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Neyman-Pearson Criterion Driven NFV-SDN

Architectures and Optimal Resource-Allocations

for Statistical-QoS Based mURLLC Over Next-

Generation Metaverse Mobile Networks Using FBC
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Abstract— Metaverse streaming, as one of the key wireless
services over 6G mobile networks, generates the delay/error-
sensitive and bandwidth-intensive wireless traffics with stringent
quality-of-service (QoS) requirements. Consequently, metaverse
streaming can be modeled as a new type of massive ultra-reliable
low-latency communications (mURLLC) traffic over 6G mobile
networks. However, how to efficiently support metaverse stream-
ing with constrained wireless resources and dynamic network
conditions has imposed many new challenges not encountered
before. To conquer these difficulties, in this paper we propose
the Neyman-Pearson criterion driven network functions virtu-
alization (NFV) and software-defined network (SDN) architec-
tures and optimal resource-allocations for statistical-QoS theory
based mURLLC streaming over 6G metaverse mobile networks
using finite blocklength coding (FBC). First, we use Neyman-
Pearson hypothesis tests for characterizing metaverse streaming
requests’ distribution profiles to predict their future accessing
frequencies/patterns. Second, our formulated NFV/SDN architec-
tures and virtual-network slices are assigned to the designated
metaverse mobile users with the same predicted data request
distributions, categories, and statistical-QoS requirements. Third,
integrating the statistical QoS theory with FBC, we develop
metaverse-streaming schemes by maximizing aggregate ϵ-effective
capacity and deriving optimal transmit power allocations. Finally,
we use numerical analyses to validate and evaluate our proposed
schemes over 6G mobile networks.

Index Terms— 6G, metaverse, Neyman-Pearson test, m-MIMO,
ϵ-effective capacity, statistical delay/error-rate bounded QoS.

I. INTRODUCTION

T
HE 6G wireless networks are envisioned to provide

various advanced wireless services featuring massive
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access/connection, ultra-reliability, low latency, intelligence,

and security while maximizing spectral and power efficiencies.

Widely recognized as a new wave of wireless technologies,

metaverse streaming provides immersive environments, includ-

ing digital twins (DTs), in the virtual space generated by

computers for communications. Metaverse streaming is con-

sidered to be a type of massive ultra-reliable and low-latency

communications (mURLLC) service, which is expected to be

the dominant traffic type in 6G networks supporting massive

numbers of mobile users (MUs) demanding stringent quality

of service (QoS) requirements with one-way radio latency less

than 1 ms and successful-transmission probability higher than

99.99999% [1], [2].

The integration of widely envisioned 6G key wireless tech-

niques including massive multiple-input and multiple-output

(massive-MIMO) [3], [4], [5], statistical QoS theory [6], [7],

[8], [9], [10], [11], finite blocklength coding (FBC) [12],

etc., is expected to provide an efficient solution to implement

mURLLC transmissions [3], [4], [13]. Using massive numbers

of antennas on the base station (BS) or multiple antennas on

the access point (AP), it is possible to direct the main beam

of signal waves towards the targeted MUs, serve more users

through the spatial multiplexing, and mitigate the multipath

effect via the spatial diversity provided by different MIMO

antennas. The conventional Shannon theory based analysis is

usually not applicable for simultaneously guaranteeing both

the low-latency and the high-reliability of wireless transmis-

sions, because the traditional Shannon formalism is based on

the assumption that the coding block length tends to infinity

to achieve arbitrarily-high or even perfect reliability. Towards

this end, the statistical QoS theory has been proposed to

support both statistical delay and error-rate bounded QoS pro-

visioning for wireless transmissions over time-varying wireless

fading channels. Furthermore, the FBC technique has been

developed to enable small packet communications for adap-

tive error-control and real-time transmissions, where senders

encode their messages into short packets (i.e., packets with

small numbers of bits) to reduce the transmission latency while

constraining and controlling the decoding error probability.

There have been various studies conducted on meta-

verse streaming transmissions and techniques. The authors

of [14] proposed a distributed collaborative computing frame-

work for vehicular metaverse streaming by employing coded
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distributed computing and blockchain schemes. The work

of [15] proposed a novel digital twin scheme to support meta-

verse communications by jointly integrating communications,

computations, and storage techniques through the applications

of mobile edge computing and mURLLC. To study the inter-

action between the metaverse service provider and the network

infrastructure provider, the work of [16] designed an optimal

framework to maximize the quality of experience for meta-

verse users. An edge computing-assisted metaverse system is

designed by [17] to partially offload the sensing data col-

lected from physical objects to the edge computing platform,

ensuring the promptness of metaverse services and satisfying

latency requirements of metaverse users. However, in addi-

tion to the stringent QoS provisioning for general mURLLC

streaming, metaverse streaming also need to take into account

humans’ activities, e.g, data items’ accessing/requesting, fre-

quencies/patterns, heterogeneous QoS requirements, and MU’s

mobility, etc., which impose a number of new challenges. One

of the main challenges is how to predict humans’ behaviors in

terms of data-access frequencies and patterns so that we can

optimize network architectures and resource allocations [18]

to best fit and improve the statistical QoS in human-centric

metaverse mobile wireless networks.

To efficiently integrate the above described 6G techniques

and architectures and optimize the wireless resource-allocation

for supporting human-centric metaverse streaming, in this

paper we propose to develop the Neyman-Pearson cri-

terion driven network functions virtualization (NFV) and

software-defined network (SDN) [19], [20] architectures

and optimal resource-allocations for statistical-QoS based

mURLLC-streaming over 6G human-centric metaverse mobile

networks using FBC. We apply the Neyman-Pearson crite-

rion based sequential hypothesis testing technique [21], [22],

[23] to predict humans’ activities, in terms of data-content

items’ requests probability distribution profile. The sequential

hypothesis testing technique has been broadly applied in a

large number of detection applications because it provides

efficient rules to make a decision by accepting one of multiple

hypotheses at any stage in a sequence of observations. In the

setting of this paper, the hypothesis represents the metaverse

mobile networks’ claim/statement on the distribution for a

sequence of stochastic observations regarding that an MU

requests/accesses the designated metaverse data item. Here,

in order to apply sequential testing, we observe a set of

data items’ requests and calculate the likelihood ratio of

these data requests. We accept one of a set of appropriate

hypotheses accordingly or take another observation, depending

on the threshold regions of the likelihood ratio. We repeat

these procedures until a hypothesis is selected. In this paper,

we model the probability distributions of MUs’ requests for

metaverse data items as a series of Zipf distributions, and each

hypothesis is characterized by an individual Zipf distribution

with a specific parameter.

In particular, first our proposed schemes conduct a Neyman-

Pearson criterion based sequential hypothesis test, the outcome

of which is the prediction of an MU’s requesting probability

distribution for metaverse streaming. Using the obtained

prediction of metaverse request distributions, we formulate

and select the NFV and SDN architectures to implement the

metaverse streaming while satisfying data items’ statistical

delay and error-rate bounded QoS requirements, through

adaptively designing the optimal network architectures and

allocating the necessary wireless resources. Second, our

schemes map MUs that are estimated to have the same data

request probability distribution into one virtual network slice,

since each data request probability distribution represents a

specific category of metaverse streaming (e.g., virtual-reality

(VR) online gaming, e-health care, etc.) and metaverse data

in the same category share the same delay and error-rate

bounded QoS requirements. Finally, combining the statistical

QoS theory and FBC, we derive a number of closed-form

expressions to accurately model and analyze our newly defined

metaverse streaming performance metrics and controlling

functions, including the optimal transmit power allocation

policies and the corresponding maximum ϵ-effective capacity

functions, etc.

The rest of this paper is organized as follows. Section II

establishes systems models for our proposed Neyman-Pearson

criterion hypothesis testing driven NFV/SDN architectures for

statistical-QoS based mURLLC-streaming over 6G human-

centric metaverse mobile networks using FBC. Section III

develops the decision making schemes to derive the opti-

mal sequential hypothesis testing. Section IV creates the

modeling framework and a set of performance metrics to

characterize and analyze our proposed metaverse streaming

schemes by deriving the aggregate ϵ-effective capacity and the

optimal transmit power allocations to maximize the aggregate

ϵ-effective capacity. Section V validates and evaluates our

developed schemes and our derived analytical results for

supporting the statistical delay and error-rate bounded QoS

based metaverse streaming in the non-asymptotic regime. This

paper concludes with Section VI.

II. THE SYSTEM MODELS FOR OUR PROPOSED

METAVERSE-STREAMING SCHEMES

A. Neyman-Pearson Criterion Driven NFV/SDN Architectures

Over 6G Metaverse Wireless Networks

Figure 1 shows our proposed Neyman-Pearson criterion

driven NFV/SDN architectural system models to support meta-

verse streaming with mURLLC traffic requirements over 6G

mobile networks. Since the 6G metaverse streaming includes

different types of traffic, such as VR-based online gaming,

high-resolution video streaming, digital twins, e-health-care,

conference, and education, etc., MUs that request different

categories of metaverse streaming demand diverse statistical

QoS requirements. In Fig. 1, we map each category of

metaverse streaming into one virtual network slice, enabling

the sharing of all wireless network functionalities among

multiple metaverse service providers and transmitting different

metaverse services under diverse QoS requirements and logical

architectures through the same infrastructure. The SDN-based

computing algorithm dynamically allocates wireless resources

(i.e., transmit power, sub-channels, etc.) to different network

slices, maximizing the overall networks performance met-

rics. Physical devices function as simple packet forwarding

devices (data plane). The intelligent control logic functions
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Fig. 1. The system models of our proposed Neyman-Pearson hypothesis testing driven network-functions virtualization and software-defined architectures
and optimal resource allocations for statistical-QoS based mURLLC-streaming over 6G human-centric metaverse (virtual-reality) mobile networks using FBC,
where hypotheses Hj , Hi, and Hv , with i, j, v ∈ J and i ̸= j ̸= v, represent three different metaverse data request probability-distributions profiles.

are performed by the control plane that assigns wireless

resources based on the MU’s metaverse service types and

their corresponding statistical QoS requirements. As shown in

Fig. 1, each metaverse MU communicates (down-stream/up-

stream) with the massive-MIMO BS or MIMO AP by using

the FBC technique with a finite blocklength equal to n.

