IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

1535

ALT-Lock: Logic and Timing Ambiguity-Based IP
Obfuscation Against Reverse Engineering

Jonti Talukdar™, Woo-Hyun Paik, Eduardo Ortega™, and Krishnendu Chakrabarty ™, Fellow, IEEE

Abstract— We present a logic ambiguity-based intellectual
property (IP) obfuscation method that replaces traditional key
gates with key-controlled functionally ambiguous logic gates,
called LGA gates. We also protect timing paths by develop-
ing timing-ambiguous sequential cells called TA cells. We call
this locking scheme ambiguous logic and timing logic locking
(referred to as ALT-Lock). ALT-Lock ensures a two-pronged
system-level security scheme where the attacker is forced to
unlock not only combinational logic obfuscation but also timing
obfuscation. We show that a combination of logic and timing
ambiguity (TA) provides security against oracle-guided attacks.
This method is superior to other traditional IP protection schemes
such as combinational or sequential locking as it guarantees
security against both oracle-guided and oracle-free attacks, while
ensuring low power, performance, and area (PPA) overhead.

Index Terms— Hardware security, intellectual property (IP)
security, standard cells, supply chain security, timing obfuscation.

I. INTRODUCTION

HE globalization of the integrated circuit (IC) supply

chain has led to outsourcing of IC fabrication, packag-
ing, assembly, and testing operations to third-party entities.
Guaranteeing the trustworthiness of all third-party vendors
part of the global supply chain is extremely challenging,
resulting in an untrusted IC supply chain. This globalized IC
manufacturing flow poses significant risk to the security of
intellectual property (IP). Exposing IP to untrusted third parties
in the supply chain may result in IP theft, counterfeiting,
IC overbuilding, or the insertion of hardware Trojans in the
design. A variety of countermeasures such as split manufac-
turing, IC metering, and IP obfuscation have been proposed
to tackle these threats [1].

Logic obfuscation, also called logic locking, protects the
IP by inserting additional “locking logic” into the design.
Unlocking is possible only upon the application of the correct
key. The two major techniques considered for logic locking are

Manuscript received 30 October 2023; revised 19 March 2024, 7 May 2024,
and 29 May 2024; accepted 31 May 2024. Date of publication 17 June 2024;
date of current version 26 July 2024. This work was supported in part by
the Semiconductor Research Corporation (SRC) Center for Heterogeneous
Integration of Micro Electronic Systems (CHIMES), one of the seven centers
in Joint University Microelectronics Program (JUMP) 2.0; in part by SRC Pro-
gram sponsored by Defense Advanced Research Projects Agency (DARPA)
under Grant Task 3136.005; and in part by the National Science Foundation
under Grant CNS-2011561. (Corresponding author: Jonti Talukdar.)

Jonti Talukdar and Woo-Hyun Paik are with the Department of Electrical
and Computer Engineering, Duke University, Durham, NC 27708 USA
(e-mail: jonti.talukdar@duke.edu).

Eduardo Ortega and Krishnendu Chakrabarty are with the School of Elec-
trical, Computer, and Energy Engineering, Arizona State University, Tempe,
AZ 85287 USA.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TVLSI1.2024.3411033.

Digital Object Identifier 10.1109/TVLSI1.2024.3411033

combinational and sequential locking. Combinational locking
techniques require the insertion of key gates into the com-
binational cone of logic within the design [2]. Sequential
locking techniques insert additional obfuscation states and
state transitions to prevent an adversary from ascertaining the
correct order of functional states within the IP [2].

Logic locking protects against IP theft through IC reverse
engineering, IP counterfeiting, and overbuilding as the design
remains functionally inoperable unless the appropriate unlock-
ing key is applied. However, different forms of attacks, aimed
at recovering functional key used for logic obfuscation, have
been developed. For example, SAT is an oracle-guided attack
that can break most combinational logic-locking solutions [3],
[4], [5]. In addition, other variants of SAT, such as KC2,
have been created to successfully attack sequential locking [5].
Thus, there exists a need for stronger locking schemes that
provide security against not only oracle-guided attacks such
as SAT-based attacks but also a rapidly expanding arsenal of
oracle-free attacks [6], [7], [8].

In this work, we present a logic and timing ambiguity
(TA)-based IP obfuscation technique that obfuscates both the
combinational logic paths and timing paths in the design
through the use of novel combinational and sequential locking
cells. We refer to this technique as ambiguous logic and timing
locking (referred to as ALT-Lock). Through ALT-Lock: 1)
logic ambiguity is achieved by the insertion of functionally
ambiguous gates, i.e., logic gates (termed as LGA gates)
whose functionality is determined based on the applied key
and 2) TA is achieved by the insertion sequential elements
whose timing properties change upon the application of the
appropriate key. The use of both logic and TA provides
twofold security such that not only the functionality of the
combinational logic but also the cycle-based timing behavior
of the circuit is obfuscated. Unlike the existing IP obfuscation
techniques that rely on the use of XOR-gates, look-up-tables
(LUTs), or multiplexers (MUXes) for locking, we present
functionally ambiguous logic gates (LGA gates) that contain
embedded key transistors (MOSFETS) to allow the logic gates
to change their functionality based on applied key [9], [10],
[11]. The use of LGA gates allows us to not only obfuscate the
design functionally but also control the output corruptibility
of the design. We show that combining both the LGA gates
with timing ambiguous sequential cells leads to significant
protection against both oracle-guided and oracle-free attacks.

