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Abstract: Building occupancy information is significant for a variety of reasons, from allocation of
resources in smart buildings to responding during emergency situations. As most people spend
more than 90% of their time indoors, a comfortable indoor environment is crucial. To ensure comfort,
traditional HVAC systems condition rooms assuming maximum occupancy, accounting for more
than 50% of buildings’ energy budgets in the US. Occupancy level is a key factor in ensuring
energy efficiency, as occupancy-controlled HVAC systems can reduce energy waste by conditioning
rooms based on actual usage. Numerous studies have focused on developing occupancy estimation
models leveraging existing sensors, with camera-based methods gaining popularity due to their
high precision and widespread availability. However, the main concern with using cameras for
occupancy estimation is the potential violation of occupants’ privacy. Unlike previous video-/image-
based occupancy estimation methods, we addressed the issue of occupants’ privacy in this work
by proposing and investigating both motion-based and motion-independent occupancy counting
methods on intentionally blurred video frames. Our proposed approach included the development
of a motion-based technique that inherently preserves privacy, as well as motion-independent
techniques such as detection-based and density-estimation-based methods. To improve the accuracy
of the motion-independent approaches, we utilized deblurring methods: an iterative statistical
technique and a deep-learning-based method. Furthermore, we conducted an analysis of the privacy
implications of our motion-independent occupancy counting system by comparing the original,
blurred, and deblurred frames using different image quality assessment metrics. This analysis
provided insights into the trade-off between occupancy estimation accuracy and the preservation of
occupants’ visual privacy. The combination of iterative statistical deblurring and density estimation
achieved a 16.29% counting error, outperforming our other proposed approaches while preserving
occupants’ visual privacy to a certain extent. Our multifaceted approach aims to contribute to the
field of occupancy estimation by proposing a solution that seeks to balance the trade-off between
accuracy and privacy. While further research is needed to fully address this complex issue, our work
provides insights and a step towards a more privacy-aware occupancy estimation system.

Keywords: occupancy counting; deblurring; deep learning; machine learning; image processing;
privacy

1. Introduction

Residential and commercial buildings use large quantities of energy to maintain
thermal comfort, visual comfort, and indoor air quality for their occupants. However, many
heating, ventilation, and air conditioning (HVAC) systems within modern buildings run
on fixed schedules and assume maximum occupancy rather than actual usage, leading to
high energy costs and over-conditioned space. This has made buildings one of the fastest-
growing energy consumers in recent years, responsible for more than 30% of worldwide
electricity and natural gas usage [1]. To minimize energy waste, several fine-grained
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building energy management systems (BEMSs) have been proposed recently to minimize
energy waste caused by fixed scheduling of HVAC and assumption of maximum occupancy.
These systems use contextual information, such as occupancy information, in addition to
traditional environmental parameters, such as temperature and humidity, for dynamic
HVAC control. Using low-cost infrared and magnetic sensors, Agarwal et al. developed a
BEMS system that collects fine-grained occupancy information to modify the HVAC load.
Using this type of occupant information, the system was able to save 10–15% of the energy
used in the pilot [2]. Using a BEMS that recognizes occupants’ long-term presence patterns,
Yang and Becerik-Gerber found that the HVAC system might save up to 9% [3]. Using
video data and CO2 sensors, Wang et al. [4] suggested a predictive algorithm for HVAC
control. In buildings, they exhibited a 40% reduction in energy use without sacrificing
thermal comfort or air quality. The operation time of lighting systems is also determined
by the knowledge about occupancy [5,6]. Occupancy-based lighting control, as proposed
by Leephakpreeda et al. [7], has the potential to reduce the energy consumption of lighting
systems by up to 75%, according to their findings.

Various types of sensors have been used to accurately estimate and detect building
occupancy in a variety of applications. By detecting changes in temperature patterns
caused by the movement of objects, passive infrared (PIR) sensors are utilized in [8–10]
to identify the presence of people and to estimate the number of people [11,12]. The
ultrasonic sensor [13] is another motion-based occupancy detection technique that uses
the Doppler effect to detect the movements of people. Using the acoustic properties of
the sound produced by human activity, microphone sensors [14] can detect the presence
of people. These sensors are dependent on human movement and actions and, therefore,
have limitations when it comes to identifying stationary objects. Several approaches [15,16]
based on environmental characteristics (sound, temperature, pressure, humidity, and
CO2 concentration) have been presented to estimate the number of occupants within
an enclosed space. To improve the estimation performance of such methods, sensors
of diverse parameters must be coupled. Their real-time performance is also affected by
another limitation: delayed estimation. Additionally, because of the widespread availability
of cellphones, the researchers proposed the utilization of Wi-Fi [17] and Bluetooth [18]
signals for occupant estimation. The most significant disadvantage of both systems is that
the occupants must have their devices turned on, which is also a disadvantage of the RFID
tag-based method [19]. Researchers have also designed thermal-imaging-based occupancy
counting systems [20] but thermal imaging has limitations in terms of low spatial resolution
and contrast compared to visible light cameras, limiting its ability to precisely identify
small or distant objects [21].

Occupancy can also be detected by analyzing image/video data [22]. The excellent
precision of cameras makes them popular for estimating and detecting the presence of
people in buildings. Floret and colleagues developed a method to estimate the locations
of all indoor individuals, which can be used to determine the number of people who are
present in a building [23]. They used a multi-camera system to achieve this. Vision-based
occupancy estimation and detection systems were proposed by Benezeth et al. [24]. Al-
though the accuracy of their methods was better, the number of occupants was significantly
lower. For the purpose of creating an occupancy model, Erickson et al. [25] used cameras
to gather data on building occupants and implemented background subtraction to identify
images containing people. They then incorporated the established occupancy model into
building energy management systems in order to save energy consumption. The scope
of such a method is limited, as the background subtraction method fails to detect static
objects and the counting process adopted here is manual. Occupancy estimation systems
based on vision cameras at the entrances and within a room have been presented by Liu
and others [26]. The room’s occupancy was estimated using a two-stage static detector
to detect human heads in rooms and the occupancy at the entrances was detected using
a motion-based approach. They employed a dynamic Bayesian network technique to
combine the findings of the room’s occupancy estimation with those of the entrances. In
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rooms with multiple entrances, accurately counting occupants with such a method becomes
a challenging and expensive task, as it requires installing cameras at each entrance and
coordinating readings from all cameras. To recognize the presence of a human head, the
authors in [27] employ a cascade classifier, which consists of a pre-classifier, a primary
classifier, and a clustering analyzer. An experimental study found that occupancy mea-
surement is 95.3% accurate. The experiment was performed on a dataset of surveillance
videos recorded in a typical office environment. The number of people varied from 0 to 12,
which is comparatively small. With the use of unsupervised image processing techniques,
Petersen et al. [28] developed an occupancy estimate system that relied on a Kinect camera
installed at the room’s entrance to count the number of people that entered and left the
room. In order to monitor all of the entrances to all of the rooms in a big building at once,
the system requires a Kinect camera and a powerful PC for each room for each entrance,
if the room has multiple entrances. However, this would need a significant expenditure
for research purposes. Tomastik et al. [29] developed a non-linear stochastic state-space
traffic model of occupants using the output of the video camera which is processed by
some real-time object detection algorithm. In [30], they applied a deep learning method
to classify the images into two classes, occupied or not occupied, but did not count the
number of occupants. Generally, with cameras, an indoor occupancy counting system with
high accuracy can be designed. Hence, for many other occupancy estimators, cameras were
commonly used to obtain the labeled data and ground truth.

