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Abstract—To sense mobile users’ positions and channel states
while simultaneously conveying information for supporting the
6G traffic, the integrated sensing and communication (ISAC) has
been proposed as a key technique for sensing and communicating
using the same radio frequency and hardware. Moreover, to sup-
port energy-constrained and battery-limited wireless networks,
simultaneous wireless information and power transfer (SWIPT) has
also emerged to simultaneously deliver information and energy to
a receiver. To integrate these two techniques, integrated sensing,
communications, and powering (ISACP) has been developed to
simultaneously sense the targeted mobile users, transmit the
information, and deliver the power. However, how to efficiently
optimize the power allocation in ISACP schemes to support the
6G traffic has imposed many new challenges not encountered
before. To overcome these challenges, in this paper we propose
a federated-learning (FL) enabled ISACP scheme to maximize
the energy-efficiency over 6G massive MIMO wireless networks.
First, we establish the system models for our proposed ISACP and
FL schemes. Second, we design the training data set collection
in the FL algorithm by sending the pilot signal from mobile
users to the massive MIMO base station, and formulate an
energy-efficiency maximization problem for the developed ISACP
scheme. Third, To solve the formulated energy-efficiency maxi-
mization problem, we propose an actor-critic enabled multi-agent
based FL mechanism. Finally, we use the numerical analyses to
validate and evaluate our developed schemes.

Index Terms—6G wireless networks, integrated sensing, com-
munications, and powering (ISACP), federated learning, massive
MIMO, channel state estimation, energy-efficiency.

I. INTRODUCTION

HE massive ultra-reliable and low-latency communica-

tions (MURLLC) services are emerging as a new but
dominant traffic type of the 6G mobile wireless networks that
support a massive number of mobile users (MUs) demanding
the stringent quality of service (QoS) such as high data
rate and low error probability. The integrated sensing and
communications (ISAC) has been proposed to fulfill both
channel/position-sensing and data-communication functional-
ities by using the same spectrum and hardware for improving
various QoS performances of 6G traffics. To address the issue
of limited battery capacity for MUs, simultaneous wireless
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information and power transfer (SWIPT) has been proposed as
a promising solution to improve the energy efficiency by MUs
applying the energy harvesting (EH) techniques for receiving
the energy and information from radio-frequency (RF) sig-
nals. Due to their advancements, researchers envision that 6G
wireless networks will integrate ISAC with SWIPT to provide
new multi-functional wireless systems with integrated sensing,
communications, and powering (ISACP) to simultaneously
sense the wireless channel, and transfer the information and
power.

Recent works have studied various ISAC, SWIPT, and
ISACP schemes. The work of [1] designed an accurate ISAC-
enabled beam tracking scheme in high-mobility vehicular
networks to establish the reliable communication link. The
authors of [2] investigated the application of ISAC in space-air-
ground-sea integrated network using massive multiple-input
multiple-output (MIMO) communication, through proposing
a beam squint-aware ISAC technique for hybrid analog/digital
massive MIMO enabled low earth orbit (LEO) satellite sys-
tems. The work of [3] maximized the sum energy efficiency
over all device-to-device (D2D) links in a D2D underlaid
cellular network by optimizing the resource and power allo-
cation based on a nonlinear EH model. The authors of [4]
addressed the secure communications over EH cooperative
cognitive radio networks by proposing the polarization-enabled
two-phase mechanism. The ISACP scheme has been proposed
in [5] by allowing a multi-antenna hybrid access point to
transmit wireless signals to communicate with a multi-antenna
information decoding receiver, wirelessly charging a multi-
antenna EH receiver and performing radar target sensing based
on the echo signal concurrently.