B. Our Proposed Neyman-Pearson Criterion Based

Sequential Hypothesis Test for Metaverse Streaming

Assume that we take an observation for an MU’s requested

metaverse data item at each time slot. Let q be the index of

the time slot/stage, where q ∈ {1, 2, 3, · · · }. Define {Xq}
as a sequence of random variables taking values on a set

of all metaverse data-content items D = {1, 2, . . . , D} with

|D| = D denoting the total number of different metaverse data

content items, where Xq is the observation random variable for

the requested data item by an MU at the time slot q. Assume

that elements in {Xq},∀q, are independent and identically

distributed (i.i.d.) random variables. We consider multiple

hypotheses {Hj},∀j ∈ J = {0, 1, 2, . . . , J}. Hypothesis

Hj implies that Xq follows the probability distribution Pj
(i.e., metaverse data request probability distribution at the time

slot q is Pj), which is a probability measure as follows:

Hj : Xq ∼ Pj = Zipf(rj , D), ∀ rj ∈ (Àj , Àj+1], (1)

where Zipf(rj , D), ∀j, denotes the Zipf distribution with the

exponent rj ; and we also define À0 = 0; Àj > 0,∀j g 1;

and Àj+1 > Àj . The probability mass function (pmf) for

the dth data content item, ∀d ∈ {1, 2, . . . , D}, of a Zipf

distribution is given by

frj
(d) =

d−rj

∑D
k=1 k

−rj

. (2)

Assume frj
(d) ̸= fri

(d) if j ̸= i. Let t be the total number

of time slots for observing an MU’s data requests. Define z
(t)
j,i

as the likelihood ratio of the hypothesis Hj ,∀j ∈ J , to the

hypothesis Hi,∀i ∈ J , by the time slot t, which is given as

follows [24]:

z
(t)
j,i ≜

t∏

q=1

frj
(Xq)

fri
(Xq)

(3)

where Xq ∈ D. According to [25], we also define the log

likelihood ratio of the conditional density functions, denoted

by Zj,i(q), as follows:

Zj,i(q) ≜ log

(
frj

(Xq|X1, X2, . . . , Xq−1)

fri
(Xq|X1, X2, . . . , Xq−1)

)
. (4)

Based on Eq. (3) and Eq. (4), we define the sequential hypoth-

esis test [25], [26] by two sequences of decision functions

(Èt)tg0 and (¶t)tg0, where Èt : Dt 7→ T is the stopping

rule, denoted by Èt, that maps the current observations to

a decision that stops the testing at time slot/stage T ; and

¶t : Dt 7→ {0, 1, . . . , J}, where ¶t = j corresponds to a

decision for accepting Hj upon stopping. For the rest of this

paper, we formally denote our proposed sequential hypothesis

test by the decision-functions pair: (Èt, ¶t).
We propose to estimate an MU’s future metaverse data

requests, in terms of a Zipf distribution with a specific param-

eter rj , by using the Neyman-Pearson criterion [27] based

sequential hypothesis testing according to the observations for

this MU’s past data requests. We define two types of errors:

Type I error is defined as “Reject Hj (i.e., accept Hi, i ̸= j)
when Hj is the actual MU’s data request distribution” and

Type II error is defined as “Accept Hj when Hi, i ̸= j, is

the actual MU’s data request distribution”. Type I error can

Authorized licensed use limited to: Texas A M University. Downloaded on October 09,2024 at 03:07:07 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: NEYMAN-PEARSON CRITERION DRIVEN NFV-SDN ARCHITECTURES FOR STATISTICAL-QoS BASED mURLLC 573

be considered as the false alarm and Type II error can be con-

sidered as the miss detection. We denote the probabilities of

Type I and Type II errors as P F(j, i) and PM(j, i), respectively.

Then, the hypothesis hitting probability, denoted by PH(j, j),
can be written as PH(j, j) = 1 −∑i P

F(j, i). For a decision

rule ¶t, we define the error probability P F(j, i) as follows:

P F(j, i) = Pj{¶t = i}, if j ̸= i (5)

where Pj{·} represents the probability of an event under the

hypothesis Hj being true, and define the hypothesis hitting

probability PH(j, j) as follows:

PH(j, j) = Pj{¶t = j}, ∀j. (6)

We apply Neyman-Pearson criterion based hypothesis testing

scheme to maximize the hypothesis hitting probability subject

to constraints of upper-bounding the Type I and Type II error

probabilities as follows:

max
(Èt,¶t)

PH(j, j) (7)

s.t.: C1: Ei,j

[
P F(j, i)

]
f³;

C2: Ei,j

[
PM(j, i)

]
f´,

where Ei,j [·] denotes the expectation for all i and j, ∀i, j ∈ J ;

and ³ and ´ are the upper bounds on the Type I and Type II

error probabilities, respectively.

C. Integrating Effective Capacity With FBC to Support

Metaverse Streaming

The statistical delay-bounded QoS guarantees [6], [7], [9],

[10], [28], [29] have been shown to be powerful in analyzing

queuing behavior for the stochastic arrival and service pro-

cesses over the time-varying wireless fading channels. The

key statistical-QoS performance metric is the effective capacity

which measures the maximum packet’s constant arrival rate

such that the given statistical delay-bounded QoS can be

guaranteed. Based on the large deviation principle (LDP) [7],

under sufficient conditions, the queue-length process Qd(t) for

the metaverse data-content item d converges in distribution to

a random variable Qd(∞) such that

− lim
Qth,d→∞

log(Pr{Qd(∞) > Qth,d})
Qth,d

= ¹d (8)

where Qth,d is the queue length threshold (bound) and ¹d >
0 is defined as the QoS exponent for the data item d. The

insights of Eq. (8) reveal that the probability of the queueing

process exceeding a certain threshold Qth,d decays exponen-

tially fast at the rate of ¹d as the threshold Qth,d increases and

tends to infinity. A smaller ¹d corresponds to a slower decay

rate, which implies that the system can only provide a looser

QoS guarantee, while a larger ¹d leads to a faster decay rate,

which implies that a more stringent QoS can be supported.

In particular, when ¹d → 0, the system can tolerate a long

delay; when ¹d → ∞, the system cannot tolerate any delay.

However, the conventional statistical-QoS theory modeled

by Eq. (8) focuses only on the statistical delay-bounded QoS

without considering the transmission reliability, which is thus

not feasible to support mURLLC in our proposed metaverse

wireless networks. To support the stringent both statistical

delay and error-rate bounded QoS provisioning for mURLLC,

we propose to integrate the effective capacity theory with the

FBC scheme, which is an emerging and powerful solution in

wireless networks, to encode the message. Using the FBC

scheme, terminals send messages using packets with small

numbers of bits to achieve low latency transmissions while

mitigating the packet’s decoding error probability for reliable

transmissions. We define an FBC scheme in the following

definition.

Definition 1: Consider a fading channel which uses input

blockcode set A and output blockcode set B. We define that

an (n,W, ϵ)-code, for a memoryless channel consists of [12]

• A message set W = {c1, · · · , cW } with the cardinality

W and the message length equal to log2W .

• An encoder is a function: W 7→ An, where An is the

set of codewords with length n. At the receiver end,

a decoder produces an estimate of the original message

by observing the channel output, according to a function:

Bn 7→ Ŵ , where Bn is the set of received codewords

with length n and Ŵ is the estimation of W .

• The decoding error probability, denoted by ϵ, is defined as

ϵ ≜ (1/W )
∑W
w=1 Pr{cw ̸= ĉw}, with cw ∈ W , ĉw ∈ Ŵ .

where usually ϵ > 0 if n <∞. ■

Thus, the triple-tuple (n,W, ϵ) represents that a source with

the cardinality W can successfully transmit messages with a

probability of success (1 − ϵ) over n channel uses.

To integrate the effective capacity with the FBC scheme,

we propose to employ the ϵ-effective capacity, which measures

the maximum packet’s arrival rate that a wireless channel can

support under a given QoS exponent and a given decoding

error-rate. Let k be the index of an MU. Let ϵd and Pd,k,j
be the decoding error probability requirement of the data

item d and the transmit power allocation for transmitting

the data item d to the kth MU if accepting the hypothesis

Hj , respectively. Denote by ECk(¹d, ϵd,Pd,k,j) the ϵ-effective

capacity for the kth MU, which characterizes both statistical

delay and error-rate bounded QoS provisionings under the

power allocation Pd,k,j . We define the ϵ-effective capacity

ECk(¹d, ϵd,Pd,k,j) as follows [13, Definition 5]:

Definition 2: Using the (n,W, ϵ)-code for the

metaverse data-content item d, the ϵ-effective capacity

ECk(¹d, ϵd,Pd,k,j) for the kth MU is defined as the

maximum packet’s constant arrival rate for a given service

process considering the delay QoS exponent ¹d and the

non-vanishing decoding error probability ϵd, subject to

statistical delay and error-rate bounded QoS constraints,

respectively, which is given as follows:

ECk(¹d, ϵd,Pd,k,j)

≜ − 1

n¹d
log
{
ϵd + (1 − ϵd) Eµk

[
e−¹dnR(µk(Pd,k,j))

]}
(9)

where µk(Pd,k,j) is the signal-to-noise ratio (SNR) of the

kth MU under the transmit power allocation Pd,k,j , Eµk
[·]

denotes the expectation with respect to the SNR µk(Pd,k,j),
and R (µk(Pd,k,j)) is the data rate (bits/sec/Hz) under the SNR

µk(Pd,k,j). ■
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D. Hypothesis Testing Based NFV/SDN Network

Architectures for Metaverse Streaming

We propose an optimal hypothesis testing to solve Eq. (7)

and accept one hypothesis Hj ,∀j ∈ J , as the estimated

MU’s data request pmf profile for its metaverse streaming.

Then, using the hypothesis testing outcome, we propose to

map all MUs, which have the same metaverse data requests

pmf profile Zipf(rj , D), into the same virtual network slice

and let them exchange metaverse data with other MUs in this

virtual network slice. This is because MUs having the same

metaverse data requests pmf profile are predicted to request the

same metaverse data-content items with the same probability

and uniform statistical QoS requirements, including the QoS

exponent ¹d and decoding error probability ϵd, for each

metaverse data-content item d. Then, we develop Algorithm 1

given in TABLE I which shows our proposed hypothesis

testing based NFV/SDN network architectures and resources

allocation schemes.

III. OPTIMAL DECISION AND BOUNDS OF SEQUENTIAL

HYPOTHESIS TESTING

A. Optimal Decision of Sequential Hypothesis Testing

In order to determine the optimal sequential hypothesis

testing, our proposed decision schemes consist of the following

two steps.

Step 1: Selecting the Optimal Subset of Hypotheses

Around Àj , there exists the interval (À
j
, Àj), where À

j
≜

Àj − Ã/2 and Àj ≜ Àj + Ã/2, for Ã > 0 [30], and Ã =

Àj − À
j

is a constant, ∀j. Let Rj be the sequential hypothesis

test for testing the hypothesis HÀ
j
: “accepting À

j
” against

HÀj
: “accepting Àj”. Similar to the two types of errors in

Section II-B, we define another two types of errors: Type I

error is defined as “Reject À
j

when À
j

is true”, whose

probability is upper bounded by ³j , and Type II error is

defined as “Accept À
j

when Àj is true”, whose probability is

upper bounded by ´j . According to [30] and [31], we select

two positive constants Aj and Bj and set the values of Aj
and Bj , respectively, as

Aj ∝
1 − ´j
³j

, Bj ∝
´j

1 − ³j
, and Bj < Aj (10)

where φ(x) ∝ g(x) implies limx→∞ φ(x)/g(x) = 1. Define

the likelihood ratio of Rj by time t as z
(t)
Àj

, which is given by

z
(t)
Àj

≜

t∏

q=1

fÀj
(Xq)

fÀ
j
(Xq)

=

(∑D
d=1 d

−(À
j
+Ã)

∑D
d=1 d

−À
j

)t

︸ ︷︷ ︸
g(À

j
)

(
t∏

q=1

Xq

)Ã
. (11)

We accept HÀj
if z

(t)
Àj

> Aj , accept HÀ
j

if z
(t)
Àj

< Bj ,

and take an additional observation if Aj < z
(t)
Àj

< Bj .
The decision procedure of this multiple sequential hypothesis

testing is: (1) All Rj’s are testing simultaneously at each stage

until each z
(t)
Àj

leads to the hypothesis testing Rj stopping.