The major contributions of this article are as follows.

1) We describe three different types of LGA gates

[NAND/NOR (NDNR), NAND/XOR (NDXR), and
NAND/XNOR (NDXNR)], which can achieve gate-level

1063-8210 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

1536

logic obfuscation. These gates provide the necessary
logic ambiguity for ALT-Lock.

2) We present a timing-ambiguous sequential cell (TA cell),
which can change its functionality between a buffer
(delay element), latch, and a flip-flop, based on the
applied key. This is used to achieve timing obfuscation.

3) We present a methodology for the insertion of the logic
and timing ambiguous obfuscation cells for ALT-Lock,
along with a dynamic obfuscation of logic paths using
TA cells that are driven by reconfigurable blocks (RBs).

4) We evaluate the effectiveness of ALT-Lock against state-
of-the-art oracle-guided and oracle-free attacks.

5) We present an assessment of the power, performance,
and area (PPA) overhead associated with ALT-Lock.

The rest of this article is organized as follows. Section II
reviews prior work along with the necessary background
and threat model. Section III presents the architecture of
the ALT-Lock obfuscation scheme along with the insertion
methodology. Section IV presents the security analysis of
ALT-Lock. Section V presents a discussion of the associated
overhead. Finally, Section VI concludes the article.

II. BACKGROUND AND MOTIVATION
A. Related Prior Work

Combinational logic locking using XOR/XNOR gates, LUTs,
or MUXes remains vulnerable to attacks based on key sensi-
tization and test-data access [2], [12]. Improved logic-locking
methods that exploit structural properties of the netlist to
prevent sensitization of key bits have been designed to protect
against such attacks [13]. By controlling output corruptibil-
ity and preventing key-bit sensitization, these logic-locking
methods can defend against previously stated attacks [13].
However, the attack described in [3] highlighted a new
vulnerability of logic locking solutions. The oracle-guided
Boolean Satisfiability (SAT) attack prunes the key search
space by identifying distinguishing input patterns (DIPs).
By identifying these patterns, the SAT attack is able to reverse
engineer (RE) secret key information from logic locking
solutions [3]. New SAT-resilient logic locking was created to
defend against the SAT attack [4] using point functions to
restrict the number of keys that can be eliminated in each
iteration of the SAT attack [4], [9]. However, while providing
defense against the SAT attack, these logic locking solutions
suffer from poor output corruption and are vulnerable to
removal and approximate attacks [14], [15].

Sequential locking techniques modify the design’s original
finite state machine (FSM), expanding the functional state
space through obfuscation states and state transitions [16],
[17]. Only through a specific input sequence can these
sequential logic locking circuits be unlocked. In addition, the
obfuscation state space can also include a set of authentication
states that can be traversed to generate a unique output.
This unique output from authentication states can be used
to watermark the design and detect tampering. Attacks that
reverse-engineer the underlying states from sequential logic
locking solutions using state transition graphs (STGs) have
been developed [18], [19]. Once the STG is known, the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

locked FSM can be deobfuscated by recovering the appropriate
key sequence [18], [19]. It is important to note that these
attacks rely on an exhaustive search of the state space to
identify the STG. To defend against such attacks, [17] created
a method to add false state transitions to augment FSMs.
However, newer SAT attacks have been developed to attack
these sequential logic locking schemes [5]. Thus, there still lies
an inherent vulnerability with current logic locking techniques
(both sequential and combinational) [5].

SAT attack requires complete controllability and observ-
ability of the design [3]. Scan test access can be used to
apply the SAT attack on individual combinational blocks of
a sequential system. Defenses have been proposed to thwart
such attacks [20], [21]. These defenses lock scan chains and
obfuscate scan data to ensure the SAT attack requirements
are not met. Unlike sequential locking techniques, scan obfus-
cation does not obfuscate the state of the system. Instead,
it prevents scan readout by either corrupting scan chain data
or blocking scan access altogether [20], [22], [23]. Attacks
such as [7] can bypass scan data corruption by modeling the
scan obfuscation logic as part of the overall combinational
logic. However, these attacks are not effective against defenses
that restrict scan access altogether [21]. Therefore, oracle-
free bounded model-checking (BMC)-based sequential-SAT
attacks have been proposed against such defenses [24].

B. Need for Ambiguity in Both Logic and Timing

The different categories of IP obfuscation methods
described in prior work (combinational locking, sequential
locking, and test locking) have been tailored to be resilient
against specific categories of attacks, which broadly include
oracle-guided and oracle-free attacks. However, the inability
of these methods to obfuscate both the timing properties of
the circuit along with the functional logic prevents them from
achieving resilience against both simultaneously. Although it
is possible to combine all these methods to create an ensemble
locking scheme that is resilient against both the categories of
attacks, such a method is likely to suffer from a large area
overhead. This is because these methods require the insertion
of specialized blocks, such as point-function implementations,
along with scan obfuscation circuitry to prevent oracle access.

Instead of relying on different system-level approaches,
we address this problem by designing new types of locking
cells that can achieve both timing and logic obfuscation.
Unlike the use of traditional XOR-based key gates that flip the
signal phase (from 0/1) based on the key value, LGA gates
flip the functionality of the gate itself. Depending on the type
of LGA gate, functionality can be flipped between NDNR,
NDXR, and NDXNR respectively. Thus, depending on the
type of LGA gate and its location, the designer can control the
amount of output corruption induced. Similarly, obfuscating
the timing path by designing a sequential locking cell that
can shift its property between a flip-flop, latch, and buffer, the
key value can control whether the signal is latched (either
level or edge-triggered) or buffered through a given path.
We make minimal modifications to the existing CMOS-based
implementations to achieve low overhead while achieving both
logic and timing obfuscation.

