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Abstract—To sense mobile users’ positions and channel states
while simultaneously conveying information for supporting the
6G traffic, the integrated sensing and communication (ISAC) has
been proposed as a key technique for sensing and communicating
using the same radio frequency and hardware. Moreover, to sup-
port energy-constrained and battery-limited wireless networks,
simultaneous wireless information and power transfer (SWIPT) has
also emerged to simultaneously deliver information and energy to
a receiver. To integrate these two techniques, integrated sensing,
communications, and powering (ISACP) has been developed to
simultaneously sense the targeted mobile users, transmit the
information, and deliver the power. However, how to efficiently
optimize the power allocation in ISACP schemes to support the
6G traffic has imposed many new challenges not encountered
before. To overcome these challenges, in this paper we propose
a federated-learning (FL) enabled ISACP scheme to maximize
the energy-efficiency over 6G massive MIMO wireless networks.
First, we establish the system models for our proposed ISACP and
FL schemes. Second, we design the training data set collection
in the FL algorithm by sending the pilot signal from mobile
users to the massive MIMO base station, and formulate an
energy-efficiency maximization problem for the developed ISACP
scheme. Third, To solve the formulated energy-efficiency maxi-
mization problem, we propose an actor-critic enabled multi-agent
based FL mechanism. Finally, we use the numerical analyses to
validate and evaluate our developed schemes.

Index Terms—6G wireless networks, integrated sensing, com-
munications, and powering (ISACP), federated learning, massive
MIMO, channel state estimation, energy-efficiency.

I. INTRODUCTION

THE massive ultra-reliable and low-latency communica-

tions (mURLLC) services are emerging as a new but

dominant traffic type of the 6G mobile wireless networks that

support a massive number of mobile users (MUs) demanding

the stringent quality of service (QoS) such as high data

rate and low error probability. The integrated sensing and

communications (ISAC) has been proposed to fulfill both

channel/position-sensing and data-communication functional-

ities by using the same spectrum and hardware for improving

various QoS performances of 6G traffics. To address the issue

of limited battery capacity for MUs, simultaneous wireless
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information and power transfer (SWIPT) has been proposed as

a promising solution to improve the energy efficiency by MUs

applying the energy harvesting (EH) techniques for receiving

the energy and information from radio-frequency (RF) sig-

nals. Due to their advancements, researchers envision that 6G

wireless networks will integrate ISAC with SWIPT to provide

new multi-functional wireless systems with integrated sensing,

communications, and powering (ISACP) to simultaneously

sense the wireless channel, and transfer the information and

power.

Recent works have studied various ISAC, SWIPT, and

ISACP schemes. The work of [1] designed an accurate ISAC-

enabled beam tracking scheme in high-mobility vehicular

networks to establish the reliable communication link. The

authors of [2] investigated the application of ISAC in space-air-

ground-sea integrated network using massive multiple-input

multiple-output (MIMO) communication, through proposing

a beam squint-aware ISAC technique for hybrid analog/digital

massive MIMO enabled low earth orbit (LEO) satellite sys-

tems. The work of [3] maximized the sum energy efficiency

over all device-to-device (D2D) links in a D2D underlaid

cellular network by optimizing the resource and power allo-

cation based on a nonlinear EH model. The authors of [4]

addressed the secure communications over EH cooperative

cognitive radio networks by proposing the polarization-enabled

two-phase mechanism. The ISACP scheme has been proposed

in [5] by allowing a multi-antenna hybrid access point to

transmit wireless signals to communicate with a multi-antenna

information decoding receiver, wirelessly charging a multi-

antenna EH receiver and performing radar target sensing based

on the echo signal concurrently.

However, due to the time-varying of the wireless channel

and dynamic states for MUs, how to efficiently optimize the

ISACP scheme, while satisfying the stringent QoS require-

ments for 6G traffics has not been thoroughly studied. To

overcome this challenge, in this paper we propose a federated

learning (FL)-base ISACP mechanism to support the QoS

provisioning by using massive MIMO communications. First,

we establish the system models for our proposed ISACP

and FL schemes to estimate channel states through the radar

echo. Considering the computational complexity of channel

estimations, we then design the training data set collection for
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Fig. 1. The system architecture models of our proposed federated learning
based channel estimation using massive MIMO base station.

the FL algorithm by sending the pilot signal from MUs to the

massive MIMO base station (BS) and formulate an energy-

efficiency maximization problem for the developed ISACP

scheme. Third, to solve the formulated energy-efficiency max-

imization problem, we also propose an actor-critic enabled

multi-agent based FL mechanism.

