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ABSTRACT

With the rapid deployments of the fifth genera-
tion (5G) mobile wireless networks, the shift from
the 5G to the sixth generation (6G) mobile wire-
less networks has attracted tremendous research
attention around the world. Featuring with the
explosively increasing multimedia-traffics with
very diverse services requirements, the 6G mobile
wireless networks need to provide the customized
services with heterogeneous types of quality of
service (QoS) guarantees. However, how to effi-
ciently support these customized services with
heterogeneous QoS provisioning for 6G wireless
networks has imposed many new challenges not
encountered before. To conquer these difficulties,
in this article we propose the artificial intelligence
(AD)-enabled integration of massive multiple-in-
put-multiple-output (massive-MIMO) techniques
with network functions virtualization (NFV) and
software-defined network (SDN) architectures
to support the customized services over the 6G
mobile wireless networks. Specifically, we devel-
op the Al-enabled network architectural schemes
which efficiently integrate three 6G-candidate
techniques — massive-MIMO, NFV, and SDN — to
significantly improve key performances of hetero-
geneous statistical QoS provisioning in terms of
effective capacity. We apply the massive MIMO
transmission to substantially improve the chan-
nel throughput. Our NFV-based schemes abstract
and slice the physical infrastructure and wireless
resources in network data plane into several vir-
tualized networks and obtain the optimal service
delivery path with the maximum effective capac-
ity among virtualized networks. Also, we develop
a set of Al-enabled techniques including multi-
agent Al-plane architectures, edge-Al frameworks,
and federated learning mechanisms for efficient-
ly implementing our developed massive-MIMO-
NFV-SDN integrated schemes. Collaborating
with our developed platform and techniques, our
multi-agent Al-plane based SDN controller coor-
dinates the network nodes and resources alloca-
tions for each virtualized network. Our conducted
extensive simulations validate and evaluate our
developed massive-MIMO-NFV-SDN integrated
architectures using Al-techniques, showing that
they can efficiently support the customized sta-
tistical delay-bounded QoS provisioning over 6G
mobile wireless networks.

INTRODUCTION

Although the fifth generation (5G) mobile com-
munication networks have been implemented
around the world, there are a number of emerg-
ing applications that cannot be adequately served
by 5G wireless networks as the new applica-
tions’ needs continue to evolve. Therefore, the
wireless network researches have been moved
forward to the sixth generation (6G) mobile wire-
less communication networks. To satisfy clients’
disparate applications and requirements, the 6G
wireless networks are expected to provide the
multipurpose platforms and accommodate diverse
customized services including: massive ultra-re-
liable low-latency communications (mURLLC),
enhanced mobile broadband (eMBB), massive
machine-type communications (mMTC), uplink
centric broadband communication (UCBC), real-
time broadband communication (RTBC), and har-
monized communication and sensing (HCS), and
so on, which require different latencies, data rates,
error rates, device densities, and so on [1-4].
The mURLLC demands the stringent guarantees
on transmission delay and error rate for mission
critical wireless communications under mobile
users’ massive access, such as motion control and
e-health. The services of eMBB require high data
rates across a wide coverage area, such as inter-
active virtual reality and augmented reality. The
services of mMTC provide the massive access for
a large number of devices in a small area, such as
smart traffic and environmental monitoring. The
techniques of UCBC accelerate the mobile user’s
uploading speed. The communications of RTBC
deliver a large bandwidth with a given latency
and a certain level of reliability, such as video
streaming. HCS services support high-accuracy
localization and high-resolution sensing, enabling
the navigation and monitoring for autonomous
vehicles.

In contrast to 5G wireless networks that can
only guarantee the average performance of
nearby mobile users (MUs), the 6G wireless net-
works aim at supporting customized statistical
QoS, which guarantee each MU’s diverse and
time-varying quality-of-service (QoS) [4]. One of
the major challenges for 6G wireless networks is
how to simultaneously support the heterogeneous
QoS [5, 6] for multi-types of traffics imposed by
these customized services and applications with
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different requirements under the constrained
network resources and dynamic network condi-
tions. Toward the above end, the statistical QoS
provisioning theory has been applied for feasibly
guaranteeing the given stochastic-bound of QoS
requirements with the controlled violation proba-
bilities over the time-varying wireless fading chan-
nels, and thus, has been recognized as a powerful
tool to support the customized applications over
the 6G wireless networks. Moreover, the follow-
ing three advanced wireless-network techniques
and architectures have been proposed to efficient-
ly support the heterogeneous statistical QoS pro-
visioning over the imminent 6G mobile wireless
networks, which include:

+ Massive multiple-input-multiple-output
(MIMO) techniques [7-9], including mul-
tiple-input-single-output (MISO), MIMO,
massive MIMO, and cell-free massive MIMO
(CF-M-MIMO), to point the main beam of
signal waves toward the targeted MUs, serv-
ing more users through spatial multiplexing,
and mitigating the mutlipath effect via differ-
ent antenna’s spatial diversity.