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

TALUKDAR et al.: ALT-Lock: LOGIC AND TA-BASED IP OBFUSCATION AGAINST REVERSE ENGINEERING

C. Threat Model and Assumptions

The threat model specifies the untrusted entities in the
IC supply chain and highlights their resources and con-
straints. The typical threat model used in logic-locking
literature assumes that both the foundry and the end-user are
untrusted [25]. Thus, it is assumed that the attacker has access
to the following resources [12].

1) Locked Netlist: The end-user can RE the locked netlist of
the IP using advanced imaging, delayering, depackaging
techniques [26]. Similarly, the foundry can reconstruct
the netlist of the locked IP by processing the GDSII
files.

2) Activated Chip: The untrusted entity can procure an
unlocked and fully functional chip from the open market.

The attacker can perform topological analysis of the RE’d
netlist (locked) and use it for functional simulations, equiv-
alence checking, etc. The attacker can also use the activated
chip as an oracle, using it to query functionally correct
input/output combinations. Both these resources allow the
attacker to launch oracle-guided attacks.

As discussed in [2] and [12], invasive probing attacks that
partially recover the key directly from activated chips do
not fall under the scope of attacks on logic-locking. This is
because these attacks do not exploit the underlying weakness
of the locking solution itself but rather exploit the vulnerabil-
ities associated with the fabrication technology used to manu-
facture the chip. Moreover, these attacks have not been demon-
strated beyond the 28-nm technology node thus far due to chal-
lenges associated with probing for smaller process nodes [27].

III. ALT-LOCK: ARCHITECTURE AND LOCKING
METHODOLOGY

In this section, we describe the circuit-level implementation
of the proposed logic and TA cells. We also present the
methodology used for inserting these cells.

A. Achieving LGA

The XOR-gates have been widely used as key gates due to
the ambiguity introduced in signal propagating through the
gate. Consider an XOR-based key gate Gxor i (i), Where k is
the locking key bit and i is the input bit. Depending on k, the
output of the XOR key gate, Oxox . i either i or i. Thus, using
XOR-gates as key gates introduces input signal ambiguity, i.e.,
for k = 0, the output signal remains unchanged, whereas
for k = 1, the output signal is flipped. Thus, the output of
the circuit is given by: Oxorx = | @ k = k@) + k(@).
We define logic gate ambiguity (LGA) as the ability to control
the functional logic type of the combinational gate based on
the applied key. Unlike an XOR-based key gate, where the key
bit, k, only determines the phase of the input signal transmitted
to the output (i.e., phase ambiguity in i with either O =i or
O = i), LGA introduces Boolean functional ambiguity in the
output of the obfuscated gate.

Let Grgax denote an LGA gate controlled by key, k,
which performs the transformation Grgax:l — O, where

= {0,1}™ and O = {0, 1}V represent an M-bit input

1537

NDXNR (NAND +XNOR)

| T - B r
A B A 5 ‘7 _Ij 345
S0 Kk —(JKH] B F‘Kf KT K—{

B A 4 B k— K
Ut \—“ji(,” ;‘fom
A K,]] k= aH
‘ 0 A— B, AL —
B—{ B0

] K K|
4(]

NDXR (NAND + XOR) NDNR (NAND + NOR)

Vad Vdd

~ N
i i
Fig. 1. CMOS implementation of the two-input NDXR, NDNR, and NDXNR
LGA gates.

and N-bit output in the Boolean domain, respectively. In this
work, we design LGA gates with two inputs and a single
output, and therefore, M = 2 and N = 1. Unlike XOR-
based key gates that work on obfuscating the phase of a
single bit (i.e., only for M = 1), Grga obfuscates the
output as a function of the key and all the gate’s m input
bits, OLGA,k = GLGA,k(ila i,...,1y), Where iy is the Mth
input bit of the input vector, /. For example, if a logic gate
switches functionality between NAND and NOR operations,
then the value of the applied key will determine whether
Oiga = k(i1 - i) + k(i + i), where i{; and i, are the two
inputs to the circuit and Orga is the obfuscated output bit.

We implement three different types of mixed functionality
two-input LGA gates, namely, NDXR, NDNR, and NDXNR.
Depending on the value of the applied key, the LGA gates
function as follows.

1) NDXR gates can change their functionality between
NAND (k = 0) and XOR (k = 1). Thus,
k(iy @ in) + k(i1 - o).

2) NDNR gates can change their functionality between
NAND (k = 0) and NOR (k = 1). Thus, Oxpnr =
k(iy +i2) + k(iy - in).

3) NDXNR gates can change their functionality between
NAND (k = 0) and XOR (k = 1). Thus, Onpxng =
k(iy @ i2) + k(iy - i2).