The rest of this paper is organized as follows. Section II

establishes the system models for our proposed ISACP archi-

tectures. Section III develops the FL algorithm for estimating

the channel state information at the receiver (CSIR). Section IV

proposes a multi-agent based FL algorithm to maximize the

energy-efficiency of our proposed ISACP scheme through

estimating the channel state information at the transmitter

(CSIT). Section V validates and evaluates our developed

ISACP schemes. This paper concludes with Section VI.

II. SYSTEM MODELS FOR OUR PROPOSED ISACP-BASED

ARCHITECTURES USING MASSIVE MIMO

A. Our Proposed ISACP-Based Architectures Using Massive

MIMO For Estimating CSIT

As shown in Fig. 1, we consider a cellular network consist-

ing of a massive MIMO BS and totally K moving targeted

MUs, where the massive MIMO BS sends the radar sensing

and the downlink communication signals simultaneously to

these K targeted MUs. Assume that there are MT antennas on

the BS and there are MR antennas on each targeted MU, where

MT � MR. The kth MU, ∀k, splits the received RF signals

into two parts with decoding-EH power splitting ratios ρk and

(1− ρk) for decoding the information and energy harvesting,

respectively, where 0 < ρk < 1.

Let Bk, ∀k, be the total transmit power allocation of the

sensing and communication signal (i.e., ISAC signal) sending

from the massive MIMO BS to the kth MU. The massive

MIMO BS transmits the ISAC signals to all K MUs, which

are assumed to be EH devices. Each MU k, ∀k, receives the

ISAC signal, decodes the received information with the energy

ρkBk, and harvests the rest (1 − ρk)Bk energy. The echo

of the transmitted ISAC signal is then reflected back to the

massive MIMO BS. By estimating the kth MU’s angle-of-

arrival (AoA), denoted by φk, ∀k, using the radar echo, the

massive MIMO BS is able to obtain the kth MU’s position.

Assume that the wireless fading channels between the massive

MIMO BS and MUs only depends on the multipaths which

are determined by MUs’ positions. Thus, by estimating the

MUs’ positions (i.e., AoAs), the massive MIMO BS is able to

obtain the channel state information at the transmitter (CSIT)

to satisfy MUs’ stringent QoS requirements.

B. Our Proposed Federated Learning Based Algorithm For

Estimating CSIR

In addition to the CSIT estimated by the massive MIMO BS,

each MU also needs to estimate its channel state information

at the receiver (CSIR). Due to the constrained MU’s local

computation resources and the computational complexity for

estimating MUs’ positions and channel states, we propose to

apply the FL based algorithm for MUs’ position/channel-state

estimation. As a decentralized machine learning approach, a

local model of the FL can be trained in each of these K

MUs using local data samples without exchanging them. We

propose that MUs train their model using pilot signals, which

are known by both BS and MUs, as local data samples.

III. FEDERATED LEARNING BASED CSIR ESTIMATION

In our proposed FL based algorithm, the local model at

each MU agent is being initialized by collecting the data

set from its own MU and training its own local model to

obtain the learnable parameter by using its own data set.

We define the learnable parameter as the parameter to solve

the estimated channel state, and the local model aims at

minimizing the loss function of each MU’s channel state

estimation under the learnable parameter. Each MU agent

computes the gradient of the local loss function, updates its

local model’s parameters, and sends its updated model gradient

to the central server located at the massive MIMO BS. The

central server aggregates the received model parameters using

a predefined federated averaging (FedAvg) approach [6] and

updates the global model, whose parameter is then sent back to

all MU agents. Each MU agent receives the updated parameter

of the global model and incorporates it into its local model

to update their model parameters. The FL based algorithm

trains the global model without explicitly exchanging the data,

which is advantageous in terms of privacy considerations and

communication resources. We treat each MU as a learning

agent and deploy the central server at the massive MIMO BS,

and thus, our proposed FL consists of K MU agents and one

central server.

