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Abstract—An overnight sleep study can provide vital health
diagnostics yet typically involves applying and monitoring
multiple body-contact sensors, which can interfere with sleep and
require cumbersome manual data analysis. Doppler radar
technology has been demonstrated to provide a non-invasive
means of measuring vital signs through clothing and bedding,
including respiratory rate, heart rate, motion activity, body
position, and tidal respiratory volume. This paper examines the
potential for applying physiological radar to assess sleep apnea
and intervention strategies.

Keywords—Doppler radar, Sleep medicine, Obstructive sleep
apnea, Sleep posture, Machine learning.

I. INTRODUCTION

Both quality and quantity of sleep significantly impact
learning, memory, metabolism, weight, safety, mood, cardio-
vascular health, disease, and immune system function.
Research indicates that 40 million Americans suffer from
insomnia and chronic sleep disorders [1, 2]. Sleep and related
breathing disorders can be divided into obstructive and central
types. Obstructive Sleep Apnea (OSA), defined as absence of
breathing despite respiratory effort, is the more common of
the two, with an estimated 1.4 billion adults (aged 30-69)
suffering globally from this disorder [3]. If OSA is suspected,
diagnosis is confirmed with a “gold standard” sleep study, or
polysomnogram (PSG), conducted overnight in an accredited
sleep center. This involves measurement of several
physiological parameters including brain activity (EEG), eye
movements (EOG), muscle activity (EMG), cardiac function
(ECG), blood-oxygen saturation, airflow (nose & mouth), and
respiratory effort [4,5]. These measurements require a variety
of encumbering wired sensors that come in contact with the
patient’s skin and impose discomfort and movement
restrictions, which can adversely affect the quality of sleep.
Sleeping in a supervised foreign environment also negatively
impacts sleep quality. While existing FDA approved
technologies for home sleep monitoring address some aspects
of comfort and convenience, they still require sensors attached
to the patient which negatively affect the opportunity and
efficacy of monitoring [6]. There are commercially available
wireless sleep monitors that are not medical devices such as
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ResMed S+ [7], based on UWB radar [8], and some proposed
non-contact sleep apnea detection methods including FMCW
sonar [9], and other radar configurations [10-11], but they are
limited to simple respiratory rate/amplitude and actigraphy.
While such measurements have been used successfully to
detect central apnea as the absence of chest motion, their
accuracy is limited in assessments for other apnea types, such
as OSA, when chest motion is present without air exchange.
Continuous-wave (CW) Doppler radar systems have the
potential to provide accurate detection and assessment of the
degree of OSA, based not only on relative amplitude of
movement, but on advanced analysis of phase modulation of
CW radar signals. Such analysis can distinguish chest motion
that does not result in air exchange, as seen in OSA patients,
from central apnea manifested as complete absence of chest
motion.

There are many predisposing factors for OSA, and older
adults have several factors from different domains affecting
sleep [1]. Obesity, psychosocial factors, use of alcohol and/or
use of sedatives, as well as certain anatomical features can all
increase likelihood of OSA [12]. While severe OSA cases call
for regular indefinite use of Continuous Positive Airway
Pressure (CPAP) equipment [13] or surgery, the first line of
treatment involves intervention through improved sleep
hygiene. Recognized sleep hygiene procedures involve
challenging lifestyle changes including control of unhealthy
eating and self-medication habits, and adoption of beneficial
sleep postures. It may not be difficult for patients to
understand the purpose and logic of such directives, however
it can still be extremely difficult to change such habits.
Combined with modern learning algorithms, pervasive
computing, and human-machine interface methods, smart
wireless sleep monitors have potential to transform sleep
medicine intervention to an individualized course of treatment
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Fig. 1. In-home sleep monitor concept, and user interface. System logs
sleep and events to assess intervention plan and incentivize adherence,
and tailored app-based displays provide relevant feedback for patient and
provider.
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in a natural home setting, which empowers patients and
caregivers to jointly contribute to improved outcomes.
Potentially, a novel non-contact bedside home monitoring
system, capable of OSA assessment (Fig.1), can provide a
patient with daily indicators of the correlation between
adherence to doctor’s orders and reduction in sleep apnea
events.

