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Multi-Tier Caching for Statistical-QoS Driven Digital

Twins Over mURLLC-Based 6G Massive-MIMO

Mobile Wireless Networks Using FBC
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Abstract—Digital Twin (DT) has been widely envisioned as a
major intelligent application of 6G wireless networks requiring
stringent quality-of-service (QoS) for massive ultra-reliable and low
latency communications (mURLLC) to support efficient interac-
tions between physical and virtual objects. As a key multi-tier com-
puting (MTC) technique of 6G mobile networks, multi-tier caching
stores the highly-demanded data at different wireless network
tiers to significantly reduce mURLLC-streaming delay and data
move. However, how to efficiently cache mURLLC data at different
caching tiers in wireless networks and how to support both delay
and error-rate bounded QoS for DT remain challenging problems.
To conquer these difficulties, in this paper we propose to integrate
multi-tier caching with finite blocklength coding for supporting
mURLLC-based DT by developing multi-tier 6G massive-multiple-
input-multiple-output (M-MIMO) mobile networks. First, we de-
velop the efficient inter-tier and intra-tier collaborative multi-tier
caching mechanisms, where popular DT data items are selectively
cached at different wireless network caching tiers including: router
tier, M-MIMO base-station (BS)/WiFi-AP tier, and mobile device
tier. Second, our proposed inter-tier caching mechanisms maxi-
mize the aggregate caching gain, in terms of DT-based ε-effective
capacity, across three caching tiers to support statistical delay
and error-rate bounded QoS. Third, we develop the intra-tier
caching algorithm to optimize each caching-tier’s QoS. Finally,
our extensive numerical analyses show our developed schemes’
performances-superiorities over existing schemes.

Index Terms—6G, DT, mURLLC, statistical delay and error-
rate bounded QoS, FBC, DT-based ε-effective capacity, M-MIMO,
multi-tier caching.

I. INTRODUCTION

I
N RECENT years, the transformation of the physical domain

into the virtual domain has been accelerated by the infor-

mation revolution. In order to implement this fast-paced and
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continuously-evolving digital transformation, digital twin (DT)

has been widely recognized as an emerging tool to represent a

physical entity by its virtual counterpart, enabling the simula-

tion, analysis, and monitoring, while producing real-time inter-

actions between the physical and virtual twins. By transforming

elements, functions, operations, and dynamics of a physical

system into its digital form, we are able to control, test, analyze,

predict, and simulate the physical object. Therefore, DT trans-

mission has been widely recognized as a promising 6G traffic

type which signifies a paradigm shift towards more intelligent,

interconnected, and data-centric communication systems. As a

digital representation of an intended real-world physical object,

a digital twin need to be timely and reliably updated by and

synchronized with the corresponding physical system. However,

due to the massive geographical coverage scale and complex

environments of mobile devices which are also called mobile

users (MUs) throughout this paper, the new challenges on how

to disseminate DT data content items with stringent low-delay

and high-reliability QoS requirements need to be overcome.

Towards this end, massive ultra-reliable and low-latency

communications (mURLLC) [1] has been proposed as a key

technique to create ultra real-time, reliable, and high data-rate

wireless networking environments for supporting immersive

and inter-operable DT data streaming. This is because the

6G-based mURLLC guarantees the highly-stringent quality-of-

service (QoS) standards including: extra-low end-to-end delay

(<1 ms), super-reliability (>99.99999%), and extra-high data

rate (>1 Tb/s), which can best meet DTs’ QoS requirements.

On the other hand, the physical-virtual synchronization of DT

for composite heterogeneous services, such as metaverse and

virtual reality (VR)/augmented reality (AR) in 6G, demands

heavily loaded computational operations and networking re-

sources consumptions. To address these issues, multiple-tier

computing (MTC) techniques [2], [3], [4] have also been devel-

oped to support DT data-content items by providing distributed

computation, processing, and storage capabilities at different

tiers of wireless networks. Under MTC-based edge computing

architectures, in-network caching stores highly-demanded data

at different wireless networking tiers along network-edge de-

vices to efficiently reduce DT streaming delay and data move [5].

Leveraging advanced caching techniques to store the frequently

accessed DT data content items and even the mobile-applications

software at edge nodes, the corresponding computation tasks

can be executed at the network edge to reduce the latency, thus

improving QoS performances. Furthermore, the recently pro-

posed finite blocklength coding (FBC) has been also shown to be

1932-4553 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Texas A M University. Downloaded on October 09,2024 at 03:06:04 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: MULTI-TIER CACHING FOR STATISTICAL-QOS DRIVEN DIGITAL TWINS OVER MURLLC-BASED 6G M-MIMO MOBILE NETWORKS 35

a powerful technique to further enhance mURLLC by enabling

small-packet communications to reduce processing delay while

constraining decoding error-probability without requiring the

arbitrarily long and even infinite large packet-size or codeword

length for achieving Shannon capacity. Thus, integrating FBC

with mURLLC creates the alternative promising solution for

efficiently implementing statistical-QoS driven DT over the 6G

mobile networks.

There are some existing works addressing the above-

discussed DT-enabling techniques. The authors of [6] designed

an on-demand DT content item delivery architecture through

a caching based communication mode to reduce the respond-

ing time for the frequent interactions between vehicular users

and roadside units. The social-aware vehicular edge caching

networks were proposed by [7], where the DT enables cache

controllers to grasp the social relations between vehicles, un-

derstand the vehicle flow distribution, and effectively allocate

communication and storage resources for content delivery. The

authors of [8] proposed a novel scheme to support DT/metaverse

communications by jointly integrating communication, comput-

ing, and storage techniques through the applications of mobile

edge computing integrated with mURLLC.

However, how to efficiently cache mURLLC data at different

caching tiers in mobile wireless networks and how to inte-

grate multi-tier caching with FBC to support both statistical

delay and error-rate bounded QoS for DT applications still

remain challenging open problems. To overcome these diffi-

culties, in this paper we propose to develop the DT-enabled

multi-tier caching 6G mURLLC mobile networks by apply-

ing statistical-QoS/FBC. First, we develop the collaborative

multi-tier hierarchical caching mechanisms in both inter-tier

and intra-tier scenarios to support the DT transmissions, where

the popular DT data content items are selectively cached

at different network-edge caching tiers: including router-tier,

massive multiple-input-multiple-output (massive MIMO)-base-

station (BS)/WiFi-access-point (AP)-tier, and mobile-device-

tier, respectively. To support the statistical delay and error-rate

bounded QoS provisioning for the cached DT-data transmission,

we develop the DT-based ε-effective capacity to measure the

performance metrics for mobile wireless networks. Second, we

propose the inter-tier collaborative caching mechanisms to max-

imize the aggregate ε-effective capacity as the DT-data caching

gain across the above described three caching tiers. Third, we

propose the intra-tier optimal caching algorithms at all three

caching tiers, respectively, to maximize the ε-effective capacity

within each individual caching tier.

The rest of this paper is organized as follows. Section II

establishes the system architectures models for our proposed

DT-enabled multi-tier caching 6G mURLLC mobile networks

using statistical-QoS/FBC. Section III derives closed-form

expressions for the ε-effective capacity if downloading a cached

DT data item from BS and AP, respectively. Section IV develops

the inter-tier collaborative hierarchical caching mechanisms

across three caching tiers. Section V develops the intra-tier

collaborative caching mechanisms when downloading the

DT data cached at mobile devices, BS/AP, and router tiers,

respectively. Section VI develops optimal hierarchical caching

mechanisms for supporting adaptive data-blocklength to

minimize total transmission delay. Section VII validates and

evaluates our developed schemes through numerical analyses.

The paper concludes with Section VIII.

II. THE SYSTEM MODELS

As shown in Fig. 1, the system architecture model of our

proposed digital-twin-enabled multi-tier caching 6G mURLLC

mobile networks supported by Statistical-QoS/FBC consists of

the following three major components: 1) Physical Twin, 2)

Virtual Twin, and 3) Digital-Twin-Enabled Multi-Tier-Caching

6G mURLLC Mobile Networks based on Statistical-QoS/FBC.

Note that while mURLLC can help DT applications, there are

many DT-specific properties, characteristics, data-requirements,

etc., which cannot be completely realized by mURLLC. Thus,

these DT-specific properties/characteristics/data-requirements,

such as DT real-time data collection and dynamic data adap-

tation between physical twin and virtual twin, physical object’s

digital twinning, synchronized DT signaling, etc. [9], need to

be also taken into account when formulating our system mod-

els and control schemes. Along with real-time data collection,

data adaptation captures the actual mobile network status and

accurately models the physical twin’s behaviors, enabling DT

to re-configure mobile network resources at physical twin (see

Fig. 1) for improving their operational efficiencies. However,

in these cases DTs typically impose the highly heterogeneous

and multi-dimensional QoS requirements for real-time data col-

lection and data adaptation between physical twin and virtual

twin.

For achieving timely dynamic state synchronizations between

physical twin and virtual twin, the physical twin’s data (sys-

tem states and control information) is transformed/transmitted

into/to its virtual twin [10] through data collection and data

adaptation by encoding the physical twin’s signal into a data

block with the finite blocklength. To support the heterogeneous

QoS requirements for DT-specific properties in our proposed

multi-tier hierarchical caching schemes, this encoded data block

is considered as an original DT data item to be cached at

different caching tiers of the hybrid wireline and wireless net-

works. Then, based on the real-time wireless network status

(e.g., the wireless channel states, total number of MUs, and

MUs’ statistical QoS requirements on the DT data item) and

physical twin’s behavior updates, the virtual twin interacts with

the physical twin accordingly by adjusting its digital transfor-

mation updated models [11]. All MUs’ request frequencies for

all DT data-content items are then used to derive the DT data

popularity distribution function, which dictates caching strate-

gies for multi-tier networks’ design and performance evalua-

tions/improvements. Finally, MUs send real-time synchronized

feedback information, such as dictation/steering information,

sensing and signaling, and MUs’ service requirements, back to

the physical twin to dynamically control and adjust the physical

twin.

As shown in Fig. 1, we propose a collaborative multi-tier

hierarchical caching network architecture to support DT data

transmissions over 6G mobile wireless networks, which caches

the frequently requested DT data-content items along the edge

of hybrid wireline and wireless networks to significantly reduce

DT data transmission delay, interference, and decoding-error

probability by minimizing the redundant data-move load in the

Internet cloud and core networks.