However, due to the time-varying of the wireless channel
and dynamic states for MUs, how to efficiently optimize the
ISACP scheme, while satisfying the stringent QoS require-
ments for 6G traffics has not been thoroughly studied. To
overcome this challenge, in this paper we propose a federated
learning (FL)-base ISACP mechanism to support the QoS
provisioning by using massive MIMO communications. First,
we establish the system models for our proposed ISACP
and FL schemes to estimate channel states through the radar
echo. Considering the computational complexity of channel
estimations, we then design the training data set collection for
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Fig. 1. The system architecture models ol our proposed federated learning

based channel estimation using massive MIMO base station.

the FL algorithm by sending the pilot signal from MUs to the
massive MIMO base station (BS) and formulate an energy-
efficiency maximization problem for the developed ISACP
scheme. Third, to solve the formulated energy-efficiency max-
imization problem, we also propose an actor-critic enabled
multi-agent based FLL mechanism.

The rest of this paper is organized as follows. Section II
establishes the system models for our proposed ISACP archi-
tectures. Section III develops the FL algorithm for estimating
the channel state information at the receiver (CSIR). Section IV
proposes a multi-agent based FL algorithm to maximize the
energy-efficiency of our proposed ISACP scheme through
estimating the channel state information at the transmitter
(CSIT). Section V validates and evaluates our developed
ISACP schemes. This paper concludes with Section VI.

II. SYSTEM MODELS FOR OUR PROPOSED ISACP-BASED
ARCHITECTURES USING MASSIVE MIMO

A. Our Proposed ISACP-Based Architectures Using Massive
MIMO For Estimating CSIT

As shown in Fig. 1, we consider a cellular network consist-
ing of a massive MIMO BS and totally K moving targeted
MUs, where the massive MIMO BS sends the radar sensing
and the downlink communication signals simultaneously to
these K targeted MUs. Assume that there are M7 antennas on
the BS and there are My antennas on each targeted MU, where
Mp > Mp. The kth MU, Vk, splits the received RF signals
into two parts with decoding-EH power splitting ratios p; and
(1 — pg) for decoding the information and energy harvesting,
respectively, where 0 < p, < 1.

Let By, Vk, be the total transmit power allocation of the
sensing and communication signal (i.e., ISAC signal) sending
from the massive MIMO BS to the kth MU. The massive
MIMO BS transmits the ISAC signals to all X MUs, which
are assumed to be EH devices. Each MU £k, Vk, receives the
ISAC signal, decodes the received information with the energy
pr By, and harvests the rest (1 — py)Bj energy. The echo
of the transmitted ISAC signal is then reflected back to the

massive MIMO BS. By estimating the kth MU’s angle-of-
arrival (AoA), denoted by ¢, Vk, using the radar echo, the
massive MIMO BS is able to obtain the kth MU’s position.
Assume that the wireless fading channels between the massive
MIMO BS and MUs only depends on the multipaths which
are determined by MUs’ positions. Thus, by estimating the
MUSs’ positions (i.e., AoAs), the massive MIMO BS is able to
obtain the channel state information at the transmitter (CSIT)
to satisfy MUs’ stringent QoS requirements.

B. Our Proposed Federated Learning Based Algorithm For
Estimating CSIR

In addition to the CSIT estimated by the massive MIMO BS,
each MU also needs to estimate its channel state information
at the receiver (CSIR). Due to the constrained MU’s local
computation resources and the computational complexity for
estimating MUs’ positions and channel states, we propose to
apply the FL based algorithm for MUs’ position/channel-state
estimation. As a decentralized machine learning approach, a
local model of the FL can be trained in each of these K
MUs using local data samples without exchanging them. We
propose that MUs train their model using pilot signals, which
are known by both BS and MUs, as local data samples.