Radar measurements are currently being explored for their
potential is assessing various physiological responses
associated with sleep monitoring. Some key features involve
respiratory rate and volume, heart rate and variability, sleep
stage, sleep posture, and respiratory obstruction. Various radar
architectures and techniques have been applied for these
applications along with both expert and data-driven machine
learning signal analysis approaches.

II. RADAR
INDICATORS

MEASUREMENT OF SLEEP DIAGNOSTIC

A. Respiratory Pattern

Doppler radar measurement of physiological motion has
been demonstrated for monitoring rates, and tidal volume for
respiration, and for the recognition of diagnostic respiratory
motion patterns. Such measurements are typically achieved
through the use of a microwave quadrature transceiver with
dc-coupled output, connected to a digital data acquisition
system for signal processing [14]. An example is shown in
Fig. 2. A quadrature receiver can be used to overcome
demodulation sensitivity to a target’s distance which occurs in
single channel direct conversion systems [15,16]. The in-
phase (I) and quadrature phase shifted (Q) signals must be dc-
coupled to the acquisition system to preserve information
needed to avoid distortion and maintain displacement
accuracy. Assuming the target’s motion variation is given by
AXx(t), the quadrature baseband outputs, assuming balanced
channels, can be expressed as:

B, =4, cos(6+4nAx(t)/ 1), e
B, = A4, sin(0+47Ax(1)/ 1), @)
K RF
A0 Source
Axf

Fig. 2. Example diagram of a quadrature CW Doppler radar system used
to measure physiological motion.

where 6 is the constant phase shift related to the phase change
at the surface of a target and the phase delay between the

mixer and antenna. As shown in Fig. 3 (a), when there is only
one source of periodic motion, and there is no signal
distortion, the complex plot of quadrature outputs forms a
fraction of a circle that has a radius of signal amplitude, 4, ,
with its center displaced by the dc offset of each channel. The
dc offsets for each channel result from the finite port to port
isolation of the transceiver as well as from clutter reflections
and nominal subject displacement.

The exact phase demodulation can be performed using
arctangent (non-linear) demodulation with center tracking
[15,17]. The complex plot of the I and Q outputs depends both
on received signal power and phase deviation due to a target’s
motion. From Eq. (1) and Eq. (2) received signal power
becomes proportional to 4, 2, the square root of which is the
radius of the arc formed by phase deviation due to the target’s
motion. Note the dc portion of the signal is composed of
multiple  components.  The  significant  component
(information) is contained only in the radius of the periodic
arc, and components due to system leakage (internal), and
clutter and nominal subject position (external) are extraneous,
serving only to reduce arc measurement accuracy. Radar
measurement of respiratory pattern has been used for
applications including assessment of respiratory rate, tidal
volume, and subject identity authentication [18, 19]. While
tidal volume has been accurately inferred from torso
displacement using a physical model approach, identity
authentication has benefited significantly from machine
learning approaches.
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Fig. 3. I-Q constellation plot (a) and arctangent demodulation

displacement plot (b) of CW Doppler radar measured respiratory motion.

B. Heart Pattern

While torso measurement is largely dependent on
respiratory activity, heart activity can also be measured at the
body surface using radar techniques. However, such
measurements can be challenging under realistic conditions as
the body motion due to heart activity is much smaller than
that due to respiratory activity. Furthermore, while typical
heart rates are significantly higher than respiratory rates,
respiratory harmonics typically overlap with heart rate spectra
making the two signals difficult to isolate, especially in the
case of beat-to-beat analysis.