A. Training Data Set Collection Using Pilot Signals For

Estimating CSIR

Let scom
k ∈ C

MR×1 be the actual channel state for the

channel between the massive MIMO BS and the kth MU and

let ŝcom
k be CSIR for scom

k estimated the kth MU. Denote the
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learnable parameter by w
(t)
k at the tth iteration of the FL

based model for the kth MU agent, ∀k ∈ {1, 2, · · · ,K}.

Denote the local data set of the kth MU agent by Dk and

assume that Dk ∩ D
k̃
= ∅ if k �= k̃. The local data set Dk

contains the input-output pairs D
(ν)
k =

(
p
(ν)
k , b

(ν)
k

)
, ∀k, and

∀ν ∈ {1, 2, · · · , |Dk|}, where p
(ν)
k �

[
p
(1,ν)
k , · · · , p

(np,ν)
k

]ᵀ
∈

C
np×1, ∀ν, is the input data representing the pilot signals sent

from the massive MIMO BS to the kth MU agent and is

known by both the MU agent and the central server located

at the massive MIMO BS, and b
(ν)
k , ∀ν, is the output/label

data, which is the estimated channel state ŝcom
k by the kth

MU. The objective of the FL based model is to obtain

an optimal learnable parameter, denoted by w∗, such that

Λ
(
p
(ν)
k

∣∣w∗
)
= b

(ν)
k .

We assign the massive MIMO BS with an input data set (i.e.,

pilot signals) pk, where we select the input data set such that(
p
(ν)
k

)H
p
(ν)
k = 1. The massive MIMO BS sends the signal,

denoted by x
(p,ν)
k ∈ C

1×np to the kth MU agent, which is

given as follows:

x
(p,ν)
k =

√
npBdl

(
p
(ν)
k

)H
, (1)

where Bdl is the transmit power for the input data. Then the

kth MU’s received signal, denoted by Y
(p,ν)
k ∈ C

MR×np , from

the kth MU agent is given as follows:

Y
(p,ν)
k = scom

k x
(p,ν)
k +Ncom

k (2)

where Ncom
k ∈ C

MR×np is the additive white Gaussian noise

(AWGN) for the kth MU agent. The kth MU agent performs

a de-spreading operation by correlating the received signals

with the kth input data set, which yields the kth MU agent’s re-

ceived signal after de-spreading, denoted by Ỹ
(p,ν)
k ∈ C

MR×1,

as follows:

Ỹ
(p,ν)
k =Y

(p,ν)
k p

(ν)
k =

√
npBdlscom

k

(
p
(ν)
k

)H
p
(ν)
k +Ncom

k p
(ν)
k

=
√

npBdlscom
k +Ncom

k p
(ν)
k . (3)

Since the channel estimation ŝcom
k,l , which is the lth element

of ŝcom
k , under the minimum mean square error (MMSE)

estimation is given by

ŝcom
k,l = E

[
scom
k,l

∣∣ Ỹ(p,ν)
k ,w

(t)
k

]
� Λ

(
p
(ν)
k

∣∣∣w(t)
k

)
(4)

where the expectation operation is taken under the multipath

fading, the kth MU agent trains w
(t)
k as the parameter to

derive the multipath fading factor which affects the expectation

operation in Eq. (4). Thus, w
(t)
k is the parameter such that

w
(t)
k = argmin

{
Λ
(
p
(ν)
k

∣∣∣w(t)
k

)
− b

(ν)
k

}
(5)

where b
(ν)
k is given by the local data set D

(ν)
k =

(
p
(ν)
k , b

(ν)
k

)
.

B. Federated Learning Parameter Updating

We specify that each communication round between the

central server at the massive MIMO BS and MU agents in the

tth iteration of the FL consists of four major steps as shown

in the followings.

Step 1: Local Training. Each MU agent k trains a local

model to minimize a local loss function Lk

(
w

(t)
k ,Dk

)
by

using its own local data set Dk. During this local training,

each agent k obtains the weight of its local model α
(t)
k and

the gradient of the local loss function ∇Lk(w
(t)
k ,Dk).