(2) Based on the result of each Rj , we select an optimal

subset of hypotheses from multiple hypotheses {Hj},∀j ∈ J .

TABLE I

Algorithm 1 Neyman-Pearson Criterion Driven NFV-

SDN Architectures and Optimal Resource-Allocations for

Statistical-QoS Based mURLLC Over 6G Metaverse Mobile

Networks Using FBC

1: Input: The BS/AP set and MU set; all hypotheses

{Hj},∀j; each metaverse streaming’s delay-bounded QoS

exponent ¹d and error probability ϵd,∀d; and each MU’s

channel fading hk,∀k.

2: for each BS/AP do

3: Assign each BS/AP to a virtual network slice that

supports one type of metaverse streaming.

4: end for

5: for each MU do

6: Observe its requested data content items and accept an

optimal hypothesis Hj , i.e., the pmf frj
(d).

7: According to the accepted hypothesis Hj , assign the

MU to the corresponding virtual network slice that

supports this metaverse streaming.

8: end for

9: for Each MU in each network slice do

10: Derive the optimal wireless resources (i.e., transmit

power) for each MU using frj
(d) to maximize the

average aggregate ϵ-effective capacity over the entire

network slice based on the required delay QoS exponent

¹d and error probability ϵd for the metaverse data and

MU’s wireless channel fading hk.

11: end for

12: Output: optimal wireless network slicing, optimal MU’s

mapping and wireless resource allocations, and maximum

average aggregate ϵ-effective capacity of each virtual

network slice.

The optimal subset selection needs to consider the following

Case 1 and Case 2, respectively.

Case 1. All Aj’s are equal to each other, i.e., Aj = A,∀j,
and all Bj’s are equal to each other, i.e., Bj = B,∀j. For

this cases, if z
(t)
Àj

> A, i.e., accepting Àj , we must reject

all À
j̃
, where j̃ > j; if z

(t)
Àj

< B, i.e., accepting À
j
, we

must reject all Àj̃’s, where j̃ < j. This is because of the

following derivations. When z
(t)
Àj

> A, we have g(À
j
) >

A
(∏t

q=1Xq

)−Ã
. Observing that g(À

j
) in Eq. (11) is an

increasing function of À
j
, we must have g(À

j̃
) > g(À

j
)

when j̃ > j, and thus, g(À
j̃
) > A

(∏t
q=1Xq

)−Ã
. Therefore,

g(À
j̃
) < B

(∏t
q=1Xq

)−Ã
(i.e., accepting À

j̃
) must not hold,

due to B < A as shown in Eq. (10). Using the similar

derivation, we obtain that if z
(t)
Àj

< B, i.e., accepting À
j
,

we must reject all Àj̃’s, where j̃ < j.
At one stage, if there exist multiple j’s which result in

z
(t)
Àj

> A, we make the decision to accept Àj such that Àj is

the smallest number satisfying z
(t)
Àj

> j. Similarly, at another

stage if there exist multiple j’s which result in z
(t̃)
Àj

< B,
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we make the decision to accept À
j

such that À
j

is the largest

number satisfying z
(t̃)
Àj

< B, where t̃ ̸= t. We continue with

this procedure until all tests stop.

Case 2. Aj ̸= Aj̃ and Bj ̸= Bj̃ if j ̸= j̃. To satisfy both

z
(t)
Àj
> Aj and z

(t)
À

j̃
> Aj̃ , let

Aj [g(Àj)]
−1 g Aj̃ [g(Àj̃)]

−1 if j > j̃. (12)

Since g(Àj) > g(Àj̃) for j > j̃, we must design the sequential

hypothesis testing such that Aj > Aj̃ to let Eq. (12) hold.

Similarly, we design the testing such that Bj > Bj̃ for j > j̃.
Based on the conditions in Case 1 and Case 2, if we happen

to accept two hypotheses HÀj
and HÀ

j+1
, then we will accept

the hypothesis Hj as the optimal distribution estimation for the

future data request probability profile; otherwise, we obtain a

set of accepted hypotheses, denoted by {Hs},∀s ∈ S, which

is the optimal subset of {Hj} and S ¢ J .

Step 2: Deriving the Optimal Hypothesis from the Subset

We further derive the optimal hypothesis from the above

obtained subset of hypotheses. The optimizing problem in

Eq. (7) is converted to the equivalent problem of minimizing

the cost of stopping a sequential procedure at the time slot t,
denoted by Ct(X1, X2, . . . , Xt), based on the observations

(X1, X2, . . . , Xt), as follows:

min
(Èt,¶t)

EPj
[Ct(X1, X2, . . . , Xt)] (13)

s.t.: C1: Ei,j

[
P F(j, i)

]
f³;

C2: Ei,j

[
PM(j, i)

]
f´,

where EPj
[·] denotes the expectation under the condition that

Hj is the actual data request probability distribution.

B. Exponentially Bounded Stopping Time of Zipf Sequential

Hypotheses Testing

Suppose that the sequential hypothesis testing stops at stage

T , and the test stops when T is the smallest number of t such

that llow < lt(j, i) < lup is violated, where lt(j, i) ≜ log
(
z
(t)
j,i

)

with z
(t)
j,i defined by Eq. (3), and llow ≜ log(Bj) and lup ≜

log(Aj) are stopping bounds of lt(j, i), j ̸= i, with Aj and Bj
defined by Eq. (10). Suppose that X1, X2, . . . are i.i.d. random

variables. Define Yq ≜ y(Xq), q = 1, 2, . . . , as a function y(·)
that maps the range of Xq into an Euclidean k-space, k g 1,

and define Y t ≜ 1
t

∑t
q=1 Yq. Then, we have the following

Theorem 1.

Theorem 1: If a sequential hypothesis test is testing the

Zipf exponent under a Zipf distribution, then the following

three claims hold.

Claim 1. E[Y1] = ε exists and is finite.

Claim 2. There exist, respectively, a neighborhood N of ε,
a real-valued continuous function Φj,i(·) on N , and a finite

bound constant Ij,i > 0 such that if Y t ∈ N , t = 1, 2, . . . ,
then

∣∣lt(j, i) − tΦj,i(Y t)
∣∣ < Ij,i (14)

where | · | is the absolute value, Ij,i given by Eq. (14)

is the Kullback-Leibler divergence measurement between

distributions Pj and Pi which is specified as follows:

Ij,i =

∣∣∣∣EPj

[
log

frj
(X1)

fri
(X1)

]∣∣∣∣ , (15)

and

lt(j, i) ≜ log
(
z
(t)
j,i

)
= log

[
t∏

q=1

frj
(Xq)

fri
(Xq)

]

= log

[
t∏

q=1

(
Xri−rj
q

∑D
d=1 d

−ri

∑D
d=1 d

−rj

)]

= (ri − rj)

t∑

q=1

logXq + tMj,i (16)

where z
(t)
j,i is given by Eq. (3) and

Mj,i ≜ log

(∑D
d=1 d

−ri

∑D
d=1 d

−rj

)
. (17)

Claim 3. Φj,i(ε) ̸= 0 or the first-order derivative of function

Φj,i(·) satisfies the following equation:

Pr

{
∂Φj,i(Y1 − ε)

∂X1
= 0

}
< 1. (18)

Proof: The proof is provided in Appendix A. ■

Remarks on Theorem 1: Theorem 1 ensures that our

proposed Neyman-Pearson based sequential hypotheses test

will eventually stop and accept a hypothesis as the optimal

data request pmf profile. In addition, Theorem 1 shows

that Ij,i =
∣∣EPj

[
log
{
frj

(X1)/fri
(X1)

}]∣∣, which is the

Kullback–Leibler divergence measurement.

Theorem 2: If a sequential hypothesis test is testing the Zipf

exponent under a Zipf distribution, then the stopping time of

this sequential hypothesis test is exponentially bounded [23],

namely, for some c < ∞ and 0 < Ä < 1, the following two

equations hold:
{

Pr{T <∞} = 1, (19)

Pr{T > t} < cÄt, t = 1, 2, . . . (20)

Proof: The proof is provided in Appendix B. ■

Remarks on Theorem 2: Theorem 2 reveals that the stopping

time of our proposed sequential hypothesis test is exponen-

tially bounded, implying that the convergency speed is an

exponentially decaying function.

C. Bounds and Convergency on Stopping Time for

Neyman-Pearson Hypothesis Test

Simplify the notation of P F(j, i) as ³j,i. For every 0 <
¸ < 1, there exists ˜̧> 1 such that ¸˜̧< 1, and let t∗ be the

greatest integer such that

t∗ f ¸ min
j,i,j ̸=i

{ |log³j,i|
Ij,i

}
. (21)

Since Pj is the Ã-finite probability measure as defined by

Eq. (1) and Eq. (2) we use
∫
ϕdPj to represent Pj{ϕ} if ϕ is
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a measurable function. Then, for the decision-functions pair

(Èt, ¶t), we can derive the probability ³j,i as follows:

³j,i ≜ P F(j, i) =

∫

{j ̸=i}

exp

{
−

T∑

q=1

Zj,i(q)

}
dPj

(a)
=

∫

{j ̸=i}

exp {−lT (j, i)} dPj

g
∫

{j ̸=i,Tft∗,lT (j,i)f˜̧t∗Ij,i}

exp {−lT (j, i)} dPj

gexp{−˜̧t∗Ij,i}Pj{j ̸= i, T f t∗, lT (j, i)f ˜̧t∗Ij,i} (22)

where j, i ∈ J , (a) holds due to Eq. (4) with {Xq},∀q, being

i.i.d. and Eq. (16), and Zj,i(q) is specified in Eq. (4). From

Eq. (21), we can get

˜̧t∗Ij,i f ¸˜̧ |log³j,i| (23)

and thus, it follows from Eq. (22) and Eq. (23) that

³j,igexp {−¸˜̧ |log³j,i|}Pj{j ̸= i, T f t∗, lT (j, i)f ˜̧t∗Ij,i}
= exp {¸˜̧ log³j,i}Pj {j ̸= i, T f t∗, lT (j, i) f ˜̧t∗Ij,i}
= (³j,i)

¸˜̧
Pj {j ̸= i, T f t∗, lT (j, i) f ˜̧t∗Ij,i} . (24)

From Eq. (24), we can further obtain the followings:

(³j,i)
1−¸˜̧ g Pj {j ̸= i, T f t∗, lT (j, i) f ˜̧t∗Ij,i} . (25)

Using Eq. (25), we can get

Pj {j ̸= i, T f t∗}
f (³j,i)

1−¸˜̧
+Pj {T f t∗, lT (j, i) g ˜̧t∗Ij,i}

f (³j,i)
1−¸˜̧

+Pj

{
max
Tft∗

lT (j, i) g ˜̧t∗Ij,i
}
. (26)

Since Eq. (26) holds for each j, summing up Eq. (26)’s for

all j with j ̸= i and then taking the supremum over (Èt, ¶t),
we obtain:

sup
(Èt,¶t)

Pj {T f t∗} f
∑

j∈J ,j ̸=i

(³j,i)
1−¸˜̧

+
∑

j∈J ,j ̸=i

Pj

{
max
Tft∗

log
frj

(X1, . . . , XT )

fri
(X1, . . . , XT )

g ˜̧t∗Ij,i
}
. (27)

Since
∑
j ³j,i → 0, ˜̧> 1, and using Eq. (23) and

1

T
log

frj
(X1, . . . , XT )

fri
(X1, . . . , XT )

→ Ij,i, a.s. [Pj ] (28)

which is due to Eq. (14), we can further derive Eq. (27) as

follows:

sup
(Èt,¶t)

Pj {T f t∗} f
∑

j∈J ,j ̸=i

Pj

{
max
Tft∗

T g ¸
| log³j,i|
Ij,i

}
.