Radar measured average heart rate has been demonstrated
at a 1-m distance using only 20 nW [20], and at distances of
up to 21 m [21] using less than 100 milliwatts. Heart rate
variability (HRV) has also been accurately measured in the
presence of significant interfering respiratory harmonics using
a wavelet filter approach [22].
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C. Sleep Posture

Throughout a night of sleep, a subject may assume different
recumbent postures in bed which can be roughly characterized
as prone, supine, and side. Measurement of cardiopulmonary
activity is affected by this posture, and diagnostic model
efficacy can be enhanced by posture recognition. In fact, the
physical model associating torso displacement with
respiratory tidal volume depends explicitly on the orientation
of the body with respect to the supporting surface and to the
direction of propagation of the radar signal.

For example, a subject taking in a certain tidal volume [23]
produces a different torso displacement under different
postures, causing an erroneous assessment if the change in
posture is not recognized. There are two primary mechanisms
by which position affects radar measurements. First, due to
the asymmetric shape of the body parts which move with
respiration, switching position creates a different effective
radar cross section (ERCS) observation. The ERCS is similar
to the physical RCS, but only relates to the moving portion of
the subject’s body. Second, the way the body weight interacts
with the bed at each position will affect the displacement
magnitude of the torso during respiration.

Comparison of ERCS values and displacement magnitudes
measured at three sleeping positions reveals trends. It has
been demonstrated that ERCS obtained in the prone position
is generally greater than that in supine position, and ERCS in
side position is smaller than that in supine [24]. This is
basically due to the full area of the back moving with
respiration in the prone position, while only a localized
pulmonary region moves in the supine position, and the entire
physical cross section of the side is smallest no matter how
much of it moves.

A simplified illustration of the principles used in radar-
based sleep posture recognition is shown in Fig. 4. Accurate
assessment has been demonstrated both with a supine-
calibrated physical model-based system [25], and a
calibration-free machine learning based system [26]. Other
systems have relied on the use of a deep neural network with
prior calibration knowledge [27,28].
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Fig. 4. Illustration of sleep posture recognition system. Effective radar
cross-section (ERCS) and length of phase arc are measured by radar and
a physical or data-driven model uses this data to determine sleep posture.
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D. Sleep Stage

Another important measure in sleep medicine is the
determination of sleep and sleep-stage. Doppler radar
cardiopulmonary monitoring using a quadrature transceiver
provides a means for distinguishing sedentary heart and
respiratory activity from other body motion, through the
assessment of the stability of a constant arc radius during
respiratory displacement. That is to say, a constant radius
means that the subject’s motion is only that due to cyclic
respiration. This measurement thus provides a basic measure
of the sleep/wake state as well as a measure of actigraphy.

However, it is also desirable to recognize distinct stages of
sleep including REM, light sleep, and deep sleep. A
continuous-wave (CW) Doppler radar based on machine
learning system using the bagged trees algorithm has been
used to classify the four stages of wake/sleep. Nine features
were extracted for four classifiers to classify the stages, and
experimental results showed an accuracy of 78.6% compared
to the PSG [29].

E. Respiratory Obstruction

Ultimately, and effective sleep monitoring system must also
provide an accurate measurement of respiratory obstruction
events during sleep. Obstructive sleep apnea (OSA) is
typically identified using two respiratory effort belts, one
placed around the chest and the other around the abdomen
[30]. During OSA, respiratory effort is out of phase in the two
positions, and there is no air flow. This is known as
paradoxical breathing. With paradoxical breathing, the
abdomen and rib cage move in opposite directions rather than
in unison: when the rib cage expands, the abdomen contracts,
and when the abdomen expands, the rib cage contracts, while
the airway is blocked. OSA is commonly defined as an 80-
100% reduction in airflow signal amplitude for a minimum of
10 seconds with continued respiratory effort. Hypopneas are
characterized by a 50% reduction in air flow for more than 10
seconds, followed by arousal. The Apnea-Hypopnea Index
(AHI) is expressed as the number of apneas and hypopneas
per hour of sleep.