The methods of occupancy estimation using cameras often provide relatively accurate
results, but those algorithms also suffer from some issues, such as occlusions due to the
comparatively large number of occupants, computational complexity, and the influence
of illumination conditions. Most importantly, none of the image/video processing-based
occupancy counting methods has addressed privacy concerns to the best of our knowledge.
It is critical for a camera-based occupancy counting method to adhere to digital privacy
laws and safeguard the identities of people in indoor spaces. In this work, our primary aim
was to tackle the privacy concerns associated with camera-based occupancy estimation. To
address the privacy issue, we intentionally blurred the video frames by changing the focal
length of the camera. Furthermore, we aimed to estimate occupancy from a diverse dataset
that included various crowd types, such as small, large, moderate, dense, sparse, moving,
and still. Our goal was to develop a method that could accurately estimate occupancy from
these challenging blurred videos while simultaneously maintaining the visual privacy of
the occupants. Our contributions can be summarized as follows:

1. Developed a motion-based technique for occupancy counting from blurred video
frames that is not affected by blur and can be applied directly to the blurred frames,
thus inherently preserving privacy.

2. Developed motion-independent techniques for occupancy counting, including detection-
based and density-estimation-based methods.

3. Proposed two different deblurring methods to improve the accuracy of downstream
detection and density estimation models in motion-independent techniques:

(a) The first method is based on the Lucy–Richardson algorithm, but unlike the
original approach, the choice of blur radius is informed by the presence of blur
in the image.

(b) The second method utilizes a U-Net architecture in an end-to-end fashion,
trained on synthetically blurred crowd images.

4. Conducted an analysis of the privacy implications of the occupancy counting system
by comparing the original, blurred, and deblurred frames using metrics such as blur
extent, structural similarity, and perceptual difference. The results showed that the
deblurred frames used in the motion-independent approaches still maintained some
level of visual distortion, providing a degree of privacy protection, even though it
was not the primary design goal.
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A comparison of different existing approaches and our proposed occupancy estimation
approach is shown in Table 1.

The paper is organized as follows: Section 1 presents the background and motivation
of our work. Section 2 describes the data we worked on and the facility from which we
collected the data. Section 3 briefly describes our solution approaches (Figure 1 is the
graphical representation). Section 4 describes how motion information can be used to
detect, track, and count the number of occupants. This section represents the usage of
background subtraction and optical flow estimation to detect motion, followed by Kalman-
filtering-based tracking and geometry-based counting. Section 5 presents the deblurring
process, which is the first stage of our learning-based counting methods. It describes
statistical and deep-learning-based deblurring techniques. This section also illustrates
the second stage, which is the counting. Here, we show the application of machine and
deep-learning-based detection and deep-learning-based density estimation algorithms to
count the number of occupants in the deblurred frames. Section 6 compares our different
proposed techniques and also discusses the effects of deblurring on occupants’ privacy.
Section 7 concludes this work.

Table 1. Comparison between existing and proposed occupancy estimation approaches.

Types Existing Approaches Proposed Approaches

Motion-dependent

• Multiple sensors need
to be installed for a
multi-entrance room.
• Readings from multiple
sensors need to be
coordinated for
total count for a
multi-entrance room.
• Difficulty in distinguishing
between multiple
people who are close
together or moving
as a group.

• A single camera can cover
multiple entrances.
• Properly placed camera can
identify individual people
moving in a group.

Motion-
independent

Sound,
Temp.,
Humidity,
Pressure,
CO2

• Sensors of diverse
parameters must be
coupled.
• Build-up or dispersion
rate might be affected by
external factors.

• A single camera is used.
• Does not depend
on changes
in environmental
characteristics.

Wi-Fi,
Bluetooth,
RFID

• Occupants must have
their devices
turned on.

• Does not depend on
occupants’ inputs.

Thermal
camera

• Challenging to distinguish
between individuals
who are close together
due to low spatial
resolution.

• Visible light camera has
higher resolution than
thermal imaging camera.

Camera

• Deals with small and
well-separated occupants.
• Privacy issue has not been
addressed.
• Multiple cameras need
to be installed for a
multi-entrance room.

• Deals with versatile
crowd types (Figure 3).
- Privacy issue has been
addressed.
• A single camera is used.
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Figure 1. Methodology.

2. Problem Statement
2.1. FROG Building

The dataset for this work has been collected from sustainable, energy-efficient flexible-
response-to-ongoing-growth (FROG) buildings (Figure 2a) located at the University of
Hawaii at Manoa (UHM) campus and managed by Hawaii National Energy Institute
(HNEI). These two 1428-square-foot buildings are part of a larger research program in-
tended to evaluate the performance and integration of a range of technologies that includes
energy efficiency, storage, and renewable energy systems. The FROG buildings are utilized
as classrooms for the K-12 University Lab School (ULS) in the mornings and UHM in the
afternoons and evenings. Designed to be net-zero energy, both buildings are equipped with
environmental and energy sensors for advanced monitoring, using a real-time dashboard
that illustrates current and past operating conditions such as temperature, CO2 levels,
illumination, humidity, and energy use by different loads like lighting, ceiling fans, air con-
ditioning, and plug loads [31]. All of this information is being gathered with the purpose
of being used to conduct research on energy-management systems. Several studies [31–36]
have been and are being performed on FROG data to detect occupancy, motion, and also
estimate the number of occupants and direction of arrival using Doppler radar. Our target
was to provide standard reference counts to other Doppler-radar-based counting methods.

