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Abstract—An overnight sleep study can provide vital health 

diagnostics yet typically involves applying and monitoring 
multiple body-contact sensors, which can interfere with sleep and 
require cumbersome manual data analysis. Doppler radar 
technology has been demonstrated to provide a non-invasive 
means of measuring vital signs through clothing and bedding, 
including respiratory rate, heart rate, motion activity, body 
position, and tidal respiratory volume. This paper examines the 
potential for applying physiological radar to assess sleep apnea 
and intervention strategies. 
 

Keywords—Doppler radar, Sleep medicine, Obstructive sleep 
apnea, Sleep posture, Machine learning. 

I. INTRODUCTION 

Both quality and quantity of sleep significantly impact 
learning, memory, metabolism, weight, safety, mood, cardio-
vascular health, disease, and immune system function. 
Research indicates that 40 million Americans suffer from 
insomnia and chronic sleep disorders [1, 2]. Sleep and related 
breathing disorders can be divided into obstructive and central 
types. Obstructive Sleep Apnea (OSA), defined as absence of 
breathing despite respiratory effort, is the more common of 
the two, with an estimated 1.4 billion adults (aged 30-69) 
suffering globally from this disorder [3]. If OSA is suspected, 
diagnosis is confirmed with a “gold standard” sleep study, or 
polysomnogram (PSG), conducted overnight in an accredited 
sleep center. This involves measurement of several 
physiological parameters including brain activity (EEG), eye 
movements (EOG), muscle activity (EMG), cardiac function 
(ECG), blood-oxygen saturation, airflow (nose & mouth), and 
respiratory effort [4,5]. These measurements require a variety 
of encumbering wired sensors that come in contact with the 
patient’s skin and impose discomfort and movement 
restrictions, which can adversely affect the quality of sleep. 
Sleeping in a supervised foreign environment also negatively 
impacts sleep quality. While existing FDA approved 
technologies for home sleep monitoring address some aspects 
of comfort and convenience, they still require sensors attached 
to the patient which negatively affect the opportunity and 
efficacy of monitoring [6].  There are commercially available 
wireless sleep monitors that are not medical devices such as 
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ResMed S+ [7], based on UWB radar [8], and some proposed 
non-contact sleep apnea detection methods including FMCW 
sonar [9], and other radar configurations [10-11], but they are 
limited to simple respiratory rate/amplitude and actigraphy. 
While such measurements have been used successfully to 
detect central apnea as the absence of chest motion, their 
accuracy is limited in assessments for other apnea types, such 
as OSA, when chest motion is present without air exchange. 
Continuous-wave (CW) Doppler radar systems have the 
potential to provide accurate detection and assessment of the 
degree of OSA, based not only on relative amplitude of 
movement, but on advanced analysis of phase modulation of 
CW radar signals. Such analysis can distinguish chest motion 
that does not result in air exchange, as seen in OSA patients, 
from central apnea manifested as complete absence of chest 
motion.  

There are many predisposing factors for OSA, and older 
adults have several factors from different domains affecting 
sleep [1]. Obesity, psychosocial factors, use of alcohol and/or 
use of sedatives, as well as certain anatomical features can all 
increase likelihood of OSA [12]. While severe OSA cases call 
for regular indefinite use of Continuous Positive Airway 
Pressure (CPAP) equipment [13] or surgery, the first line of 
treatment involves intervention through improved sleep 
hygiene. Recognized sleep hygiene procedures involve 
challenging lifestyle changes including control of unhealthy 
eating and self-medication habits, and adoption of beneficial 
sleep postures. It may not be difficult for patients to 
understand the purpose and logic of such directives, however 
it can still be extremely difficult to change such habits. 
Combined with modern learning algorithms, pervasive 
computing, and human-machine interface methods, smart 
wireless sleep monitors have potential to transform sleep 
medicine intervention to an individualized course of treatment 
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Fig. 1. In-home sleep monitor concept, and user interface. System logs 
sleep and events to assess intervention plan and incentivize adherence, 
and tailored app-based displays provide relevant feedback for patient and 
provider. 
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in a natural home setting, which empowers patients and 
caregivers to jointly contribute to improved outcomes. 
Potentially, a novel non-contact bedside home monitoring 
system, capable of OSA assessment (Fig.1), can provide a 
patient with daily indicators of the correlation between 
adherence to doctor’s orders and reduction in sleep apnea 
events.  