Fig. 1 also shows that the edge of 6G wireless networks

consists of the following three hierarchical and non-overlapped

caching tiers: (1) Tier 1: routers, (2) Tier 2: massive-MIMO BS

and WiFi AP, and (3) Tier 3: mobile devices.
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Fig. 1. System architecture model for our proposed digital-twin-enabled multi-tier caching 6G mURLLC mobile wireless networks using statistical-

QoS/FBC between the physical twin and the virtual twin, which are able to cache the frequently requested DT data-content items in routers (Tier 1),

massive-MIMO-BS/WiFi-AP (Tier 2), and/or mobile devices (Tier 3) along the edge of our DT-enabled multi-tier caching networks according to DT data
and signaling’s statistical-QoS requirements.

A. Caching Expenses Analysis and Statistical Delay and

Error-Rate Bounded QoS Provisioning

Assume that DT data content items can be cached through

writing the file to a flash memory of a cacheable device. To store

a data content item in a memory within the retention time (i.e.,

the duration time that a data item is saved in a cache memory),

this data is programmed by a high threshold voltage, causing

the damage of the hardware lifespan. We define this damage as

the caching expense, denoted by ξ(x), which is a function of the

data retention time x, and ξ(x) can be written as follows [12,

Definition 1]:

ξ(x) = aσx
σ + aσ−1x

σ−1 + · · ·+ a1x+ a0, (1)

where σ is the damage degree and aj ≥ 0, ∀j ∈ {0, 1, 2, . . . , σ}
are the coefficients for the damage function.

Let K be the total number of MUs in a wireless cell, and let k,

∀k ∈ {1, 2, . . . ,K}, be the index for an MU. The streaming over

mURLLC-based 6G wireless networks requires the stringent

QoS on both statistical bounded transmission delay and decod-

ing error probability. The FBC technique has been developed to

enable small packet communications for adaptive error-control

and real-time transmissions, where senders encode the message

into short packets (i.e., packets with small numbers of bits)

to reduce the packet processing and transmission delay while

constraining and controlling the decoding error probability. We

define an FBC scheme in the following definition.

Definition 1: Consider a fading channel which uses input

blockcode set A and output blockcode set B. We define that

an (n,Wk, εk)-code, ∀k ∈ {1, 2, . . . ,K}, for a state-dependent

memoryless channel consists of [13]:
� A message set Wk = {c1,k, . . . , cWk,k}, ∀k, with the car-

dinality Wk and the message length equal to log2(Wk).
� An encoder, which is a mapping: Wk �→ An, where An is

the set of codewords with length n. At the receiver end,

a decoder produces an estimate of the original message

by observing the channel output, according to a function:

Bn �→ Ŵk, whereBn is the set of received codewords with

length n and Ŵk is the estimation of Wk.
� The decoding error probability for the kth MU, denoted

by εk, is defined as εk � (1/Wk)
∑Wk

w=1 Pr{cw,k �= ĉw,k},

where cw,k ∈ Wk, ĉw,k ∈ Ŵk, andPr{·} is the probability

of an event.

where usually εk > 0 if n < ∞. �

Thus, the triple-tuple (n,Wk, εk) represents that a source with

the cardinality Wk can successfully transmit messages with a

probability of success (1− εk) over n channel uses.

The statistical delay-bounded QoS guarantees [14], [15],

[16], [17], [18], [19] have been shown to be powerful in ana-

lyzing queuing behavior for the stochastic arrival and service

processes over the time-varying wireless fading channels. The

key statistical-QoS performance metric is the effective capacity

which measures the maximum packet’s constant arrival rate such

that the given statistical delay-bounded QoS can be guaranteed.

Based on the large deviation principle (LDP) [15], the queue-

length process Qk(t) for the kth MU converges in distribution

to a random variable Qk(∞) such that

− lim
Qth,k→∞

log(Pr{Qk(∞) > Qth,k})
Qth,k

= θk, ∀k (2)

where Qth,k is the queue length threshold (bound) and θk > 0 is

defined as the QoS exponent for MU k. The insights of Eq. (2)

reveal that the probability of the queueing process exceeding

a certain threshold Qth,k decays exponentially fast at the rate

of θk as the threshold Qth,k increases and tends to infinity. As

shown in [15], a smaller θk corresponds to a slower decay rate,

which implies that the system can only provide a looser QoS

guarantee, while a larger θk leads to a faster decay rate, which

means that a more stringent QoS can be supported. When θk →
0, the system can tolerate long delay; when θk → ∞, the system

cannot tolerate any delay.

However, the conventional statistical-QoS theory modeled

by Eq. (2) focuses only on the statistical delay-bounded QoS
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without considering the transmission reliability. To remedy these

deficiencies, in this paper we propose to integrate the FBC tech-

nique with the effective-capacity theory to support both the sta-

tistical delay and error-rate bounded QoS provisioning. We de-

velop and derive the statistical QoS performance metric called:

the DT-based ε-effective capacity to guarantee both the statistical

delay and error-rate bounded QoS provisioning for our proposed

DT wireless networks through the following definition.

Definition 2: For an (n,Wk, εk)-code, the DT-based ε-
effective capacity, denoted by ECk(θk, εk,Pk), for the kth MU

is defined as the maximum DT-data’s constant arrival rate for a

given service process subject to both statistical delay and error-

rate bounded QoS requirements measured by the exponentially

decaying rate θk of the delay-bound violation probability and

the non-vanishing decoding-error probability εk, respectively,

under the transmit power allocation Pk, which is specified as

follows:

ECk(θk, εk,Pk) = − 1

nθk
log {Eγk

[εk (γk(Pk))]

+Eγk
[1−εk (γk(Pk))] e

−θk log2 Wk
}

(3)

whereEγk
{·} denotes the expectation with respect to the random

variable γk(Pk), and γk(Pk) is the signal-to-noise ratio (SNR)

of the kth MU, which is a function of the constant transmit power

Pk. The random SNR γk(Pk) is due to the random fading in the

wireless channel. In Eq. (3), εk(γk(Pk)) is given by:

εk(γk(Pk)) ≈ Q

(
C(γk(Pk))− log2 Wk

n√
V (γk(Pk))/n

)
(4)

where C(γk(Pk)) and V (γk(Pk)) are the channel capacity and

channel dispersion, respectively, which are given by [13]:§
¨
©
C(γk(Pk)) = log2(1 + γk(Pk)),

V (γk(Pk)) ≈ 1− 1

(1 + γk(Pk))2
,

(5)

and Q(·) is the Q-function. �

B. Inter-Tier and Intra-Tier Collaborative Hierarchical

Caching Mechanisms

We develop both inter-tier and intra-tier collaborative hier-

archical caching mechanisms. Our proposed inter-tier collabo-

rative hierarchical caching mechanism aims at collaboratively

caching data content items at cacheable components/devices

across three different caching tiers, and our proposed intra-tier

collaborative hierarchical caching mechanism focuses on col-

laboratively caching data content items at cacheable compo-

nents/devices within one caching tier. In this paper, we optimize

the inter-tier collaborative hierarchical caching to maximize the

aggregate DT-based ε-effective capacity, which is modeled as the

caching gain, over all three caching tiers and we optimize the

intra-tier collaborative hierarchical caching to maximize the DT-

based ε-effective capacities, as the caching gains, within Tier 1,

Tier 2, and Tier 3, respectively. We define EC
(r)
k (θk, εk,Pk),

EC
(b)
k (θk, εk,Pk), and EC

(m)
k (θk, εk,Pk) as the kth MU’s

DT-based ε-effective capacity when receiving a DT data content

item cached at Tier 1 (routers), Tier 2 (cellular-BS/WiFi-AP),

and Tier 3 (mobile devices), respectively.

III. THE DT-BASED ε-EFFECTIVE CAPACITY FOR

MURLLC-DRIVEN 6G M-MIMO MOBILE NETWORKS

Since our DT-enabled 6G wireless networks deploy massive

antennas on the cellular-BS and multiple antennas on WiFi-APs

and MUs, we consider massive-MIMO/MIMO communications

between cellular-BS/WiFi-AP and MUs. Assume that there are

MT antennas on the cellular-BS,MA antennas on each WiFi-AP,

and MR antennas on each MU, where MT 
 MA ≈ MR.

A. The DT-Based ε-Effective Capacity Under Nakagami-m
Fading Channel in Single Antenna Communications

To obtain the ε-effective capacity for massive MIMO com-

munications, we first derive its expression in single antenna

communications. Assume that the channel fading amplitude hk

of the kth MU follows the Nakagami-m distribution, whose

average is denoted by h. Let N0 be the power of additive

white Gaussian noise (AWGN) and define γk(Pk) � h2
kPk/N0.

The probability density function (PDF) of the kth MU’s SNR,

denoted by PZ(γk), is given by [20, Eq. (2.21)]:

PZ(γk) =
γm−1
k

Γ(m)

(
m

γk(Pk)

)m

exp

(
− m

γk(Pk)
γk

)
(6)

where m is the fading parameter of the Nakagami-m distri-

bution, γk(Pk) � h
2Pk/N0 is the average of γk(Pk), ∀k, and

Γ(·) is the gamma function. Employing the above Nakagami-m
fading channel model, we have the following theorem.

Theorem 1: If the fading amplitude hk of the single antenna

wireless channel follows the Nakagami-m distribution, where

the PDF of SNR is given by Eq. (6), then a closed-form ex-

pression for the DT-based ε-effective capacity for the kth MU

under the (n,Wk, εk)-code using FBC scheme is given by Eq. (7)

shown at the bottom of this page.

Proof: The proof is provided in Appendix A. �

B. The Massive MIMO Channel for Transmitting DT Data

We consider massive MIMO communications if the kth MU

downloads the DT data from the massive-MIMO BS. Denote by

gk,α ∈ C
MR×1 the downlink channel gain between the kth MU

ECk(θk, εk,Pk)

=

§
⎪⎪⎪⎪⎪⎪⎪̈

⎪⎪⎪⎪⎪⎪⎪©

− 1

nθk
log

{
Q

(√
n

[
log2{1+γk(Pk)}−

log2Wk

n

])
+

[
1−Q

(√
n

[
log2(1+γk(Pk))−

log2Wk

n

])]
W

− θk
log2

k

}
, if γk(Pk) 
 1

− 1

nθk
log

{
Q

(√
n

2

[
(log2 e)(γk(Pk))

1
2 − log2 Wk

n
(γk(Pk))

− 1
2

])

+

[
1−Q

(√
n

2

[
(log2 e)(γk(Pk))

1
2 − log2 Wk

n
(γk(Pk))

− 1
2

])]
W

− θk
log2

k

}
, if 0<γk(Pk)<1

(7)
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and the ³th antenna on the massive MIMO BS, where C
MR×1

denotes a set of elements each consisting of a complex-valued

matrix with MR rows and one column. Let lk be the distance

between the kth MU and the BS assuming that the distance

between two antennas on the massive-MIMO-BS is small as

compared with the distance between an MU and the BS. We can

get the downlink channel gain gk,α as follows [21, Eq. (2.19)]

gk,α =
√

´khk,α (8)

where ´k ≈ [λc/(4πlk)]
2 is the large-scale fading coefficient,

where λc is the wavelength; and hk,α ∈ C
MR×1 measures the

effect of small-scale fading between all antennas on the kth MU

and the ³th antenna on the massive MIMO BS. We consider that

each coherence interval is divided into two phases: 1) uplink

training phase to estimate the channel gain information and 2)

downlink payload DT data transmission phase to download the

DT data [22], which are detailed, respectively, as follows.