(29)

Thus, for every 0 < ¸ < 1, we have

inf
(Èt,¶t)

Pj

{
T g ¸min

j ̸=i

{ | log³j,i|
Ij,i

}}
→ 1. (30)

For each ³j,i, let Cj,i be a positive constant such that

logCj,i ∝ | log³j,i|, as
∑

j,i

³j,i → 0 (31)

where ∝ is defined in the text following Eq. (10). Define U
as

U ≜ inf

{
t g 1 :

∏t

q=1

frj
(Xq)

fri
(Xq)

g Cj,i

}
, (32)

implying that the test stops sampling at time slot U and accepts

Hj if z
(U)
j,i g Cj,i. As

∑
j,i ³j,i → 0, using Eq. (28) and

Eq. (31), we get

U

minj ̸=i{| log³j,i|/Ij,i}
→ 1, a.s. [Pj ]. (33)

Thus, for every 0 < ¸ < 1, we get

inf
(Èt,¶t)

Pr {T g ¸U} → 1 (34)

and the error probability of the test as follows:

Pj{(Èt, ¶t) rejects Hj} f 1

Cj,i
Pi{(Èt, ¶t) rejects Hi}. (35)

We also extend the results of Eq. (34) into the notion of

»-quick convergency, which is defined as follows: for » > 0,

a sequence {Ψt} of random variables is said to converge »-

quickly [32], to a constant ¼ if E[(La)
»] < ∞ for all a > 0,

where La = supt{t g 1 : |Ψt − ¼| g a}. Therefore, we can

obtain from Eq. (30) that

inf
(Èt,¶t)

E [T»] g ¸»
(

min
j ̸=i

{ | log³j,i|
Ij,i

})»
(1 + o(1)) (36)

where φ(x) = o(g(x)) if limx→∞ φ(x)/g(x) = 0. Using the

definition of »-quick convergency given above, let 0 < a <
minj ̸=i{Ij,i}, and define

La

≜ sup
t



tg1 : max

i=0,...,J
j ̸=i

∣∣∣∣
1

t
log

frj
(X1, . . . , Xt)

fri
(X1, . . . , Xt)

− Ij,i

∣∣∣∣>a



 .

(37)

When U − 1 g La, we have
∣∣∣∣

1

U − 1
log

frj
(X1, . . . , XT )

fri
(X1, . . . , XT )

−Ij,i
∣∣∣∣ f a. (38)

Suppose Ij,i > 0, Eq. (38) is equivalent to

(Ij,i − a)(U − 1) < log
frj

(X1, . . . , XU−1)

fri
(X1, . . . , XU−1)

< logCj,i. (39)

Then, for U f La + 1, we have the complementary event of

Eq. (39) as follows:

U g 1 + min
j ̸=i

{
logCj,i
Ij,i − a

}
. (40)

For some positive constant », Eq. (28) can be further enhanced

into

1

T
log

frj
(X1, . . . , XT )

fri
(X1, . . . , XT )

→ Ij,i, »-quickly under Pj . (41)

Thus, combing Eq. (40) and Eq. (41) we obtain the

lower-bound on the stopping time as follows:

inf
(Èt,¶t)

E [T»] ∝ E [U»] g
(

min
j ̸=i

{ | log³j,i|
Ij,i

})»
. (42)
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IV. NFV/SDN ARCHITECTURE TO MAXIMIZE

ϵ-EFFECTIVE CAPACITY FOR EACH METAVERSE

STREAMING VIRTUAL SLICE

After observing all MUs’ data requests and determining an

optimal hypothesis for each MU, we apply the NFV/SDN

architectures to map all MUs which are predicted to have

the same metaverse streaming request probability profile,

according to their corresponding accepted hypotheses, into

one virtual network slice and allocate the optimal wireless

resources, i.e., transmit power, to maximize their average

aggregate ϵ-effective capacity [3], [4]. We derive the average

aggregate ϵ-effective capacity by first obtaining the aggregate

ϵ-effective capacity over all MUs, and then calculating its

average using each metaverse data request probability.

A. The ϵ-Effective Capacity Over Nakagami-m Fading for

Metaverse Streaming Through Single Antenna Transmission

We employ the Nakagami-m fading channel model, since

it is a more practical model to characterize the multipath

scattering. Let hk be the fading amplitude of the kth MU fol-

lowing the Nakagami-m distribution, and let N0 be the power

of additive white Gaussian noise (AWGN). The SNR of the

kth MU is given by µk(Pd,k,j) = (h2
kPd,k,j)/N0. Under the

Nakagami-m fading wireless channel, the probability density

function (pdf) of the SNR µk(Pd,k,j), denoted by PΓ(µk),
is given by

PΓ(µk) =
µm−1
k

Γ(m)

(
m

µk

)m
exp

(
−m

µk
µk

)
(43)

where m is the fading parameter of the Nakagami-m distri-

bution, µk = (E[h2
k]Pd,k,j)/N0 is the average SNR, ∀k, and

Γ(·) is the gamma function. Under the Nakagami-m fading

channel, we give a closed-form expression for the ϵ-effective

capacity, defined in Eq. (9), in the following theorem.

Theorem 3: Under our proposed NFV/SDN architectures

for metaverse streaming, if the metaverse streaming is trans-

mitted through a single antenna wireless channel experiencing

the Nakagami-m fading with m > 1, where the pdf of

the received SNR is characterized by Eq. (43), then the

closed-form expression for the ϵ-effective capacity defined by

Eq. (9) for the kth metaverse MU using the (n,W, ϵ)-code in

the non-asymptotic regime is determined by

ECk(¹d, ϵd,Pd,k,j)

= − 1

n¹d

{
log

[
ϵd + (1 − ϵd)

(
1 + µk

2ϵ̃d
√
V (µk)

)−¹̃d

]}
(44)

where ¹̃d ≜ (log2 e)¹dn, ϵ̃d ≜ Q−1(ϵd)/
√
n, and V (µk) ≈

1 − [1/(1 + µk)
2] is the channel dispersion of the AWGN

channel [12, Eq. (293)], where Q−1(·) is the inverse of the

Q-function.

Proof: The proof is provided in Appendix C. ■

Remarks on Theorem 3: The closed-form expression derived

in Eq. (44) of Theorem 3 identifies the explicit relationships

between the ϵ-effective capacity and other important control

variables over a single-input-single-output channel, which are

to be used to derive the ϵ-effective capacity over the massive

MIMO channel in Theorem 5 of this paper.

B. Channel Estimations for Massive MIMO Communications

for Metaverse Mobile Users

Suppose that there are MT antennas on the BS/AP and there

are MR antennas for each MU, where MT k MR. Denote

by gk,¿ ∈ C
MR×1 the channel gain between the kth MU

and the ¿th antenna on the massive antenna equipped BS/AP,

where C
MR×1 denotes a set of elements each consisting of

a complex-valued matrix with MR rows and one column.

Denote by Rk the distance between the kth MU and antennas

of the BS/AP, assuming that the distance between two antennas

on the BS/AP is small comparing with the distance between an

MU and the BS/AP. We give gk,¿ as follows [5, Eq. (2.19)]:

gk,¿ =
√
´khk,¿ (45)

where ´k ≈ [¼/(4ÃRk)]
2

is the large-scale fading coefficient,

where ¼ is the wavelength, and hk,¿ ∈ C
MR×1 indicates

the effect of small-scale fading between all antennas on the

kth MU and the ¿th antenna on the BS/AP. We consider that

each coherence interval is divided into two phases: (1) uplink

training phase to estimate the channel gain and (2) down-

link payload data transmission phase to download the

data.

1) Uplink Training Phase: Denote by Äul,p the number of

samples for the uplink pilot signal, where we assume that

Äul,p g MR. Define φ = [ϕ1, · · · , ϕÄul,p
] ∈ C

1×Äul,p as an

orthogonal pilot training sequence satisfying ∥φ∥2 = 1, where

∥ · ∥ is the Euclidean norm. The pilot signal sending from

the kth MU to the BS/AP is denoted by x
(p)
k =

√
Äul,pφ ∈

C
1×Äul,p . In the training phase, we assign MR orthogonal pilot

sequences to MR antennas of the MU k, and both the MU

k and the BS/AP know these pilot sequences. Let Äul be

the transmit power over uplink and W(p) ∈ C
MR×Äul,p be

the AWGN matrix, whose elements are i.i.d., following the

complex Gaussian distribution CN (0, 1). The received pilot

signal, denoted by Y
(p)
k,¿ ∈ C

MR×Äul,p , at the ¿th antenna of

the BS/AP, is given by

Y
(p)
k,¿=

√
Äulgk,¿x

(p)
k + W(p) =

√
Äul,pÄulgk,¿φ + W(p). (46)

Applying the de-spreading scheme [5, Section 3.1.2] to the

received pilot signal, the BS/AP performs a de-spreading

operation by correlating its received signals with the pilot

signal. Denote by y
(p)
k,¿ ∈ C

MR×1 the received signal after

the de-spreading operation, which is given by

y
(p)
k,¿ = Y

(p)
k,¿φ

H =
√
Äul,pÄulgk,¿ + w(p) (47)

where (·)H denotes the Hermitian transpose, w(p) ≜

W(p)φH ∈ C
MR×1 is the AWGN after de-spreading,

and each element of w(p) follows CN (0, 1). Let Gk =
[gk,1,gk,2, · · · ,gk,MT

] ∈ C
MR×MT be the channel gain

matrix between all antennas on the kth MU and all antennas

on the BS/AP. Let Ĝk = [ĝk,1, ĝk,2, · · · , ĝk,MT
] ∈ C

MR×MT

be the estimated channel gain matrix, indicating the estima-

tion of Gk. Using the minimum mean-square error (MMSE)

estimation, we obtain the estimated channel gain ĝ
(l)
k,¿ between

the lth antenna (with ∀l ∈ {1, · · · ,MR}) on the kth MU and

the ¿th antenna (with ∀¿ ∈ {1, · · · ,MT }) on the BS/AP as
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follows [5, Eq. (3.7)] [33, Eq. (4)]:

ĝ
(l)
k,¿=E

[
g
(l)
k,¿

∣∣∣y(p,l)
k,¿

]
=

E

[
y
(p,l)∗
k,¿ g

(l)
k,¿

]