Radar measurements are currently being explored for their 
potential is assessing various physiological responses 
associated with sleep monitoring. Some key features involve 
respiratory rate and volume, heart rate and variability, sleep 
stage, sleep posture, and respiratory obstruction. Various radar 
architectures and techniques have been applied for these 
applications along with both expert and data-driven machine 
learning signal analysis approaches. 

II. RADAR MEASUREMENT OF SLEEP DIAGNOSTIC 

INDICATORS 

A. Respiratory Pattern 

Doppler radar measurement of physiological motion has 
been demonstrated for monitoring rates, and tidal volume for 
respiration, and for the recognition of diagnostic respiratory 
motion patterns. Such measurements are typically achieved 
through the use of a microwave quadrature transceiver with 
dc-coupled output, connected to a digital data acquisition 
system for signal processing [14]. An example is shown in 
Fig. 2. A quadrature receiver can be used to overcome 
demodulation sensitivity to a target’s distance which occurs in 
single channel direct conversion systems [15,16]. The in-
phase (I) and quadrature phase shifted (Q) signals must be dc-
coupled to the acquisition system to preserve information 
needed to avoid distortion and maintain displacement 
accuracy. Assuming the target’s motion variation is given by 
Δx(t), the quadrature baseband outputs, assuming balanced 
channels, can be expressed as: 

 
)/)(4cos(  txAB rI  ,                 (1) 

)/)(4sin(  txAB rQ  ,                    (2) 

 

where θ is the constant phase shift related to the phase change 
at the surface of a target and the phase delay between the 

mixer and antenna. As shown in Fig. 3 (a), when there is only 
one source of periodic motion, and there is no signal 
distortion, the complex plot of quadrature outputs forms a 
fraction of a circle that has a radius of signal amplitude, Ar , 
with its center displaced by the dc offset of each channel. The 
dc offsets for each channel result from the finite port to port 
isolation of the transceiver as well as from clutter reflections 
and nominal subject displacement.  

The exact phase demodulation can be performed using 
arctangent (non-linear) demodulation with center tracking 
[15,17]. The complex plot of the I and Q outputs depends both 
on received signal power and phase deviation due to a target’s 
motion. From Eq. (1) and Eq. (2) received signal power 
becomes proportional to Ar 

2, the square root of which is the 
radius of the arc formed by phase deviation due to the target’s 
motion. Note the dc portion of the signal is composed of 
multiple components. The significant component 
(information) is contained only in the radius of the periodic 
arc, and components due to system leakage (internal), and 
clutter and nominal subject position (external) are extraneous, 
serving only to reduce arc measurement accuracy. Radar 
measurement of respiratory pattern has been used for 
applications including assessment of respiratory rate, tidal 
volume, and subject identity authentication [18, 19]. While 
tidal volume has been accurately inferred from torso 
displacement using a physical model approach, identity 
authentication has benefited significantly from machine 
learning approaches. 

B. Heart Pattern 

While torso measurement is largely dependent on 
respiratory activity, heart activity can also be measured at the 
body surface using radar techniques. However, such 
measurements can be challenging under realistic conditions as 
the body motion due to heart activity is much smaller than 
that due to respiratory activity. Furthermore, while typical 
heart rates are significantly higher than respiratory rates, 
respiratory harmonics typically overlap with heart rate spectra 
making the two signals difficult to isolate, especially in the 
case of beat-to-beat analysis. 