Fig. 1 illustrates the CMOS implementation of the three
different types of LGA gates. LGA cells can be used to
both structurally and functionally obfuscate combinational
logic gates. They can be used to replace NAND, NOR, XOR,
or XNOR logic gates, all of which are prevalent in modern
designs. Using a combination of LGA gates, we can achieve
different levels of functional obfuscation, i.e., output corrup-
tion. This is illustrated through examples shown in Fig. 2.
In Fig. 2(a), a small combinational circuit consisting of three
series cascaded two-input NAND gates is obfuscated using
the NDXR variant of LGA gates. Note that different key
combinations produce different values of output corruption,
highlighted by the last column that indicates the percentage
match between the output of the unobfuscated and the LGA-
locked circuit. The key (0, 0, 1) produces maximum output
corruption. This is because K = (0,0, 1) leads to the logic
gate driving the primary output (PO) of the circuit being
functionally obfuscated into an XOR gate, leading to maxi-
mum output corruption. Similarly, Fig. 2(b) shows the output

OnDXR =

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

1538

Original Unobfuscated Circuit LGA (NDXR) Locked Circuit

Ki'gc'g/ 0 123456 7 8 9 10 11 12 13 14 15| Match

OORG) |1 0 1 1 1 01 1 10 1 1 1 0 1 0O -
1 01100110011 0 0 1 0 1 19%
2 1110111011 1 0 1 0 1 1 56%
3 10011001100 1 0 1 1 0 69%
4 10111010101 0 1 0 1 1 81%
5 01100101010 1 0 1 1 0 31%
6 1110101110 1 1 1 1 1 0 81%
7 1001011001 1 0 1 0 0 1 44%

(a)

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

LGA (NDXR) Locked Circuit

A
A K3
" Pl
B—
out 2 @57 out

Original Unobfuscated Circuit Il<:l

C

K1
K2
A l | K3
A—D' l l
B . o
p— b—
) \

I;?,;I;](.:TJZ 012 3 4 5 6 7 8 9 10 11 12 13 14 15| Match
OORG)|O O O 1. 0 0 01 0 O O 1 1 1 1 1 -
1 111011 1 01 1 1 0 0 0 0 1 6%
2 011001 1001 1 0 1 1 1 1 44%
3 1001 1 0 01 1 0 0 1 0 1 1 O 69%
4 ocooo01111 1 1111 1 1 0 0 0 1 44%
5 111000011 00 0 1 1 1 1 O 69%
6 o110 1 1 1 1 11 1 1 0 1 1 0 31%
7 1001 0 01 0 0 1 1 0 1 0 0 1 44%
(b)

Fig. 2. Example illustrating NDXR-type LGA-locking of combinational logic consisting of three two-input NAND gates (a) cascaded in series and (b) cascaded
in a tree topology. The tables highlight the corrupted output (in red) of both the locked designs due to the activation of LGA gates across all combinations

of inputs and key values.

corruption for an NDXR-type LGA-locked circuit consisting
of three NAND gates connected in a tree-based topology.
Note that the same key, K = (0, 0, 1), produces maximum
output corruption. The designer can combine different types
of LGA cells and place them appropriately in the design to
achieve the desired levels of output corruption. This process
of security-aware LGA placement and insertion is described
in more detail in Section III-C.

B. Achieving TA

Recent work has shown that output corruption and
oracle-guided attacks resilience against SAT-based attacks
can be two competing objectives [28]. If a locking scheme
produces large amount of output corruption, it becomes easier
for the oracle-guided attack to find equivalence key sets of
large sizes that can be eliminated from the key search space.
Similarly, point-function-based schemes that produce very
less amount of output corruption fare much better against
such oracle-guided attacks due to the difficulty in finding
equivalence key classes of significant sizes, forcing the num-
ber of iterations required by the SAT-solver to approach
brute-force enumeration of the key search space. However,
by expanding the functional obfuscation space from purely
combinational to TA, the designer is no longer constrained
along the tradeoff between oracle-guided attack resilience
and output corruption [29]. Introducing TA in the design
through key-controlled sequential cells ensures that not only
the combinational functionality but also the timing behavior
of the reverse-engineered netlist is obfuscated. This makes it
impossible for the attacker to establish structural equivalence
(through timing behavior) between the oracle and the reverse-
engineered netlist, making oracle-guided attacks impossible.
This is described more formally in Section IV.

We design a TA sequential cell to change its timing proper-
ties between a flip-flop, a latch, and a delay element based on
the supplied value of the key bits. The basic element of a TA
cell consists of a key and clock-controlled inverter, as shown
in the box in Fig. 3. Note that when k£ = 0, the clock branches
of the inverter are bypassed transforming it into a regular
combinational inverter. However, when & = 1, the inverter

I

1 =0, k=1

7l
1

el
S

o
Y oy
By o

K2
e
CLK
K2

CLK

=
=
1

T
=l
o}
=
~

2

= ~ =/
Fig. 3. Single TA cell consisting of two stages of clock and key-controlled

inverters with feedback.

becomes clock-controlled. These inverters can be connected
in a variety of ways to achieve the functionality of a latch,
a flip-flop, or a delay element. The TA cell is modeled as a
memory element with two key inputs, (k;, k») such that the
output Ots changes as follows.

1) (k; =0, ky = 0): This key configuration programs the
TA cell to work as a delay element consisting of a chain
of four inverters.

2) (ky = 1,k = 1): This key configuration programs the
TA cell to work as a flip-flop, as both the feedback paths
of both the stages work.

3) (k; = k2): This key configuration (where k; is the
complement of kp, ie., (kj,k;) = (0, 1) or (1, 0))
programs the TA cell to work as a latch, as one of the
clock-controlled feedback path is active while the other
is inactive.

Fig. 3 illustrates the building block along with two configura-
tions of the TA cell.