E

[∣∣∣y(p,l)
k,¿

∣∣∣
2
] y(p,l)

k,¿ =

√
Äul,pÄul´k

1+Äul,pÄul´k
y
(p,l)
k,¿

(48)

where E [·|·] denotes the conditional expectation, (·)∗ denotes

the conjugate, and ĝ
(l)
k,¿ and y

(p,l)
k,¿ are the lth element of ĝk,¿

and y
(p)
k,¿ , respectively. Substituting each element of y

(p)
k,¿ given

by Eq. (47) into Eq. (48), the channel estimation ĝk,¿ is

given by

ĝk,¿ =
Äul,pÄul´k

1 + Äul,pÄul´k
gk,¿ +

√
Äul,pÄul´k

1 + Äul,pÄul´k
w(p). (49)

2) Downlink Payload Data Transmission Phase: During

the downlink payload data transmission phase, the BS/AP

treats the channel estimation ĝk,¿ as the true channel to

transmit the data packet to the MU k. Let bk be symbol

intended to the MU k, satisfying E[|bk|2] = 1. Let x =
[x1, x2, · · · , xMT

]
⊺ ∈ C

MT ×1 be the weighted symbol trans-

mitted from all antennas of the BS/AP, where (·)⊺ is the

transpose. Let Kd be the total number of MUs in a virtual

network slice requesting the same metaverse data item d. Let

Pmax be the total transmit power from the BS/AP to all MUs

for transmitting the same metaverse data. Using the maxi-

mum ratio transmission (MRT) precoding as the beamforming

scheme to focus the signal of the payload metaverse data

towards the kth MU, each element x¿ ,∀¿, of x, which is the

transmit signal on the ¿th antenna of the BS/AP, is given by

x¿ =

Kd∑

k=1

√
Pd,k,j

(
ηk,¿

) 1
2 ĝ∗

k,¿bk, (50)

where Pd,k,j is the downlink transmit power for transmitting

the data item d to the kth MU if accepting Hj as its data

request pmf profile and
∑Kd

k=1 Pd,k,j = Pmax,∀d, j, ηk,¿ ∈
R

1×MR is the power control coefficient for the signal from

the ¿th antenna of the BS/AP to the kth MU, each element

of ηk,¿ , denoted by ¸
(l)
k,¿ , satisfies ¸

(l)
k,¿ ∈ [0, 1],∀l, and (·) 1

2

is taking square root for each element. The received signal

at the kth MU, denoted by yk ∈ C
MR×1, is given by yk =

Gkx+wk, where wk ∈ C
MR×1 is the AWGN on all antennas

of the kth MU, whose element is denoted by w
(l)
k following

CN (0, 1). Each element y
(l)
k of yk, ∀l ∈ {1, 2 · · · ,MR},

representing the received signal by the lth antenna of MU

k, is given by

y
(l)
k =

MT∑

¿=1

g
(l)
k,¿x¿ + w

(l)
k =

√
Pd,k,j

MT∑

¿=1

g
(l)
k,¿

(
ηk,¿

) 1
2 ĝ∗

k,¿bk

+

MT∑

¿=1

K∑

u=1,u ̸=k

√
Pd,u,jg(l)

k,¿

(
ηu,¿

) 1
2 ĝ∗

u,¿bu + w
(l)
k

︸ ︷︷ ︸
effective additive noise N

(l)
k

(51)

where bu is the symbol intended to the MU u, u ̸= k, and

N
(l)
k is the effective additive noise of the kth MU on its

lth antenna.

C. The Average SNR Over Nakagami-m Channels for

Massive MIMO Metaverse Streaming

Denote the SNR of the lth antenna on the kth MU

under the BS/AP power allocation Pd,k,j by µMIMO
k,(l) (Pd,k,j)

over the massive MIMO channel. The key step to derive

ϵ-effective capacity of massive MIMO communications is

deriving the expression for µMIMO
k,(l) (Pd,k,j). Using Eq. (51),

the SNR µMIMO
k,(l) (Pd,k,j), ∀l, for the massive MIMO channel

is given by [34] and [35]

µMIMO
k,(l) (Pd,k,j)

≜

Var

[
√

Pd,k,jbk
MT∑

¿=1

g
(l)
k,¿

MR∑

i=1

√
¸
(i)
k,¿ ĝ

(i)∗
k,¿

]

Var



MT∑

¿=1

K∑

u=1,u ̸=k

√
Pd,u,jg(l)

k,¿

(
ηu,¿

) 1
2 ĝ∗

u,¿bu


+1

(52)

where Var[·] is derived with respect to both the random

distance Rk and the random h
(l)
k,¿ , which is the lth ele-

ment of hk,¿ , representing the small-scale fading amplitude

between the lth antenna on MU k and the ¿th antenna of

the BS/AP. We assume that all h
(l)
k,¿ ,∀l, ¿, are i.i.d., following

the Nakagami-m distribution. We can derive a closed-form

expression for µMIMO
k,(l) (Pd,k,j) specified by Eq. (52) in the

following theorem.

Theorem 4: For our proposed NFV/SDN architectures to

support metaverse streaming, if the metaverse streaming is

transmitted over a massive MIMO channel experiencing the

Nakagami-m fading and assume that all metaverse MUs are

uniformly distributed within a wireless cell with the inner

radius Rmin and the outer radius Rmax, then we can derive

a closed-form expression for SNR µMIMO
k,(l) (Pd,k,j), which is

defined by Eq. (52), as follows:

µMIMO
k,(l) (Pd,k,j) =

Pd,k,jNk,1
(Pmax − Pd,k,j)Nk,2 + 1

(53)

where

Nk,1 =
´3
kÄul,pÄul¸MTMRh

2

(1 + Äul,pÄul´k)2

(
1+Äul,pÄul´kMTMRh

2
)

(54)

and

Nk,2 =
´k¸MTMRh

2
¼2

(4Ã)2(R2
max−R2

min)

{
Äul,pÄul

(
Äul,pÄulh

2
+1
)
(Xmax−Xmin)

+
MT (MR−1)¼2

(4Ã)2(R2
max−R2

min)

[
log

(
Xmax

Xmin

)]2}
, (55)

where ¸ ≜ E

[
¸
(i)
k,³

]
, h ≜ E

[
h

(l)
k,¿

]
, and





Xmax =
¼2

16Ã2(R2
min + º2) + Äul,pÄul¼2

,

Xmin =
¼2

16Ã2(R2
max + º2) + Äul,pÄul¼2

,
(56)

where we define º as the height of a BS/AP.

Proof: The proof is provided in Appendix D. ■
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Remarks on Theorem 4: Theorem 4 reveals that all

µMIMO
k,(l) (Pd,k,j),∀l, are the same, since random variables

h
(l)
k,¿ ,∀l, ¿, are i.i.d.

According to Eq. (44), the ϵ-effective capacity is a function

of the average SNR for a wireless channel. Using Remarks on

Theorem 4, the average SNR for the massive MIMO channel,

denoted by µMIMO
k (Pd,k,j), over all elements µMIMO

k,(l) (Pd,k,j),
∀l, is given by

µMIMO
k (Pd,k,j) = µMIMO

k,(l) (Pd,k,j), ∀l. (57)

D. The Optimal Transmit Power Allocation for Maximizing

Aggregate ϵ-Effective Capacity Over Massive-MIMO

Channels for Each Virtual Network Slice

Define Pk,j ≜ [P1,k,j , · · · ,PD,k,j ]⊺ as the transmit power

allocations for transmitting all metaverse data items to the

kth MU if accepting Hj as the data requests pmf profile,

and define P
∗
k,j as the optimal value of Pk,j that max-

imizes the average aggregate ϵ-effective capacity. Defining

ECMIMO
k (¹d, ϵd,Pd,k,j) as the ϵ-effective capacity for the

kth MU over the massive MIMO channel, we formulate the

average aggregate ϵ-effective capacity maximization problem

for a virtual network slice as follows:
[
P

∗
1,j , · · · ,P∗

K,j

]

= arg max
[P1,j ,··· ,PK,j ]

D∑

d=1

frj
(d)

Kd∑

k=1

ECMIMO
k (¹d, ϵd,Pd,k,j) (58)

s.t.: C1:

Kd∑

k=1

Pd,k,j f Pmax,

C2: Pd,k,j g 0, ∀k.

To solve the maximization problem specified by Eq. (58),

we give closed-form expressions for the maximum aver-

age aggregate ϵ-effective capacity and the optimal transmit

power allocation P
∗
k,j , respectively, in the following theorem,

by extending the results of Theorem 3 over the single antenna

channel into the massive MIMO channel version.

Theorem 5: If the metaverse streaming for each virtual

network slice is dictated under our proposed Neyman-Pearson

hypothesis testing driven massive MIMO NFV/SDN archi-

tectures and optimal resource allocation schemes, then the

following two claims hold true.

Claim 1. The closed-form expression for the maximum

ϵ-effective capacity, denoted by ECMIMO
k (¹d, ϵd,P∗

d,k,j), for

the kth MU over the massive-MIMO channel in its correspond-

ing virtual network slice is determined by

ECMIMO
k (¹d, ϵd,P∗

d,k,j)

=− 1

n¹d



log


ϵd+(1−ϵd)

(
1 + µMIMO

k (P∗
d,k,j)

2
ϵ̃d

√
V (µMIMO

k
(P∗

d,k,j
))

)−¹̃dMR








(59)

where P∗
d,k,j is the optimal Pd,k,j to be specified by Claim 2

of this theorem, and µMIMO
k (P∗

d,k,j) is the average SNR under

the optimal transmit power allocation P∗
d,k,j given by

µMIMO
k (P∗

d,k,j)

=





1

Nk,2

[
ϱ∗µ,12

ϵ̃kNk,1

frj
(d)

(1 +Nk,2Pmax)

] 1
2

− Nk,1
Nk,2

,

if µMIMO
k (P∗

d,k,j) k 1,

1

Nk,2

[
ϱ∗µ,2Nk,1

frj
(d)

(1 +Nk,2Pmax)

] 1
2

− Nk,1
Nk,2

,

if 0 < µMIMO
k (P∗

d,k,j) < 1,

(60)

where Nk,1 and Nk,2 are given by Eq. (54) and Eq. (55),

respectively, and ϱ∗µ,1 and ϱ∗µ,2 are given, respectively, by the

following equations:




ϱ∗µ,1 =frj
(d)




Kd∑

k=1

1

Nk,2

[
Nk,1
2ϵ̃k

(1+Nk,2Pmax)

] 1
2

Kd∑

k=1

1 +Nk,2Pmax

Nk,2
− Pmax




2

,

ϱ∗µ,2 =frj
(d)




Kd∑

k=1

1

Nk,2
[Nk,1(1 +Nk,2Pmax)]

1
2

Kd∑

k=1

1 +Nk,2Pmax

Nk,2
− Pmax




2

.