« Network-functions virtualization (NFV)
architectures [10], where the PHY-layer net-
work elements and wireless power/spectrum
resources are split and deployed as reusable
software instances modules, enabling the
coexistence of multiple and dynamically-/
adaptively-reconfigurable virtual-networks
slices.

+ Software defined networking (SDN) archi-
tectures [11, 12], where the network con-
troller is logically decoupled from the
underlaying PHY-layer to adaptively dictate
PHY-layer infrastructures’ allocations for flex-
ible implementations of diverse networks
architectures and functions, through pro-
gramming-interfaces between the control
plane and data plane.

However, how to efficiently integrate the
massive MIMO techniques and NFV and SDN
network architectures to sufficiently satisfy hetero-
geneous statistical QoS requirements of MUs over
6G wireless networks remains a challenging open
problem. To overcome the above challenges, we
propose to develop Al-enabled network-functions
virtualization and software-defined architectures
for customized statistical QoS over 6G massive
MIMO mobile wireless networks. First, to leverage
the beamforming gain and spatial multiplexing,
we propose to deploy multiple antennas on WiFi
access points (AP) and massive MIMO antennas
on base stations (BSs) to cooperatively serve mul-
tiple MUs in the same time-frequency resource
through space-division duplex operation. Second,
to deliver the requested services to MUs with dis-
tinct QoS requirements, we use NFV techniques
to abstract and slice the wireless network physical
infrastructure and resources of the network data
plane into several virtualized networks. Each vir-
tual network, consisting of the optimal network
components, yields the optimal data delivery
path to independently support the data content
transmissions for each type of service. We char-
acterize the performance of data transmissions
by the effective capacity, and conduct the case
study in searching for the optimal data delivery
path, which is either a direct transmission or going

We propose to develop Al-enabled network-functions virtualization and software-defined architectures

for customized statistical QoS over 66 massive MIMO mobile wireless networks.

through relay nodes to maximize the effective
capacity among all virtualized networks. Third, we
employ the SDN architecture to dictate the net-
work slicing and to allocate the physical wireless
resources for each virtualized network. This soft-
ware-defined control architecture aims at optimiz-
ing the overall performances for the 6G wireless
networks.

On the other hand, since MUs for 6G wire-
less networks have the distinct requirements for
their customized services demands, SDN mech-
anisms need to support the comprehensive wire-
less resource schedulings. These wireless resource
schedulings and service predictions require the
efficient and powerful QoS-supporting systems. In
addition, due to 6G MUs’ heterogeneity in service
types, mobility in trajectories, and stringency in
QoS requirements, the SDN’s dynamically pro-
gramming control and real-time decision makings
all significantly increase wireless-resources costs
and implementing complexities. To remedy these
difficulties and offload the computational burdens
of SDN control plane, we propose to develop
artificial intelligence (Al)-enabled mechanisms and
techniques including multi-agent Al-plane architec-
tures, edge-Al frameworks, and federated learn-
ings, which can efficiently implement the dynamic
programming and real-time decision-making in
our developed massive-MIMO-NFV-SDN integrat-
ed network architectures. Specifically, in our pro-
posed SDN architecture we develop and embed
a multi-agent Al-plane between data-plane and
control-plane. The Al-plane receives, analyzes,
and processes 6G traffics’” diverse statistical QoS
requests from the multiple-agents, including MUs,
BSs, and APs agents, by making the best use of
the pre-trained models, and then forwards its
calculated/derived results (including the optimal
hardware and software allocations strategies/deci-
sions) to SDN’s control plane, which then pro-
ceeds with these pre-calculated/-trained results to
dictate and monitor the allocations for PHY-lay-
er-infrastructures and wireless resources in SDN's
data plane.