C. ALT-Lock: Security-Driven Insertion Methodology

In this section, we provide general guidelines on the
selection and placement of LGA gates and TA cells in a
security-aware manner.

1) Logic Ambiguity: Choosing LGA Type and Placement:
Depending on the type of gates present in the combinational
logic, the designer can choose to replace NAND, NOR, XOR,
or XNOR gates with their LGA equivalent. Each of these gate
types can be replaced with either of the three LGA gates

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

TALUKDAR et al.: ALT-Lock: LOGIC AND TA-BASED IP OBFUSCATION AGAINST REVERSE ENGINEERING

Probabilty (@)

3/16

cco, cc1
(1,1) !
(

0/0
(1,1) s NDO 4 (8,2) 0/1 3/16
B — (1,2) ND1 2 4,2)
cC—5 (1,1) BD, ouT 1/0 5/16
D—13 0 1/1 5/16
(a) oo | wano [wor [xor [ouon |
el a ® o1 o4 o0 o1
1/2 NDO 5/8x 01 1 0 1 0
B 1/2 ND1 11/16 10 1 0 1 0
¢ 1/2 b2 out 1 0 0 0 1
e HIT = 50% 75% 25%
(b) (©)
Fig. 4. Computing (a) observability and (b) signal probability for different

nets in the design. (c) Table showing updated signal probability for different
input combinations and percentage match in functionality between LGA gate
candidates.

(NDNR, NDXR, or NDXNR). Therefore, the designer has
the following options when introducing logic-ambiguity-based
obfuscation to the design: 1) replace an existing two input
gate with an LGA variant and 2) insert a new LGA gate in
the design. Note that inserting a two-input LGA gate in a
single-bit signal path requires the other input of the LGA gate
to be tied, making it easier for removal style attacks. This
would necessitate the insertion of multiple gates to obfuscate
a single functional path, leading to the addition of unnecessary
delay and area overhead. As a result, in this work, we focus on
the first option, i.e., replacement of existing gates with LGA
gates. This brings us to the following guidelines.

1) LGA Placement: Which gate to pick for replacement?
The choice of gate for replacement with an LGA gate
is determined by the amount of functional corruption
(output corruption) desired at the PO. For example,
an LGA gate placed closer to the output has more
influence on perturbing that output. Thus, this decision
is tied very closely to the observability of the gate. The
more observable a net that is driven by an LGA gate, the
greater is the likelihood of functional corruption. This
is also evident from the example demonstrated in Fig. 2
where the specific key (0, 0, 1) leads to the gate closest
to the PO causing functional obfuscation.

2) LGA Impact: Which LGA gate type to use? The choice of
LGA gate is also based on the percentage of functional
corruption desired at the output. Once the original gate
is picked for replacement, the designer can choose
the LGA gate variant that maximizes output corruption.
This can be done by computing the change in signal
probability post replacement and comparing it across all
the potential LGA gate candidates.

a) Working example: Let us consider the example circuit
from the previous section consisting of three two-input NAND
gates in series (NDO, NDI, and ND2). To decide LGA
placement, i.e., which gate to replace; we compute the observ-
ability of the different nets in the design. As is consistent
with the example shown in Fig. 2(a), picking the gate with
highest observability (ND2) increases the ability to introduce
maximum output corruption. Fig. 4(a) shows the observability
values for all the nets in blue. To choose the LGA gate type for
replacement, we compute the input signal probabilities for the
different nets in the design. If P; is the input signal probability
for the ith input net of an M input gate, then the output
signal probability for the different gates is given as follows: 1)

1539

AND: []; P; 2) NAND: 1 —[[;(1 = P,); 3) OR: ; P, — []; P;;
4) NOR: 1 — (X; P; — Hi P;); 5) XOR: E,‘JPl‘(l — Pj); and
6) XNOR: 1 — P(XOR). Using these rules, we compute the
signal probabilities for all the nets in the design. As we chose
ND2 for replacement (based on LGA Placement Guideline),
we compute the probability for output corruption for the
other three LGA candidates. This is done by identifying all
the inputs for which the output of the original gate differs
from the LGA gate, i.e., the output becomes corrupted. Let
]corrupt C 1, such that Vi € Icorrupt:GNDZ(i) # Grea(D).
Then, the probability of output corruption due to a given LGA
candidate is given by P ga = %;i P;. Through data presented
in Flg 4, we obtain Pypxrg = 0.19, Px\pxng = 0.5, and
Pxpxnr = 0.81. Thus, picking NDXNR LGA type will lead to
most output corruption. This is also evident if we observe the
percentage match in the output of the LGA candidates when
compared with the gate being replaced (ND2) from the last
row in the bottom table [see Fig. 4(c)]. It has the lowest match
percentage, indicating maximum output corruption.