Define a loss function Lk

(
w

(t)
k ,Dk

)
, ∀k, as follows:

Lk

(
w

(t)
k ,Dk

)
�

1

|Dk|

|Dk|∑

ν=1

∣∣∣Λ
(
p
(ν)
k

∣∣∣w(t)
k

)
− b

(ν)
k

∣∣∣
2

. (6)

The FL-based model training is performed at all MU agents

as follows:

min
w

(t)
k

{
L
(
w

(t)
k ,D

)}
� min

w
(t)
k

{
K∑

k=1

α
(t)
k Lk

(
w

(t)
k ,Dk

)}
(7)

where D = {D1, · · · ,DK}, α
(t)
k is the weight of the kth

MU agent at the tth iteration, and
∑K

k=1 α
(t)
k = 1. Each MU

agent k computes the gradient ∇Lk

(
w

(t)
k ,Dk

)
to solve Eq. (7),

where the gradient operation is taken with respect to w
(t)
k .

Step 2: Global Aggregation. Each MU agent k uploads its

obtained weight α
(t)
k and gradient ∇Lk

(
w

(t)
k ,Dk

)
to the cen-

tral server. The central server aggregates weights and gradients

received from all MU agents, updates the weight for each MU

agent α
(t+1)
k for the next iteration, and computes the average

gradient ∇L as follows:

∇L =
K∑

k=1

α
(t+1)
k ∇Lk

(
w

(t)
k ,Dk

)
. (8)

Step 3: Model Updating. The central server uses the up-

dated weight α
(t+1)
k and average gradient ∇L to update the

parameters for the global model to improve the accuracy of the

global model. The updated global model with these updated

parameters are then sent back to all MU agents for updating

their local models. Then MU agents update their learnable

parameter w
(t+1)
k for the next iteration as follows:

w
(t+1)
k = w

(t)
k − η

K∑

k=1

α
(t+1)
k ∇L, ∀k, (9)

where η is the step size.

Step 4: Control and Feedback. Each MU agent periodi-

cally communicates with the central server to upload and

update the parameters of its local model. The central server

sends the control and feedback information, e.g., new learning

rate schedules and regularization parameters of the global

model, to all MU agents, so that each agent is able to improve

its local model.
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IV. ENERGY-EFFICIENCY MAXIMIZATION FOR ISACP

THROUGH ESTIMATING CSIT USING MULTI-AGENT

BASED ALGORITHM

A. The ISAC Signal Sent by the Massive MIMO BS

For the massive MIMO downlink integrated sensing and

communications, define B � [B1, B2, · · · , BK ]ᵀ as the power

allocation vector for all K MUs, where Bk is the total power

allocation for the kth MU’s sensing and communication signal.

Let xi(B) ∈ C
MT×1 be the transmitted signal under the total

power allocation vector B for the ith symbol, ∀i ∈ {1, · · · , n},

from the massive MIMO BS to all K MUs, which is given

by [7, Eq. (1)] [8, Eq. (1)]

xi(B) = Ucom(B)qcom
i +Usen(B)qsen

i (10)

where
⎧
⎪⎪⎪⎪«
⎪⎪⎪⎪¬

Ucom(B)=

[√
ρ1B1

2MT

Ucom
1 , · · ·,

√
ρKBK

2MT

Ucom
K

]

Usen(B)=

[√
ρ1B1

2MT

Usen
1 , · · ·,

√
ρKBK

2MT

Usen
K

] (11)

are the communication and sensing signals beamforming ma-

trixes (i.e., precoders) for all K targeted MUs, respectively,

under the total power allocation vector B; Ucom
k ∈ C

MT×MR

and Usen
k ∈ C

MT×MR are the communication and sensing

precoders for the kth targeted MU, respectively; and qcom
i ∈

C
KMR×1 and qsen

i ∈ C
KMR×1 are the ith communication

symbol and the ith probing sensing symbol, respectively. Since

all MUs are EH devices, the kth MU, ∀k, uses ρk portion of the

energy to receive information and harvests the rest (1−ρk) por-

tion of the energy. Denote by B̃ � [ρ1B1, ρ2B2, · · · , ρKBK ]ᵀ

the vector for the signal power after MUs’ energy harvesting.