THE SYSTEM MODELS

Figure 1 shows the system models of our pro-
posed Al-based network-functions virtualization
and software-defined architectures for the cus-
tomized statistical QoS provisioning over 6G
massive MIMO mobile wireless networks, which
consist of the following three core Al-enabled
promising 6G-candidate architectural techniques
as elaborated on, respectively, as follows.

Al-ENABLED MASSIVE-MIMO TecHnIQUES OVER
6G MoBILE WIRELESS NETWORKS

Figure 1 shows our massive-MIMO based 6G
wireless networks architecture, which merges
MISO, MIMO, massive MIMO, and CF-M-MIMO
communications techniques. To serve massive
MUs in a small area to support mMTC, massive
MIMO has been recognized as the enabling tech-
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FIGURET. The system models of our proposed Al-based network-functions virtualization and software-defined architectures for the cus-
tomized statistical QoS provisioning over 6G massive MIMO mobile wireless networks.

nique thanks to its advantages in the beamform-
ing gain and spatial multiplexing, and so on. As
one of the key promising candidate techniques
for 6G wireless networks, CF-M-MIMO compris-
es massive distributed APs to jointly and simul-
taneously serve a group of MUs using the same
time-frequency resources over a wide area, which
is a typical communication enabler for eMBB. The

unmanned aerial vehicle (UAV) swarm is applied
in mURLLC services because of its mobility, which
enables a flexible network architecture at the air
interface and converts the non-line-of-sight sce-
nario into line-of-sight scenario. The signal’s multi-
ple input from the UAV swarm and single output
to the MU equipped with a single antenna form
the MISO communications. The data exchanging

2
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between a multiple antennas sender and multiple
antennas receiver constitutes the MIMO commu-
nications.

To offload and reduce the SDN control-plane’s computational complexities and work loads and make it
timely respond to MU's service requests, we develop and deploy a multi-agent Al-plane between data

plane and control plane for optimizing the network nodes mapping and wireless resource allocations

Al-DRIVEN NFV ARCHITECTURES OVER
6G MoBILE WIRELESS NETWORKS

NFV architectures split the physical network
infrastructures and wireless resources into sev-
eral virtual slices, enabling the sharing of all
wireless network functionalities among multiple
service providers and supporting different appli-
cations under diverse requirements and logical
architectures through the same infrastructure
[13]. Deploying the Al-driven data plane mech-
anism in NFV, this network-functions virtualiza-
tion operation breaks down the heterogeneous
QoS provisioning problem of the entire network
into a number of homogeneous QoS provisioning
problems, each of which takes the responsibili-
ty of one type of data content transmission on
one virtual network while statistically satisfying its
QoS requirements. Using NFV techniques, each
statistical QoS provisioning service can be eas-
ily embedded in the physical networks without
considering the complicated interfaces and char-
acteristics of the physical infrastructures. Virtual
networks cooperate with each other to efficiently
share these resources for the better service per-
formances, which thus significantly improves the
entire network efficiency and utilization. Since
the 6G wireless networks need to accommodate
customized services, we propose to develop the
flexible Al-driven data plane over the NFV archi-
tecture to satisfy the heterogenous statistical QoS
requirements for different types of MUs and their
applications. In Fig. 1, we use the typical 6G ser-
vices such as HCS, eMBB, mMTC, and mURLLC
as examples to represent different MUs’ statistical
QoS service requirements. The NFV-based archi-
tecture dynamically allocates the edge resources
(i.e., bandwidth, transmit power, etc.) to different
network slices to achieve the overall networks
performance metrics maximization.

AI-PLANE BASED SDN ARCHITECTURES OVER
6G MoBILE WIRELESS NETWORKS

SDN is a paradigm where a central software pro-
gram, called control plane, dictates the overall
dynamics behavior of the physical substrate wire-
less network, called data plane, which consists
of all physical infrastructures, devices, and nodes
(such as MUs, BSs, routers, gateways, etc.) consti-
tuting data-packet forwarding devices. To offload
and reduce the SDN control-plane’s computation-
al complexities and work loads and make it timely
respond to MU'’s service requests, we develop
and deploy a multi-agent Al-plane between data
plane and control plane, see Fig. 1, for optimiz-
ing the network nodes mapping and wireless
resource allocations scheduling. Our developed
multi-agent Al-plane mainly consists of two types
of agents:

« The MU agent is responsible for collecting
MUs’ historical behaviors, current service
requests, and moving directions and speeds,
and so on, for predicting their future behav-
iors.