(61)

Claim 2. The closed-form expression for the optimal solu-

tion
[
P

∗
1,j , · · · ,P∗

K,j

]
for the maximization problem given

by Eq. (58) can be obtained by deriving each of its element,

denoted by P∗
d,k,j ,∀k, d, which is the optimal transmit power

allocation for sending the data item d to the kth MU using

the estimated data request pmf profile frj
(d) obtained from

Section III-A. The closed-form expression for P∗
d,k,j ,∀k, d,

is determined as follows:

P∗
d,k,j=





1+Nk,2Pmax

Nk,2
− 1

Nk,2

[
frj

(d)Nk,1
1+Nk,2Pmax

ϱ∗µ,12
ϵ̂k

]1
2

,

if µMIMO
k (P∗

d,k,j) k 1,

1+Nk,2Pmax

Nk,2
− 1

Nk,2

[
frj

(d)Nk,1
1+Nk,2Pmax

ϱ∗µ,2

]1
2

,

if 0 < µMIMO
k (P∗

d,k,j) < 1.

(62)

Proof: The proof is provided in Appendix E. ■

V. PERFORMANCE EVALUATIONS

We conduct the extensive numerical analyses to validate

and evaluate our developed schemes. Figure 2 shows a case

study of testing a set of metaverse data items between two

hypotheses with Zipf exponents rj = 0.3 and ri = 0.1. In this

case study, suppose that there are totally 99 metaverse data

items. We set that the e-health care data is at the top-ranked

data range, the educational data is at the medium-ranked data

range, and the online gaming data is at the low-ranked data

range. For sake of the fairness, we also set that each type of

metaverse data evenly shares the total 99 data items, and thus,
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Fig. 2. A case study of request probability profile for three categories of
metaverse data items with rj = 0.1 and ri = 0.3.

Fig. 3. The stopping time T of the sequential hypothesis testing against the
minimum value of hypothesis testing error probability under different values
of the Zipf distributions difference Ij,i.

the number of each type of metaverse data items is 33. We take

t observations for an MU and select a pmf profile between

Hi and Hj . If our proposed sequential hypothesis testing

selects Hj , this MU is more likely to request more e-health

care metaverse streaming with a distribution Zipf(0.3, 99) in

the future and we can map it into a virtual network slice

where other MUs also request the e-health care data with the

distribution Zipf(0.3, 99). Otherwise, if accepting Hi, the MU

is more likely to request e-health care data with a distribution

Zipf(0.1, 99) and we map it into a virtual network slice

that other MUs also request the e-health care data with the

distribution Zipf(0.1, 99).
Figure 3 plots the stopping time T versus the minimum

value of error probability minj ̸=i{| log³j,i|} of the sequential

hypotheses testing under three values for the difference of

two Zipf distributions Ij,i =
∣∣EPj

[
log
{
frj

(X1)/fri
(X1)

}]∣∣ .
Figure 3 shows that the stopping time T is a decreasing

function of minj ̸=i{| log³j,i|}, because a larger number of

observations yields a hypothesis testing with a lower error

probability. Figure 3 also shows that the stopping time T is

a decreasing function of the Zipf distributions difference Ij,i,
because a smaller difference of Zipf distributions also requires

a larger number of observations to distinguish two hypotheses.

Fig. 4. The function of aggregate ϵ-effective capacity∑Kd
k=1

ECMIMO
k

(¹d, ϵd,Pd,k,j) with different numbers of antenna
MT on the massive-MIMO BS/AP.

Fig. 5. The ϵ-effective capacity ECMIMO
k

(¹d, ϵd,Pd,k,j) under different
values of the delay QoS exponent ¹d and the transmit power allocation Pd,k,j .

We show the aggregate ϵ-effective capacity∑Kd

k=1EC
MIMO
k (¹d, ϵd,Pd,k,j), i.e., the sum of ϵ-effective

capacity over all MUs on a virtual network slice, under

different numbers of antennas MT of the massive-MIMO

BS/AP in Fig. 4. We set the number of antennas for each

MU as MR = 2; the maximum and minimum distances

to the massive-MIMO BS/AP antennas as Rmax = 30m

and Rmin = 5m, respectively; and ¼ = 10m, Äul,p = 16,

Äul = 1W, Pmax = 10W. Observing Fig. 4, we obtain that

the aggregate ϵ-effective capacity monotonically increases

as the number of antennas MT increases, because a larger

number of antennas can improve the massive-MIMO channel

performance. We can also observe that the increasing rate of

the aggregate ϵ-effective capacity decreases as MT increases,

since these antennas also results in the interference to each

other.

In Fig. 5, we show the ϵ-effective capacity

ECMIMO
k (¹d, ϵd,Pd,k,j) of the kth MU under different

values of the delay QoS exponent ¹d and the transmit

power allocation Pd,k,j . The parameters are the same as

in Fig. 4. We observe from Fig. 5 that the ϵ-effective

capacity is a monotonically increasing function of the

transmit power allocation. We also observe that in a high
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Fig. 6. The function of ϵ-effective capacity with respect to the delay QoS
exponent ¹d under different values of the transmit power Pd,k,j and the
Nakagami-m fading parameter m.

power regime (Pd,k,j > 3 W), the increasing speed of

ECMIMO
k (¹d, ϵd,Pd,k,j) decreases as the transmit power

increases, showing that a large power allocation cannot

produce a large benefit in this regime. Thus, there exists an

optimal power P∗
d,k,j that maximizes the average aggregate

ϵ-effective capacity under a maximum transmit power

constraint.

Figure 6 plots the function of ϵ-effective capacity

ECk(¹d, ϵd,Pd,k,j) for a single antenna channel with respect

to the delay QoS exponent ¹d under different values of the

transmit power Pd,k,j and the Nakagami-m fading parameter

m. We set Pd,k,j = 0.1, 0.5 and m = 0.5, 1, 2, respectively.

We set other parameters as follows: the length of a codeword

n = 1000, the average SNR µk = 20 dB, and the fading

power range h2
k = [0.1, 1]. Figure 6 shows that for the

same Nakagami-m fading parameter, the ϵ-effective capacity

increases as the transmit power allocation Pd,k,j increases,

since a larger value of Pd,k,j yields a larger value of SNR

for the same channel fading hk. We can also observe from

Fig. 6 that for the same transmit power, ϵ-effective capacity

increases as the fading parameter m increases, because a larger

m represents a better channel quality. For each value of m
and Pd,k,j , ϵ-effective capacity monotonically decreases as the

delay QoS exponent ¹d increases. This is because ¹d indicates

the stringency of the statistical delay QoS, and thus, a channel

with a less stringent delay QoS requirement can support a

larger data arrival rate.

Figure 7 shows the ϵ-effective capacity ECk(¹d, ϵd,Pd,k,j)
under different values of the delay QoS exponent ¹d and

decoding error probability ϵd. Similar to Fig. 6, the ϵ-effective

capacity is a monotonically decreasing function of the delay

QoS exponent ¹d. Figure 7 reveals that the ϵ-effective capacity

is also a monotonically decreasing function of the decoding

error probability ϵd. This is because a smaller decoding error

probability indicates a better channel quality and a larger

achievable data rate, which yield a larger ϵ-effective capacity.

VI. CONCLUSION

As metaverse streaming in 6G wireless networks is expected

to demand stringent QoS provisionings on delay and decoding

Fig. 7. The function of ϵ-effective capacity under different values of the
delay QoS exponent ¹d and the decoding error probability ϵd.

error probability and will need to be transmitted among mas-

sive MUs, we have proposed to use the mURLLC technique

to support metaverse traffic, by integrating massive MIMO,

FBC, statistical QoS theory, and NFV/SDN architectures.

To estimate the MU’s future metaverse data request probabil-

ity profile, we have proposed a Neyman-Pearson hypothesis

testing based human-centric data prediction scheme and have

shown that the stopping time for the hypothesis testing is

bounded and converges. According to the estimated data

request probability profile, we have proposed to dynamically

map MUs that request the same set of metaverse data items

into the same virtual network slice using NFV/SDN archi-

tectures and have derived optimal transmit power allocations

to maximize the average aggregate ϵ-effective capacity, which

guarantees both statistical delay and error-rate bounded QoS,

for this virtual network slice.

APPENDIX A

PROOF OF THEOREM 1

Proof: We proceed with the proof by showing Claim 1,

Claim 2, and Claim 3, respectively. For presentation conve-

nience, we prove Claim 2 first.

Claim 2: We construct the functions: y(·) and Φj,i(·),
respectively, as follows:

{
Yq = y(Xq) ≜ logXq − 1

t
EPj

[logX1]

Φj,i(x) ≜ (ri − rj)x+ t−1
t
Mj,i

(63)

where Mj,i is defined in Eq. (17) and EPj
[·] is defined in the

text following Eq. (13). Thus, we can derive tΦj,i(Y t) given

in Eq. (14) as follows [23, Eqs. (3.2) and (3.9)]:

tΦj,i(Y t) = t(ri − rj)Y t + (t− 1)Mj,i

= (ri − rj)

[(
t∑

q=1

logXq

)
− EPj

[logX1]

]

+ (t− 1)Mj,i. (64)

Substituting Eqs. (16) and (64) into
∣∣lt(j, i) − tΦj,i(Y t)

∣∣ of

Eq. (14), we obtain
∣∣lt(j, i) − tΦj,i(Y t)

∣∣ =
∣∣EPj

[(ri − rj) logX1+Mj,i]
∣∣ . (65)
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Comparing Eq. (65) with Eq. (14), we can show that Eq. (14)

holds true which is detailed as follows:

Ij,i =
∣∣EPj

[(ri − rj) logX1 +Mj,i]
∣∣ (b)
=

∣∣∣∣EPj

[
log

frj
(X1)

fri
(X1)

]∣∣∣∣
(66)

where (b) follows by using Eq. (17) and Eq. (2). Thus,

Eq. (66) shows that Eq. (15) holds true, implying that Ij,i is

the Kullback-Leibler divergence between Pj and Pi, regardless

whatever neighborhood N is chosen, which completes the

proof for Claim 2.

Claim 1: Using Eq. (63), we can obtain ε as follows:

ε = E[Y1] = EPj

[
logX1 −

1

t
EPj

[logX1]

]

=
t− 1

t

D∑

d=1

(log d)d−rj

∑D
d=1 d

−rj

(67)

and thus Claim 1 holds.

Claim 3: Substituting Eq. (67) into Eq. (63), we can derive

Φj,i(ε) as follows:

Φj,i(ε) =
t− 1

t

[
(ri − rj)

∑D
d=1 [(log d)d−rj ]

∑D
d=1 d

−rj

+Mj,i

]
(68)

If ri and rj satisfy the following condition:
∑D
d=1 [(log d)d−rj ]
∑D
d=1 d

−rj

̸= − Mj,i

ri − rj
(69)

and also applying the condition of Eq. (69) into Eq. (68),

then we have Φj,i(ε) ̸= 0 for Claim 3. On the other hand, if

Φj,i(ε) = 0, using Eq. (63), we can obtain the following:

∂Φj,i(Y1 − ε)

∂X1
= (ri − rj)

1

X1
. (70)

Thus, Eq. (70) implies that Pr{(ri − rj)(1/X1) = 0} < 1,

which is equivalent to Eq. (18). Then, since rj ̸= ri, X1 ∈
{1, 2, . . . , D}, and D f ∞, we obtain Eq. (18), completing

the proof of Claim 3. Therefore, the proof for Theorem 1

follows. ■

APPENDIX B

PROOF OF THEOREM 2

Proof: According to [23, Theorem 2.1], Eq. (19) follows

due to Claim 1, Claim 2, and Claim 3 stated in Theorem 1.