After MUs’ energy harvesting, the reflected radar echo signal

for the ith symbol under the signal power vector B̃, denoted

by ysen
i (B̃) ∈ C

MT×1, received by the massive MIMO BS is

given by

ysen
i (B̃) = Ssenxi(B̃) + vsen, ∀i ∈ {1, 2, · · ·n} (12)

where Ssen ∈ C
MT×MT is the sensing signal channel, xi(B̃) ∈

C
MT×1 can be obtained by replacing B in xi(B) of Eq. (10)

by B̃, vsen ∈ C
MT×1 is AWGN following a complex Gaussian

distribution CN (0, σ2
wIMT

) at all MT antennas deployed in

the massive MIMO BS, where σ2
w is the variance of any

element in vsen and IMT
is the identity matrix of size MT ,

and n is the length of a data block.

Using the obtained ysen
i (B̃), the massive MIMO BS is able

to update all K MUs’ positions, represented by their estimated

AoA vectors, denoted by φ̂(B̃) �

[
φ̂1(B̃), · · · , φ̂K(B̃)

]
,

where φ̂k(B̃), ∀k ∈ {1, · · · ,K}, is the estimated AoA for the

kth MU as a function of the power after energy harvesting B̃.

Applying φ̂(B̃), the massive MIMO BS obtains the estimated

CSIT, denoted by Ŝcom
(
φ̂(B̃)

)
∈ C

KMR×MT , of all K MUs.

Under the ISACP scheme with massive MIMO communi-

cation, the received ISAC signal for the ith symbol (∀i ∈

{1, 2, · · · , n}) through communication channels at all antennas

on K MUs, denoted by ycom
i

(
φ̂(B̃)

)
∈ C

KMR×1, is given by

ycom
i

(
φ̂(B̃)

)
= Scomxi(B̃) +vcom (13)

where Scom ∈ C
KMR×MT is the communication channel state

matrix, representing the channel state between all antennas of

the kth targeted MU and all antennas on the massive MIMO

BS, and vcom ∈ C
KMR×1 is the AWGN at all antennas

of all MUs. The mth element of ycom
i (φ̂(B̃)), denoted by

ycom
m,i

(
φ̂(B̃)

)
, representing the received signal on the mth

antenna of all K MUs, is given by

ycom
m,i

(
φ̂(B̃)

)
=

√
ρkBk

2MT

ŝcom
m

(
φ̂(B̃)

)
ucom
m qcom

m,i+Ωm,i

(
φ̂(B̃)

)

(14)

where ∀m ∈ {1, . . . ,KMR} with assuming that m is the

index for the antenna belonging to the kth targeted mobile

user, ŝcom
m

(
φ̂(B̃)

)
∈ C

1×MT is the mth row of the matrix

Ŝcom
(
φ̂(B̃)

)
, ucom

m ∈ C
MT×1 is the mth column of the matrix

Ucom(B̃com), qcom
m,i and vcom

m are the mth element of qcom
i and

vcom, respectively, and Ωm,i

(
φ̂(B̃)

)
is the effective additive

noise on the mth antenna of all MUs, including the AWGN

noise and negligible inter-user interference.

B. Energy-Efficiency Maximization for Our Proposed ISACP

Schemes

We propose to maximize the energy-efficiency for our

proposed ISACP schemes. Define the power splitting ratio

vector, denoted by ρ, for all K MUs as follows:

ρ � [ρ1, ρ2, · · · , ρK ]ᵀ. (15)

Denote by B(ρ) the total power consumption (Joule/sec)

for the ISACP-based massive MIMO communications system

under the power splitting ratio vector ρ, which is given by:

B(ρ) =BT +KBR +

K∑

k=1

ρkBk−
K∑

k=1

(1−ρk)Bk

−
K∑

k=1

Γk(ρk)−
K∑

k=1

kMR∑

m=
(k−1)MR+1

Ωm,i

(
φ̂(B̃)

)
(16)

where BT is a constant signal processing circuit power con-

sumption in the massive MIMO BS, BR is a constant circuit

power consumption of each MU, Γk(ρk) is the energy har-

vested from the information signal at the kth MU, derived

from Eq. (14), given by:

Γk(ρk) =

kMR∑

m=(k−1)MR+1

ρkBk

2MT

Var
[
ŝcom
m

(
φ̂(B̃)

)
ucom
m qcom

m,i

]
,

(17)

and Ωm,i

(
φ̂(B̃)