III. FEDERATED LEARNING BASED CSIR ESTIMATION

In our proposed FL based algorithm, the local model at
each MU agent is being initialized by collecting the data
set from its own MU and training its own local model to
obtain the learnable parameter by using its own data set.
We define the learnable parameter as the parameter to solve
the estimated channel state, and the local model aims at
minimizing the loss function of each MU’s channel state
estimation under the learnable parameter. Each MU agent
computes the gradient of the local loss function, updates its
local model’s parameters, and sends its updated model gradient
to the central server located at the massive MIMO BS. The
central server aggregates the received model parameters using
a predefined federated averaging (FedAvg) approach [6] and
updates the global model, whose parameter is then sent back to
all MU agents. Each MU agent receives the updated parameter
of the global model and incorporates it into its local model
to update their model parameters. The FL based algorithm
trains the global model without explicitly exchanging the data,
which is advantageous in terms of privacy considerations and
communication resources. We treat each MU as a learning
agent and deploy the central server at the massive MIMO BS,
and thus, our proposed FL consists of KX MU agents and one
central server.

A. Training Data Set Collection Using Pilot Signals For
Estimating CSIR

Let si’™ € CMrx1 pe the actual channel state for the
channel between the massive MIMO BS and the kth MU and
let /S\?:m be CSIR for s°™ estimated the kth MU. Denote the
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learnable parameter by w,(:) at the tth iteration of the FL
based model for the kth MU agent, Vk € {1,2,--- K}.
Denote the local data set of the kth MU agent by D; and
assume that Dy, N Dy = () if k # k. The local data set Dy,

) — (p) p¥ ) Vk, and

;
-, |Dg|}, where p(”) £ {p,&l’"), ,p(n"’ )} €

contains the input-output pairs D,

Vv e {1,2,-
(C”P“,Vy, is the input data representing the pilot signals sent
from the massive MIMO BS to the kth MU agent and is
known by both the MU agent and the central server located
at the massive MIMO BS, and b,(cl’),vy, is the output/label
data, which is the estimated channel state S{°™ by the kth
MU. The objective of the FL based model is to obtain
an o tlmal learnable parameter, denoted by w*, such that
A(p{?)w*) = 1"

We assign the massive MIMO BS with an input data set (i.e.,
pilot signals) px, where we select the input data set such that

( (”)) ( ) = 1. The massive MIMO BS sends the signal,
denoted by x(py € CY*™ to the kth MU agent, which is

glven as fOllOWS
Nz / v)\H
Xép’ ) = TLdel (pé )) s (1)

where BY is the transmit power for the input data. Then the
kth MU’s received signal, denoted by Y,(Cp"/ € CMrxnp from
the kth MU agent is given as follows:

Y}EPvV) — S?comxgepw) + N«]:;)m (2)

where N§™ € CMrX™ is the additive white Gaussian noise
(AWGN) for the kth MU agent. The kth MU agent performs
a de-spreading operation by correlating the received signals
with the kth input data set, which yields the £th MU agent’s re-

ceived signal after de-spreading, denoted by ?,(Cp"j) € CMrx1

as follows:
<7 v N4 v com v)\H v com v
Y =Y Pp) = [n, B (p) pl) N p ()
andlszf)m+N20mp(V). (3)

Since the channel estimation 37€°?‘, which is the I/th element

of A°°m, under the minimum mean square error (MMSE)
estimation is given by

"COm

qom — [com|Yp,u> ’(:)} A( <t>) @

where the expectation operation is taken under the multipath
fading, the kth MU agent trains Wl(f) as the parameter to
derive the multipath fading factor which affects the expectation
operation in Eq. (4). Thus, W,it) is the parameter such that

w,(:) = arg min {A (pg/) w,(:)) — b,(:)} (5)

where 5" is given by the local data set D) = (p,(:), bl(:)).

B. Federated Learning Parameter Updating

We specify that each communication round between the
central server at the massive MIMO BS and MU agents in the

tth iteration of the FL consists of four major steps as shown
in the followings.

Step 1: Local Training. Each MU agent k trains a local

model to minimize a local loss function Ly (w,(f),Dk) by
using its own local data set Dj. During this local training,
each agent k obtains the weight of its local model oz,(g) and
the gradient of the local loss function VLk(wk , D).