+ The AP/BS agent is used to integrate traffic

scheduling.

requests with service type request for allocat-

ing the optimal wireless resources.

Instead of directly sending data requests to the
SDN control plane, MUs send these requests with
QoS requirements to the MU agent in Al-plane,
who will then contact the AP/BS agents to derive
the optimal wireless resources allocations. Under
the assistance of AP/BS agents, SDN control
plane selects the optimal massive-MIMO tech-
niques form MISO, MIMO, massive-MIMO, and
CF-M-MIMO, and then, maps the corresponding
AP/BS, MU, and necessary network components
to virtual network slices with an optimal service
delivery path. The SDN control plane makes these
mapping decisions based on the information
about the network traffic condition and the pre-
dictions for MUs’ behaviors provided by AP/BS/
MU agents.

Al-ENABLED MASSIVE-MIMO COMMUNICATIONS
TECHNIQUES FOR 6G MOBILE WIRELESS NETWORKS

ACHIEVABLE CODING RATES FOR MUS

Assume that each MU can be equipped with a
single antenna or multiple antennas. Denoted by
x(t) the total number of MU at time t in a service
coverage area. The effect of small-scale fading
between the AP/BS and the ith MU is given by h;,
where i is the index of MU and i € {1, 2, ..., x(t)}.
Let P; be the transmit power allocation of the ith
MU, and let d; be the ith MU'’s geographic posi-
tion vector in the wireless network. Denote by R;
the achievable coding rate for the ith MU, and
denote by B; the bandwidth allocation for the ith
MU. The R; can be written as:

R; = B; Ehi[[0g2(1 +v; (h;, P, d))] (1

where Ep[-] is taking the expectation operation
with respect to h;, v; (h;, P;, d)) is the signal to
interference and noise ratio (SINR) of the ith MU,
which is a function of h;, P; and d;. When the ith
MU is served through MISO, MIMO, massive-MI-
MO, and CF-M-MIMO communications, respec-
tively, the SINR v; (h;, P;, d;) needs to be derived
correspondingly.

According to Eq. 1, we observe that R; is an
increasing function of SINR, and thus, to improve
the channel throughput, we need to significant-
ly increase the value of SINR, which can be
achieved by applying massive-MIMO techniques.
The communications process through massive-MI-
MO can be summarized in the following three
phases:

+ Uplink training to estimate the channel gain
information

+ Linear precoding for beamforming

« Downlink payload data transmission to
transmit the service data.

Uplink Training: Each antenna of the MU
sends the uplink pilot signal, which is an orthog-
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FIGURE 2. A case study architecture of wireless network functions virtualization (NFV) using virtual network slicing and wireless resourc-

onal training sequence known by both MUs and
AP/BS, to the AP/BS. After receiving the pilot sig-
nal, AP/BS applies signal processing schemes to
the received pilot signal by correlating its received
pilot signal with its known pilot signal. Then, by
using the channel estimation schemes, for exam-
ple, minimum mean-square error (MMSE) estima-
tion, AP/BS is able to estimate the channel gain.

Linear Precoding: Before the AP/BS sends
the data to MU, it generates a precoder matrix,
which controls the transmitted signal’s power
and direction. Multiplying the precoder by the
transmitted signal, AP/BS can achieve spatial
multiplexing by focusing the transmit power into
specific directions (i.e., beamforming), so that it
serves multiple MUs simultaneously while mitigat-
ing the interference.

Downlink Payload Data Transmission: The
AP/BS sends the service data to MUs through the
downlink channel, by treating the channel gain
estimation as the true channel. Moreover, each
antenna of the AP/BS individually sends the same
signal to MUs, weakening the multipath effect
and reducing the outage probability of the wire-
less channel.

HETEROGENEQUS STATISTICAL Q0S PROVISIONING THEORY AND THE
EFFECTIVE CAPACITY

We apply the effective capacity [5, 6, 14] in statis-
tical QoS theory to characterize the performance
of data transmission under a given statistical
delay-bounded QoS requirement. The effective
capacity is defined as the maximum constant arriv-
al rate that a wireless channel can support while
guaranteeing the QoS requirement, for each
data-content streaming transmission. The effective
capacity, denoted by EC(6)), is given by [14, Eq. 3]

EC(8)) =—ilog(1E[e‘eiRi]), 8, >0

0 @
where E[-] is the expectation operation, R; is given
by Eq. 1, and 6; is the QoS exponent for the ith

es allocation control architectures via the Al-enabled SDN control plane, where i € {1, 2, ..., x(1)} is the index of MUs.