Radar measured average heart rate has been demonstrated 
at a 1-m distance using only 20 nW [20], and at distances of 
up to 21 m [21] using less than 100 milliwatts.  Heart rate 
variability (HRV) has also been accurately measured in the 
presence of significant interfering respiratory harmonics using 
a wavelet filter approach [22]. 
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Fig. 3. I-Q constellation plot (a) and arctangent demodulation 
displacement plot (b) of CW Doppler radar measured respiratory motion. 
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Fig. 2. Example diagram of a quadrature CW Doppler radar system used 
to measure physiological motion. 
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C. Sleep Posture 

Throughout a night of sleep, a subject may assume different 
recumbent postures in bed which can be roughly characterized 
as prone, supine, and side. Measurement of cardiopulmonary 
activity is affected by this posture, and diagnostic model 
efficacy can be enhanced by posture recognition. In fact, the 
physical model associating torso displacement with 
respiratory tidal volume depends explicitly on the orientation 
of the body with respect to the supporting surface and to the 
direction of propagation of the radar signal.  

For example, a subject taking in a certain tidal volume [23] 
produces a different torso displacement under different 
postures, causing an erroneous assessment if the change in 
posture is not recognized. There are two primary mechanisms 
by which position affects radar measurements. First, due to 
the asymmetric shape of the body parts which move with 
respiration, switching position creates a different effective 
radar cross section (ERCS) observation. The ERCS is similar 
to the physical RCS, but only relates to the moving portion of 
the subject’s body. Second, the way the body weight interacts 
with the bed at each position will affect the displacement 
magnitude of the torso during respiration.   

Comparison of ERCS values and displacement magnitudes 
measured at three sleeping positions reveals trends. It has 
been demonstrated that ERCS obtained in the prone position 
is generally greater than that in supine position, and ERCS in 
side position is smaller than that in supine [24]. This is 
basically due to the full area of the back moving with 
respiration in the prone position, while only a localized 
pulmonary region moves in the supine position, and the entire 
physical cross section of the side is smallest no matter how 
much of it moves. 

A simplified illustration of the principles used in radar-
based sleep posture recognition is shown in Fig. 4. Accurate 
assessment has been demonstrated both with a supine-
calibrated physical model-based system [25], and a 
calibration-free machine learning based system [26]. Other 
systems have relied on the use of a deep neural network with 
prior calibration knowledge [27,28].  

 

D. Sleep Stage 

Another important measure in sleep medicine is the 
determination of sleep and sleep-stage. Doppler radar 
cardiopulmonary monitoring using a quadrature transceiver 
provides a means for distinguishing sedentary heart and 
respiratory activity from other body motion, through the 
assessment of the stability of a constant arc radius during 
respiratory displacement. That is to say, a constant radius 
means that the subject’s motion is only that due to cyclic 
respiration. This measurement thus provides a basic measure 
of the sleep/wake state as well as a measure of actigraphy. 

However, it is also desirable to recognize distinct stages of 
sleep including REM, light sleep, and deep sleep. A 
continuous-wave (CW) Doppler radar based on machine 
learning system using the bagged trees algorithm has been 
used to classify the four stages of wake/sleep. Nine features 
were extracted for four classifiers to classify the stages, and 
experimental results showed an accuracy of 78.6% compared 
to the PSG [29]. 

 

E. Respiratory Obstruction 

Ultimately, and effective sleep monitoring system must also 
provide an accurate measurement of respiratory obstruction 
events during sleep. Obstructive sleep apnea (OSA) is 
typically identified using two respiratory effort belts, one 
placed around the chest and the other around the abdomen 
[30]. During OSA, respiratory effort is out of phase in the two 
positions, and there is no air flow. This is known as 
paradoxical breathing. With paradoxical breathing, the 
abdomen and rib cage move in opposite directions rather than 
in unison: when the rib cage expands, the abdomen contracts, 
and when the abdomen expands, the rib cage contracts, while 
the airway is blocked. OSA is commonly defined as an 80-
100% reduction in airflow signal amplitude for a minimum of 
10 seconds with continued respiratory effort. Hypopneas are 
characterized by a 50% reduction in air flow for more than 10 
seconds, followed by arousal. The Apnea-Hypopnea Index 
(AHI) is expressed as the number of apneas and hypopneas 
per hour of sleep.  