1) Uplink Training Phase: Denote by τul,p the number of

samples for the uplink pilot signal, where we assume that

τul,p ≥ MR. Define φ = [φ1, . . . , φτul,p
] ∈ C

1×τul,p as an orthog-

onal pilot training sequence satisfying ‖φ‖2 = 1, where ‖ · ‖ is

the Euclidean norm. The pilot signal sent from the kth MU to

the massive MIMO BS is denoted by x
(p)
k =

√
τul,pφ ∈ C

1×τul,p .

In the training phase, we assign MR orthogonal pilot sequences

to MR antennas of the MU k, which are known for both the

MU k and the massive MIMO BS. Let ρul be the transmit power

over uplink and W(p) ∈ C
MR×τul,p be the AWGN matrix, whose

elements are independent and identically distributed (i.i.d.),

following the complex Gaussian distribution CN (0, 1). The

received pilot signal, denoted by Y
(p)
k,α ∈ C

MR×τul,p , at the ³th

antenna of the massive MIMO BS, is given by:

Y
(p)
k,α=

√
ρulgk,αx

(p)
k +W(p)=

√
τul,pρulgk,αφ+W(p). (9)

Applying the de-spreading scheme [21, Section 3.1.2] to the

received pilot signal, the massive MIMO BS performs a de-

spreading operation by correlating its received signals with the

pilot signal. Denote by y
(p)
k,α ∈ C

MR×1 the received pilot signal

at the ³th antenna of massive MIMO BS after the de-spreading

operation, which is given by

y
(p)
k,α = Y

(p)
k,αφ

H =
√
τul,pρulgk,α +w(p) (10)

where (·)H denotes the Hermitian transpose,w(p) � W(p)φH ∈
C

MR×1 is the AWGN after de-spreading, and each element

of w(p) follows CN (0, 1). Let Gk = [gk,1,gk,2, . . . ,gk,MT
] ∈

C
MR×MT be the channel gain matrix between all antennas

on the kth MU and all antennas on the massive MIMO BS.

Let Ĝk = [ĝk,1, ĝk,2, . . . , ĝk,MT
] ∈ C

MR×MT be the estimated

channel gain matrix, indicating the estimation of Gk. Using

the minimum mean-square error (MMSE) estimation, we obtain

the estimated channel gain ĝ
(q)
k,α between the qth antenna (with

∀q ∈ {1, . . . ,MR}) on the kth MU and the ³th antenna (with

∀³ ∈ {1, . . . ,MT }) on the BS as follows [21, Eq. (3.7)] [23,

Eq. (4)]:

ĝ
(q)
k,α = E

[
g
(q)
k,α

∣∣∣y(p,q)
k,α

]
=

√
τul,pρul´k

1 + τul,pρul´k

y
(p,q)
k,α (11)

where E[·|·] is the conditional expectation, ĝ
(q)
k,α and y

(p,q)
k,α are

the qth element of ĝk,α ∈ C
MT×1, which is the estimation of

gk,α, and y
(p)
k,α, respectively. Plugging each element y

(p,q)
k,α of

y
(p)
k,α given by Eq. (10) into Eq. (11), the channel estimation

ĝk,α is given by:

ĝk,α =
τul,pρul´k

1 + τul,pρul´k

gk,α +

√
τul,pρul´k

1 + τul,pρul´k

w(p). (12)

2) Downlink Payload DT Data Transmission Phase: Dur-

ing the downlink payload data transmission phase, the mas-

sive MIMO BS treats the channel estimation ĝk,α as the true

channel to transmit the data packet to the MU k. Let bk be

symbol intended to the MU k, satisfying E[|bk|2] = 1. Let x =
[x1, x2, . . . , xMT

]T ∈ C
MT×1 be the weighted symbol trans-

mitted from all antennas of the massive MIMO BS, where (·)T
is the transpose. Using the maximum ratio transmission (MRT)

precoding [24] as the beamforming scheme to focus the signal

of the payload DT data towards the kth MU, we can derive each

element xα, ∀³, of x, which is the transmit signal on the ³th

antenna of BS, as follows:

xα =

K∑

k=1

√
Pk (ηk,α)

1
2 ĝ∗

k,αbk, (13)

where (·)∗ denotes the conjugate, Pk is the transmit power

allocation for the kth MU defined in the text above Eq. (3),

ηk,α ∈ R
1×MR is the power control coefficient vector for the

signal from the ³th antenna of the massive MIMO BS to MU k,

each element ofηk,α, denoted by η
(q)
k,α, satisfies η

(q)
k,α ∈ [0, 1], ∀q,

and (·) 1
2 is taking square root for each element of the vector. Con-

sidering the interference from the WiFi AP, the received signal

at MU k, denoted by yk ∈ C
MR×1, is given by yk = Gkx+

G
(AP)
k x

k̃
+wk, where G

(AP)
k ∈ C

MR×MA is the channel gain

between the WiFi AP and the kth MU, wk ∈ R
MR×1 is AWGN

following CN (0, 1), and x
k̃
= [x

k̃,1, . . . , xk̃,MA
] ∈ C

MA×1 is

the signal vector transmitted from each antenna of the WiFi AP

to its intended k̃th MU, k̃ �= k, where x
k̃,ı

, ∀ı ∈ {1, . . . ,MA},
is the signal transmitted from the ıth antenna of the WiFi AP.

Then, we can derive each element y
(q)
k , ∀q ∈ {1, 2, . . . ,MR},

of yk as follows:

y
(q)
k = g

(q)
k x+ g

(q,AP)
k x

k̃
+ w

(q)
k

=
√

Pk

MT∑

α=1

g
(q)
k,α (ηk,α)

1
2 ĝ∗

k,αbk

︸ ︷︷ ︸
desired signal

+

MT∑

α=1

K∑

u=1,u �=k

√
Pug

(q)
k,α (ηu,α)

1
2 ĝ∗

u,αbu+w
(q)
k

︸ ︷︷ ︸
effective additive noise N

(q)
k

+

MA∑

ı=1

K∑

k̃=1,k̃ �=k

√
P
k̃
g
(q,AP)
k,ı

(
η
k̃,ı

) 1
2
[
ĝ
(AP)

k̃,ı

]∗
b
k̃

︸ ︷︷ ︸
interference from the WiFi AP I

(q)
k

(14)

where g
(q)
k ∈ C

1×MT and g
(q,AP)
k ∈ C

1×MA are the qth row of

Gk and G
(AP)
k , respectively; w

(q)
k is the qth element of wk,
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representing AWGN on the qth antenna of the kth MU; bu
and b

k̃
are symbols transmitted from the BS intended to the

uth MU, u �= k, and from the WiFi AP intended to the k̃th

MU, respectively; N
(q)
k is the effective additive noise of the kth

MU on its qth antenna; g
(q,AP)
k,ı is the ıth element of g

(q,AP)
k ,

representing the channel gain between the qth antenna of the

kth MU and the ıth antenna of the WiFi AP; η
k̃,ı

∈ R
1×MR

is the power control coefficient vector for the signal from the

ıth antenna of the WiFi AP to MU k̃; [ĝ(AP)

k̃,ı
]∗ ∈ C

MR×1 is the

conjugate of the WiFi AP’s channel estimation vector between

the ıth antenna on WiFi AP and all antennas on the k̃th MU;

and I
(q)
k is the interference from the WiFi AP to the qth antenna

on the kth MU. Note that since we use the MRT precoding

as the beamforming scheme to transmit the signal, the inter-

user interference
∑MT

α=1

∑K
u=1,u �=k

√Pug
(q)
k,α(ηu,α)

1
2 ĝ∗

u,αbu in

Eq. (14) is negligible and is treated as the noise. Moreover, the

directions of channel gain gradually become orthogonal as MA

increases under the channel property approximately favorable

propagation [21, Eq. (7.2)] such that

∑MA

ı=1
g
(q,AP)
k,ı

(
η
k̃,ı

) 1
2
[
ĝ
(AP)

k̃,ı

]∗
→ 0, if k̃ �= k. (15)

In this paper, we assume that the number MA of antennas on

the WiFi AP is large enough to make Eq. (15) hold true. Thus,

we assume that the interference I
(q)
k from WiFi AP to the qth

antenna on the kth MU is practically negligible.

Using Eq. (14), the SNR on the qth antenna of the kth MU,

denoted by γ
(q)
k (Pk), ∀q, is given by [21]:

γ
(q)
k (Pk)

=

Var

[
√
Pkbk

MT∑

α=1

g
(q)
k,α

MR∑

i=1

√
η
(i)
k,α

(
ĝ
(i)
k,α

)∗
]

Var

⎡
£

MT∑

α=1

K∑

u=1,u �=k

√
Pug

(q)
k,α (ηu,α)

1
2 ĝ∗

u,αbu

¤
⎦+1

(16)

where Var[·] is derived with respect to both the random distance

lk and the random small-scale fading h
(q)
k,α, which is the qth

element of hk,α defined in the text following Eq. (8), for the

wireless channel between the qth antenna on MU k and the

³th antenna of the massive MIMO BS. We assume that all

h
(q)
k,α, ∀q, ³, are i.i.d., following the Nakagami-m distribution.

Then, using Eq. (16), we obtain the following theorem.