Figure 2. (a) Flexible-response-to-ongoing-growth (FROG) buildings; (b) data collection system in
FROG building.
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2.2. Data Collection and Analysis

A field prototype (Figure 2b) was developed for occupancy sensing and counting with
a camera and custom-built 2.4 GHz radar [32] in conjunction with common occupancy
sensors. However, for the convenience of synchronizing data from different sensors into
the system, stand-alone sensors, including a Leviton occupancy sensor unit, thermometer,
radar, and out-of-focus fisheye camera, are installed within our deployed sensor in the
field testing sensor box, instead of using the embedded building sensors. The sensor
box is shown in Figure 2a. This field prototype includes a mini PC for data recording,
storage, remote monitoring, and control; a USB DAQ data acquisition device; a custom-built
2.4 GHz radar; a hybrid occupancy sensor (PIR/US) unit; a thermometer for temperature
monitoring inside the sensor box; and a fisheye camera (lower right corner of the sensor box)
(Figure 2b). Data were collected for occupancy count algorithm testing and optimization in
an FROG building for four months. To satisfy the requirements of a wide angle of view
without causing a privacy concern, a fisheye camera was adopted in the field test. The
camera uses a fisheye lens that produces strong visual distortion to create a wide panoramic
(180-degree field of view) or hemispherical image. The focal length of the camera is changed
to make the image out of focus and blurred, and thus, it is difficult to recognize individuals.
The prototype is mounted in the middle of the front wall of the 1428-square-foot classroom
at a height of 2.2 m above the floor to achieve coverage of the whole classroom building.

The FROG video data recorded from 2017 to 2019 contains 432 hours of recordings.
The videos were recorded from 9 am to 5 pm. There are several types of crowd (moderate,
dense, sparse, moving, still, etc.) found in the data (Figure 3). The number of people present
in the data varies from 0 to 31.

Figure 3. Different types of crowd found in FROG data.

3. Methodology

In this work, we propose two main approaches (Figure 3) for estimating occupancy
from blurred video frames: motion-based and motion-independent techniques. Figure 4
illustrates the framework for the motion-based occupancy counting system, while Figure 5
depicts the framework for the motion-independent counting process.

Figure 4. Motion-based occupancy counting system.
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Figure 5. Motion-independent counting: (a) Object-detection-based occupancy counting framework,
(b) crowd-density-estimation-based occupancy counting framework.

3.1. Motion-Based Approach

The motion-based approach, as shown in Figure 4, consists of three main steps: de-
tection of moving objects, tracking, and counting. To detect moving objects, we employ
two methods: background subtraction and optical flow estimation. Background subtrac-
tion involves modeling the background using Gaussian mixture modeling (GMM) and
subtracting it from the current frame to identify moving objects. Optical flow estimation,
on the other hand, computes the motion vectors between consecutive frames using either
sparse (Lucas–Kanade) or dense (Farneback) methods. After detecting the moving objects,
we apply Kalman filtering to track their trajectories across frames. Finally, we perform
counting by analyzing the trajectories and their intersection with a predefined reference
line, as illustrated in figures in Section 4.3. By determining the direction of the trajectory
relative to the reference line, we can increase or decrease the occupancy count accordingly.

3.2. Motion-Independent Approach

The motion-independent approach, as depicted in Figure 5, consists of two main
stages: deblurring and counting. We propose two different deblurring methods to enhance
the clarity of the blurred video frames: iterative statistical deblurring and learning-based
deblurring using a U-Net architecture. The iterative statistical deblurring method is based
on the Lucy–Richardson algorithm, but unlike the original approach, the blur radius is
informed by the presence of blur in the image. The learning-based deblurring method
utilizes a U-Net architecture trained on synthetically blurred crowd images to remove
blur in an end-to-end fashion. After deblurring the video frames, we apply two different
counting techniques: object-detection-based counting and crowd-density-estimation-based
counting. For object-detection-based counting, we employ the aggregated channel feature
(ACF) detector and a region-based convolutional neural network (Faster R-CNN) to localize
and count individuals in the deblurred frames. In the crowd-density-estimation-based
approach, we utilize a dilated convolutional neural network (CSRNet) to estimate the
crowd density map, which is then integrated to obtain the occupancy count.

4. Motion-Based Detection and Counting
4.1. Detection of Moving Objects by Background Subtraction

Real-time tracking and event analysis are two of many examples of computer vision
applications that use foreground detection as the first step based on video streams. Fore-
ground objects can be easily generated by using background modeling. Here, we used
Gaussian mixture modeling (GMM) [37] to model each pixel in order to represent a dynamic
background. GMM facilitates a robust detection system capable of handling issues [38]
like movement in cluttered areas, overlapping objects, gradual and sudden illumination
changes, slow-moving objects, and reflections from surfaces. These challenges are particu-
larly relevant in our case, given the complex and dynamic nature of the surveillance video
footage we are working with. The steps involving moving object detection are described
below, and the corresponding results are shown in Figure 6.
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Figure 6. Different stages of background-subtraction-based moving object detection.

Experiment

1. Frame extraction: Frames were extracted from the videos at a rate of six frames
per second.

2. Background modeling: Gaussian mixture modeling (GMM) was used to model each
pixel, representing the background as a mixture of K Gaussians. The probability of a
pixel (x) belonging to the background was determined using the following equation:

p(x) =
K

∑
k=1

πkN (x|µk, Σk), subject to
K

∑
k=1

πk = 1 (1)

where πk, µk, and Σk are the mixture weight, mean, and variance of the kth Gaussian
component, respectively.

3. Filtering: Median filtering was applied to remove speckle noise. The median filter
calculates the median of pixel values (pj) in a local neighborhood (Ωi):

p̄i = median(pj), j ∈ Ωi (2)

4. Morphological operations: Morphological operations, (dilation (I ⊕ s), erosion
(I ⊖ s), opening (I ◦ s) and closing (I · s)) were performed on the binary image
(I) using a structuring element (s):

Dilation: G(x, y) =
{

1 if s hits I,
0 otherwise

(3)

Erosion: G(x, y) =
{

1 if s fits I,
0 otherwise

(4)

Opening: I ◦ s = (I ⊖ s)⊕ s (5)

Closing: I · s = (I ⊕ s)⊖ s (6)
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5. Blob detection: Connected component labeling was used to identify connected com-
ponents (blobs) in the binary image.

6. Centroid calculation: The centroid (c) of each blob was calculated using image moments:

c =
1
n

n

∑
i=1

xi (7)

where xi are the points of the shape and n is the number of unique points. The centroid
coordinates (Cx, Cy) were obtained using:

Cx =
M10

M00
, Cy =

M01

M00
(8)

where Mpq are the image moments.