MU'’s services that measures the stringency of the
statistical delay-bounded QoS requirement for
its service. Note that the QoS exponent varies
for not only different types of services, but also
different data-content demands within the same
type of service. Then, we also define the aggre-
gate effective capacity as the sum of all MUs con-
necting to the same AP/BS, which can be written

NFV-BASED OPTIMAL SERVICE DELIVERY PATH FOR
Al-ENABLED HETEROGENEQUS STATISTICAL Q0S
PROVISIONING

The 6G wireless network architectures select the
corresponding optimal paths to deliver services
to the targeted MUs, which have different statis-
tical delay-bounded QoS requirements. Applying
NFV architectures, we virtualize physical substrate
network infrastructures and resources into several
optimal virtual networks corresponding to differ-
ent MUs’ diverse statistical QoS requirements,
and the SDN architectures dictate these virtual-
izations.

In Fig. 2, we conduct a case study of NFV
model where MUs with diverse statistical QoS
requirements demand the same data content.
The AP/BS can transmit a requested data to the
MU over a direct wireless link (i.e., direct trans-
mission method), or employing one neighbor
node as a relay to set up a single-relay transmis-
sion (i.e., relay transmission method). The AP/BS,
denoted by C, sends a data content requested by
both MU a and MU B. The required QoS expo-
nents of MUs a and B are denoted by 6, and 65,
respectively, constituting a heterogeneous QoS
provisioning network [12]. The Al-enabled con-
trol plane obtains the information that this data is
located at AP/BS C, and then, maps the optimal
delivery path (direct transmission path or relay
transmission path with an optimal relay) for MUs

%
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a and B to the corresponding virtual networks,
respectively. Since the wireless fading conditions
are different, we establish distinct virtual slices for
different fadings. For example, if the relay trans-
mission through the relay node B can achieve the
maximum effective capacity, we configure virtual
network slice € to be the optimal network slice.
When the relay transmission through node A
can achieve the maximum effective capacity, we
establish the network slice 8 by using the node
A to forward the data to the MU B. Alternatively,
if the direct transmission from node C to MU «
can realize the maximum effective capacity, we
employ the network slice v as the optimal virtual
network slice.

To select the optimal data-delivery-path for
each MU, we derive the effective capacity of
direct transmission, denoted by EC4(6,), and the
effective capacity of relay transmission, denoted
by EC,(6), with employing the relay node r, where
V'r e (A, Bl, Vi e {a, B}, respectively. We formu-
late the Lagrange functions, denoted by J; and /5,
for direct and relay transmissions, respectively, as
follows:

{]1 = E{EC4(0))}- & E{P; — P},
Jo = E{ECr(ei)}_ fZ]E{Pc +P - P}: (3)

Y'r e {A, B}, Vi e {a, B}, where &; and &, are
the Lagrange multipliers, P. and P, are transmit
power allocations for node C and relay node r
for relay transmission, respectively, such that
P.+ P, = P, and P is the total transmit power
consuming constraint. Solving Eq. 3, we obtain
optimal powers: P;, P., and P, and also obtain the
effective capacities for direct transmission and
relay transmission, respectively. After obtaining
EC4(6)), ECA(6)), and ECg(6)), we select the path
that achieves the maximum effective capacity as
the optimal data delivery path.

THE Al-PLANE AND FEDERATED LEARNING BASED

SDN CONTROL ARCHITECTURES

We develop the mapping algorithm in the SDN
control-plane to assign the optimal AP or BS into
a virtual network slice and allocate the optimal
MUs according to their requested service types,
locations, moving trajectories, and so on, to each
network slice. Then, we propose a federated
learning based mechanism in SDN Al-plane to
assist the control-plane for decision making about
the MUs" wireless resources allocations.

OPTIMAL VIRTUAL NETWORK SLICING AND MUS ALLOCATION
SCHEMES MANAGED BY SDN CONTROL PLANE

We partition the SDN data plane into multiple
virtual network slices according to different ser-
vice types. Each virtual network slice dedicatedly
provides one type of service and there also exist
multiple slices to provide different statistical QoS
requirements for each type of service. Therefore,
we are able to develop the SDN architecture
based network management algorithm, which can
be summarized by Algorithm 1. In Algorithm 1,
the maximization of aggregate effective capacity
in a network slice can be achieved by the calcula-
tion of SDN Al-plane for offloading the computa-
tional burden in SDN control-plane.