Define a loss function L (w,(f), Dk> ,Vk, as follows:

i) 2 |Dk|2‘ (ol )‘bg/)Q

The FL-based model training is performed at all MU agents
as follows:

o {E (4 )}—mgfs{Zaé”L( NS

where D = {D;,--- , Dk}, ak is the weight of the kth
MU agent at the tth iteration, and Z,If:l a,(;) = 1. Each MU

agent k computes the gradient V Ly, (wl(f), Dy,) to solve Eq. (7),

Ly (Wé),

(6)

where the gradient operation is taken with respect to w,(:).

Step 2: Global Aggregation. Each MU agent k uploads its
obtained weight o\ and gradient V Ly (w{”, D}) to the cen-
tral server. The central server aggregates weights and gradients
received from all MU agents, updates the weight for each MU
agent a](fH) for the next iteration, and computes the average

gradient VL as follows:

K
VI =Y al Vi (wl. D). ®)
k=1

Step 3: Model Updating. The central server uses the up-

dated weight oa,(c Y and average gradient VL to update the

parameters for the global model to improve the accuracy of the
global model. The updated global model with these updated
parameters are then sent back to all MU agents for updating
their local models. Then MU agents update their learnable
parameter w,(:'H) for the next iteration as follows:

K
wi =wi! =Y o TVVLL v, ©)
k=1
where 7 is the step size.

Step 4: Control and Feedback. Each MU agent periodi-
cally communicates with the central server to upload and
update the parameters of its local model. The central server
sends the control and feedback information, e.g., new learning
rate schedules and regularization parameters of the global
model, to all MU agents, so that each agent is able to improve
its local model.
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IV. ENERGY-EFFICIENCY MAXIMIZATION FOR ISACP
THROUGH ESTIMATING CSIT USING MULTI-AGENT
BASED ALGORITHM

A. The ISAC Signal Sent by the Massive MIMO BS

For the massive MIMO downlink integrated sensing and
communications, define B = [By, Bo, - -- , Bx|T as the power
allocation vector for all K MUs, where By, is the total power
allocation for the kth MU’s sensing and communication signal.
Let x;(B) € CM7*! be the transmitted signal under the total
power allocation vector B for the ith symbol, Vi € {1,--- ,n},
from the massive MIMO BS to all K MUs, which is given
by [7, Eq. ()] 8, Eq. (1)]

XZ(B) _ Ucom(B) com Usen(B) ien (10)
where
p1B1 |px B
U©"(B)= uem ... yeom
( ) ) ) 2MT K 1
(11)
Usen plBl sen

pKBK sen
N U
’ 2MT K]

are the communication and sensing signals beamforming ma-
trixes (i.e., precoders) for all K targeted MUs, respectively,
under the total power allocation vector B; U™ € CMr*Mr
and U™ € CM7*Mr gre the communication and sensing
precoders for the kth targeted MU, respectively; and qi°™ €
CKMrx1 and g € CKMrx1 gre the ith communication
symbol and the ith probing sensing symbol, respectively. Since
all MUs are EH devices, the kth MU, Vk, uses py, portion of the
energy to receive information and harvests the rest (1—py) por-
tion of the energy. Denote by B £ [py By, p2 B2, -+ , px BT
the vector for the signal power after MUs’ energy harvesting.
After MUs’ energy harvesting, the reflected radar echo signal
for the 7th symbol under the signal power vector B, denoted
by y$(B) € CMr*! received by the massive MIMO BS is
given by

yi"(B) =

where S € CMr*Mr jg the sensing signal channel, x;(B) €
CMr>1 can be obtained by replacing B in x;(B) of Eq. (10)
by B, v¥" € CM7x1 js AWGN following a complex Gaussian
distribution CN'(0,021,,.) at all My antennas deployed in
the massive MIMO BS, where afu is the variance of any
element in v*" and I, is the identity matrix of size My,
and n is the length of a data block.