4.2. Detection of Moving Objects by Optical Flow

The optical flow describes the direction and time pixels in a two-dimensional velocity
vector, with the direction and velocity of motion assigned to a specific location in the image.
We transfer the real-world three-dimensional time case to two-dimensional case to make
computation simpler and faster. Using the 2-D dynamic brightness function of I, we may
characterize the image in more detail, I (x, y, t). Given that the change in brightness intensity
does not occur in the motion field around the pixel, we may apply the following formula:

I(x, y, t) = I(x + δx, y + δy, t + δt) (9)

Then, if we apply Taylor series approximation on the right-hand side of Equation (1),
and neglecting the higher-order terms we obtain

∂I
∂x

u +
∂I
∂y

v +
∂I
∂t

= 0 (10)

Here,
∂x
∂t

= u,
∂y
∂t

= v

∂I
∂x , ∂I

∂y , and ∂I
∂t are the image gradients along the horizontal and vertical directions, and

time. We need to solve u and v to determine the movement with time. As there is only
one equation and two unknown variables, we cannot solve the optical flow equation in the
usual manner. There are several sparse and dense optical flow methods to address this issue.
Sparse flow methods compute velocity vectors for some sparse set of interesting features
(edges, corners, etc.) and dense flow methods determine optical flow for all the pixels. The
Lucas–Kanade method [39] is one of the most commonly used sparse flow approaches.
This approach operates under the assumption that the motion vectors remain the same
over a certain block of pixels and introduce an error term for each individual pixel. The
smallest error can be computed by taking partial derivatives of the error term with respect
to each component of velocity, and then, setting those partial derivatives equal to zero. On
the other hand, the Farneback technique [40] is an example of a dense flow approach. It
works by approximating the image window frames with a polynomial of degree 2, and
the initial phase of the process involves expanding the polynomial. The The next step is to
estimate the movement of fields by observing the transformation of the polynomial while
the system is in the motion state. The calculation of dense optical flow is performed after
a certain number of repetitions. In comparison to the sparse optical flow approach, the
dense optical flow process is more time-consuming, but it produces more reliable results.
In this work, both sparse and dense optical flow algorithms have been implemented to
identify the foreground. The steps involving moving object detection through optical flow
are described below and the corresponding results are shown in Figure 7.
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Figure 7. Different stages of optical-flow-based (i) sparse (Lucas–Kanade) and (ii) dense (Farneback)
moving object detection.

Experiment

After extracting frames, both sparse and dense optical flow techniques were employed
to detect moving objects. Subsequently, flow velocity thresholding was applied, which
involves calculating the magnitude of optical flow from the x and y components of velocity
in pixels per frame, as well as determining the mean velocity per frame. The square
of the optical flow magnitude was then compared to the mean velocity to segment the
moving objects.

Following the segmentation, filtering and morphological operations were performed
to refine the detected objects. Blob detection was then applied to identify connected regions,
and the centroids of these regions were calculated. These post-processing steps were carried
out in the same manner as described in the background subtraction section.

4.3. Tracking and Counting

Kalman filter [41] is used to track the centroids of the moving objects detected using
the previously discussed methods. The linear motion of the objects and the computational
efficiency of the Kalman filter make it the preferred choice over particle filters [42,43]
for our tracking application. Then, for the purpose of counting, we propose a method
(Algorithm 1) that leverages object centroid tracking across video frames to determine
individuals’ movements in relation to a predefined reference line (Figure 8) within the
field of view of a surveillance camera. By establishing a trajectory for each detected
object between consecutive frames and examining its intersection with this line, we find
out whether an individual has entered or exited the monitored space. The direction of
movement determined by the relative positions of the object centroids across frames dictates
the classification of movement as an entrance or exit. This counting method also excludes
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unwanted detected objects (e.g., ceiling fans) as it narrows the problem space to the entrance
instead of the whole room. The process of counting is shown in Figure 9.

Figure 8. Reference-line-based counting: (a) occupant entering the room resulting increase in count,
(b) occupant exiting the room resulting decrease in count, (c) occupant roaming inside the room
resulting no change in count.

Figure 9. Tracking and counting objects: (a) tracks of detected moving objects; (b) checking whether
an object crosses a reference line (cyan colored line).

Algorithm 1 Object Counting by Line Intersection

Input: Reference line Ax + By + C = 0, centroids in previous and current frames
(Centroid 01 and Centroid 02)
for each detected object do

Define line Acx + Bcy + Cc = 0 connecting Centroid 01 and Centroid 02
Calculate parameters A, B, C, Ac, Bc, Cc for both lines
if ABc − AcB ̸= 0 then

Find intersection (x, y) where x = BcC−BCc
ABc−AcB and y = ACc−AcC

ABc−AcB
if min(x01, x02) ≤ x ≤ max(x01, x02) & min(y01, y02) ≤ y ≤ max(y01, y02) then

An object crosses the line. Determine direction:
if x01 > x02 then

Object enters
else

Object exits
end if

end if
end if

end for
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5. Motion-Independent Detection and Counting
5.1. Why Do We Need Deblurring?

The FROG video has been blurred by changing the focal length of the surveillance
camera to ensure the privacy of the occupants present in a room. In the non-motion-based
counting technique, we implement machine and deep learning algorithms. At first, we need
to reduce the amount of blur present in the out-of-focus-induced blurred frames. The effects
of blur on the performance of deep neural networks have been discussed in [44]. They
showed that the deep neural architectures Caffe, VGG-16, VGG-CNN-S, and GoogleNet
are very sensitive to the presence of blur and the networks’ performance deteriorates
significantly even for moderate blur extents. The most probable reason is the removal of
textures in images due to the smoothing effect caused by blur. Training the neural network
with low-quality images is an apparent solution but the accuracy in the case of high-quality
images might be affected. They also showed that VGG-16 is comparatively more resilient
to the types and amounts of distortion than the other networks. Therefore, we added a
deblurring stage instead of feeding the blurred frames directly to the counting stage.

5.2. Iterative Statistical Deblurring

A blurred image can be modeled using the following equation:

B(x, y) = H(x, y)⊗ G(x, y) + N(x, y) (11)

where (x, y) represents spatial coordinates, B(x, y) is the blurred image, H(x, y) is the kernel
or point spread function (PSF), G(x, y) is the sharp image, and N(x, y) is the additive noise.
The PSF of the space-invariant or shift-invariant out-of-focus image can be described as
in [42].

H(x, y) =
{ 1

πr2 if (x−m)2 + (y− n)2 ≤ r2,
0 elsewhere

(12)

where (m, n) is the PSF center and r is the blur radius. The deblurring process in our case
is blind, as we do not have any information about the radius of the blur kernel. In blind
deblurring, we are given B(x, y) only, and our goal is to predict a latent image L(x, y), which
is the closest approximation to the sharp image G(x, y). This is an ill-posed problem, as we
have to predict both G(x, y) and H(x, y). In such a case, the deblurring technique is called
blind deconvolution. Compared to blind deconvolution techniques, the Richardson–Lucy
(RL) algorithm assumes that the blur kernel (PSF) is known. In our case, we chose the RL
method as it is robust in the presence of noise, and it has been shown that the RL method
performs better than the other classical deblurring methods [45].

