findings are consistent with the results in 
Fig. 4, where lower-dimensional spaces exhibited inferior classification 
performance compared to higher-dimensional embedding spaces. 

3.5. Reproducibility and Generalizability 

To evaluate the reproducibility of our proposed model across 
different datasets and its generalizability to different tasks, we collected 
the most recent released subset of ADNI, including 145 subjects (40 NC: 
22 females, 18 males, 73.64±7.03 yrs.; 28 progressive MCI (pMCI): 13 
females, 15 males, 72.44±7.43 yrs.; 42 stable MCI (sMCI): 18 females, 
14 males, 71.32±6.94 yrs.; and 35 AD: 15 females, 20 males, 
72.93±8.56 yrs.). The pMCI group includes patients who progressed to 
AD within 36 months [20,21], while sMCI consists of individuals who 
did not progress. We divided the 145 subjects (dataset-2) into training, 
validation, and testing datasets. For the training and validation datasets, 
we employed the same four-segment approach as in dataset-1. However, 
in the testing dataset, we used an unsegmented setting. Using a similar 
experimental setup as in dataset-1, we conducted a series of experi
ments, repeating each experiment 5 times with different random seeds. 
Our objective was to evaluate the performance of the proposed DETree 
model with varying embedding dimensions (k) for the new classification 
task: NC vs. sMCI vs. pMCI vs. AD. We evaluated the model’s perfor
mance from three perspectives: classification performance (Fig. 7), 
feature distributions in the latent space (Fig. 8), and the learned DETree 
structures (Fig. 9). 

As shown in the results, increasing the value of k leads to improved 
classification performance, consistent feature distributions in the latent 
space, and larger distances among different embeddings within the 
learned DETree structure. These findings are consistent with the con
clusions drawn from dataset-1, indicating that the DETree model ex
hibits excellent reproducibility and generalizability. However, it’s worth 
noting that in the new classification task, our model achieved a 
maximum accuracy of 0.708, slightly lower than the 0.777 accuracy 
obtained in task-1 based on dataset-1. This drop in accuracy can be 
attributed to the introduction of new categories, sMCI and pMCI, which 
replaced EMCI and LMCI from task-1. This observation is consistent with 
the results in Table 2, where tasks related to MCI progression, as dis
cussed in references [20,21,26], typically exhibit slightly lower classi
fication accuracy compared to other works. This discrepancy may be due 
to the increased challenge of distinguishing between sMCI and pMCI 
compared to the previous EMCI and LMCI categories. Nevertheless, even 
in this context, our model consistently outperforms other models in the 
MCI progression task [20,21,26]. 

Fig. 3. Top connectivity that contributes most to the learned DETree structure. In each block, the top and bottom rows display the involved brain regions and 
connectivity, respectively. 
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4. Conclusion and discussion 

In this study, we introduced a novel DETree framework that seam
lessly integrates individual prediction with AD progression modeling. 
The learned DETree structure effectively represents the trajectory of AD 
progression and achieves an impressive prediction performance of over 
77.8% for multiple AD-related stages. One of the key strengths of our 
approach is its ability to not only predict the clinical status of individual 
patients but also provide valuable information about their specific state 
within the entire spectrum of AD progression. We summarize the 

advantages and limitations of our current work and provide some in
sights for future research. 

4.1. Advantages 

4.1.1. DETree is a general framework for modeling continuous diseases 
development 

In this work, we only applied DETree to Alzheimer’s disease, but it is 
a versatile framework that can be extended to a wide range of diseases. 
The proposed DETree framework allows for flexibility in implementing 

Fig. 4. (A) and (B): Classification performance of various dimensions of the embedding space in two testing dataset settings. (C): The differences in F1 and Acc 
measures of two settings. 
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non-linear function h(x, θ), making it adaptable to any disease that ex
hibits multiple clinical stages during its development. Researchers can 
choose a suitable model architecture for h(x, θ) implementation and 
input relevant features into the model based on the specific disease and 
tasks at hand. More important, by modifying the affinity matrix A , the 
prior knowledge about the disease can be easily introduced into the 
DETree model. 

4.1.2. DETree exhibits versatility beyond the realm of classification tasks 
With minor adjustments to the additional neural network layer in 

Section 2.4, DETree can seamlessly extend its applicability to regression 
problems. For instance, by substituting the discrete clinical labels with 
continuous clinical scores, such as the MMSE score [33], the existing 
classification framework can be readily transformed into a robust 
regression-based model. A straightforward approach to achieve this is as 
follows: We take the feature and score pairs {(xi, si)}

n
i=1 as input to train a 

Fig. 5. Visualization of the feature distribution of different clinical groups in the embedding space with varying dimensions: NC – green, SMC – yellow, EMCI – orange, 
LMCI – pink, and AD – red. 

