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Abstract—This paper proposes a spectral binning method for
the classification of locomotion and extraneous body motion
(EBM) that may occur during Continuous Wave (CW) Doppler
radar motion sensing of human subjects. The method analyzes
the spectral content of the arctangent demodulated displacement
signature, generating an activity classification based on the
magnitude of the spectral content for each of several frequency
bins. The choice and number of bins used for the overall
classification of data were determined by analyzing experimental
data. The method successfully classified sedentary, EBM, and
locomotion states for 5 subjects. The method can be used both
for determining the presence and type of activity, and for
recognizing when data segments are not suitable for monitoring
sedentary vital signs.

Index Terms—sedentary, non-sedentary, extraneous body mo-
tion, spectral domain, arctangent demodulation.

I. INTRODUCTION

This paper proposes a spectral binning method for the
classification of locomotion and extraneous body movements
of human subjects using Continuous Wave (CW) Doppler
radar. This study supplements the importance of human activ-
ity recognition (HAR) using micro-Doppler signatures from
Frequency Modulated Continuous Wave (FMCW) Doppler
radar, demonstrating effectiveness regardless of environmental
geometry [1]. Prior works by Valdes et al. on classifying
human activities with single-channel CW radar [2], and Singh
et al. on animal movement detection using CW radar [3],
showcase its versatility. Additionally, non-invasive Doppler
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radars have proven essential in monitoring vital cardiopul-
monary signs for health changes [4]. Research by Sacco et al.
introduces a hybrid CW and FMCW radar system for precise
human localization in enclosed spaces [5].

This research assesses the use of a single CW Doppler radar
in distinguishing between three distinct states of motion. It
emphasizes the suitability of using a singular CW radar for
indoor movement detection alongside reduced demodulation
and system design complexity when compared to FMCW
systems. Previous research predominantly explored the time-
domain characteristics of CW radar signals for differentiating
between sedentary and active states [6]. Our focus is on
categorizing movements as sedentary, Extraneous Body Mo-
tion (EBM), or active locomotion by examining the spectral
content of radar signals. The findings demonstrate a distinct
separation between locomotion, EBM, and stationary states,
with implications for the reliability of accurate respiratory rate
monitoring inspite of locomotion and EBM.

Fig. 1. Block Diagram of Quadrature Radar Setup
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II. THEORETICAL BACKGROUND

A CWs Doppler radar emits a directional, single-frequency
signal. When the incident wave reflects off a moving target, it
modulates the phase of the reflected wave. This phase modu-
lation reflects the target’s displacement. In sedentary humans,
the chest wall’s periodic movement from cardiopulmonary
activity is captured by demodulating this received wave. The
outputs from a CW quadrature Doppler radar are expressed
as,

BI(t) = ABcos(θ +
π

4
+

4πx(t)

λ
+∆ϕ(t)) (1)

BQ(t) = ABsin(θ +
π

4
+

4πx(t)

λ
+∆ϕ(t)) (2)

where the target’s motion variation is given by x(t), AB

represents the baseband amplitude due to receiver and mixer
gain, θ is the constant phase shift related to the phase change
at the surface of a target and the phase delay between the
mixer and antenna, and the residual phase shift is represented
by ∆ϕ(t).

A. Arctangent Demodulation
The displacement information from quadrature channels

can be extracted in terms of phase utilizing the arctangent
demodulation as,

ϕ(t) = arctan(
VQ +BQ(t)

VI +BI(t)
) (3)

where VI and VQ represent the dc offset caused by leakage
in the radar system and the clutter in the environment.

Implementation of an appropriate circle fitting algorithm
during arctangent demodulation allows for nullifying the
effect of dc offset and enables the extraction of proper
phase information from the arc. For periodic motion, the dc
offset values change during non-sedentary activity, effectively
moving the center of the periodic arc.

B. Spectral Analysis
The Discrete Cosine Transform (DCT) may be utilized as

an alternative to the Fast Fourier Transform (FFT) to extract
the spectral information in terms of real cosine components.
Previously, advanced DCT methods have been used in con-
tinuous monitoring of cardiorespiratory signal rates [7], [8].
The DCT-II type algorithm is expressed by,

X[k] =
N−1∑
n=0

x[n] · cos
[
π

N

(
n+

1

2

)
k

]
(4)

The frequency resolution of DCT is given by,

f =
k × fs
2N

(5)

DCT has a higher frequency resolution compared to FFT
over a fixed window. When actively analyzing the spectral
domain for non-sedentary motion, it is advantageous to use
a smaller window. Hence, DCT is implemented to generate a
spectrogram in this work.

Fig. 2. Data collection steps for locomotion and EBM over 230 s

III. EXPERIMENTAL SETUP & DATA

Fig. 1 shows the block diagram of the quadrature CW
homodyne radar system used for data acquisition. An E4433B
signal generator transmitted a signal of 2.4 GHz and at an
amplitude of 16dBm. The received signal was driven through
a 90-degree ZX10Q-2-25-S+ splitter, ZFM4212 mixers from
Mini-circuits, and a Narda 4923. Next, the I and Q mixers’
outputs are low pass filtered and amplified by passing through
a SR560 Low Noise Amplifier (LNA).

The experimental procedure involving human subjects was
approved by the University of Hawaii Institutional Review
Board (IRB). In this experiment, data was collected from 5
volunteers across 3 sessions, each exhibiting a distinct EBM.
At the start of each session, participants were asked to sit
in the chair 1.5m from the radar and maintain a breathing
rate of 15 bpm for the entire 230s experiment duration.
At the 45s mark, subjects initiated a specific EBM. After
90s, subjects moved to a chair placed 3.5m away from the
radar. The protocol required the subjects to initiate a second
EBM at 135s and a locomotion to the nearer chair at 180s.
The final 50s were spent in a stationary position. Fig. 2
shows a graphical representation of the EBM and locomotion
actions performed by a subject for each data instance. Fig. 3
shows the spectrogram generated from the DCT of arctangent
demodulation of one session.