Figure 2 shows a case study of the virtual net-

Input: AP/BS set and MU set; each MU's service type, QoS exponent 6); position d; moving direction, and speed.

1

2. for Each MU that requests services from the 66 wireless networks do

3 Assign the MU to the virtual network slices group corresponding to its service type.
3 for Each AP/BS in this virtual network slices group do
5
i

Determine the channel condition /;for this MU, according to its position d; moving direction, and speed.
Using the ©; for the MU and by solving Eq. 3, abtain the optimal data delivery path (relay or direct transmission), which

maximizes its effective capacity, between the MU and this AP/BS.
end for

T
8: Select the optimal AP/BS which provides the maximum effective capacity for this MU.
9 Assign the selected AP/BS and the MU into a netwark slice in this virtual netwark slices group.

10 end for
T Output: Optimal edge network slicing and optimal data delivery path selection.

ALGORITHM 1. SDN architecture for optimal virtual network slicing and data deliv-

ery path selection.

work slicing and data delivery path selections
schemes via the Al-enabled SDN control plane
architecture, which is assisted by the federated
edge learning in the SDN Al-plane. The control
plane receives the virtual network updated status
from the application programming interface (API).
After getting the coordination decisions from the
Al-plane, the resources allocation model in con-
trol plane converts these decisions to AP/BS and
relay nodes allocations, as well as transmit power
and spectrum bandwidth allocations, respec-
tively. Finally, the data-plane applies the control
information through the control information API,
finalizing the virtual network slicing and wireless
resources allocation controls.

THE AcTOR-CRITIC ALGORITHM BASED MULTI-AGENT
FEDERATED EDGE LEARNING MECHANISM FOR
IMPLEMENTING Al-PLANE IN SDN

We apply the edge learning mechanism in the
SDN Al-plane to assist the maximization of aggre-
gate effective capacity in Algorithm 1. We devel-
op a federated edge learning model to achieve
this goal through integrating the traditional feder-
ated learning with edge computings at each AP/
BS agent, which consists of four major steps as
shown in the following algorithm.

Step 1: Local Training: Each agent k trains a
local model to minimize a local loss function Fy.
The local models focus on solving Eq. 3. During
this local training, each agent k obtains the weight
of its local model wj and the gradient of the local
loss function VFy.

Step 2: Global Aggregation: Each agent k
uploads its obtained weight wy and gradient V Fy
to a central server. The central server aggregates
weights and gradients from all agents, and derives
the average weight W and average gradient VF.

Step 3: Model Updating: The global model
uses the average weight w and average gradient
V F to update parameters for the global model to
improve the accuracy of the global model. The
updated global model with these updated param-
eters are then sent back to all agents for updating
their local models.

Step 4: Control and Feedback: Each agent
periodically communicates with the global model
to upload and update the parameters of its local
model. The global model sends the control and
feedback information, for example, new learning
rate schedules and regularization parameters, to
all agents, so that each agent is able to improve
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Initialize: Actor parameter , crtic parameter ,x(0), learing rates ¢ and ¢;.

. fortimeslotin1,2,..do

Fach AP/BS agent & selects an action a(¢) from action space A according to policy 7ty (x(£), T).
Use the current state to obtain reward r; = Z,vEL‘ (6;) by solving £q. 3.

Obtain the next state x( ¢+ 1) and the next action a(t +1).

Update the policy parameter T <— T + -0, (x(1),a(t)) V clogmy (x (1), T)

Compute the correction for action values & r,+ Ny (x(t+7),a(t+1))-0,(x(2)a(t)).

8 Use e toupdatethe parameter of value function g <= g + o, € V40 (x(1),a(£)).

9: endfor

10: Output: optimal transmit power and bandwidth allocations and optimal service delivery path for each MU.

ALGORITHM 2. Training algorithm of “Actor-Critic Based Federated Edge Learning”
for optimal relays and wireless resources allocations.
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its local model and obtain the latest hardware and
wireless resources allocation schemes.