Thus, the choice of which gate to replace in the design and
what type of LGA gate to replace it with are both driven by
the amount of functional corruption desired by the designer.
Fig. 5 illustrates the impact of choosing two extreme corners of
the LGA placement and LGA gate type guidelines described
above. In the first case, the least observable gate (NDO)
is chosen for replacement. Furthermore, NDO is chosen to
be replaced with an NDXR LGA gate type, which has the
maximum functional overlap or percentage match in terms of
the number of inputs producing the same output. This leads to
poor output corruption (6%). In the second case, the gate with
maximum observability (ND2) is chosen and replaced with the
NDXNR LGA gate type which has the maximum functional
mismatch. This leads to significant output corruption (81%).

b) Preventing key-based logic sensitization: Placing
LGA gates in highly observable locations in the design,
although increases output corruption, can also facilitate func-
tional reverse engineering. This is because using oracle access,
the attacker can set the primary inputs (PIs) to the circuit such
that the LGA gate experiences all the four input combinations.
The attacker can then analyze the POs for all those input
combinations, thereby reverse engineering the functionality
of the LGA gate. This is possible only when the LGA
gate’s inputs have high controllability and the outputs are
propagated without any form of interference from other LGA
gates. To prevent this type of reverse engineering, multiple
LGA gates should be placed in the design, such that the output
of neither LGA gate can be independently propagated to a PO.
An LGA gate covers a PO if its output can be propagated
to that PO. By ensuring that no PO is exclusively covered
by just one LGA, it becomes impossible for the attacker
to determine the functionality of an LGA without making
assumptions about other LGAs. This is shown in Lemma 1.

Lemma 1: If multiple LGAs are in the same logical path,
i.e., the fan-out cone of one LGA drives another LGA down-
stream, then the individual outputs of the LGAs in that path
cannot be independently propagated to the same PO without
exploring all possible key combinations for the interfering
LGAs.

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

1540

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

Original Unobfuscated Circuit
K

|

A —

Low Impact Placement (LIP) and Low Impact Type (LIT) | High Impact Placement (HIP) and High Impact Type (HIT)

DD

c out B — out
D c o out D—
Obfuscated 13

= 1 ad Obfuscated

ABCD 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
ORG 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 0
LIT+LIP 1 0 1 0 1 0 1 1 1 0 1 1 1 0 1 0
HIT+HIP 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 1

Fig. 5.

Proof: Consider two LGA gates, Grga, k, and GLga, i,
controlled by keys k; and k,, respectively. The output of these
LGA gates (OLGA,.k;» OLGA,.k,) lies exclusively in the fan-in
cone of the PO, such that the output of the obfuscated design is
given by Opo = f(OLGa, k> OLGA,.k,» 1), Where f represents
the logic transformation between the obfuscated output of the
LGA gates and the input /. Given that f is reconstructed from
the reverse-engineered netlist, the attacker’s goal is to find the
input vector / that can independently propagate either Orga, i,
or OLga,.k, t0 Opo. However, since the attacker is unaware
of either k| or k;, they cannot propagate either Opga,k, OF
O1Gn, k, Without making assumptions about the other key
(k1 or ky). Thus, to propagate Orga,r, to Opo, the attacker
must make Grga, .k, transparent, which cannot be done unless
ky is known. Similarly, to propagate Oiga,r, to Opo, the
attacker is forced to make Giga,t, transparent, which cannot
be done unless k; is known. Thus, both the LGA gates in
the same logic path are said to be strongly connected, i.e.,
to propagate the output of one gate to the PO, the attacker is
forced to brute-force through all the keys of the other LGA
gate, thereby forcing the attacker to brute-force through the
entire key search space. O

2) TA: Choosing Timing Paths and Key Configuration: The
designer has the option to replace the existing delay cells,
latches, or flip-flops in the design with the TA cell or insert
such cells additionally (and program them as delay elements to
prevent functional impact on timing). In either of these cases,
i.e., replacement of an existing element/cell or insertion of a
new element, the designer has to be wary of the attacker trying
to infer the sequential element type by analyzing the length of
the different timing paths. As the functional clock frequency of
the design might already be common knowledge and assumed
to be known to the attacker, the attacker can simply analyze
the length of all the paths and eliminate keys that lead to
extremely long paths. As a result, the following criteria must
be used for the insertion of (or replacement with) TA cells.

1) Any flip-flop can be replaced with a latch and vice versa.
Therefore, replace either a flip-flop or a latch with a
TA cell with key (0,1) or (1,0). This will directly
introduce a timing violation in the design as it may
propagate unwanted data transitions to the downstream
logic, thereby increasing the likelihood of capturing
incorrect data by sequential cells further downstream.

Buffers in long paths in the design can be replaced
(also known as splicing) with TA cells. This will also
introduce timing violation for all the keys except (0, 0).

2)

Impact of two extreme corners of LGA gate placement and LGA gate type decisions on the output corruptibility.

3) TA cells can be inserted in longer paths in the design
with key (0, 0). This makes it difficult for the attacker
to reconstruct the design as the cell could function as
either a buffer or a sequential element from the attacker’s
perspective.

Preventing Combinational Loop-Based Reconstruction:
Modern digital designs seldom have combinational feedback
loops. Therefore, it is possible for the attacker to identify paths
exclusively with TA cells (and no other sequential elements)
that form feedback loops. Attackers can eliminate the buffer
functionality of TA cells in such paths as modern designs
avoid combinational feedback loops. Therefore, during TA
replacement or insertion, it should be ensured that the path
after TA cell insertion/replacement does not form a feedback
loop without the presence of other sequential elements that
can break such loops.

3) Logic and TA Co-Design: Note that LGA gates and TA
cells obfuscate designs by replacing the functional gates and
timing paths with key-controlled cells. Unlike traditional XOR-
based key gates, the design’s functionality remains structurally
and functionally hidden without the need for resynthesizing
the netlist. Furthermore, LGA gates and TA cells can be
co-inserted such that they can co-obfuscate logic and timing
paths, i.e., paths that are functionally obfuscated can also be
timing obfuscated. In the following lemma, we show that
TA, when combined with logic ambiguity, can make the
design functionally different from the original unobfuscated
design, thereby making it impossible to establish functional
equivalence between the two.