Fig. 6. Different DETree structures learned in the embedding space with varying dimensions. The blue circles are used to highlight the embeddings from different 
clinical groups with small distance. 
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non-linear function h(x, θ) : R d→R k, with learnable model parameter θ. 
This transforms any given input x ∈ R d to a latent space R k. Based on 
the latent feature h(x, θ), we will integrate two tasks: clinical score 
prediction and disease progression representation. This means h(x, θ) is 
influenced by both tasks, allowing it to capture key information related 
to both scores and disease progression simultaneously. To implement 
the prediction task, we can train a submodule g(x, Wr, br) to predict the 
clinical score as follows: si

′ = g(h(xi, θ),Wr,br), and a regression loss L r 

= 1
n
∑n

i=1(si − si
′)2 can be used to control the regression learning. 

Regarding the disease progression task, we can utilize a ranking loss 
function [36]. In contrast to other loss functions like Cross-Entropy Loss 
or Mean Square Error Loss, which aim to directly predict a label, a value, 
or a set of values based on an input, Ranking Losses focus on predicting 
relative distances between inputs, commonly referred to as metric 
learning. Specifically, let x = {x1, …, xn} be the objects that need to be 
ranked, associated with multi-level ratings denoted as L = {l(1),…,l(n)}, 

where each l(i) ∈ {r1, ..., rk} and signifies the label of xi [36]. In our 
work, the rating l(i) is the clinical score of xi. In the ranking context, 
when l(i) > l(j), it implies that object xi should take precedence over xj in 
the ranking order. Let F represent the class of functions, and f ∈ F 

denote a specific ranking function. The objective is to learn the optimal 
ranking function from training data by minimizing a specific loss func
tion. This loss function is defined based on the objects, their associated 
labels, and the ranking function itself. Several methodologies have been 
proposed to facilitate the learning of this optimal ranking function, 
including pointwise approaches [37,38], pairwise approaches [39,40], 
and e listwise approaches [41,42]. Moreover, it’s worth delving deeper 
into exploring the integration of disease-related prior knowledge to 
tailor a ranking function that better aligns with the demands of our 
specific task. This is an avenue that deserves further investigation in our 
future work. 

Fig. 7. Classification performance of various dimensions of the embedding space based on dataset2.  

Fig. 8. Visualization of the feature distribution of different clinical groups in the embedding space with varying dimensions based on dataset2.  
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5. Limitations and future work 

The current work has focused on a specific choice of the 
embedding number – K, for each class. In Section 2.3, we provide a 
general form of group embeddings as E =

{
ei,j ∈ R k⃒

⃒i = 1, 2, …, C; j =

1, 2, …, K
}

where K is the number of the embeddings in each class and 
could be equal to or greater than 1. However, for the particular appli
cation addressed in this study, K is intentionally set to 1. It’s important 
to note that in many scenarios, the choice of K can be a subject for more 
in-depth exploration. For example, in the case of specific diseases where 
individuals in the same disease stage exhibit diverse clinical symptoms, 
the choice of K becomes crucial. In such cases, the objective is that each 
of the K learned embeddings will capture the specific features associated 
with the varying clinical symptoms observed at the same disease stage. 
It’s essential to emphasize that, given the potential subtle differences 
among patients in the same disease stage, a significant amount of data is 
required to adequately train the model for each clinical response. 

Current work only covers single modality. 
Due to the scarcity of multi-modal data, where each subject is 

required to have multiple modalities of data, such as both structural and 
functional image data, the sample size drastically decreases. Conse
quently, we have only focused on utilizing a single modality for this 
study. Previous studies [43,44] suggest that functional abnormalities 
may precede structural alterations, making functional data more suit
able for a comprehensive modeling of the entire AD progression process. 
Therefore, we chose to use functional connectivity data in this study. In 
the future, as we acquire sufficient multi-modal data, extending our 
current model to accommodate multiple modalities becomes feasible by 
treating each modality as a distinct view. Specifically, we can tailor a 
modality-specific model for each modality, mapping the original data 
into a unified embedding space from its unique perspective. This flexible 
strategy not only effectively conceals heterogeneities and in
consistencies between modalities, such as variations in numerical 
values, dimensions, and representations, but also allows us to optimize 
the model architecture for each modality to capture its specific char
acteristics most effectively. For instance, recent advancements in Large 
Language Models (LLMs) have demonstrated impressive achievements 

in various domains [45–49], including NLP and Computer Vision (CV). 
We can leverage these pre-trained LLMs on large datasets as feature 
extractors and fine-tune them to adapt to healthcare data. This enables 
us to fully exploit the remarkable generalization and feature extraction 
capabilities of these large models. Through this approach, we can 
harness cutting-edge models and technologies from the NLP and CV 
domains to study brain diseases effectively. By integrating NLP and CV 
advancements into our research on brain diseases, we have the oppor
tunity to gain new insights and breakthroughs that were previously not 
attainable. This interdisciplinary approach opens up exciting possibil
ities for the advancement of neuroscience and healthcare research. 
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