Using the obtained yse“(B) the massive MIMO BS is able
to update all K MUs’ positions, represented by their estimated

AoA vectors, denoted by $(]§) = [51(]?3), ,$K(ﬁ) ,
where ¢ (B), Vk € {1,---, K}, is the estimated AoA for the

kth MU as a function of the power after energy harvesting B.
Applying (;5( ), the massive MIMO BS obtains the estimated

CSIT, denoted by Seom ($(1§)) € CKMrxMr of all K MUs.

Under the ISACP scheme with massive MIMO communi-
cation, the received ISAC signal for the ith symbol (Vi €

S*x;(B) + v, Vie {1,2,---n} (12

{1,2,--- ,n}) through communication channels at all antennas
on K MUs, denoted by yo™ ((;S(B)) € CEMrx1 g given by

v ($(B)) = 8% (B) +ver (13)

where S¢m € CEMrxMr i the communication channel state
matrix, representing the channel state between all antennas of
the kth targeted MU and all antennas on the massive MIMO
BS, and veo™ ¢ CKM=rxl ig the AWGN at all antennas
of all MUs. The mth element of y{°™(¢(B)), denoted by
yﬁ,‘;“;(A(INB)), representing the received signal on the mth
antenna of all K MU, is given by

s (9(8)) =/ 2 sem (B(B)) wmain+ s ($(B))

(14)

where Ym € {1,...,KMpg} with assuming that m is the
index for the antenna belonging to the kth targeted mobile

user, §°,,°Lm($(]§)> € CY™Mr s the mth row of the matrix
Seom($(B)). ugem €
yeom (Beom), Qpt and vie™ are the mth element of q;°™ and

v respectively, and €, ; (c;S( )) is the effective additive
noise on the mth antenna of all MUs, including the AWGN
noise and negligible inter-user interference.

CMrx1 is the mth column of the matrix

B. Energy-Efficiency Maximization for Our Proposed ISACP
Schemes

We propose to maximize the energy-efficiency for our
proposed ISACP schemes. Define the power splitting ratio
vector, denoted by p, for all K MUs as follows:

pé[ph/’%"' 7pK]T’ (15)

Denote by B(p) the total power consumption (Joule/sec)
for the ISACP-based massive MIMO communications system
under the power splitting ratio vector p, which is given by:

K K
B(p) =Br +KBr + ZpkBk_Z(l_Pk)Bk
kli k:]\/IRk '
Z k(1) Z > Qi (6B))  6)
=L (o—1)Mp+1

where DBr is a constant signal processing circuit power con-
sumption in the massive MIMO BS, By is a constant circuit
power consumption of each MU, I'y(px) is the energy har-
vested from the information signal at the kth MU, derived
from Eq. (14), given by:
kMg

>

m=(k—1)Mpr+1

P B

Lr(pr) = 2y

var 357 (8(B) ) uigmasn|
(17)
and Q. ; (¢>(B)) in Eq. (16) is defined following Eq. (14),

representing the energy harvested from the effective additive
noise by the mth antenna of all MUs.
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We define the overall energy-efficiency (bits/Joule/Hz), de-
noted by E(p), for the ISACP-based massive MIMO commu-
nications system by a function of power splitting ratio vector
p defined in Eq. (15) as the total number of bits successfully
conveyed to all K MUs per Joule consumed energy under the
QoS requirements for 6G traffics, which is given by

5 Y CilprBr)

E(p) (18)
B(p)

where Cy(pxBy) is the kth MU’s channel capacity given by:

Cr(prBk)
ks i B Var 57 4(B)) usgmasen]
= ) log| 1+ —~—
(k—1)Mp+1 2Mz Var [Qm’i(qb(B))}
(19)

and B(p) is the total power consumption given by Eq. (16).
Then, we maximize the energy-efficiency E(p) as follows:

mgx{E(p)} (20)

o~ 2
s.t.: Cl: E |:(¢k(B) - ¢k> :| < €max, VE
C2: Ci(prBy) = Crin, Vk

where €,.x in Cl is the maximum tolerable AoA estima-
tion error, measuring the sensing performance and Cy(py By)
in C2 is the channel capacity for the kth MU, measuring
the communication performance. Solving Eq. (20), we can
obtain the optimal power splitting ratio vector, denoted by
p* £ [pt, -+, pi], for our proposed ISACP scheme.
Observing the objective function specified by Eq. (20)
and Egs. (18)-(19), we obtain that the energy-efficiency is a

~
‘Qcom

function of 8 ¢(}§)), which makes it difficult to derive
the closed-form solution for Eq. (20), we propose to use the
$(1~3)) and solve
Us in the ISACP
network, we can obtain O™ ($(1§)) by applying the multi-
agent based federated learning (MAFL) based algorithm,
which enables to train a learning model without extracting
the data directly from the MUSs. Instead of imposing the
huge communication overhead in the conventional centralized
learning approach, each agent using the MAFL approach sends
only gradients of the model parameters to the central server,
generating a more rapid response for optimal solution.

machine learning technique to obtain S2°™

Eq. (20). Observing the large number of

C. The Actor-Critic Algorithm Based Multi-Agent Federated
Learning Mechanism

We then describe the maximization of ISACP-based energy-
efficiency given by Eq. (20) through actor-critic algorithm [9],
which integrates the actor-only method with critic-only method
of machine learning. In actor-critic algorithm, the actor decides
which action optimizes the objective function given by Eq. (20)
according to the current state. The critic evaluates this action

through a value function, and then, informs the actor how good
the action is and how to improve the action.

Each MU agent k uses the Markov decision process (MDP)
to solve Eq. (20). We define the finite state set, denoted by
Z, to characterize the MDP’s states describing the channel
feedback obtained by the radar echo. The channel feedback
Z(t) is defined as the received radar echo Z(t) ,\é yi(B).
Define A(t) £ [Ay(t), As(t), ..., Axny(t)] € S©™, where
S is the action set of this MDP for all MUs, and A, (t) =
sgom ($(]§)) with m € {1,2,..., KMpg} denotes the channel
estimation at time ¢ for the mth antenna of all MUs. We also
denote the actor parameter by 7 over the parameter set 7, and
denote the critic parameter by ¢q. We then define the policy
7y, of the MU agent k as a mapping function 7y, : Z x T —
S that assigns each state-parameter pair (Z(t),7) € Z x
T to the channel estimation schemes A(t) € S™. Define
the reward r, of the actor-critic algorithm at time ¢ as the
gain of the ISACP-based energy-efficiency E(p), calculated
by solving Eq. (20). We also define the value of the current
policy under the critic parameter ¢ as Qq(Z(t), A(t)). This
actor-critic algorithm is summarized in Algorithm 1, where
7) represents the importance of future rewards, and ¢, and ¢,
measure how quickly the local model learns for the actor and
the critic, respectively.

Algorithm 1 Actor-Critic Based Algorithm for Maximizing Aggre-
gate ISACP-Based Energy-Efficiency

1: Inmitialize: Actor parameter 7, critic parameter g, Z(0), learning
rates ¢, and ¢q.
2: for time slot ¢ in 1, 2, ... do

3: Each MU agent k selects an action A(¢) from action set Seom
according to policy mx(Z(t), 7).
4: Use the current state to obtain a reward r; = E(p) by solving
Eq. (20).
5: Obtain the next state Z(¢ + 1) and the next action A(¢ + 1).
6: Update the actor parameter T — T +
6:Qu(Z(D), A(£) V- log mi ((2), 7).
7: Compute the correction for action values 6 27, +17Q, (Z(t+
1), A(t+1)) - Q, (Z(1), A(1)).
8: Use § to update the critic parameter of value function g <—
q+ 046V qQq(Z(t), A(2)).
9: end for
10: Output: optimal aggregate ISACP-based energy-efficiency

E(p).