)
in Eq. (16) is defined following Eq. (14),

representing the energy harvested from the effective additive

noise by the mth antenna of all MUs.
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We define the overall energy-efficiency (bits/Joule/Hz), de-

noted by E(ρ), for the ISACP-based massive MIMO commu-

nications system by a function of power splitting ratio vector

ρ defined in Eq. (15) as the total number of bits successfully

conveyed to all K MUs per Joule consumed energy under the

QoS requirements for 6G traffics, which is given by

E(ρ) �

∑K

k=1 Ck(ρkBk)

B(ρ)
(18)

where Ck(ρkBk) is the kth MU’s channel capacity given by:

Ck(ρkBk)

=

kMR∑

m=
(k−1)MR+1

log2

⎛
¿1+

ρkβkBkVar
[
ŝcom
m

(
φ̂(B̃)

)
ucom
m qcom

m,i

]

2MT Var
[
Ωm,i

(
φ̂(B̃)

)]

À
⎠

(19)

and B(ρ) is the total power consumption given by Eq. (16).

Then, we maximize the energy-efficiency E(ρ) as follows:

max
ρ

{E(ρ)} (20)

s.t.: C1 : E

[(
φ̂k(B̃)− φk

)2
]
f εmax, ∀k

C2 : Ck(ρkBk) g Cmin, ∀k

where εmax in C1 is the maximum tolerable AoA estima-

tion error, measuring the sensing performance and Ck(ρkBk)
in C2 is the channel capacity for the kth MU, measuring

the communication performance. Solving Eq. (20), we can

obtain the optimal power splitting ratio vector, denoted by

ρ∗ � [ρ∗1, · · · , ρ
∗
K ], for our proposed ISACP scheme.

Observing the objective function specified by Eq. (20)

and Eqs. (18)-(19), we obtain that the energy-efficiency is a

function of ŝcom
m

(
φ̂(B̃)

)
, which makes it difficult to derive

the closed-form solution for Eq. (20), we propose to use the

machine learning technique to obtain ŝcom
m

(
φ̂(B̃)

)
and solve

Eq. (20). Observing the large number of MUs in the ISACP

network, we can obtain ŝcom
m

(
φ̂(B̃)

)
by applying the multi-

agent based federated learning (MAFL) based algorithm,

which enables to train a learning model without extracting

the data directly from the MUs. Instead of imposing the

huge communication overhead in the conventional centralized

learning approach, each agent using the MAFL approach sends

only gradients of the model parameters to the central server,

generating a more rapid response for optimal solution.

C. The Actor-Critic Algorithm Based Multi-Agent Federated

Learning Mechanism

We then describe the maximization of ISACP-based energy-

efficiency given by Eq. (20) through actor-critic algorithm [9],

which integrates the actor-only method with critic-only method

of machine learning. In actor-critic algorithm, the actor decides

which action optimizes the objective function given by Eq. (20)

according to the current state. The critic evaluates this action

through a value function, and then, informs the actor how good

the action is and how to improve the action.

Each MU agent k uses the Markov decision process (MDP)

to solve Eq. (20). We define the finite state set, denoted by

Z , to characterize the MDP’s states describing the channel

feedback obtained by the radar echo. The channel feedback

Z(t) is defined as the received radar echo Z(t) � ysen
i (B̃).

Define A(t) � [A1(t), A2(t), . . . , AKMR
(t)] ∈ Ŝcom, where

Ŝcom is the action set of this MDP for all MUs, and Am(t) �

ŝcom
m

(
φ̂(B̃)

)
with m ∈ {1, 2, . . . ,KMR} denotes the channel

estimation at time t for the mth antenna of all MUs. We also

denote the actor parameter by τ over the parameter set T , and

denote the critic parameter by q. We then define the policy

πk of the MU agent k as a mapping function πk : Z × T →
Ŝcom that assigns each state-parameter pair (Z(t), τ) ∈ Z ×
T to the channel estimation schemes A(t) ∈ Ŝcom. Define

the reward rt of the actor-critic algorithm at time t as the

gain of the ISACP-based energy-efficiency E(ρ), calculated

by solving Eq. (20). We also define the value of the current

policy under the critic parameter q as Qq(Z(t),A(t)). This

actor-critic algorithm is summarized in Algorithm 1, where

η̃ represents the importance of future rewards, and φτ and φq

measure how quickly the local model learns for the actor and

the critic, respectively.