To show Eq. (20), we need first to show that there exists a

ς > 0 such that:

Pr
{
lt+1(j, i) > lup|X1, . . . , Xt, l

low<lt(j, i)<l
up
}
g ς (71)

which is equivalent to

Pr
{
lt+1(j, i)−lt(j, i)>∆|X1, . . . , Xt, l

low<lt(j, i)<l
up
}
g ς

(72)

where ∆ = lup − llow. We derive lt+1(j, i) − lt(j, i) as

lt+1(j, i) − lt(j, i) = (ri − rj) logXt+1 +Mj,i (73)

when 0 < rj < ri < 1 or rj > ri > 1. Therefore, we have

lt+1(j, i) − lt(j, i) > 0, and then, there exists a ς > 0 such

that

Pr {lt+1(j, i) − lt(j, i) > ∆} g ς. (74)

Thus, Eq. (72) holds. Based on [23, pp. 1864], Eq. (72) implies

that Eq. (20) holds for every −∞ < llow < lup < ∞,

completing the proof of Theorem 2. ■

APPENDIX C

PROOF OF THEOREM 3

Proof: Using the FBC scheme, R (µk(Pd,k,j)) in Eq. (9)

is given by [12, Eq. (1)]

R(µk(Pd,k,j))

= log2 (1 + µk(Pd,k,j)) −
√
V (µk(Pd,k,j))

n
Q−1(ϵd)

= log2

(
1 + µk(Pd,k,j)

2ϵ̃d
√
V (µk(Pd,k,j))

)
(75)

where ϵ̃d is defined in the text following Eq. (44). To simplify

the notation, we replace µk(Pd,k,j) by µk in this proof.

We derive Eµk

[
e−¹dnR(µk)

]
in Eq. (9) as follows:

Eµk

[
e−¹dnR(µk)

]
= Eµk

[(
1 + µk

2ϵ̃d
√
V (µk)

)−(log2 e)¹dn
]
. (76)

Using Taylor-series expansion over
√
V (µk), we obtain [36,

Eq. (34)]

√
V (µk) = −

∞∑

i=0

Bi(1 + µk)
−2i (77)

where B0 = −1 and

Bi =

∣∣∣∣
( 1

2

i

)∣∣∣∣ =
∣∣∣∣∣

(
1
2

) (
1
2 − 1

)
· · ·
(

1
2 − i+ 1

)

i!

∣∣∣∣∣ , ∀i g 1. (78)

Defining ¹̃d ≜ (log2 e)¹dn and substituting Eq. (77) into

Eq. (76), Eq. (76) can be rewritten as

Eµk





 1 + µk

2
ϵ̃d

∞∑
i=0

Bi(1+µk)−2i




−¹̃d




=

∫
(1 + µk)

−¹̃d2
−¹̃dϵ̃d

∞∑
i=0

[Bi(1+µk)−2i]
PΓ(µk)dµk

(c)
=

∞∑

j=0

(−¹̃dϵ̃d log 2)j

j!

∫
(1 + µk)

−¹̃d

(
∞∑

i=0

[
Bi(1+µk)

−2i
]
)j

× PΓ(µk)dµk

=

∞∑

j=0

(−¹̃dϵ̃d log 2)j

j!

∫ ( ∞∑

i=0

[
Bi(1+µk)

−

(
2i+

¹̃d
j

)])j

× PΓ(µk)dµk (79)

where PΓ(µk) is given by Eq. (43), (c) holds by using Taylor-

series for 2x,∀x. Defining Ωj ≜
∞∑
i=0

Hi, where

Hi ≜ Bi(1 + µk)
−

(
2i+

¹̃d
j

)

, (80)
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the jth moment of Ωj , denoted by E
[
(Ωj)

j
]
, can be derived

using the jth order derivative of the moment generating

function of Ωj , denoted by E
[
e−sΩj

]
, with parameter s [37,

Eq. (4.89)]. We derive E
[
e−sΩj

]
as follows:

E
[
e−sΩj

]
=E

[
e−s

∑
∞

i=0Hi

]
=

∞∑

µ=0

(−s)µ
µ!

E

[(
∞∑

i=0

Hi

)µ]
.

(81)

We then expand (
∑∞
i=0Hi)

µ
in Eq. (81) using the multinomial

theorem as follows:
(

∞∑

i=0

Hi

)µ
=

∑

a1+a2+···+aı=µ

(
µ

a1, a2, · · ·, aı

) ı∏

ȷ=1

Haȷ
ȷ (82)

where {a1, a2, · · · , aı} are all combinations of nonnegative

integers such that the sum of all aȷ,∀ȷ ∈ {1, 2, · · · , ı}, is µ,

and
(

µ

a1, a2, · · · , aı

)
=

µ!

a1!a2! · · · aı!
. (83)

Substituting Eq. (82) into Eq. (81), we can derive

E
[
(
∑∞
i=0Hi)

µ]
in Eq. (81) as follows:

E

[(
∞∑

i=0

Hi

)µ]
=

∑

a1+···+aı=µ

(
µ

a1, a2, · · · , aı

)

×
∏

i

BiEµk

[
(1 + µk)

ℓ
]
. (84)

where ℓ ≜ −(2 + ¹̃d

j
) − (4 + ¹̃d

j
) − · · ·. Using the binomial

theorem, we further derive Eµk

[
(1 + µk)

ℓ
]

in Eq. (84) as

follows:

Eµk

[
(1+µk)

ℓ
]
=

∞∑

v=0

(
ℓ

v

)
Eµk

[(µk)
v]

(d)≈
∞∑

v=0

(
ℓ

v

)
µvk =(1 + µk)

ℓ

(85)

where (d) is obtained by applying Eq. (43) into the derivation

of Eµk
[(µk)

v] as follows:

Eµk
[(µk)

v]

=

∫ ∞

0

(µk)
v µ

m−1
k

Γ(m)

(
m

µk

)m
exp

(
−m

µk
µk

)
dµk

=

(
m

µk

)−v
1

Γ(m)

∫ ∞

0

(
m

µk
µk

)m+v−1

exp

(
−m

µk
µk

)
d

(
m

µk
µk

)

=

(
m

µk

)−v
Γ(m+ v)

Γ(m)

(e)≈
(
m

µk

)−v
mvΓ(m)

Γ(m)
= µvk (86)

where (e) holds true when m > 1. Applying the results of

Eq. (85) into Eq. (84), we further derive Eq. (84) as

E

[(
∞∑

i=0

Hi

)µ]
≈

∑

a1+···+aı=µ

(
µ

a1, a2, · · · , aı

)∏

i

Bi(1+µk)
ℓ

=

∞∑

i=0

[E (Hi)
µ
] . (87)

Substituting Eq. (87) into Eq. (84) and then substituting

Eq. (84) into Eq. (81), we further derive Eq. (81) as follows:

E
[
e−sΩj

]
≈ e

−s
∞∑

i=0
E[Hi]

= e

−s
∞∑

i=0


Bi(1+µk)

−

(
2i+

¹̃d
j

)


(88)

and thus we can derive the integral in Eq. (79) as

∫ ( ∞∑

i=0

[
Bi(1+µk)

−

(
2i+

¹̃d
j

)])j
PΓ(µk)dµk

= E
[
(Ωj)

j
]

= (−1)j
∂j
(
E
[
e−sΩj

])

∂sj

∣∣∣∣∣
s=0

=

(
∞∑

i=0

[
Bi(1 + µk)

−

(
2i+

¹̃d
j

)])j
. (89)

Substituting Eq. (89) into Eq. (79) and then substituting

Eq. (79) into Eq. (76), we have

Eµk

[
e−¹dnR(µk)

]

=Eµk





 1 + µk

2
ϵ̃d

∞∑
i=0

Bi(1+µk)−2i



−¹̃d




=

∞∑

j=0

(−¹̃dϵ̃d log 2)j

j!

(
∞∑

i=0

[
Bi(1 + µk)

−

(
2i+

¹̃d
j

)])j

=(1+µk)
−¹̃d2

−¹̃dϵ̃d
∞∑

i=0
Bi(1+µk)−2i

=

(
1 + µk

2ϵ̃d
√
V (µk)

)−¹̃d

, (90)

which yields the main term in Eq. (44), completing the proof

of Theorem 3. ■

APPENDIX D

PROOF OF THEOREM 4

Proof: In order to obtain a closed-form expression for

µMIMO
k,(l) (Pd,k,j), we further derive the numerator of Eq. (52) as

Var

[
√
Pd,k,jbk

MT∑

t=1

g
(l)
k,¿

MR∑

i=1

√
¸
(i)
k,¿ ĝ

(i)∗
k,¿

]

= Pd,k,jE



∣∣∣∣∣

MT∑

t=1

MR∑

i=1

g
(l)
k,¿

√
¸
(i)
k,¿ ĝ

(i)∗
k,¿

∣∣∣∣∣

2



(f)
= Pd,k,j

(
Äul,pÄul´k

1+Äul,pÄul´k

)2
E



∣∣∣∣∣

MT∑

t=1

MR∑

i=1

√
¸
(i)
k,¿g

(l)
k,¿g

(i)∗
k,¿

∣∣∣∣∣

2



+ Pd,k,j
(√

Äul,pÄul´k

1+Äul,pÄul´k

)2
E



∣∣∣∣∣

MT∑

t=1

MR∑

i=1

√
¸
(i)
k,¿g

(l)
k,¿w

(i)∗
p

∣∣∣∣∣

2

 (91)

where w
(i)
p is the ith element of w

(p), and (f) follows by

applying Eq. (49) and using the identity of E[|X + Y |2] =
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E[|X|2]+E[|Y |2] when X and Y are two independent random

variables and E[Y ] = 0. We further derive

E



∣∣∣∣∣

MT∑

t=1

MR∑

i=1

√
¸
(i)
k,¿g

(l)
k,¿g

(i)∗
k,¿

∣∣∣∣∣

2

=´2

k

MT∑

t=1

MR∑

i=1

E

[(
h

(l)
k,¿

)2
¸
(i)
k,¿

(
h

(i)
k,¿

)2]

+´2
k

MT∑

t=1

MR∑

i=1

E


h(l)

k,¿

√
¸
(i)
k,¿h

(i)
k,¿

∑

(q,p) ̸=(t,i)

h
(l)
k,q

√
¸
(p)
k,qh

(p)
k,q


. (92)

According to Section IV-A that the small-scale fading fol-

lows the Nakagami-m fading, we have E

[
h

(i)
k,¿

]
= h and

E

[ (
h

(i)
k,¿

)2 ]
= h

2
. We further derive Eq. (92) by using

E[XY ] = E[X]E[Y ] if X and Y are uncorrelated random

variables as follows:

E



∣∣∣∣∣

MT∑

t=1

MR∑

i=1

√
¸
(i)
k,¿g

(l)
k,¿g

(i)∗
k,¿

∣∣∣∣∣

2

 = ´2

k¸M
2
TM

2
Rh

4
. (93)

Similarly, we also derive the expectation in the last part of

Eq. (91) as

E



∣∣∣∣∣

MT∑

t=1

MR∑

i=1

√
¸
(i)
k,¿g

(l)
k,¿w

(i)∗
p

∣∣∣∣∣

2

 = ´k¸

MT∑

t=1

MR∑

i=1

E

[(
h

(l)
k,¿

)2
]

= ´k¸MTMRh
2
. (94)

Thus, substituting Eq. (93) and Eq. (94) into Eq. (91), we can

rewrite Eq. (91) as follows:

Var

[
√

Pd,k,jbk
MT∑

t=1

g
(l)
k,¿

MR∑

i=1

√
¸
(i)
k,¿ ĝ

(i)∗
k,¿

]
= Pd,k,jNk,1 (95)

where Nk,1 is given by Eq. (54). We also derive the first term

of the denominator in Eq. (52) as

Var



MT∑

t=1

Kd∑

u=1,u ̸=k

√
Pd,u,jg(l)

k,¿

(
ηu,t

) 1
2
ĝ
∗
u,tbu




=




kd∑

u=1,u ̸=k

Pd,u,j


 ¸MTMRE

[(
g
(l)
k,¿

)2(
ĝ
(i)∗
u,t

)2]

+




kd∑

u=1,u ̸=k

Pd,u,j


 ¸M2

TMR(MR−1)E

[(
g
(l)
k,¿

)2](
E

[
ĝ
(i)∗
u,t

])2

=(Pmax−Pd,k,j)¸´kh
2
MTMR



Äul,pÄul(Äul,pÄulh

2
+1)

×E

[
´2
u

(1+Äul,pÄul´u)2

]
+MT (MR−1)

(
E

[
´

3
2
u

1+Äul,pÄul´u

])2
.