Theorem 2: If all small-scale fading h
(q)
k,α, ∀q, ³, of wireless

channels for massive MIMO communications are i.i.d., fol-

lowing the Nakagami-m distribution, and assume that all MUs

are uniformly distributed within a wireless cell with the inner

radius Rmin and the outer radius Rmax, then the closed-form

expression for the SNR γ
(q)
k (Pk) on the qth antenna of the kth

MU is specified as follows:

γ
(q)
k (Pk) =

PkNk,1(MT )(∑
u=1,u �=k Pu

)
Nk,2(MT ) + 1

, ∀q (17)

where ∀q ∈ {1, 2, . . . ,MR} and

Nk,1(MT ) =
´3
kτul,pρulηMTMRh

2

(1+τul,pρul´k)2

(
1 + τul,pρul´kMTMRh

2
)

(18)

and

Nk,2(MT )

=
´kηMTMRh

2
λ
2
c

(4π)2(R2
max−R2

min)

{
τul,pρul

(
τul,pρulh

2
+1
)
(Xmax−Xmin)

+
MT (MR − 1)λ2

c

(4π)2(R2
max −R2

min)

[
log

(
Xmax

Xmin

)]2}
(19)

where η � E[η
(i)
k,α], h is defined in the text above Eq. (6), λc is

defined in the text following Eq. (8), and§
⎪⎪̈

⎪⎪©

Xmax =
λ
2
c

16π2(R2
min + »2) + τul,pρulλ

2
c

,

Xmin =
λ
2
c

16π2(R2
max + »2) + τul,pρulλ

2
c

,
(20)

where » denotes the height of a BS/AP.

Proof: The proof is provided in [25, Eqs. (14)–(28)]. �

Remarks on Theorem 2: Theorem 2 reveals that all

γ
(q)
k (Pk), ∀q, are the same, since random variables h

(q)
k,α, ∀q, ³

are i.i.d.

C. The ε-Effective Capacity for Transmitting DT Data Cached

At Massive MIMO BS and WiFi AP

If a DT data is cached at the massive MIMO BS in Tier 2 and

the kth MU downloads this data using massive MIMO channels,

using Theorems 1 and 2, we can derive the ε-effective capacity

for the kth MU in the following theorem.

Theorem 3: If the kth MU receives the cached DT data

from the massive MIMO BS and all small-scale fading

h
(q)
k,α, ∀q, ³, of wireless channels for massive MIMO commu-

nications are i.i.d. following the Nakagami-m distribution, then

a closed-form expression for the ε-effective capacity, denoted

by ECBS
k (θk, εk,PBS), for the kth MU under the (n,Wk, εk)-

coding scheme in the non-asymptotic regime is determined by:

ECBS
k (θk, εk,PBS) � ECMIMO

k (θk, εk,PBS) (21)

=

§
⎪⎪̈

⎪⎪©

− 1

nθk
log

{
Q1 + (1−Q1)W

− θk
log2

k

}
, if γk(PBS) 
 1

− 1

nθk
log

{
Q2 + (1−Q2)W

− θk
log2

k

}
, if 0<γk(PBS)<1

(22)

where ECMIMO
k (·, ·, ·) denotes the general function for the ε-

effective capacity over the massive-MIMO channel to the kth

MU, γk(PBS) � γ
(q)
k (PBS), ∀q, is given by Eq. (17) after re-

placing Pk by PBS, and we define Q1 and Q2 as follows:§
⎪⎪⎪⎪̈

⎪⎪⎪⎪©

Q1 �

[
Q

(√
n

[
log2{1 + γk(PBS)} −

log2Wk

n

])]MR

,

Q2 �[
Q
(√

n
2

[
(log2 e)[γk(PBS)]

1
2 − log2Wk

n
[γk(PBS)]

− 1
2

])]MR

.

(23)

Proof: The proof is provided in Appendix B. �

In addition to downloading the cached DT data from a massive

MIMO BS using the massive MIMO communications, an MU

can also download a cached DT data from a multi-antenna-

equipped WiFi AP in Tier 2 using MIMO communications.
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Then, we have the following theorem if the kth MU receives

the DT data from the WiFi AP.

Theorem 4: If the kth MU receives the cached DT data from

the WiFi AP equipped with MA antennas with MA ≈ MR

and all small-scale fading h
(q)
k,α, ∀q, ³, of wireless channels for

MIMO communications are i.i.d. following the Nakagami-m
distribution, then a closed-form expression for the DT-based

ε-effective capacity, denoted by ECAP
k (θk, εk,PAP), for the kth

MU under the (n,Wk, εk)-coding scheme in the non-asymptotic

regime is determined by:

ECAP
k (θk, εk,PAP) � ECMIMO

k (θk, εk,PAP) (24)

=

§
⎪⎪̈

⎪⎪©

− 1

nθk
log

{
Q3 + (1−Q3)W

− θk
log2

k

}
, if γk(PAP) 
 1

− 1

nθk
log

{
Q4 + (1−Q4)W

− θk
log2

k

}
, if 0<γk(PAP)<1

(25)

where ECMIMO
k (·, ·, ·) given in Eq. (24) is described in the text

following Eq. (21) and

γk(PAP)�γ
(q)
k (PAP)=

PAPNk,1(M)(∑
u=1,u �=k Pu

)
Nk,2(M)+1

,(26)

where M � min{MR,MA} is taking the minimum between

MA and MR, after replacing MT in Eq. (18) and Eq. (19) by

M and replacing Pk by PAP in Eq. (17), respectively; and we

define two new auxiliary variables Q3 and Q4 as follows:§
⎪⎪⎪⎪⎪̈

⎪⎪⎪⎪⎪©

Q3 �

[
Q

(√
n

[
log2{1 + γk(PAP)}−

log2 Wk

n

])]M
,

Q4 �[
Q

(√
n

2

[
(log2 e)[γk(PAP)]

1
2 − log2 Wk

n
[γk(PAP)]

− 1
2

])]M
.

(27)

Proof: The proof is omitted due to lack of space, but can

be obtained in the way similar to the derivations given in

Appendix B. �

IV. INTER-TIER COLLABORATIVE HIERARCHICAL CACHING

MECHANISMS

Denote by Sr, Sb, and Sm the total caching capability (i.e.,

maximum number of cached data content items assuming that

the sizes of all data content items are the same) for caching

Tier 1 (routers), caching Tier 2 (cellular-BS/WiFi-AP), and

caching Tier 3 (mobile devices), respectively, and denote by

D the total number of DT data content items. Also denote by

fd(�t) the instantaneous popularity of the dth data content item,

∀d ∈ {1, 2, . . . , D}, representing the probability that the dth

data is requested by at least one of MUs during the last period

�t from the current observing time. Note that the instantaneous

value of fd(�t) is a function of the observation time and can

increase or decrease depending on whether the dth data content

item is getting more or less visits during the last �t period

from the current observing time. For the inter-tier collaborative

hierarchical caching algorithm, we propose that a popular DT

data content item is randomly cached at a caching tier if and

only if its popularity fd(�t) exceeds a predefined threshold

for that tier. Denoted by f (T1), f (T2), and f (T3) the popularity

thresholds for Tier 1, Tier 2, and Tier 3, respectively, and we

set f (T1) < f (T2) < f (T3). This ensures that we cache a more

popular data content items at cache stations closer to MUs. If

a data content item’s popularity is larger than the threshold of

a tier, this data content item enters one of the cache stations

of routers (i.e., Tier 1), cellular-BS/WiFi-AP (i.e., Tier 2), or

mobile devices (i.e., Tier 3) following a Poisson process with

the arrival rate of λ.

According to each tier’s caching capability and caching ex-

pense, the data content items stored at different tiers have differ-

ent caching lifespans, and the cache stations delete their cached

data content items after this lifespan period ends for replacing the

old data content item by a new one. Thus, we propose that a DT

data content item departs its caching tiers once its caching lifes-

pan elapses or its popularity fd(�t) drops below the threshold of

its current caching tier. We define random variables Tr, Tb, and

Tm to be the popular data content items’ lifespans for caching

in the tiers of routers, cellular-BS/WiFi-AP, and mobile devices,

respectively. We propose that data content items depart the their

caches by following the exponential distribution with departure

rates μr, μb, and μm (μr �= μb �= μm), when they are cached in

routers, cellular-BS/WiFi-AP, and mobile devices, respectively.

Each tier’s caching expense under the lifespan of Ti, ∀i ∈
{r, b,m}, is denoted by ξ(Ti), which is defined by Eq. (1). Let

πr(λ, μr), πb(λ, μb), and πm(λ, μm) be the probabilities of a data

content item to be cached at Tier 1, Tier 2, and Tier 3, respec-

tively. The objective of our inter-tier collaborative hierarchical

caching mechanism is to optimize the cached DT-data items’

departure rates μr, μb, and μm and the other cache-controlling

variables such that our caching mechanism can maximize the

aggregate ε-effective capacity over three caching tiers for de-

livering all MUs’ requested DT-data items under the caching

expense constraint ξmax and caching capability, which can be

formulated as the following optimization problem:

max
µr,µb,µm,l,π(m),d,

π
(BS)
b ,π

(AP)
b ,π̃

(BS)
r ,π̃

(AP)
r

§
¨
©

∑

i={r,b,m}

[
K∑

k=1

πi(λ, μi)EC
(i)
k (θk, εk,Pk)

]«¬
­ (28)

s.t.: C1: πr(λ, μr)E[ξ(Tr)]+πb(λ, μb)E[ξ(Tb)]

+πm(λ, μm)E[ξ(Tm)] ≤ ξmax, (29)

C2: πr(λ, μr) + πb(λ, μb) + πm(λ, μm) = 1, (30)

C3: πi(λ, μi)D ≤ Si, ∀i ∈ {r, b,m}, (31)

C4 : l ≤ 1, π(m),d ≤ 1, (32)

C5 : π
(BS)
b +π

(AP)
b =πb(λ, μb), (33)

C6 : π̃(BS)
r + π̃(AP)

r = πr(λ, μr), (34)

where EC
(i)
k (θk, εk,Pk), ∀i ∈ {r, b,m}, is defined in

Section II-B and will be further detailed in the following

Sections V-A, V-B and V-C, respectively; l is the MUs’

device-to-device (D2D) communication range for Tier 3, π(m),d

is the probability that the dth data content item is cached at a

cache unit of a mobile device at Tier 3; π
(BS)
b and π

(AP)
b are

probabilities that a data content item is cached at the cellular

BS and WiFi AP at Tier 2, respectively; and π̃
(BS)
r and π̃

(AP)
r

are probabilities that a data content item is cached at a router

in Tier 1 to be transmitted going through the cellular BS and

WiFi AP, respectively. Using the optimal μr, μb, and μm, weAuthorized licensed use limited to: Texas A M University. Downloaded on October 09,2024 at 03:06:04 UTC from IEEE Xplore.  Restrictions apply. 
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can obtain E[Ti], ∀i, representing the collaborative caching

algorithm on how long to cache a DT data item at each caching

tier, and the probability πi(λ, μi), ∀i, representing the caching

algorithm on where to cache a DT data item.