Lemma 2: TA cells on logic paths that are driven by
LGA gates make the obfuscated design functionally nonequiv-
alent to the original design unless the correct key is applied.

Proof: Consider a circuit that is obfuscated using p
LGA gates, such that ¢ internal nets terminating in sequential
elements and/or POs are covered by the p LGA gates (g < p).
Let us replace and/or insert g TA cells at these internal nets
terminating in sequential elements and/or POSﬂ)h that the
TA cells are driven by a g-bit key vector, Ktp 4. As per
Lemma 1, the output at each of the_)q terminating nets will
be a function of the input vector (/) and the p-bit LGA-

— —
key vector (K1ga,p), such that O, = f(Kirga,p, I). For this
intermediate functional output (O,) to be correctly fed into
the subsequent logic, the TA cells will have to be initialized
with the correct key so that th_f_:__)output of the _g)bfuscated
circuit is given by Oarr = g(Kta ¢, f(Kica,p, 1)), where
g represents the subsequent timing obfuscated logic driven

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

TALUKDAR et al.: ALT-Lock: LOGIC AND TA-BASED IP OBFUSCATION AGAINST REVERSE ENGINEERING

_
Inserting Logic Ambiguity Unobfuscated IP Design Inserting Timing Ambiguity
I I
I I

Compute Obssr.vability Combinational Sequential Paths Compute Path
(CO) and Signal Clouds for LGA- for TA Sequential L s
Probability (P) per net Lockin Lockin |
Pick LGA Identify Additional Identify Idenlif; Long
Pl Gates with Interfering Medium Paths [+~— Paths for
Candidates Fan-out Cones for Buffering Splicing
5 Added LGA Placement Pick TA
Compute Corruption ||| ~ oo — N
Probability o e
Resilience) Candidates

Desired Insert TA Cells

P,

Finalize LGA
Gate-Type
corrupt

e T—
ALT-Locked IP Design

Fig. 6. Overall methodology for ALT-Lock insertion.

—_—
by the LGA-locked cells and PIs. Assuming that Kiga, , is
correct, even if a single bit in m is incorrect, there is no
guarantee that the timing behavior of the obfuscated design
Carr will match the original unobfuscated design, Co (due to
insertion guidelines for TA cells mentioned Section III-C2).
Thereby, making it impossible to prove the functional equiv-
alence between C,; and Carr. O

From Lemma 2, we can infer that adding TA to paths that
are already obfuscated with LGA gates significantly increases
the attacker’s difficulty in proving functional equivalence
between the obfuscated and unobfuscated versions of the
circuit. Furthermore, the best design practice is to match the
number of LGA gates with the number of TA cells (¢ = p),
with both obfuscating part of the same logic paths. However,
it is possible to have ¢ < p if multiple LGA gates converge
to the same net. The overall ALT-Lock insertion method-
ology, consisting of LGA gate insertion and TA sequential
cell insertion, is illustrated in Fig. 6. Note that methods that
obfuscate timing paths have been presented before [30] and
[31]. Zhang et al. [30] present a method to obfuscate timing
through wave pipelining. However, it requires the removal of
flip-flops from the design. Furthermore, it cannot obfuscate
paths with delays below the clock period. Sweeney et al. [31]
do not support logic obfuscation and rely solely on obfuscating
timing paths. In addition, neither [30] nor [31] presents a
methodology to control output corruptibility.

4) Dynamic Obfuscation of Timing Cells: We develop a
method for dynamically obfuscating the state of the IP by
driving the key inputs to TA cells using an RB. An RB consists
of a linear feedback shift register (LFSR) with a reconfigurable
feedback path [20]. The RB can be programmed by loading
in the seed and the select lines to the MUXes in the feedback
path. The select lines can be set by the designer to achieve any
possible LFSR feedback polynomial. The initialization seed
can be used to determine the starting sequence of the LFSR.
The RB is programmed through a key stored in the tamper-
proof memory. The key inputs to the TA cells are driven by
the output of the RB. Fig. 7 illustrates the RB-driven dynamic
obfuscation of the TA cells. RBs have been previously demon-
strated as effective instruments to achieve dynamic obfuscation
for securing test paths [20], [21]. In this work, we use RBs
to dynamically obfuscate TA cells, therefore using the same

1541

Tamper-proof TA
Memory 1

Seed and Feedback
polynomial from final state
of the Barrier FSM

S S, i I— S
uﬁiﬁg@ S TN S

RB output drives key inputs of TA
cells

Fig. 7. Dynamic obfuscation of timing cells using an RB.

method to achieve dynamic obfuscation of timing paths in
the design. As will be described later, dynamically changing
the constituent timing properties of logic paths enhances the
security by achieving resilience against not only combinational
but also sequential deobfuscation attacks.