Experiment

Since we are dealing with out-of-focus blur, the point spread function (PSF) is an airy
disk. We empirically set the number of iterations to 100 and experimented with airy disks
of 13 different radii, ranging from 1 to 7. For each airy disk, we applied the iterative RL
algorithm to deblur the blurred frames. Instead of randomly selecting the radius of the blur
kernel, we opted to choose the radius that yielded the least amount of blur in the deblurred
frames. To achieve this, we employed a direct blur detection method [46] to calculate the
blur extent in the deblurred frames. This approach allowed us to identify the optimal
radius that minimized the residual blur after the deblurring process. In this method, Haar
wavelet transform is used to decide whether an image is blurred or not by analyzing the
edge types and the amount of blur present in the blurred image by analyzing the edge
sharpness. There are four types of edges [46] found in natural images (see Figure 10):
1. Dirac structure, 2. Roof structure, 3. Astep structure, and 4. Gstep structure. The edges.
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Figure 10. Types of edges found in natural images.

Both Dirac structures and Astep structures disappear when blur happens, regardless
of whether it is generated by being out of focus or linear motion. Furthermore, both the
Gstep structure and the roof structure tend to become less sharp in their structure [46]. This
method decides whether a given image is blurred or not according to the presence of Dirac
or Astep structures and evaluates the amount of blur by the percentage of Gstep structures
and roof structures.

The deblurring algorithm combining the Lucy–Richardson method and the blur-extent
calculation technique is shown by Algorithm 2 and an example is shown in Figure 11. We
can see that the blur extent of a blurred frame is found to be minimum when the radius of
the PSF is 2.5. Thus, we choose the deblurred frame corresponding to the PSF of radius 2.5
(Figure 12).

Figure 11. Amount of blur in deblurred image for different PSFs.

Figure 12. The original blurred FROG image (top) and the corresponding image deblurred by RL
deblurring (bottom).
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Algorithm 2 Iterative Statistical Deblurring assisted by Blur-extent Calculation

1: function RL-DEBLUR(X, H, N) ▷ Deblur using Richardson-Lucy method
2: S = X
3: for k = 1 to N do ▷ Each of N frames
4: S_reblurred = S⊗ H
5: relative_blur = X/S_reblurred
6: H_ f lipped = f lip(H)
7: S_update = S ∗ (relative_blur⊗ H_ f lipped)
8: S = S_update
9: S = max(S, 0)

10: S = S/sum(S)
11: end for
12: return S
13: end function
14: function EDGES(S) ▷ Calculate blur-extent
15: Nedge = 0 ▷ Initialize Number of edges
16: Nda = 0 ▷ Initialize Number of dirac-astep edges
17: Nrg = 0 ▷ Initialize Number of roof-gstep edges
18: Nr = 0 ▷ Initialize Number of roof edges
19: Nbrg = 0 ▷ Initialize Number of blurred roof-gstep edges
20: LHi, HLi, HHi = Wavelet (S) ▷ Haar Wavelet Transform, Decomposition Level-3
21: Ei =

√
(LHi)2 + (HLi)2 + (HHi)2 ▷ Compute energy map for each level

22: Compute local maxima Eim in 2X2, 4X4 and 8X8 windows
23: for every point (p, q) in Eim do
24: if Eim (p, q) > Threshold then
25: Nedge ← Nedge + 1
26: if E1m (p, q) > E2m (p, q) > E3m (p, q) then
27: Nda ← Nda + 1
28: end if
29: if E1m (p, q) < E2m (p, q) < E3m (p, q) then
30: Nrg ← Nrg + 1
31: end if
32: if E1m (p, q) < E2m (p, q) and E3m (p, q) < E2m (p, q) then
33: Nr ← Nr + 1
34: end if
35: if E1m (p, q) < Threshold then
36: Nbrg ← Nbrg + 1
37: end if
38: end if
39: end for
40: return Nbrg, Nrg
41: end function
42: Initialize bestDeblurredFrames as an empty list
43: for each blurred frame X do
44: Initialize lowestBlurExtent to infinity
45: Initialize bestFrameForCurrentX as null
46: for r = 0.0 : 0.5 : 7.0 do ▷ Each of r radii
47: S = RL-DEBLUR(X, r, N)
48: [Nbrg, Nrg] = EDGES(S)
49: BlurExtent = Nbrg/Nrg
50: if BlurExtent < lowestBlurExtent then
51: lowestBlurExtent = BlurExtent
52: bestFrameForCurrentX = S
53: end if
54: end for
55: Add bestFrameForCurrentX to bestDeblurredFrames
56: end for
57: return bestDeblurredFrames
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5.3. Learning-Based Deblurring

Deep learning has revolutionized image deblurring through diverse approaches, in-
cluding end-to-end convolutional neural networks, generative adversarial networks [47],
algorithm unrolling, learning in feature space, multi-scale processing, RAW image de-
blurring, and techniques for non-blind deblurring [48]. Each method leverages neural
networks’ capabilities to restore sharpness from blurred images, enhancing image quality
with state-of-the-art performance and offering unique advantages in tackling the complex-
ity of deblurring tasks. In this work, we chose the U-Net [49] architecture for deblurring
because of its ability to effectively manage multi-scale information [50], efficient feature
fusion mechanism, and adaptability to various deblurring tasks [51].

The U-shaped architecture is made up of a certain encoder–decoder scheme, which is as
follows: Every layer of the encoder decreases the spatial dimensions while simultaneously
increasing the number of channels. The decoder, on the other hand, increases the spatial
dimensions while simultaneously decreasing the number of channels. Bottleneck is the
term used to describe the tensor that is fed into the decoder. The spatial dimensions are
then restored, allowing an estimate to be made for each pixel in the input image at this
point. ResNet-34 [52] is used as the encoder part of the U-Net, which is the backbone. This
is to allow the use of a well-established image classification architecture with pre-trained
weights for the purpose of transfer learning.

Experiment

In order to train the U-Net (hyperparameters shown in Table 2) we used the Shang-
haitech part B [53] crowd dataset. We selected 375 images, each of which has a size
1024 × 768, and collected 24 patches of size 160 × 160 from each of the images. Thus, the
total number patches was 9000. The patches were then divided into 90 groups randomly.
Each group, consisting of 100 patches, was blurred by blurring disks of 90 different radii
(1.00, 1.10, 1.15, . . . , 5.50). See Figure 13.

Table 2. Hyperparameters for U-Net.

Parameter Value

Batch size 8

Learning rate 0.001

Epochs 300

Weight decay 0.001

Optimizer SGD

Momentum 0.90

Figure 13. Training data preparation: (a) Sample image from Shanghaitech part B [53] crowd dataset;
(b) extracted patches; (c) blurred patches.