V. INTRA-TIER COLLABORATIVE CACHING MECHANISMS FOR

EACH CACHING TIER OVER DT-ENABLED 6G MURLLC

MOBILE WIRELESS NETWORKS

We consider the intra-tier collaborative caching mechanism

within each caching tier for Tier 1, Tier 2, and Tier 3, respec-

tively, as follows.

A. Intra-Tier Collaborative Caching Mechanism for Caching

Tier 3 At Mobile Users

When the popularity fd(�t) of a DT data content item is

larger than the popularity threshold of Tier 3 (i.e., fd(�t) >
f (T3)), we propose to cache it at a mobile device at Tier 3

and MUs will download their requested data content items by

using D2D communications. Define the mobile device’s D2D

communication range as l [26], [27], implying that an MU can

communicate with another mobile device within a distance l.
Let Mk be the D2D communication set of the kth MU, such

that all elements in this set are MUs within the distance l to

the kth MU. The density of MUs in this wireless cell is defined

as k0 � K/(πR2
max), where Rmax is the outer radius of the

wireless cell. Denote by |Mk| the cardinality of the set Mk.

The probability that there are |Mk| MUs around the kth MU

within the distance l is denoted by p(|Mk|, πl2, k0), where

p(x, y, z) � [(yz)xe−yz]/(x!) is the probability mass function

of a Poisson Point Process, representing the probability that

there are x MUs in the area y with user density equal to z.

In our proposed intra-tier collaborative caching scheme, the kth

MU, ∀k, and all mobile devices in its D2D communication set

Mk update and exchange their caching information (which data

content items they are currently caching) with each other. The

cache hitting rate (probability), denoted by Pc(k), of a DT data

content item requested by MU k can be defined as the probability

that the requested DT data content item of MU k can be found

within Mk. Denote by π(m),d the probability that the dth data

content item is cached at a cache unit of a mobile device at Tier 3,

where we use the “cache unit” to represent the memory space

to cache one data content item. Let cj ∈ N be the jth mobile

device’s caching capability (i.e., total number of cache units),

∀j ∈ Mk, representing the maximum number of data content

items that can be cached in the mobile device j. Let {Xd},

∀d ∈ {1, . . . , D}, be a set of D independent random variables,

and let X be the sum of Xd, ∀d. We set Xd ∈ {0, 1}, where

{Xd = 1} represents that the dth data content item is requested

by at least one MU during the last period �t, while {Xd = 0}
represents that the dth data content item is not requested by any

MU during the last period �t. Thus, we have fd(�t) = E[Xd].
We can derive Pc(k) as a function of l and π(m),d as follows:

Pc(k) =
D∑

d=1

{
fd(�t)πm(λ, μm)

×
K−1∑

κ=0

[
p
(
¼,πl2, k0

)
(
1−

κ∏

j=1

(
1−π(m),d

)cj
)]}

. (35)

Using Eq. (35), the objective of the intra-tier collaborative

caching mechanism for Tier 3 is for maximizing the kth MU’s

ε-effective capacity, ∀k, for receiving its requested DT data by

using D2D communications as follows:

max
l,π(m),d

{
EC

(m)
k (θk,εk,Pk)

}
= max

l,π(m),d

{
Pc(k)ECD2D

k (θk,εk,PD2D)
}

(36)

s.t.: C3 : πm(λ, μm)D ≤ Sm

C4 : l ≤ 1, π(m),d ≤ 1,

where ECD2D
k (θk, εk,PD2D) is given by:

ECD2D
k (θk, εk,PD2D) � ECMIMO

k (θk, εk,PD2D) (37)

=

§
⎪⎪̈

⎪⎪©

− 1

nθk
log

{
Q5+(1−Q5)W

− θk
log2

k

}
, if γk(PD2D) 
 1

− 1

nθk
log

{
Q6+(1−Q6)W

− θk
log2

k

}
, if 0<γk(PD2D)<1

(38)

where ECMIMO
k (·, ·, ·) given in Eq. (37) is described in Eq. (21),

γk(PD2D) can be derived by using the way similar to the deriva-

tions for Eq. (26) as follows:

γk(PD2D)�γ
(q)
k (PD2D)=

PD2DNk,1(MR)(∑
u=1,u �=kPu

)
Nk,2(MR) + 1

,

(39)

and we define two new auxiliary variablesQ5 andQ6 as follows:
§
⎪⎪⎪⎪⎪̈

⎪⎪⎪⎪⎪©

Q5 �

[
Q

(√
n

[
log2{1 + γk(PD2D)}−

log2 Wk

n

])]MR

,

Q6 �[
Q

(√
n

2

[
(log2 e)[γk(PD2D)]

1
2 − log2Wk

n
[γk(PD2D)]

− 1
2

])]MR

.

(40)

In Eq. (36), we use the D2D communication distance l as the

maximizer because l determines the elements in Mk. Thus,

to solve Eq. (36), we need to further derive a closed-form

expression of Pc(k) as a function of l and π(m),d.

To obtain the maximum Pc(k), we need to derive the algo-

rithm that determines which data content items are cached on

the mobile devices. Define P
(m)
d (j), 1 ≤ j ≤ |Mk|, as the dth

data content item’s caching probability in prior (j − 1) mobile

devices in the setMk and defineP
(m)
d (0) = 0 [28]. Assume that

all MUs in the set Mk are ordered in which they entered this set,

and they know their own orders. For example, if j = 4 and thedth

data content item has been cached in 2 mobile devices of the prior

3 mobile devices, then we have P
(m)
d (4) = 2/3. To maximize

the cache hitting rate of Tier 3, we apply the Algorithm 1 given

at the top of the next page. We observe from Algorithm 1 that

π(m),d is proportional to the value of sd, which is defined in

Algorithm 1. We can observe that, the goal of Algorithm 1 is

caching data content items that have the largest request-cache

probability difference.

To obtain a more precise expression for Eq. (36), we further

study the lower-bound and upper-bound, respectively, on the

cache hitting rate (probability), denoted by Pc(k), as follows.

1) The Lower-Bound on Cache Hitting Rate: We define

¼ � |Mk| as the cardinality of the set Mk, indicating the

number of MUs that can communicate with the MU k using

D2D. According to Eq. (35), we can derive the lower-bound on
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Algorithm 1: Cache Placement Algorithm to Maximize the

Cache Hitting Rate on Tier 3.

1: for each mobile device j in the set Mk do

2: Calculate the difference between data popularity

fd(�t) and caching probability P
(m)
d (j) for each

data content item, denoted by sd, where

sd � fd(�t)− P
(m)
d (j), ∀d.

3: Cache the first cj data content items, which have the

maximum values of sd, into the mobile device j.

4: end for

the cache hitting rate Pc(k) as follows:

Pc(k)
(a)

≥
D∑

d=1

fd(�t)πm(λ, μm)Λd (41)

where

Λd �

K−1∑

κ=0

[
p
(
¼, πl2, k0

) κ∏

j=1

π
cj
(m),d

]
, (42)

and (a) is due to (1−∏
i x

i) ≥ ∏
i(1− x)i, ∀x ∈ (0, 1). Define

τ as the expectation of X , which is the popularity for all data

content items during the last period �t and is derived as follows:

τ = E[X] = E

[
D∑

d=1

Xd

]
=

D∑

d=1

E [Xd] =

D∑

d=1

fd(�t). (43)

For any 0 < δ < 1, we define a range R = [(1− δ)τ, (1 + δ)τ ]
around τ . Applying the Chernoff bound, we can derive the

probability that X deviates from τ as follows:
{
Pr{X > (1 + δ)τ} ≤ e−

δ2τ
3 ,

Pr{X < (1− δ)τ} ≤ e−
δ2τ
2 .

(44)

Using Eq. (44), we can further derive Eq. (41) as follows:

Pc(k)≥
D∑

d=1

{fd(�t)πm(λ, μm)Λd}≥Pr{X∈R}πm(λ, μm)Λd

= Pr {(1− δ)τ ≤ X ≤ (1 + δ)τ}πm(λ, μm)Λd

(b)

≥
(
1− e−

δ2τ
3

)(
1− e−

δ2τ
2

)
πm(λ, μm)Λd

(c)

≥
(
1− 2e−

δ2τ
3

)
πm(λ, μm)Λd, (45)

where (b) follows by using Eq. (44), and (c) holds when the

popularity fd(�t) and Λd satisfy

d∗ = argmin
d

{fd(�t)πm(λ, μm)Λd} . (46)

Similar to the derivations for Eq. (43), let {Yκ}, ∀¼ ∈
{0, 1, . . . ,K − 1}, be a set consisting of K independent ran-

dom variables, and let Y be the sum of all Yκ’s, ∀¼. We set

Yκ ∈ {0, 1}, ∀¼, where {Yκ = 1} represents that there are ¼
mobile devices in the D2D communication range of an MU,

while {Yκ = 0} indicating otherwise. Thus, we have E[Yκ] =
p(¼, πl2, k0). Let ν be the expectation of Y and thus we can

derive ν as follows:

ν=E[Y ]=E

[
K−1∑

κ=0

Yκ

]
=

K−1∑

κ=0

E[Yκ]=
K−1∑

κ=0

p
(
¼, πl2, k0

)
.

(47)

Defining the range R̃ = [(1− δ)ν, (1 + δ)ν] and applying the

Chernoff bound again in Eq. (45), we can derive Pc(k) as

follows:

Pc(k) ≥
(
1−2e−

δ2τ
3

)
πm(λ, μm) Pr

{
Y ∈ R̃

}∏κ∗

j=1
π
cj
(m),d∗

≥πm(λ, μm)
(
1−2e−

δ2τ
3

)(
1−2e−

δ2ν
3

)∏κ∗

j=1
π
cj
(m),d∗

(48)

where ¼∗ ∈ R̃ is the optimal number of MUs in the D2D com-

munication range of MU k such that

¼∗ = argmin
κ∈R̃

{
p
(
¼, πl2, k0

)∏κ

j=1
π
cj
(m),d∗

}
. (49)

Since there are totally K users in the entire wireless cell with

area ofπR2
max, each user occupies the average area (πR2

max)/K.