Algorithm 1 Actor-Critic Based Algorithm for Maximizing Aggre-
gate ISACP-Based Energy-Efficiency

1: Initialize: Actor parameter τ , critic parameter q, Z(0), learning
rates φτ and φq .

2: for time slot t in 1, 2, ... do
3: Each MU agent k selects an action A(t) from action set Ŝcom

according to policy πk(Z(t), τ).
4: Use the current state to obtain a reward rt = E(ρ) by solving

Eq. (20).
5: Obtain the next state Z(t+1) and the next action A(t+1).
6: Update the actor parameter τ ← τ +

φτQq(Z(t),A(t))∇τ log πk(Z(t), τ).
7: Compute the correction for action values δ�rt+ η̃Qq(Z(t+

1),A(t+1))−Qq(Z(t),A(t)).
8: Use δ to update the critic parameter of value function q ←

q + φqδ∇qQq(Z(t),A(t)).
9: end for

10: Output: optimal aggregate ISACP-based energy-efficiency
E(ρ).

V. PERFORMANCE EVALUATIONS

In Fig. 2, we compare the error of channel state estimation∣∣∣scom
k,l − ŝcom

k,l

∣∣∣ under different values of step size η in the

federated learning based algorithm in Eq. (9). We assume

that the number of MUs is K = 250. We set the step size

η as 0.2β, 0.4β, and 0.45β, respectively, where β is the β-

strong convexity of the learning approach. We can observe

from Fig. 2 that a larger step size yields the faster convergency

for the communication rounds between the central server at the

massive MIMO BS and MU agents. We can also observe from

Fig. 2 that there always exists the error between the actual

channel state and the estimated channel state, due to the non-

vanishing wireless fading.
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Fig. 2. The error of channel state estimation under different values of step
size η in the federated learning based algorithm.

Fig. 3. The error of channel state estimation under different numbers of MUs
using the federated learning based algorithm.

In Fig. 3, we compare the error of channel state estima-

tion

∣∣∣scom
k,l − ŝcom

k,l

∣∣∣ under different numbers of MUs using the

federated learning based algorithm. We set that the step size

η = 0.45β. We set the numbers of MUs as 150, 200, and

250, respectively. Figure 3 reveals that the converged error

of channel state estimation monotonically decreases as the

numbers of MUs increases. This is because a larger number of

MUs implies a more accurate global model, and thus, results

in a smaller channel state estimation error. Figure 3 also shows

that a larger number of MUs yields a faster convergency since

a larger number of MUs can improve the convergency speed

of the average gradient ∇L at the central server.

Figure 4 shows the ISACP-based energy-efficiency, denoted

by E(ρk), of the kth MU under different power splitting ratio

ρk and different numbers of antennas on the massive MIMO

BS. We set the total power allocation for the kth MU Bk = 3W

and the actual AoA for kth MU φk = 30◦. Figure 4 reveals

that there always exists an optimal power splitting ratio ρk
for the kth MU to maximize its energy-efficiency, and thus,

there exists an optimal power splitting ratio vector ρ for all

MUs, to maximize the overall energy-efficiency E(ρ) given

by Eq. (20). We also observe from Fig. 4 that the maximum

ISACP-based energy-efficiency monotonically increases as the

number of antennas on the massive MIMO BS increases,

showing that a large number of transmit antennas can improve

the performance of our proposed ISACP scheme.

Fig. 4. The function of ISACP-based energy-efficiency, denoted by E(ρk),
of the kth MU under different power splitting ratio ρk and different numbers
of antennas on the massive MIMO BS.

VI. CONCLUSIONS

We have applied the ISACP to integrate the simultaneous

sensing, communication, and powering by using the massive

MIMO downlink signal. To estimate the CSIR, we have

applied the federated learning based algorithm to train the

learning model through a local data set, where the input data

is the pilot signals and the output data is MUs’ estimated

CSIR. Having formulated an energy-efficiency maximization

problem, we have then applied the actor-critic enabled multi-

agent algorithm to derive the optimal power splitting ratio by

using the CSIT estimated by the massive MIMO BS.
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