We then show the detailed local training
model in the above Step 1 through actor-critic

algorithm [15], which integrates the actor-only
method with critic-only method of machine learn-
ing. We use the learning procedure for the opti-
mal solution of Eq. 3 as an example to show the
actor-critic algorithm. In actor-critic algorithm, the
actor decides which action optimizes the objec-
tive function given by Eq. 3 according to the cur-
rent state. The critic evaluates this action through
a value function, and then, informs the actor how
good the action is and how to improve the action.

Each AP/BS agent k uses the Markov decision
process (MDP) to solve Eq. 3, and each AP/BS
shares the same index with its agent since we
assume that each AP/BS is equipped with its own
agent. We define the finite state space, denoted
by &, to characterize the MDP’s states describing
the total numbers of MUs in a service coverage
area at time t. We have x(t) € X due to the defi-
nitions above. Define a(t) £ [a;(t), a,(1), ..., ayp(t)]
e A, where A is the action set of this MDP for all
MUs, and a;(t) with i € {1,2, ..., x(t)} denotes the
transmit power allocations P; or (P, P,) and band-
width allocation B; for the ith MU at time t. If P; =
P.=P, =0, or B; =0, the ith MU will not be served
by the kth AP/BS. We also denote the actor
parameter by t over the parameter space 7, and
denote the critic parameter by g. We then define
the policy my of the AP/BS agent k as a mapping
e X x T— A that assigns each state-parameter
pair (x(t), T) € X x Tto the transmit power and
bandwidth allocation schemes a(t) € A. Define
the reward r, of the actor-critic algorithm at time
t as the gain of the aggregate effective capacity
L,EC(0), where EC(0)) is calculated by solving Eq.
3. We also define the value of the current policy
under the critic parameter ¢ as ¢4 (x(t), a(t)). This
actor-critic algorithm is summarized in Algorithm
2, where 1 represents the importance of future
rewards, and ¢, and ¢, measure how quickly the
local model learns for the actor and the critic,
respectively.

PERFORMANCE EVALUATIONS

Figure 3 evaluates our proposed direct and relay
transmission schemes under the Nakagami-m fad-
ing channel model where m is the fading param-
eter. We set average SNR as 5dB. We observe
from Fig. 3 that effective capacity is an increas-
ing function of the parameter m. A larger m rep-
resents the milder fading, and thus provides a
larger effective capacity given the same 6;. Figure
3 also shows that the effective capacity mono-
tonically decreases as 0; increases. From Fig. 3,
we discover that for loose delay-bounded QoS
requirements (small 6/s), the relay transmission
outperforms the direct transmission, suggesting
us to choose the relay transmission as the optimal
delivery path. For stringent delay-bounded QoS
requirements (large 6/s), the direct transmission
outperforms the relay transmission, thus suggest-
ing us to choose the direct transmission as the
optimal delivery path.

Figure 4 plots the cumulative distribution func-
tion (CDF) of per-user effective capacity for MISO
and MIMO channels with the different numbers
of BS antennas L = 80 and L = 50, respectively.
Figure 4 shows that the effective capacity perfor-
mance increases as the number of BS antennas
increases, and in general MIMO-based scheme
outperforms (MIMQ'’s plots are at right side of
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MISO’s plots) the MISO-based scheme regard-
less of the number of BS antennas L used. We
can also observe from Fig. 4 that when effective
capacity is small (i.e., effective capacity is less than
5 bits/sec), the channel performance of L = 50 is
better than L = 80. This is because the large num-
ber of antennas in BS results in more interference
to mobile users when the number of mobile users
is large.

CONCLUSIONS

Applying the Al-enabled techniques, we devel-
oped the massive-MIMO-NFV-SDN integrated
architectures to provide heterogeneous statistical
QoS provisioning for customized services over
6G mobile wireless networks. The massive-MIMO
techniques are implemented through deploying
massive MIMO antennas on APs, BSs, and MUs
to increase the channel quality. We applied the
NFV techniques to construct the optimal data
delivery paths for different requirements of ser-
vices, respectively. Collaborating with our devel-
oped Al-enabled architectures and Al-plane, the
SDN control plane intelligently coordinates the
network nodes and resources allocations for each
virtual network slice. We conducted extensive
simulations and numerical analyses to verify and
evaluate our developed massive-MIMO-NFV-
SDN integrated architectures using Al-techniques,
showing that they can support the Al-enabled sta-
tistical delay-bounded QoS provisioning over 6G
mobile wireless networks.
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