Then, since the kth MU’s communication area, namely πl2, is

proportional to (πR2
max)/K, we can obtain that l is proportional

to
√
1/K, which can be represented by l = Θ(

√
1/K). We de-

fine that for functions ϕ1(x) and ϕ2(x), if ϕ1(x) = Θ(ϕ2(x)),
we have �1ϕ2(x) ≤ |ϕ1(x)| ≤ �2ϕ2(x), where �1 and �2 are

constants. We can observe from Eq. (47) that ν is proportional

to Kl2 = Θ(1). Since ¼∗ ∈ R̃, we have

¼∗ ≥ (1− δ)ν ≥ �2(1− δ). (50)

We denote by j∗ the optimal j which yields the minimum value

of π
cj
(m),d and define j∗ ∈ [¼∗π(m),1(1− δ), ¼∗π(m),1(1 + δ)].

Then, to satisfy (¼∗ − j∗) ≥ 1, we need to guarantee

¼∗ − j∗≥ ¼∗ − ¼∗π(m),1(1 + δ)≥1⇒¼∗ ≥ 1

1−π(m),1(1+δ)
,

(51)

where, to satisfy Eq. (51), we must have

�2(1− δ)≥ 1

1−π(m),1(1+δ)
⇒�2≥

1

1−δ − π(m),1(1−δ2)
.

(52)

Substituting Eq. (51) into Eq. (48), we can obtain the more

precise lower-bound of Pc(k).
2) The Upper-Bound on the Cache Hitting Rate: Applying

the Zipf distribution to characterize the popularity of DT data

and defining η as the exponent for the Zipf distribution, we derive

the upper-bound on Pc(k) as follows:

Pc(k)
(d)

≤ πm(λ, μm)

K−1∑

κ=0

2¼2−η

D1−η
p
(
¼, πl2, k0

)
Φd(¼) (53)

where

Φd(¼) � 1−
∏κ

j=1

{
1− π(m),d∗

}cj , (54)

and (d) holds due to
∑κ

d=1 fd(�t) ≤ (2¼1−η)/D1−η ≤
(2¼2−η)/D1−η [29, Appendix D]. We can further derive Eq. (53)

as follows:

Pc(k) ≤
2πm(λ, μm)

D1−η

K−1∑

κ=0

¼2 p
(
¼, πl2, k0

)
Φd(¼)
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(e)

≤ 2πm(λ, μm)

D1−η

K−1∑

κ=0

¼2p
(
¼, πl2, k0

)K−1∑

κ=0

Φd(¼)

=
2πm(λ, μm)

D1−η
E
[
¼2
]
{
K −

K−1∑

κ=0

{1−π(m),d∗}
∑κ

j=1cj

}

≤ 2πm(λ, μm)

D1−η
E
[
¼2
]{

K−{1−π(m),d∗}
∑K−1

j=1 cj
}

(55)

where (e) is due to
∑

i xiyi ≤
∑

i xi

∑
i yi, ∀xi, yi > 0. To

calculate E[¼2], define the rate for the Poisson process, denoted

by λp, as λp � πl2k0. Then, we can calculate E[¼2] as follows:

E
[
¼2
]
= E [¼(¼− 1) + ¼] = E [¼(¼− 1)] + E [¼]

=

K−1∑

κ=0

¼(¼− 1)
e−λpλ

κ
p

¼!
+ λp ≤

∞∑

κ=0

¼(¼− 1)
e−λpλ

κ
p

¼!
+ λp

=

∞∑

κ=2

¼(¼− 1)
e−λpλ

κ
p

¼!
+ λp =

∞∑

κ=2

e−λpλ
κ
p

(¼− 2)!
+ λp

=e−λpλ
2
p

∞∑

κ=2

λ
κ−2
p

(¼− 2)!
+ λp=e−λpλ

2
pe

λp+λp=λ
2
p+λp. (56)

Thus, using Eq. (56), we can calculate the term of E[¼2] in

Eq. (55) and we can further derive Eq. (55), which yields the

upper-bound of Pc(k), as follows:

Pc(k) ≤
2πm(λ, μm)

D1−η

(
π2l4k20 + πl2k0

)

×
[
K − {1− π(m),d∗}

∑K−1
j=1 cj

]
. (57)

UsingPc(k)’s lower-bound derived in Eq. (48) and upper-bound

derived in Eq. (57), we obtain the range of cache hitting rate

Pc(k) for the kth MU, and thus we can also further derive the

corresponding optimal l and π(m),d which maximize the kth

MU’s ε-effective capacity defined in the optimization problem

formulated by Eq. (36).

B. Intra-Tier Collaborative Caching Mechanism for Caching

Tier 2 At Cellular Base Station and WiFi Access Point

When the popularity fd(�t) of a DT data content item is

higher than the threshold of Tier 2 but is lower than a threshold of

Tier 3 (i.e., f (T2) < fd(�t) < f (T3)), we propose to cache it at the

cellular BS or WiFi AP at Tier 2. In this inter-tier collaborative

caching mechanism of caching Tier 2, a data content item can

be cached at the cellular BS with probability π
(BS)
b ; or can be

cached at the WiFi AP with probability π
(AP)
b . We propose that

if the MU k requests the data content item d, ∀d, and another

MU, denoted by u, ∀u ∈ Mk, u �= k, requests the same data

content item, the MU k forwards this data content item d to MU

u through D2D communications.

Our proposed caching Tier 2’s inter-tier collaborative caching

mechanism aims at maximizing the average ε-effective capacity

for each MU if receiving the data from Tier 2. Thus, we construct

the objective function for the intra-tier collaborative caching

mechanism at Tier 2 as follows:

max
π
(BS)
b ,π

(AP)
b

{
EC

(b)
k (θk, εk,Pk)

}
(58)

s.t.: C3 : πb(λ, μb)D≤Sb,

C5 : π
(BS)
b +π

(AP)
b =πb(λ, μb),

where EC
(b)
k (θk, εk,Pk), as initially defined in Section II-B, is

the ε-effective capacity for transmitting the data cached at Tier 2

to the MU k, and can be further derived as follows:

EC
(b)
k (θk, εk,Pk)

=

{
1

2

[
ECAP

k (θk, εk,PAP) + ECD2D
u (θu, εu,PD2D)

]
πD2D

+ECAP
k (θk, εk,PAP)(1− πD2D)

}
π
(AP)
b

+

{
1

2

[
ECBS

k (θk, εk,PBS) + ECD2D
u (θu, εu,PD2D)

]
πD2D

+ECBS
k (θk, εk,PBS)(1− πD2D)

}
π
(BS)
b , (59)

where πD2D is the probability that the requested data content

item of MU k is also requested by MU u, ∀u ∈ Mk, u �= k, and

thus can be forwarded to MU u by using D2D communications,

which is given by

πD2D=

D∑

d=1

fd(�t)

{
K−1∑

κ=0

[
p
(
¼, πl2, k0

)
(1−[1−fd(�t)]

κ)
]
}
.

(60)

In Eq. (59), ECBS
k (θk, εk,PBS) and ECAP

k (θk, εk,PAP)
are given by Eq. (22) and Eq. (25), respectively; and

ECD2D
u (θu, εu,PD2D) can be derived by replacing θk and εk

in Eq. (38) by θu and εu, respectively.

C. Intra-Tier Collaborative Caching Mechanism for Caching

Tier 1 At Routers

When the popularity fd(�t) of a DT data content item is

higher than the threshold of Tier 1 but is lower than a threshold

of Tier 2 (i.e., f (T1) < fd(�t) < f (T2)), we propose to cache it

in the router at Tier 1. To maximize the caching gain at Tier 1,

we need to develop the efficient algorithms to determine (i)

where (in which router), (ii) what (what data content item need

to be cached), and (iii) how long to cache the requested data

content item in a router. The above problem (iii) is different

from the derivation of Tr defined in Section IV, because Tr is the

caching lifespan for Tier 1 while the above problem (iii) being

the caching lifespan in one router and cached data content items

being able to switch routers within Tier 1. As shown in Fig. 1, our

caching mechanism model focuses on a set of MUs belonging

to a BS connected to the data-source provider through a series

of cacheable routers constituting a cacheable path in Tier 1. For

problem (i), we denote the set of all cacheable routers along this

cacheable path byH � {1, 2, . . . , H}with its index h ∈ H. The

distances, measured by the number of hops from the caching

routers to the BS of the wireless cell and denoted by �h, are or-

dered by �1 < �2 < · · · < �H . Regarding problems (ii) and (iii),

we also define the router’s remaining caching lifespan for the

dth data content item at time t, denoted by Ld(t) (Ld(t) ≤ Tr),
as the residual time for the dth data content item to be saved

in a cacheable router from time t. Similar to Sections V-A

and V-B, we also need to derive the instantaneous popularity
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Algorithm 2: Intra-Tier Collaborative Caching Algorithms

for Caching in Cacheable Routers at Tier 1.

1: initialize: DT Data content item d is only saved in the

original data-source provider, fd(�t) = 0, Ld(t) = 0.

2: while MUs request to visit/download the data content

item d do

3: Update fd(�t).
4: if fd(�t) > f (T1) and Tr has not expired then

5: Cache/refresh data content item d in a router

according to the updated popularity profile fd(�t).
(The larger fd(�t) is, the closer cacheable router

to the wireless cell is chosen to cache the data

content item d.)

6: Update Ld(t) according to fd(�t) and delete the

data content item d from the previous router.

7: else

8: Set Ld(t) = 0 and delete the data content item d
from any caches at cacheable routers.

9: end if

10: end while

fd(�t), ∀d, of the dth data content item in this section, as the

revisited probability by MUs during the last�t time period from

the current observing time.

Due to the dynamics of the DT data-content popularity profile

and the mobile wireless networks, a dynamic caching algorithm

is needed. Thus, we develop a caching algorithm for routers

where both the caching location and the router’s remaining

caching lifespan for a given data content item are associated

with the data content item’s instantaneous popularity profile.

More specifically, a data content item with a larger instantaneous

popularity is cached in the cacheable routers closer (a router

with less �h) to the wireless cell, and has a longer lifespan in the

router. When receiving a data content item request from an MU,

the network controller updates fd(�t) of the dth data content

item. Since the cacheable routers have different distances to the

wireless cell (i.e., BS), a data content item with a larger fd(�t)
is cached in a router closer to the wireless cell (i.e., BS). This

is because MUs are more likely to request a popular DT data

content item afterwards, and thus caching the popular DT data

in a nearby router can efficiently offload the traffic and reduce

the transmission delay which is critically important to support

statical QoS provisioning for transmitting 6G DT traffics in the

core networks. If a data content item’s fd(�t) decreases to the

popularity threshold for caching in routers f (T1), we set the data

content item’s remaining caching lifespan Ld(t) = 0 and delete

its cached copies in any cacheable routers. As a result, this

data content item will only exist in the data-source provider.