While it is possible to use two separate radars to target the
thorax and abdomen independently [31], this approach is
constrained by strict aiming and coordination constraints
which greatly limit freedom of movement. A single
microwave Doppler radar can illuminate the whole body at
once, and the detected signal will be the sum of signals
reflected from different thorax/abdomen areas that are
positioned at slightly different distances from the antenna. If
we assume the whole body surface moves in phase, the
signals from different parts of the body will add
constructively or destructively (resulting in larger or smaller
arc radius), but always resulting in one clean arc, as indicated
in Fig. 3(a). Multiple signal sources will result in reflected
signals delayed tens of nanoseconds, which is insignificant
compared to the physiological signal, and therefore does not
affect the complex constellation, as long as all sources of
motion (for respiration, chest and abdomen) are moving
simultaneously and in phase. Thus the total baseband signal is
found as:
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B =Y exp(j(4, +Ap(1))) + DC, , 3)

where DC, is the dc offset associated with the path length for
each source, and ¢, is phase delay associated with the path
length for each source. However, when different body parts
are moving at the same frequency but out of phase or with a
phase delay, the signals with different phases will add to
distort the shape of the complex constellation. The resulting
baseband signal can be found as:

B =73 exp(j(4, +Ap(t—6,))+DC, , )

where 6, is the phase delay between the sources.

Based on these complex constellation properties, the degree
of paradoxical breathing can be quantified by estimating the
ratio of principle and the secondary vectors of the quadrature
signals’ covariance matrix. The degree of periodicity of the
baseband signals can be estimated to differentiate a
paradoxical breathing signal from a random motion signal.
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Fig. 5. Radar measurement of simulated paradoxical breathing(a) and set
up for preliminary study of OSA assessment for ten patients (b). Arcs
produced by a phantom simulating different degrees of paradoxical
breathing clearly show distinct shape change (ellipse gaps) for 50% or
100% out-of-phase motion (b). The sleep study validated the physical
model for recognition of a non-specific OSA event (b)[32].

When the breathing is all in-phase (normal), the complex
signal is an arc of mostly uniform radius, with a smaller per-
cycle deviation than the complete elliptical shape occurring
when breathing is out-of-phase (apnea). Also, the degree of
signal periodicity can be combined with respiration and
motion monitoring software to provide a paradoxical
breathing indicator that differentiates a signal due to
paradoxical breathing signal from a signal caused by random
motion.

Doppler radar measurements of a mechanical phantom
designed to simulate respiration and paradoxical breathing are
shown in Fig. 5(a). The plot clearly depicts the presence of
paradoxical breathing through degrees of trace ellipticity.
Here a smooth narrow arc forms during normal breathing (red
trace). The trace distorts to become a broader ellipse when the
simulated abdomen moves out of phase with the simulated
thorax (blue-50%, and green-100%). The challenge for
practical application is to produce high precision radar
hardware that can accurately capture physiological motion
without introducing distortion that could be misinterpreted as
out of phase motion. In addition, novel algorithms are
required to detect this feature automatically, and to distinguish

it from arc distortion due to random motion. Indication of the
degree to which the abdomen and thorax move out of phase
provides the physician with information on the presence of
OSA, but still allows the physician to apply experience based
judgment for diagnosis. Clinical results have been presented
[32].

III. CONCLUSION

Automated non-contact sleep measurement systems could
be a powerful tool for improving sleep medicine and practices
and extending sleep assessment availability. They can provide
the basis for long term at home monitoring to facilitate
diagnostics based on individualized data as part of the Internet
of Things remote healthcare services. For this to happen,
development of a practical sensor system with built in
diagnostics and wuser friendly interface and feedback
experience must be studied and realized. Doppler radar
systems leveraging physical and data driven signal processing
algorithms have the potential to form accurate sleep
monitoring systems which can provide specific feedback
useful to sleep medicine patients trying to adopt new more
effective sleep hygiene.
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