Fig. 3. Spectrogram of arctangent demodulated signal with EBM and
Locomotion events marked with respect to the time domain.

The subjects performed three distinct types of EBM:
forward-to-back movement, chair readjustment, and side-to-
side movement. In the chair readjustment, the subjects briefly
lifted themselves from their seats before sitting back down,
achieving a slight positional change.
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Fig. 4. Flowchart of proposed algorithm

IV. PROPOSED METHOD

The flowchart of the proposed method is shown in the Fig.
4. The input data was first imbalance corrected, dc offset
compensated, and arctangent demodulated.

The resultant data is then analyzed using DCT using a
4000 sample window with a 3990 sample overlap. Afterward,
the resultant frequency magnitudes are summed according to
the corresponding frequency bins. Each resultant bin is then
compared to previously set thresholds to classify between
sedentary, EBM, and locomotion. A maximum voting scheme
between the decision of the bins is used to classify the state
of motion. Fig. 5 shows an example of time vs. classification
of activity type by implementing the proposed algorithm.

Fig. 5. Time vs. Activity Classification implementing proposed algorithm

V. RESULTS AND DISCUSSIONS

Table I shows the accuracy results of Locomotion and
EBM classification utilizing the proposed method for different
number of selected frequency bins. It is noted from the
table that the frequency bin classification can accurately
identify locomotion in the presence of forward-to-back and
readjustment EBM. The 3 bins classification can accurately
identify locomotion in side-to-side EBM scenarios as well.

For EBM classification with respect to different types of
fidgeting, it is observed that 3 bins and 4 bins methods have

TABLE I
TABLE OF LOCOMOTION AND EBM ACCURACY VALUES (IN PERCENTS)

IN PRESENCE OF THREE TYPES OF EBM

Target Classification EBM Type 2 bins 3 bins 4 bins 5 bins
Locomotion forward to back 90 100 90 100
Locomotion re-adjustment 80 100 90 100
Locomotion side to side 60 100 60 90

EBM forward to back 90 100 100 80
EBM re-adjustment 60 90 90 40
EBM side to side 50 30 30 50

high accuracies for forward to backward movement and for
readjustment EBM. However, side-to-side EBM classification
has a low accuracy. Due to the radial movement of the body
with respect to the Doppler radar, the side-to-side movement
creates very low amplitude phase change.

A spectral domain-based frequency bin algorithm is pro-
posed for the classification of sedentary, non-sedentary, and
extraneous body motion. The algorithm was tested using
different numbers of frequency bins to produce maximum
accuracy of classification. Locomotion, forward-to-backward
EBM, and readjustment while seated EBM were all classified
with reasonable accuracy. The method provides a useful
record of non-sedentary events and a means of identifying
data suitable for sedentary vital signs monitoring. The method
provides a reliable technique to isolate baseline vital sign data
in an unregulated environment using a single CW radar. The
system can be further improved by an iterative method to
determine a ubiquitous threshold value for each frequency
bin.

REFERENCES

[1] S. A. Shah, and F. Francesco, ”Human activity recognition: Preliminary
results for dataset portability using FMCW radar,” International radar
conference (RADAR), pp. 1-4. IEEE, 2019.

[2] J. J. Valdés, Z. Baird, S. Rajan, and M. Bolic, ”Single channel contin-
uous wave doppler radar for differentiating types of human activity,”
International Joint Conference on Neural Networks (IJCNN), pp. 1-8.
IEEE, 2018.

[3] A. Singh, S. K. L. Scott, M. Butler, and V. Lubecke. ”Activity
monitoring and motion classification of the lizard Chamaeleo jacksonii
using multiple Doppler radars,” 2012 Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, pp. 4525-
4528. IEEE, 2012.

[4] M. Hravnak, M. A. DeVita, A. Clontz, L. Edwards, C. Valenta, and M.
R. Pinsky, ”Cardiorespiratory instability before and after implementing
an integrated monitoring system,” Critical care medicine 39, no. 1, p.
65, 2011

[5] G. Sacco, E. Pittella, E. Piuzzi and S. Pisa, ”A radar system for indoor
human localization and breath monitoring,” 2018 IEEE International
Symposium on Medical Measurements and Applications (MeMeA),
Rome, Italy, 2018, pp. 1-6, 2018.

[6] M. S. Ishrak, J. N. Sameera, O. Boric-Lubecke and V. M. Lubecke,
”Parametric Classification of Recoverable Radar-Assessed Respiratory
Rate Data,” 2024 IEEE Radio and Wireless Symposium (RWS), San
Antonio, TX, USA, 2024, pp. 109-111

[7] J. Park, et al. ”Polyphase-basis discrete cosine transform for real-time
measurement of heart rate with CW Doppler radar,” IEEE Transactions
on Microwave Theory and Techniques 66.3, pp. 1644-1659, 2017

[8] J. Y. Shih, and F. K. Wang. ”Quadrature cosine transform (QCT) with
varying window length (VWL) technique for noncontact vital sign
monitoring using a continuous-wave (CW) radar,” IEEE Transactions
on Microwave Theory and Techniques 70, no. 3, pp. 1639-1650, 2021

2024 IEEE MTT-S International Microwave Biomedical Conference (IMBioC)

35
Authorized licensed use limited to: UNIV OF HAWAII LIBRARY. Downloaded on October 09,2024 at 03:26:20 UTC from IEEE Xplore.  Restrictions apply. 