Then, Algorithm 2 details the caching location and router’s re-

maining caching lifespan for our intra-tier collaborative caching

algorithm at Tier 1. To simplify our description, we use the

data content item d as an example, and all data content items,

∀d ∈ {1, 2, . . . , D}, follow the same collaborative caching al-

gorithm at Tier 1.

Note that the connections among routers or between a router

and cellular-BS/WiFi-AP are wired links, and we do not investi-

gate the ε-effective capacity when data is transmitted within this

Tier 1 because the ε-effective capacity only exists in wireless

links. Since delivering the data content items cached at Tier 1

also need to go through the cellular BS or WiFi AP, the wireless

delivery pathes for a data content item cached at Tier 1 and Tier 2

are the same, and thus, the ε-effective capacity for receiving a

data content item cached at Tier 1 and Tier 2 are the same. As

defined in C5 in Eq. (33), π̃
(BS)
r and π̃

(AP)
r are the probabilities

that the data content item is cached at Tier 1 to be transmitted

going through cellular BS and WiFi AP, respectively. The ob-

jective function for intra-tier collaborative caching mechanism

at Tier 1 is shown as follows:

max
π̃
(BS)
r , π̃

(AP)
r

{
EC(r)(θk, εk,Pk)

}
(61)

s.t.: C3: πr(λ, μr)D ≤ Sr,

C6: π̃(BS)
r + π̃(AP)

r = πr(λ, μr),

where EC
(r)
k (θk, εk,Pk) can be obtained by replacing π

(AP)
b

and π
(BS)
b in Eq. (59) by π̃

(BS)
r and π̃

(AP)
r , respectively.

VI. OPTIMAL CACHING SCHEME FOR SUPPORTING ADAPTIVE

BLOCKLENGTH TO MINIMIZE TOTAL TRANSMISSION DELAY

In Sections IV and V, we assume that the blocklength n is

a constant for all DT data-content items. In this section, we

propose the data-adaptive caching schemes for DT data-content

items if the blocklength of the dth DT data content item, denoted

by nd, ∀d, can be adjusted dynamically according to the dth data

item’s popularity fd(�t) and MUs’ statistical QoS requirements

θk and εk.

A. DT Data Collection and Adaptation Schemes Based on

MUs’ Statistical QoS Requirements

Since MUs are frequently joining and leaving the cellular

network and each MU has its unique DT data request, channel

conditions, and statistical QoS requirements on delay exponent

θk and decoding error probability εk, we propose to dynamically

adapt the DT data collection procedure model, i.e., the data

encoding blocklength nd, for the virtual representation of the

dth DT data-content item based on MUs’ statistical QoS require-

ments and its current popularity fd(�t). The DT data content

items’ digital transformation scheme is shown by Algorithm 3.

Based on Algorithm 3, we can derive the data-adaptive optimal

caching scheme/policy to minimum the total transmission delay

as detailed in the section that follows.

B. Optimal Caching Scheme for Selecting the Caching Route

With the Minimum Total Transmission Delay

Based on Definition 2, ε-effective capacity is the maxi-

mum data constant arrival rate under a given delay expo-

nent and a given decoding error probability. Thus, the trans-

mission delays for delivering the dth DT data to the kth

MU if the data is cached at Tier 1, Tier 2, and Tier 3, de-

noted by ω(r)
d , ω(b)

d , and ω(m)
d , respectively, are given by

ω(r)
d = nd/EC (r)

k (θk, εk,Pk),ω
(b)
d = nd/EC (b)

k (θk, εk,Pk), and

ω(m)
d = nd/EC (m)

k (θk, εk,Pk), where nd is obtained by using

Algorithm 3, EC (r)
k (θk, εk,Pk) can be obtained as described

in the text following Eq. (61), EC (b)
k (θk, εk,Pk) is given by

Eq. (59), and EC (m)
k (θk, εk,Pk) is given by Eq. (36). Note that

under the adaptive blocklength scheme, ε-effective capacities

EC (r)
k (θk, εk,Pk), EC (b)

k (θk, εk,Pk), and EC (m)
k (θk, εk,Pk)

are functions of the blocklength nd according to Eq. (7). Thus,

we can obtain the data-adaptive optimal caching scheme/policy

for choosing the route with the minimum data transmission delay
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Algorithm 3: DT Data-Content Items’ Adaptive Data Col-

lection Scheme.

1: initialize: The popularity fd(�t) of the DT data

content item d, MUs’ channel fading parameter m,

MUs’ statistical QoS requirements θk and εk, ∀k.

2: if fd(�t) > f (T3) then

3: The dth DT data-content item is cached at Tier 3.

4: Adjust the blocklength nd to maximize the

ε-effective capacity ECD2D
k (θk, εk,PD2D) using

Eq. (38).

5: else f (T1) < fd(�t) < f (T3)

6: The dth DT data-content item is cached at Tier 2 or

Tier 1.

7: Adjust the blocklength nd to maximize the

ε-effective capacity ECBS
k (θk, εk,PBS) using

Eq. (22) or to maximize the ε-effective capacity

ECAP
k (θk, εk,PAP) using Eq. (25).

8: end if

9: output: The optimal encoding blocklength nd for DT

data collection and adaptation.

as follows:§
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪̈

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪©

min
π̃

(BS)
r ,π̃

(AP)
r

{
ω(r)
d

}
, if the dth data item is cached at Tier 1

(
i.e., f (T1) ≤ fd(�t) < f (T2)

)
,

min
π

(BS)
b ,π

(AP)
b

{
ω(b)
d

}
, if the dth data item is cached at Tier 2

(
i.e., f (T2) ≤ fd(�t) < f (T3)

)
,

min
l,π(m),d

{
ω(m)
d

}
, if the dth data item is cached at Tier 3

(
i.e., fd(�t) ≥ f (T3)

)
,

(62)

where fd(�t) is specified in Algorithm 3 presented in the last

section, and f (T1), f (T2), and f (T3) are defined in Section IV.

VII. PERFORMANCE EVALUATIONS

We conduct the extensive numerical analyses to validate

and evaluate our developed schemes. In Fig. 2(a), we set the

total number of MUs to be K = 20, the cardinality of D2D

communication set of the kth MU to be |Mk| = 5, and the

jth mobile user’s caching capability to be cj = 1, ∀j. Fig. 2(a)

shows that given the caching probability at Tier 3 πm(λ, μm),
we can find an optimal D2D communication range l of MUs that

maximizes the cache hitting rate shown in Eq. (36), validating

the existence of the optimal solution of Eq. (36). Therefore, the

optimal aggregate ε-effective capacity also exists. Fig. 2(a) also

shows that given a D2D communication range l, the ε-effective

capacity for caching at Tier 3 is an increasing function of the

caching probability at Tier 3 πm(λ, μm). This is because a larger

value of πm(λ, μm) implies a larger number of data content

items which are cached in the mobile devices, and thus, leads to

a larger probability to download the requested data item using

D2D communications.

Fig. 2(b) shows a lower-bound on the cache hitting rate under

different values of caching probability at Tier 3 πm(λ, μm).
We set the caching probability πm(λ, μm) as 0.5, 0.6, and 0.7,

respectively. For each value of πm(λ, μm), we plot a lower-

bound on the cache hitting rate Pc(k) under the total caching ca-

pability, denoted by ct �
∑u∗

j=1 cj to be 3 and 5, respectively. We

also set the total number of MUsK = 20, the probability that the

dth data content item is cached at a cache unit of a mobile device

π(m),d∗ = 0.2, and the range parameter δ = 0.2. Fig. 2(b) shows

thatPc(k) increases as caching probabilityπm(λ, μm) increases,

because a larger value of πm(λ, μm) indicates that more mobile

devices are able to download a requested data content item

within Tier 3. Therefore, given a certain ct, a larger πm(λ, μm)
yields a larger value of the lower-bound on Pc(k). We can also

observe that the lower-bound on Pc(k) is a decreasing function

of the total caching capability ct, because we have π(m),d∗ < 1
in Eq. (48). Thus, a larger ct results in a smaller πct

(m),d∗ .

Fig. 2(c) plots a lower-bound on the cache hitting rate Pc(k)
under different total numbers of MUs K and different values

of unit memory space caching probability π(m),d. We set K as

20 and 30, respectively. For each value of K, Fig. 2(c) plots

the lower-bound of Pc(k) under unit memory space caching

probabilities π(m),d = 0.2, 0.3, and 0.4, respectively. We also

set πm(λ, μm) = 0.5, δ = 0.2, and ct = 5. We observe from

Fig. 2(c) that Pc(k) is an increasing function of K and fd(�t),
because a larger K indicates a larger number of MUs in the

wireless cell, and thus, there are more downloading requests of

the dth data content item. Therefore, under a certain value of

π(m),d, a cellular network with a larger number of users K and

a larger requesting probability fd(�t) has a larger value of the

lower-bound on Pc(k). We also observe that the lower-bound

on Pc(k) is an increasing function of the unit memory space

caching probability π(m),d. This is because the larger value of

π(m),d implies a larger probability to cache the dth data content

item, leading to a larger probability that an MU can download

the dth data content item from its neighbor peers.

Fig. 2(d) plots the upper-bound on the cache hitting ratePc(k)
under different values of total number of MUs K and different

values of Zipf distribution exponent η. We set πm(λ, μm) = 0.5

and the total caching capability
∑u∗

j=1 cj ≤ 10. Fig. 2(d) shows

that the upper-bound on Pc(k) is an increasing function of K,

since a larger value of K implies a larger density of MUs within

a cellular network, and therefore, implies that the MU k has

more cooperation mobile devices that cache the data. We can

also observe from Fig. 2(d) that the upper-bound on Pc(k) is

a decreasing function of η, since a larger value of η implies

a larger number of mobile devices caching the top frequently

requested data content items, reducing the number of D2D pairs

for downloading the less frequently requested data.

In Fig. 3(a), we plot the SNR of the kth MU γ
(q)
k (PBS)

under different values of distance lk between the kth MU and

the massive MIMO BS. We set MT = 100, MR = 2, K = 40,

λc = 10m, τul,p = 16, ρul = 1W, and E[η
(i)
k,α] = 0.5, the range

of distance lk as [4,10] m, length of a codeword n = 900, and

channel fading range h
(q)
k,α = [0.1, 1]. Fig. 3(a) shows that there

exists an optimal distance lk which maximizes the SNR, imply-

ing that a mobile user can adjust its position to obtain a better

wireless channel. We also observe from Fig. 3(a) that although

the SNR is an increasing function of PBS, the optimal SNR is

approximately the same for the optimal lk when increasing PBS.