We used perceptual loss combined with pixel mean squared error loss and gram matrix
style loss [54,55]. We trained the U-Net for 100 epochs. The example of a predicted clean
patch from a blurred patch along with the original clean patch is shown in Figure 14.
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Figure 14. Blurred patch (left), patch deblurred by U-Net (middle), and original clean patch (right)
of an image in Shaghaitech part B dataset.

In order to deblur the FROG video frames, the frames are extracted from video cap-
tured through the surveillance camera for every one second. The resolution of the extracted
frames is 640 × 480. Each frame is then divided into total 12 number of patches and each
patch is then passed through the trained U-Net, resulting in an estimated deblurred patch.
All of the deblurred patches are aggregated to give the final output, as shown in Figure 15.

Figure 15. The original blurred FROG image (top) and the corresponding image deblurred by U-Net
(bottom).

5.4. Counting by Detection
5.4.1. Aggregated Channel Features

The aggregated channel features (ACF) detector proposed in [56] has demonstrated
good performance in a number of detection problems. In contrast to traditional channel
features, aggregated channel features are extracted directly as pixel values in extended
channels, rather than determining rectangular sums at different scales and locations, as is
the case with traditional channel features. ACF consists of three LUV color channels, one
normalized gradient magnitude channel, and six Histogram of Oriented Gradients (HoG)
channels. An RGB image I(x, y) is first translated into the LUV color space, which is then
followed by the calculations of the gradient magnitude and gradient orientation of image I
using the following formulas, respectively.

GM(m, n) =

√(
∂I(m, n)

∂x

)2

+

(
∂I(m, n)

∂y

)2

(13)

GO(m, n) = tan−1

 ∂l(m,n)
∂y

∂y(m,n)
∂x

 (14)

The gradient magnitude is smoothed by convolving it with a 2D triangle filter of
the form [1p1]

2+p , where the value of p is calculated from the radius r of the triangle filter.
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Here, we used r = 1. The smoothed gradient magnitude is then normalized using the
following formula:

M̃(m, n) =
M(m, n)

S(m, n) + nc
(15)

Here, S(m, n) is the smoothed gradient magnitude and nc is the normalization constant
(0.005). After that, the histogram of oriented gradients (HoG) features are computed from
the normalized gradient magnitude and gradient orientation with a cell size of 4 and six
bins. All of the features are then aggregated and a decision tree is constructed.

Experiment

We collected 800 frames (positive training examples) which contained persons and
1643 frames (negative training examples) which did not contain any people from recorded
videos of 10 different days. Both types of frames were deblurred using both the statistical
method and the deep-learning-based method (RL and U-Net) as described in the deblurring
stage. The hyperparameters used to train the ACF detector is shown in Table 3. In order to
test the performance of the trained ACF detector, we extracted 100 frames from recorded
videos of three different days and deblurred those in the same way as we deblurred the
training images. The testing result is shown in Table 4. The performance is measured using
the log-average missing rate (MR), where the missing rate is defined as follows:

MR =
FN

TP + FN
(16)

The detection results for the three different approaches are shown in Figure 16.

Table 3. Hyperparameters for ACF.

Parameter Value

Maximum depth of tree 2

Number of stages 3

Number of weak classifiers [32,64,128]

Maximum number of negative windows to sample 5000

Table 4. Performance of ACF.

Algorithms Dataset MR

ACF Test 31

U-Net+ACF Test 28

RL+ACF Test 26

Figure 16. Detection results: (a) ACF detector, (b) U-Net+ACF detector, and (c) RL+ACF detector.

5.4.2. Region-Based Convolutional Neural Network

There are three basic processes in traditional object detection methods. The first stage
is to come up with a list of potential regions. There is a possibility that these regions
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might contain objects. Selective search and edge boxes are two examples of algorithms
that produce regions. Then, a feature vector of fixed length is retrieved from each region
proposal using several image descriptors, such as the histogram of oriented gradients
(HoG). Object detectors rely on this feature vector to work properly. The vector should
be able to accurately describe an object, regardless if it is scaled or translated. Using the
feature vector, each region proposal is then assigned to one of the object or backgrounds
classes using some classifier and classifying region proposals; using the support vector
machine (SVM) is a common practice. Unlike traditional object detection techniques, the
deep-neural-network-based approaches R-CNN [57] and Fast R-CNN [58] extract features
based on just extracting the features based on a convolutional neural network (CNN).
Faster R-CNN [59] is an enhancement of Fast R-CNN. The region proposal network makes
Faster R-CNN faster than Fast R-CNN (RPN). Faster R-CNN consists of two modules:
1. Region Proposal Network (RPN) and, 2. Fast R-CNN. The RPN, a fully convolutional
network, produces proposals of varied sizes and aspect ratios and introduces the idea of
attention in neural networks, which guides the Fast R-CNN detection module to where
to seek for objects in an image. The notion of anchor boxes was presented in the Faster
R-CNN algorithm as an alternative to the traditional pyramids of pictures or filters. A
reference box with a defined scale and aspect ratio is referred to as an anchor box. For a
particular region, there are many reference anchor boxes with a variety of sizes and aspect
ratios available. This can be considered to be a pyramid of reference anchor boxes. Each
region is then mapped to each reference anchor box, resulting in the detection of objects
with varying sizes and aspect ratios throughout the image.

Experiment

There are three distinct methods for training both the RPN and Fast R-CNN while
sharing the convolutional layers across the two networks: 1. Alternating training; 2. ap-
proximate joint training; and 3. non-approximate joint training. We used the alternating
training method in which the RPN is initially trained how to develop region proposals.
Deblurring (RL and U-Net) was performed on training, validation, and testing sets of
800, 200, and 100 frames, respectively. This was followed by bounding-box annotations of
each person. The training dataset contained 8364 annotated persons, 956 annotated heads
for validation, and 1063 annotated heads for testing. The hyperparameters used to train
Faster-RCNN are shown in Table 5. The training and testing results are shown in Table 6.
The detection results for the three different approaches using Faster R-CNN are shown in
Figure 17. The calculation of the average precision (AP) is a weighted mean of the precision
at each threshold, where the weight represents the increase in recall from the previous
threshold. Precision and recall are defined as follows:

Precision =
True Positive

True Positive + False Positive
(17)

Recall =
True Positive

True Positive + False Negative
(18)

Table 5. Hyperparameters for Faster R-CNN.

Parameter Value

Batch size 8

Learning rate 0.001

Epochs 500

Weight decay 0.0001

Optimizer SGD

Momentum 0.90
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Table 6. Performance of Faster R-CNN.

Algorithms Dataset AP

Faster R-CNN
Validation 0.758

Test 0.743

U-Net+Faster R-CNN
Validation 0.750

Test 0.732

RL+Faster R-CNN
Validation 0.753

Test 0.736

Figure 17. Detection results: (a) Faster R-CNN, (b) U-Net+Faster R-CNN, and (c) RL+Faster R-CNN.