(96)

Using the assumption that MUs are uniformly distributed

within a wireless cell with inner radius Rmin and outer radius

Rmax and defining the random variable of an MU’s distance

to the BS/AP as R, the pdf of the distance R, denoted by

pR(r), is given by:

pR(r) =
2r

R2
max −R2

min

. (97)

Defining X ≜ ´u/(1 + Äul,pÄul´u), we derive the cumulative

distribution function (cdf) of X , denoted by PX(x), as:

PX(x) = Pr

{
¼2

(4Ã)2 (R2 + º2) + Äul,pÄul¼2
f x

}

(g)
= 1 − 1

R2
max −R2

min

(
¼2(1 − Äul,pÄulx)

(4Ã)2x
− º2

)
(98)

where (g) is obtained by using Eq. (97) and º is the height of

a BS/AP. Then, using Eq. (98), we have the pdf of X , denoted

by pX(x), as follows:

pX(x) =
∂PX(x)

∂x
=

¼2

16Ã2x2(R2
max −R2

min)
. (99)

Therefore, we have:

E

[
´2
u

(1 + Äul,pÄul´u)2

]
= E

[
X2
]

=

∫ Xmax

Xmin

x2pX(x)dx

=
¼2

16Ã2(R2
max −R2

min)
(Xmax −Xmin) (100)

where Xmax and Xmin are given by Eq. (56). Similarly,

we also have

E

[
´

3
2
u

1+Äul,pÄul´u

]
≈ E[X] =

∫ Xmax

Xmin

xpX(x)dx

=
¼2

16Ã2(R2
max−R2

min)
log

(
Xmax

Xmin

)
.

(101)

Substituting Eq. (100) and Eq. (101) into Eq. (96), we further

derive Eq. (96) as

Var



MT∑

t=1

K∑

u=1,u ̸=k

√
Pd,u,jg(l)

k,¿

(
ηu,t

) 1
2
ĝ
∗
u,tbu




= (Pmax−Pd,k,j)Nk,2, (102)

where Nk,2 is given by Eq. (55). Substituting Eq. (95) and

Eq. (102) into Eq. (52), we obtain Eq. (53), completing the

proof for Theorem 4. ■

APPENDIX E

PROOF OF THEOREM 5

Proof: We proceed with the proof by showing the Claim 1

and Claim 2, respectively.

Claim 1: Denote the received SNR of the kth MU

on all antennas by the vector γ
MIMO
k (Pd,k,j) ≜[

µMIMO
k,(1) (Pd,k,j), · · · , µMIMO

k,(MR)(Pd,k,j)
]
. First, extending

the derivations for the data rate given in Eq. (75) over

the single antenna channel into its massive-MIMO-channel

version, we can obtain the data rate for the massive-MIMO
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channel, denoted by R(γMIMO
k (Pd,k,j)), which is a function

of the SNR vector γ
MIMO
k (Pd,k,j), as follows:

R
(
γ

MIMO
k (Pd,k,j)

)
=

MR∑

l=1

log2

(
1 + µMIMO

k,(l) (Pd,k,j)

2
ϵ̃d

√
V (µMIMO

k,(l)
(Pd,k,j))

)

(h)
= MR log2

(
1 + µMIMO

k (Pd,k,j)
2ϵ̃d

√
V (µMIMO

k
(Pd,k,j))

)

(103)

where (h) is due to Eq. (57). Replacing R (µk) in Eq. (90) by

R
(
γ

MIMO
k (Pd,k,j)

)
derived in Eq. (103), we can obtain

Eµk

[
e−¹dnR(γ

MIMO
k (Pd,k,j))

]
=

(
1 + µMIMO

k (Pd,k,j)
2ϵ̃d

√
V (µMIMO

k
(Pd,k,j))

)−¹̃dMR

.

(104)

Replacing Eµk

[
e−¹dnR(µk(Pd,k,j))

]
in Eq. (9) by the expression

in Eq. (104), we can obtain a closed-form expression for ϵ-
effective capacity of the kth MU ECMIMO

k (¹d, ϵd,Pd,k,j) over

the massive-MIMO channel as follows

ECMIMO
k (¹d, ϵd,Pd,k,j)

=− 1

n¹d



log


ϵd+(1−ϵd)

(
1 + µMIMO

k (Pd,k,j)

2
ϵ̃d

√
V (µMIMO

k
(Pd,k,j))

)−¹̃dMR








(105)

Employing the optimal transmit power allocation P∗
d,k,j for

Eq. (105), we obtain Eq. (59). Second, taking the summation∑Kd

k=1EC
MIMO
k (¹d, ϵd,Pd,k,j) for all MUs, which request the

same data item d, and using the estimated data request pmf

frj
(d) of each metaverse data item d by the selected optimal

hypothesis Hj , we obtain the average for the aggregate ϵ-
effective capacity given by

D∑

d=1

frj
(d)

Kd∑

k=1

ECMIMO
k (¹d, ϵd,Pd,k,j)

=

D∑

d=1

frj
(d)

Kd∑

k=1


− 1

n¹d

×



log


ϵd+(1−ϵd)

(
1 + µMIMO

k (Pd,k,j)
2ϵ̃d

√
V (µMIMO

k
(Pd,k,j))

)−¹̃dMR









. (106)

The optimization for the aggregate ϵ-effective capacity given

by Eq. (106) is equivalent to individually optimizing each term

frj
(d)
∑Kd

k=1EC
MIMO
k (¹d, ϵd,Pd,k,j) in Eq. (106). Moreover,

observing Eq. (44), we obtain that ECMIMO
k (¹d, ϵd,Pd,k,j) is

a monotonically increasing function of (1 + µk)/2
ϵ̃k
√
V (µk).

Thus, we can convert the optimization problem in Eq. (58)

into the following optimization problem:

(
P∗
d,1,j , · · · ,P∗

d,Kd,j

)

= arg max
(Pd,1,j ,··· ,Pd,Kd,j)

frj
(d)

Kd∑

k=1

1 + µMIMO
k (Pd,k,j)

2
ϵ̃k

√
V (µMIMO

k
(Pd,k,j))

, ∀d

s.t.: C1:

Kd∑

k=1

µMIMO
k (Pd,k,j)(1 +Nk,2Pmax)

Nk,1 + µMIMO
k (Pd,k,j)Nk,2

f Pmax,

C2: µMIMO
k (Pd,k,j) g 0, ∀k. (107)

To solve Eq. (107), we can formulate a Lagrangian function

L as follows:

L = frj
(d)

1 + µMIMO
k (Pd,k,j)

2
ϵ̃k

√
V (µMIMO

k
(Pd,k,j))

−ϱµ
(
Kd∑

k=1

µMIMO
k (Pd,k,j)(1+Nk,2Pmax)

Nk,1 + µMIMO
k (Pd,k,j)Nk,2

− Pmax

)
(108)

where ϱµ is the Lagrangian multiplier for the constraint

C1 of Eq. (107). Then, using Karush-Kuhn-Tucker (KKT)

conditions, we can get the following equations, respectively:




∂L
∂µMIMO

k (Pd,k,j)
=

frj
(d)

2
ϵ̃k

√
V (µMIMO

k
(Pd,k,j))

[
1 − (log 2)ϵ̃k

×
(
1+µMIMO

k (Pd,k,j)
)−2[

V
(
µMIMO
k (Pd,k,j)

)]− 1
2

]

− ϱµNk,1(1 +Nk,2Pmax)[
Nk,1 + µMIMO

k (Pd,k,j)Nk,2
]2 = 0, ∀k, (109)

Kd∑

k=1

µMIMO
k (Pd,k,j)(1 +Nk,2Pmax)

Nk,1 + µMIMO
k (Pd,k,j)Nk,2

− Pmax = 0, (110)

µMIMO
k (Pd,k,j) g 0, ∀k. (111)

Solving Eq. (109), we can obtain the average SNR

µMIMO
k (P∗

d,k,j) under the optimal transmit power allocation

P∗
d,k,j . Depending on the average SNR µMIMO

k (P∗
d,k,j) falling

in the high-regime or low-regime, we need to consider the

following two cases, respectively:

Case 1. If µMIMO
k (P∗

d,k,j) k 1, then we have

V
(
µMIMO
k (P∗

d,k,j)
)

≈ 1 and by solving Eq. (109), we can

obtain

µMIMO
k (P∗

d,k,j)≈
1

Nk,2

[
ϱ∗µ,12

ϵ̃kNk,1

frj
(d)

(1+Nk,2Pmax)

]1
2

−Nk,1
Nk,2

,

(112)

where Nk,1 and Nk,2 are given in Eqs. (54) and (55),

respectively.

Case 2. If 0 < µMIMO
k (P∗

d,k,j) < 1, then we have

V
(
µMIMO
k (P∗

d,k,j)
)

≈ 0 and by solving Eq. (109), we can

obtain

µMIMO
k (P∗

d,k,j)≈
1

Nk,2

[
ϱ∗µ,2Nk,1

frj
(d)

(1 +Nk,2Pmax)

]1
2

−Nk,1
Nk,2

,

(113)

where Nk,1 and Nk,2 are given in Eqs. (54) and (55),

respectively. Combining Eq. (112) and Eq. (113), Eq. (60)

holds. Substituting µMIMO
k (P∗

d,k,j) specified by Eq. (112) and

Eq. (113), respectively, into Eq. (110), we can obtain Eq. (61),

completing the proof for Claim 1 of Theorem 5.
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Claim 2: Substituting Eq. (60) into Eq. (57) and substituting

Eq. (57) into Eq. (53), we obtain the optimal power allocation

as shown in Eq. (62), completing the proof for Claim 2. This

completes the proof for Theorem 5. ■
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