V. PERFORMANCE EVALUATIONS

In Fig. 2, we compare the error of channel state estimation
J;S;O;n — é‘k"‘l“ under different values of step size 7 in the
ederated learning based algorithm in Eq. (9). We assume
that the number of MUs is K = 250. We set the step size
n as 0.25, 0.453, and 0.4583, respectively, where 3 is the (-
strong convexity of the learning approach. We can observe
from Fig. 2 that a larger step size yields the faster convergency
for the communication rounds between the central server at the
massive MIMO BS and MU agents. We can also observe from
Fig. 2 that there always exists the error between the actual
channel state and the estimated channel state, due to the non-
vanishing wireless fading.
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Fig. 2. The error of channel state estimation under different values of step
size 1) in the federated learning based algorithm.

T T
Number of Mobile User K=150
""""" Number of Mobile User K=200| |
————— Number of Mobile User K=250

_ gcom

k1

0.6

CcOom
Bl

L

Error of Channel State Estimation

0.4
0.2 e
| ! ! v
0 L | . .
0 20 40 60 80

Central Server to MU Agents Communication Rounds

Fig. 3. The error of channel state estimation under different numbers of MUs
using the federated learning based algorithm.

In Fig. 3, we compare the error of channel state estima-

tion ‘s;";‘“ — §§€°§“’ under different numbers of MUs using the

federated learning based algorithm. We set that the step size
n = 0.455. We set the numbers of MUs as 150, 200, and
250, respectively. Figure 3 reveals that the converged error
of channel state estimation monotonically decreases as the
numbers of MUs increases. This is because a larger number of
MUs implies a more accurate global model, and thus, results
in a smaller channel state estimation error. Figure 3 also shows
that a larger number of MUs yields a faster convergency since
a larger number of MUs can improve the convergency speed
of the average gradient VL at the central server.

Figure 4 shows the ISACP-based energy-efficiency, denoted
by E(py), of the kth MU under different power splitting ratio
pr. and different numbers of antennas on the massive MIMO
BS. We set the total power allocation for the kth MU By, = 3W
and the actual AoA for kth MU ¢, = 30°. Figure 4 reveals
that there always exists an optimal power splitting ratio py
for the kth MU to maximize its energy-efficiency, and thus,
there exists an optimal power splitting ratio vector p for all
MUs, to maximize the overall energy-efficiency F(p) given
by Eq. (20). We also observe from Fig. 4 that the maximum
ISACP-based energy-efficiency monotonically increases as the
number of antennas on the massive MIMO BS increases,
showing that a large number of transmit antennas can improve
the performance of our proposed ISACP scheme.

Energy-efficiency F(p;) for
the kth MU (bits/Joule/Hz)
(=}

[=)}

0.4
|
SN
0.2 .
- S AR
O T S s
0 S
.

Uy, 0.75
F 5 . 2810 Pk
oy, ag, : nS
e 8@12%6 3 power Sp o kb MY
fo

Fig. 4. The function of ISACP-based energy-efficiency, denoted by E(py).
of the kth MU under different power splitting ratio pj, and different numbers
of antennas on the massive MIMO BS.

VI. CONCLUSIONS

We have applied the ISACP to integrate the simultaneous
sensing, communication, and powering by using the massive
MIMO downlink signal. To estimate the CSIR, we have
applied the federated learning based algorithm to train the
learning model through a local data set, where the input data
is the pilot signals and the output data is MUs’ estimated
CSIR. Having formulated an energy-efficiency maximization
problem, we have then applied the actor-critic enabled multi-
agent algorithm to derive the optimal power splitting ratio by
using the CSIT estimated by the massive MIMO BS.
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