5.5. Counting by Density Map Estimation
Dilated Convolutional Neural Network

Detection-based counting approaches have limitations to performing well in the
presence of occlusions (as we saw in the previous sections) and cluttered background.
They also do not take spatial information into account. Lempitsky et al. [60] utilize
spatial information in counting by modeling a density function as a linear combination
of SIFT feature vectors, where integration of the density function over entire image gives
the total count of objects. Pham et al. [61] introduce non-linearity as linear mapping
poses difficulties. Both of these methods rely on hand-crafted features which result in less
accurate counts. The following studies adopted CNN to estimate density more accurately
as it does not depend on hand-crafted features. Zhan et al. [53] proposed MCNN, whose
output is a density map. The integration gives the total number of heads. They used
geometry-adaptive kernels to convert an image containing the labeled heads of people to a
density map. Li et al. [62] show MCNN has structural redundancy and a larger amount
of parameters are used for density map classification rather than density map generation,
resulting in lower accuracy. They proposed CSRNet (Figure 18), which uses VGG-16 [63]
as the front-end and dilated convolution layers as the back-end. It performs well for both
densely crowded and sparsely crowded scenes. We used CSRNet to count the number
of occupants.

Figure 18. CSRNet architecture.
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Experiment

(i) Density map generation: Each image containing labeled heads is converted to a
density map. A head at pixel xi is represented as a delta function δ(x − xi). Thus, the
function representing N heads is

H(x) =
N

∑
i=1

δ(x− xi) (19)

We need to convolve H(x) with a Gaussian kernel of variance σ, Gσ to make H(x) a
continuous density function. The variance should be made dependent of each head size in
the image to reduce the effect of perspective distortion caused by the homography between
image and ground plane. Therefore, the variance is defined as

σi = βd̄i (20)

where d̄i = 1
m ∑m

j=1 di
j is the average distance between a head and its k-nearest neighbors

and β is empirically found to be 0.3. The resultant continuous density function is [38]

F(x) =
N

∑
i=1

δ(x− xi) ∗ Gσi (x) (21)

(ii) Training and testing: In order to train the network (Figure 18), we chose the
hyperparameters shown in Table 7. The training, validation, and test datasets consisted
of 800, 200, and 100 frames, respectively, which were deblurred first using both statistical
and deep-learning-based methods (RL and U-Net), as described in the deblurring stage.
Then, we annotated the heads of the occupants and generated density maps in the process
described in the density map generation stage. There are a total of 8364 annotated heads
in the training dataset, 956 annotated heads in the validation dataset, and 1063 annotated
heads in the testing dataset. The training and testing results are shown in Table 8. The
estimation results for the three different approaches using CSRNet are shown in Figure 19.
To evaluate the performance of the model, we used mean absolute error (MAE) as the
metric, which is defined as

MAE =
1
N

N

∑
1

∣∣Ci − Ĉi
∣∣ (22)

where N is the number of test images, Ci is the original count, and Ĉi is the estimated count,
which is defined as

Ĉi =
∫∫

S
F(Xi; Θ)dxdy (23)

Here, S is the spatial region estimated by the trained network.

Table 7. Hyperparameters for CSRNet.

Parameter Value

Batch size 8

Learning rate 0.001

Epochs 400

Weight decay 0.0005

Optimizer SGD

Momentum 0.95
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Table 8. Performance of CSRNet.

Algorithms Dataset MAE

CSRNet

Train 3.682

Validation 3.927

Test 4.536

U-Net+CSRNet

Train 1.654

Validation 1.867

Test 2.014

RL+CSRNet

Train 1.691

Validation 1.785

Test 1.813

Figure 19. Occupants’ density maps estimated by CSRNet: (a) Original image, (b) CSRNet,
(c) U-Net+CSRNet, and (d) RL+CSRNet.

6. Results and Discussion
6.1. Performance Comparison

We compare the performance of different motion-based and non-motion-based meth-
ods to count the number of occupants, as shown in Table 9. In order to evaluate the
performance of detection-based counting we used the counting error, which is defined
as follows:

Counting Error =
N

∑
t=1

∣∣∣∣ Observed t − Predicted t

Observed t

∣∣∣∣× 100
N

(24)

Here, N = total number of frames. From Table 9 we can see that the motion-based
techniques perform the worst. The change in illumination between the doorway and
indoors, the complex and cluttered background, and shadows of the occupants affect
the performance of background subtraction. On the other hand, the sparse optical flow
method faces difficulties in detecting the objects moving fast. Dense optical flow tries
to solve the problem to some extent and provides better results compared to the sparse
method. The background subtraction and optical flow estimation methods both suffer from
motion discontinuities caused by faster moving objects but slower frame rates, and most
importantly occlusions when a moving occupant occludes another moving occupant. The
performance of the motion-based counting method may be improved by placing the camera
right above the doorway. Overall non-motion-based approaches provide better counting
accuracy than the motion-based approaches. In the case of non-motion-based approaches,
Tables 4 and 8 show that both Richardson–Lucy (RL) and U-Net-based deblurring methods
improve the performance of the detection-based ACF (missing rate) and density map-
based CSRNet (mean absolute error). On the contrary, the average precision (AP) of
Faster R-CNN decreases (Table 6) slightly after the introduction of the deblurring methods.
In fact, the texture and details in the frames are increased by deblurring methods, which
contributes to the increase in both true and false positive cases. Thus, although the precision
of Faster R-CNN might be negatively affected, the recall is improved at the same time.
In all (Tables 4, 6, and 8) approaches it can be seen that U-Net provides inferior results
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compared to the Richardson–Lucy deblurring. The reason is that instead of training
the U-Net with images blurred by a particular point spread function, we have trained
it with images blurred by point spread functions of different radii (90) to make U-Net
suitable for the blind deblurring process. The frames with a higher blur extent affect the
frames with a lower blur extent. The overall performance of U-Net, thus, is affected. The
overall performance of ACF detection is poor as it suffers from an occlusion problem in
crowded scenes and the hand-crafted features are not enough to detect objects. On the
other hand Faster R-CNN performs better compared to the ACF detector as its deep neural
network architecture is capable of extracting features to detect objects even in challenging
scenes. Density-map-based approaches are capable of reducing counting errors caused
by occlusions as the methods put spatial information into use. The CSRNet captures
high-level features by utilizing larger receptive fields and produces high-quality density
maps without significantly increasing network complexity. It can be seen from Table 8
that CSRNet alone performs poorly in detecting objects from blurred video frames. The
application of Gaussian blur kernels on already blurred video frames makes it difficult
for CSRNet to extract features. The performance improves when the deblurring stage is
incorporated. The performance of different motion-independent occupancy estimation
approaches is shown in Figures 20 and 21.

Table 9. Performance comparison of different approaches.