While it is possible to use two separate radars to target the 
thorax and abdomen independently [31], this approach is 
constrained by strict aiming and coordination constraints 
which greatly limit freedom of movement. A single 
microwave Doppler radar can illuminate the whole body at 
once, and the detected signal will be the sum of signals 
reflected from different thorax/abdomen areas that are 
positioned at slightly different distances from the antenna. If 
we assume the whole body surface moves in phase, the 
signals from different parts of the body will add 
constructively or destructively (resulting in larger or smaller 
arc radius), but always resulting in one clean arc, as indicated 
in Fig. 3(a). Multiple signal sources will result in reflected 
signals delayed tens of nanoseconds, which is insignificant 
compared to the physiological signal, and therefore does not 
affect the complex constellation, as long as all sources of 
motion (for respiration, chest and abdomen) are moving 
simultaneously and in phase. Thus the total baseband signal is 
found as:  

Prone

Supine

Side

Q

I

~ x

~ ERCS

 x

 θERCS

Radar Transceiver

Physical or Data-Driven Model

Posture Decision

Fig. 4. Illustration of sleep posture recognition system. Effective radar 
cross-section (ERCS) and length of phase arc are measured by radar and 
a physical or data-driven model uses this data to determine sleep posture.  
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exp( ( ( )))n nB j p t DC     ,     (3) 

 
where DCn is the dc offset associated with the path length for 
each source, and ϕn is phase delay associated with the path 
length for each source. However, when different body parts 
are moving at the same frequency but out of phase or with a 
phase delay, the signals with different phases will add to 
distort the shape of the complex constellation. The resulting 
baseband signal can be found as:         
   

exp( ( ( )))n n nB j p t θ DC      ,                (4) 

 
where θn is the phase delay between the sources.  

 
Based on these complex constellation properties, the degree 

of paradoxical breathing can be quantified by estimating the 
ratio of principle and the secondary vectors of the quadrature 
signals’ covariance matrix. The degree of periodicity of the 
baseband signals can be estimated to differentiate a 
paradoxical breathing signal from a random motion signal. 

When the breathing is all in-phase (normal), the complex 
signal is an arc of mostly uniform radius, with a smaller per-
cycle deviation than the complete elliptical shape occurring 
when breathing is out-of-phase (apnea). Also, the degree of 
signal periodicity can be combined with respiration and 
motion monitoring software to provide a paradoxical 
breathing indicator that differentiates a signal due to 
paradoxical breathing signal from a signal caused by random 
motion.  

Doppler radar measurements of a mechanical phantom 
designed to simulate respiration and paradoxical breathing are 
shown in Fig. 5(a). The plot clearly depicts the presence of 
paradoxical breathing through degrees of trace ellipticity. 
Here a smooth narrow arc forms during normal breathing (red 
trace). The trace distorts to become a broader ellipse when the 
simulated abdomen moves out of phase with the simulated 
thorax (blue-50%, and green-100%). The challenge for 
practical application is to produce high precision radar 
hardware that can accurately capture physiological motion 
without introducing distortion that could be misinterpreted as 
out of phase motion. In addition, novel algorithms are 
required to detect this feature automatically, and to distinguish 

it from arc distortion due to random motion. Indication of the 
degree to which the abdomen and thorax move out of phase 
provides the physician with information on the presence of 
OSA, but still allows the physician to apply experience based 
judgment for diagnosis.  Clinical results have been presented 
[32]. 

III. CONCLUSION 

Automated non-contact sleep measurement systems could 
be a powerful tool for improving sleep medicine and practices 
and extending sleep assessment availability. They can provide 
the basis for long term at home monitoring to facilitate 
diagnostics based on individualized data as part of the Internet 
of Things remote healthcare services. For this to happen, 
development of a practical sensor system with built in 
diagnostics and user friendly interface and feedback 
experience must be studied and realized. Doppler radar 
systems leveraging physical and data driven signal processing 
algorithms have the potential to form accurate sleep 
monitoring systems which can provide specific feedback 
useful to sleep medicine patients trying to adopt new more 
effective sleep hygiene. 
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