This implies that at the optimal position of a mobile user, the

transmit power allocation has a small impact on the SNR.

In Fig. 3(b), we plot the ε-effective capacity under different

values of distance lk between the kth MU and the massive

MIMO BS. We set w
(q)
k = 0.05W. According to Remarks on

Theorem 2, γ
(q)
k (PBS), ∀q, are the same. Fig. 3(b) shows that

the ε-effective capacity decreases as the distance lk increases
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Fig. 2. Comparisons of network performances for the intra-tier collaborative caching mechanism at Tier 3 on mobile devices.

Fig. 3. Performances comparisons for the intra-tier collaborative caching mechanism for Tier 2 on massive MIMO BS and MIMO WiFi AP.

because the large scale fading ´k is a decreasing function of

lk. Fig. 3(b) validates that the ε-effective capacity under the

condition of 0 < γ
(q)
k (PBS) < 1 is always lower than that under

the other two conditions, as it has the minimum SNR. Fig. 3(b)

also validates that when γ
(q)
k (PBS) 
 1 andw

(q)
k � h

(q)
k,α, the ε-

effective capacity is always larger than that with γ
(q)
k (PBS) 
 1

and w
(q)
k > h

(q)
k,α because an increased h

(q)
k,α leads to the larger

ε-effective capacity.

In Fig. 4, we compare the average transmission delay for

receiving a DT data content item under our proposed multi-tier

caching scheme with that of the random caching scheme and a

caching scheme without employing the multi-tier mechanism. In

the random caching scheme, defined as baseline caching scheme
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Fig. 4. Comparisons of the average transmission delay for receiving a DT data
content item under our proposed multi-tier scheme with the existing baseline
caching schemes.
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Fig. 5. Comparisons of the aggregate ε-effective capacity over MUs for our
proposed multi-tier caching scheme with the existing baseline caching schemes.

1, we assume that DT data content items are randomly cached at

three tiers without considering their popularities. In the caching

scheme without employing multi-tier caching mechanisms, de-

fined as baseline caching scheme 2, we set that all cache stations

are located at the massive MIMO BS and WiFi AP. We set

that the popularity of DT data content items follows the Zipf

distribution with the Zipf exponent 0.5 and there are a total of

1000 DT data content items. We also set that the transmission

delay for downloading a data item from a mobile device using

D2D communication, from a BS or WiFi AP, and from a router

to an MU is 0.02 ms, 0.1 ms, and 0.4 ms, respectively. We can

observe that the average transmission delay decreases as the total

number of cache stations in wireless networks increases for all

three caching schemes. We can also observe that our proposed

scheme by caching the most popular content in Tier 3 can achieve

the minimum average transmission delay.

We compare the aggregate ε-effective capacity over MUs

for our proposed multi-tier caching scheme with two existing

baseline caching schemes in Fig. 5. Baseline caching schemes 1

and 2 are the same as those in Fig. 4. We assume that there are 10

MUs in the wireless network requesting 50 DT data contents,

blocklength n = 1000, decoding error probabilities εk are the

same for all MUs, and other parameters are the same as those

in Fig. 4. We can observe that comparing with the two exist-

ing baseline caching schemes, our proposed multi-tier caching

scheme can achieve the maximum aggregate ε-effective capacity

for both εk = 10−3 and 10−5. We can also observe that for the

same caching scheme, the aggregate ε-effective capacity under

εk = 10−5 is larger than that of εk = 10−3. This is because the

smaller εk indicates a better channel quality, and thus, the wire-

less network can achieve a larger aggregate ε-effective capacity.

VIII. CONCLUSIONS

We have proposed collaborative multi-tier hierarchical

caching mechanisms for DT over mURLLC-based 6G mo-

bile wireless networks, where popular DT data can be cached

at different wireless network caching tiers (e.g., at routers

(Tier 1), massive-MIMO-BS/WiFi-AP (Tier 2), and mobile de-

vices (Tier 3), respectively). In particular, we have developed

an inter-tier collaborative hierarchical caching scheme, which

maximizes the aggregate ε-effective capacity across all three

caching tiers. Then, we have also developed the intra-tier collab-

orative hierarchical caching scheme at Tier 1, through updating

cached data content items and caching lifespans according to

the popularity of a DT data content item. The intra-tier collab-

orative hierarchical caching mechanism at Tier 2 optimizes the

data content items’ caching probabilities at the cellular BS and

WiFi AP, respectively. The intra-tier collaborative hierarchical

caching mechanism at Tier 3 optimizes the D2D communication

distance and the data caching probability at each cache unit.

APPENDIX A

PROOF OF THEOREM 1

Proof: To simplify the notation, we use γk and γk to replace

γk(Pk) and γk(Pk), respectively, in this proof. Using Eq. (6),

we can derive the expectation of decoding error probability as

follows:

Eγk
[εk(γk)]=

∫ ∞

0

Q

»
¼½
log2 (1 + γk)− log2 Wk

n√
2γk+γ2

k

n

/
(1 + γk)

¿
ÀÁPZ(γk)dγk

= Q

»
¼½
∫ ∞

0

log2 (1 + γk)− log2 Wk

n√
2γk+γ2

k

n

/
(1 + γk)

PZ (γk) d (γk)

¿
ÀÁ , (63)

which can be further derived by considering the following two

cases, respectively.

Case 1. When γk 
 1, Eq. (63) can be further derived as:

Eγk
[εk(γk)]≈Q

(√
n

[∫ ∞

0

log2(1+γk)PZ(γk)dγk−
log2Wk

n

])

(f)
= Q

(√
n

[
log2(1 + γk)−

log2 Wk

n

])
(64)

where (f) holds by applying Taylor-series expansion over

log2(1 + γk), taking integral for each term under the Nakagami-

m distribution, and using Taylor series again.

Case 2. When 0 < γk < 1, by applying Taylor se-

ries that 1/[(1− x)2] =
∑∞

i=1 ix
i−1 and log(1 + x) =∑∞

i=1[(−1)i+1xi]/i, we have√
2γk+γ2

k

n

1+γk
=

1√
n

√
1− 1

(1+γk)2
≈
√
1−(1−2γk)√

n
=

√
2γk
n

(65)

and

log2(1 + γk) ≈ (log2 e)γk. (66)
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Substituting Eq. (65) and Eq. (66) into Eq. (63), we can further

derive Eγk
[εk(γk)] as follows:

Eγk
[εk (γk)] ≈ Q

(√
n

2

[
(log2 e)

∫ ∞

0

√
γkPZ(γk) dγk

− log2 W

n

∫ ∞

0

1√
γk

PZ(γk) dγk

])

= Q

(√
n

2

[
(log2 e)γ

1
2

k − log2 Wk

n
√
γk

])
. (67)

Combining Eq. (64) derived in Case 1 with Eq. (67) derived in

Case 2, we have

Eγk
[εk(γk)]

=

§
⎪⎪̈

⎪⎪©

Q

(√
n

[
log2(1+γk)−

log2Wk

n

])
, if γk 
 1

Q

(√
n

2

[
(log2 e)γ

1
2

k −
log2Wk

n
√
γk

])
, if 0<γk<1.

(68)

Substituting Eq. (68) back into Eq. (3), we obtain Eq. (7),

completing the proof for Theorem 1. �

APPENDIX B

PROOF OF THEOREM 3

Proof: We define the SNR vector, denoted by γk(PBS), for

all MR antennas deployed on MU k as follows:

γk(PBS) �
[
γ
(1)
k (PBS), . . . , γ

(MR)
k (PBS)

]
(69)

when MU k receives the cached DT data from the massive

MIMO BS with the transmit power allocation PBS, where

γ
(q)
k (PBS), ∀q ∈ {1, 2, . . . ,MR}, is defined in Eq. (17) by re-

placing Pk by PBS in Eq. (17). Since Theorem 2 shows

that all γ
(q)
k (Pk), ∀q, are the same, we re-define γk(PBS) �

γ
(q)
k (PBS), ∀q, given by Eq. (17) after replacing Pk by PBS.

Extending the derivations for the ε-effective capacity given in

Eq. (3) over the single antenna channel into its massive-MIMO-

channel version, we can derive the massive MIMO channel’s

ε-effective capacity, denoted by ECMIMO
k (θk, εk,PBS), for the

kth MU downloading the DT data-content items from the

massive-MIMO antennas equipped BS as follows:

ECBS
k (θk, εk,PBS)

(g)
= ECMIMO

k (θk, εk,PBS)

=− 1

nθk
log

{
εk(γk(PBS))+[1−εk(γk(PBS))]e

−θklog2Wk
}

(70)

where (g) follows due to Eq. (21) and γk(PBS) is defined in

Eq. (69). Using the FBC scheme, the decoding error probability

of the kth MU under massive MIMO channel, denoted by

εk(γk(PBS)), can be obtained by extending the decoding error

probability of Eq. (4) over the single antenna channel into its

massive-MIMO-channel version of εk(γk(PBS)) as follows:

εk(γk(PBS)) =
∏MR

q=1
εk

(
γ
(q)
k (PBS)

)

=

MR∏

q=1

Q

»
¼¼½
C
(
γ
(q)
k (PBS)

)
− log2 Wk

n√
V
(
γ
(q)
k (PBS)

)/
n

¿
ÀÀÁ

(h)
=

[
Q

(
C (γk(PBS))− log2 Wk

n√
V (γk(PBS))/n

)]MR

(71)

where (h) holds due to Remarks on Theorem 2. Using Remarks

on Theorem 2 and extending Eq. (68) over the single antenna

channel into its massive-MIMO-channel version, we can further

derive the decoding error probability of εk(γk(PBS)) over the

massive-MIMO-channel by employing Eq. (5) and Eq. (71) as

follows:

εk(γk(PBS))

=

§
⎪⎪⎪⎪⎪⎪⎪⎪⎪̈

⎪⎪⎪⎪⎪⎪⎪⎪⎪©

{
Q

(√
n

[
log2(1 + γk(PBS))−

log2 Wk

n

])}MR

,

if γk(PBS) 
 1,
{
Q

(√
n

2

[
(log2 e)

√
γk(PBS)−

log2 Wk

n
√

γk(PBS)

])}MR

,

if 0<γk(PBS) < 1.

(72)

Defining the first and second parts of Eq. (72) as Q1 and Q2 as

defined by the first and second parts of Eq. (23), respectively,

and then plugging Eq. (72) into Eq. (70), we can thus prove

Eq. (22) and further also prove Eq. (23), which complete the

proof of Theorem 3. �
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