Approache Algorithms Counting Error (%)

Motion-based

Background Subtraction+Kalman Filter
Tracking+Detection of Line Crossing 48.14

Optical Flow Estimation
(Sparse)+Kalman Filter

Tracking+Detection of Line Crossing
46.24

Optical Flow Estimation
(Dense)+Kalman Filter

Tracking+Detection of Line Crossing
44.73

Motion-independent

ACF 28.87

RL+ACF 24.54

U-Net+ACF 26.14

Faster R-CNN 22.72

RL+Faster R-CNN 19.95

U-Net+Faster R-CNN 20.21

CSRNet 31.28

RL+CSRNet 16.29

U-Net+CSRNet 18.24

Figure 20. Comparing blur extent, SSIM, and Haar PSI of original (ground truth), blurred, and
deblurred images.
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Figure 21. Number of occupants estimated by different object detection methods.

6.2. Deblurring and Privacy

Quantifying visual privacy in images or videos is an open research problem, and
there is a lack of standard metrics for this purpose. Developing such metrics is beyond the
scope of our current work. However, to address the privacy implications of our occupancy
counting system, we conducted an analysis using three proxy measures: blur extent [46],
structural similarity (SSIM) [64], and perceptual difference (HaarPSI) [65]. These metrics,
while not directly measuring privacy, provide insights into the quality and perceptual
differences between the original, blurred, and deblurred frames.
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6.2.1. Blur Extent

Blur extent is a measure of the amount of blur present in an image. We used a direct
blur detection method based on the Haar wavelet transform to estimate the blur extent.
This method analyzes the edge types and edge sharpness in the image to determine the
degree of blur. A higher blur extent indicates a greater level of privacy protection, as the
visual details are more obscured.

6.2.2. Structural Similarity (SSIM)

The structural similarity (SSIM) index is a widely used metric for assessing the per-
ceived quality of an image. It measures the similarity between two images based on three
factors: luminance, contrast, and structure. SSIM values range from 0 to 1, with higher
values indicating greater similarity between the images. In the context of privacy analysis,
a lower SSIM value between the original and deblurred frames suggests a higher level of
privacy protection, as the deblurred image differs more from the original.

6.2.3. Perceptual Difference (HaarPSI)

The Haar Perceptual Similarity Index (HaarPSI) is a metric that quantifies the per-
ceptual difference between two images. It is based on the Haar wavelet transform and
considers the human visual system’s sensitivity to changes in different frequency bands.
A higher HaarPSI value indicates a greater perceptual difference between the images,
implying a higher level of privacy protection.

6.2.4. Analysis
Synthetically blurred dataset

It was difficult for us to measure the amount of degradation left after deblurring, as we
do not have the original sharp FROG images to compare with. Hence, we opted to evaluate
the change in blur extent by comparing images from a comparable dataset before and after
the application of deblurring techniques. We chose the Shanghaitech-Part B crowd dataset
for this purpose. In our analysis, the average blur amount in sharp images was measured
at 0.405. After introducing synthetic blur, we applied two deblurring techniques: statistical
deblurring, which achieved a blur extent of 0.453; and deep-learning-based deblurring,
with a blur extent of 0.494. Both methods resulted in images that were still blurrier than the
original, sharp images.

Naturally blurred dataset

We also wanted to investigate the effect of deblurring on naturally blurred images. We
could not use the FROG data as it does not have the sharp video frames as ground truth.
Therefore, we recorded occupancy-related data from our lab with the permission of the
participants. Then, we blurred the video by changing the focal length of the video camera
(natural blur) and deblurred the video frames using both statistical and deep-learning-
based deblurring.

In Figure 22, it is evident that the blur extent in the deblurred images produced by
both statistical and deep-learning-based methods remains higher than that of the original
sharp image. The statistical deblurring method relies on simplified parametric forms to
model the point spread function (PSF), which often fails to accurately represent natural
blur as it is difficult to estimate [66]. The mismatch between the modeled and actual PSFs
can result in artifacts and suboptimal deblurring [67], explaining the persistence of blur
even after the deblurring process. Similarly, training the U-Net in an end-to-end manner
using images blurred with various blur kernels may contribute to the presence of residual
blur following the learning-based deblurring [68].
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Figure 22. Number of occupants estimated by density estimation method.

The deblurred images are also structurally different to the original sharp image, which
is indicated by the SSIM. Because of the ringing artifacts, the statistically deblurred image
has a lower SSIM. Moreover, the HaarPSI index [58] shows that the deblurred images
are also perceptually different from the original sharp image. Based on the blur extent,
SSIM, and HaarPSI, we can say that there is still degradation present in the deblurred
images to some extent, which ensures that the visual privacy of the occupants has not been
completely compromised.

The presence of residual blur and artifacts in the deblurred images suggests that some
level of privacy is still maintained. The higher the blur extent and the lower the SSIM and
HaarPSI values, the more likely it is that the deblurred images preserve a certain degree of
privacy compared to the original sharp images.

While these metrics serve as proxy measures for privacy, they do not directly quantify
the level of privacy protection. To obtain a more direct measure of the relationship between
deblurring and privacy, conducting a user study or perceptual evaluation could be ben-
eficial. Participants could be asked to rate the level of privacy or the ability to identify
individuals in the deblurred images compared to the original sharp images.

We acknowledge the limitations of our current approach and highlight the need for
future research to develop more robust and standardized metrics for quantifying visual
privacy in images and videos.

7. Conclusions

Occupancy estimation from blurred video while preserving the subjects’ privacy is
a challenging task. To address this issue, we employed both motion-based and motion-
independent algorithms. Although background-subtraction- and optical-flow-estimation-
based counting methods can reliably detect motion despite the low resolution of the video
frames, their accuracy is limited by their inability to detect occluded and fast-moving
objects, as well as varying lighting conditions. As motion-based occupancy counting
methods inherently ensure privacy, addressing these limitations could be beneficial for
privacy-concerned occupancy counting research.

Motion-independent approaches, on the other hand, generally deliver better perfor-
mance. Detection-based methods, such as the ACF detector and Faster R-CNN, struggle in
crowded environments and scenarios with significant activity, resulting in substantial count-
ing errors. In contrast, the density-map-based algorithm CSRNet reduces counting errors
by minimizing the effects of occlusion. For both detection-based and density-map-based
methods, statistical and deep-learning-based deblurring techniques improve counting per-
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formance while preserving occupants’ privacy to some extent, with the statistical method
outperforming the deep learning approach. Consequently, the combination of statistical
deblurring and density estimation yielded the lowest counting error.

Future research could focus on quantifying visual privacy and developing metrics
to measure the impact of deblurring on privacy. This would provide valuable insights
for designing occupancy counting systems that strike a balance between accuracy and
privacy preservation.
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