Dynamic obfuscation of the TA cells is achieved upon
the assertion of the scan enable pin. Activation of the scan
enable signal leads to the key inputs of the TA cells being
connected to the output of the RB. As this RB output changes
dynamically every clock cycle, this implies that at every clock
cycle, the initialization keys for the TA cells change depending
on the state of the RB. As a result, the configuration of
the TA cell can dynamically change between a flop, a latch,
and a buffer, respectively, depending on the variation in the
dynamic key sequence generated by the RB. This is illustrated
in Fig. 8, where Case 1 represents the static key in unlocked
state. During this stage, the TA cells are all configured as
flops (blue). Upon the assertion of the scan enable pin, the
key inputs to the TA cells are initialized from the dynamically
changing output of the RB, which changes the configuration
of the logic paths belonging to the IP dynamically with time.
Case 2 represents the reconfigured logic paths after the first
clock period. Note that TA cells TAl and TA4 have been
reconfigured as latches (yellow). During the second clock
period, i.e., Case 3, TA cells TA2 and TA3 are reconfigured
as buffers (red). Case 4 represents the third clock period upon
the assertion of the scan enable signal. In this case, TAI is
reconfigured as a buffer while TA3 is reconfigured as a latch.

Note that changing the state of the logic paths dynamically
in every clock cycle changes the logic state of the IP. This
is because changing the nature of sequential elements in a
logic path induces changes in the FSM transitions, in some
cases even changing the register size of the FSM (when some
flops are reconfigured as buffers). As a result, the IP no longer
remains functionally correct. Triggering this change in the
state of the IP dynamically with time upon the assertion of
the scan enable signal denies the attacker oracle access. In the
next section, we will discuss how this enhances the resilience
of ALT-lock against both oracle-guided and oracle-free attacks.

IV. SECURITY ANALYSIS OF ALT-LoCK
A. Brute-Force Resilience

Consider an IP that is protected through the insertion of m
LGA gates and n TA cells. In such a scenario, the attacker
can deobfuscate the circuit by guessing each key combination

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

1542

Case 1: 0000
Unlock State

Case 2: 1001
Locked State

Case 4: 1010
Locked State

Case 3: 0110
Locked State

Fig. 8. Changing state of logic paths in IP due to dynamic obfuscation of
TA cells. All TA cells are initially flops (blue), but change their functionality
to latches (yellow) and buffers (red) depending on the dynamic key sequence
of the RB.

and testing it for functional correctness. While each LGA gate
consists of one unique key bit, each TA cell consists of two
unique key bits. Thus, the total key size is given by m + 2n.
As only one key among all the key values will be the correct
key, the brute-force resilience, which is quantified in terms of
the number of attempts the attacker must make in the worst
case to unlock ALT-Lock, is given by f,r = 22" For a total
key size of 128 bits, the total number of guesses needed is in
the range of 10%®, which is prohibitively high.

B. Oracle-Guided Attacks

All the oracle-guided attacks rely on the ability of the
attacker to create SAT-based models of the reverse-engineered
IP. It is assumed that the attacker has access to the reverse-
engineered gate-level netlist of the design excluding the value
of the key. The attacker can then eliminate incorrect keys
quickly by generating distinguishing input pairs, i.e., inputs
that produce different outputs for two different keys, and
querying them with the oracle.

Oracle-guided attacks are easily applicable for combina-
tional logic locking as the timing properties of the circuit are
assumed to be unaffected. The timing and sequence in which
the Boolean inputs are applied to the circuit, and the output
responses are sampled from the circuit, are assumed to be
known. Therefore, an attacker can simply scan in the DIPs
and scan out the responses from the oracle without having to
take timing into account.

In ALT-Lock, the timing paths of the locked circuit are
also obfuscated. A TA cell could be a latch, buffer, or a
flop, thereby making it difficult for the attacker to ensure an
equivalent match in the timing and length of the input being
applied to the oracle and the locked design.

Theorem 1: Combinational SAT attack cannot identify
locked keys in the presence of TA in the locked circuit.

Proof: Let Cy be the oracle that performs the transfor-
mation Cy:] — O where I = {0, 1} and O = {0, 1}V,
representing M-bit inputs and N-bit outpuis) in the_) Boolean
@)main B.lr)l other words: VX; € I:Co(X;) = Y;, where
X; € BM, Y, € BY. Now, consider_n_a_) ALT-Locked circ_u)it
Carr with combinational LGA-key, Kiga, and TA key, Kta.
Consider a combinational SAT attack AS47, which unlocks
the combinationally obfuscated circuit function Carrpca to
the functionally unlocked circuit C, i.e., ASAT.C ALT.LGA —>

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

Cor. This) can be accomplished by extracting the correct key
vector K = Kjga such that the circuit can be unlocked. This
is equivalent to solving the quantified Boolean formula (QBF)

—_— - - — —
QBF: 3K1ga VX; €1 : CALT,LGA(Xis Kica, Yi)
- =
ACu(XL V).

However, due to TA of the locked circuit, the attacker only
has access to reverse-engineered gate-level netlist, Carr, where
—> —)
both K1a and Kjga are unknown. From Lemma 2, we infer
that C,, is not equivalent to Carrga unless the ght value
of K1a is specified. Since the timing impact of Kta, which
is determined by the timing characteristics of the TA cells
and timing requirements of the origin_al design, cannot be
specified using a Boolean expression, Kta cannot bgodeled
in (1). As a result, without the right value of Krta, it is
impossible to verify the correctness of (1). As a result, the key
search space will not be pruned using any equivalence class
of keys, therefore forcing the attacker to resort to brute-force
key guessing. O

C. Oracle-Free Attacks

As demonstrated through Theorem 1, the use of TA cells
makes combinational SAT attacks ineffective against ALT-
Lock. However, there exist another set of oracle-free attacks
that only require access to the locked design and obviate
the need for scan access. Such categories of attacks rely on
SAT-based sequential deobfuscation by unrolling the locked
IP [24], [32]. Furthermore, other sets of deobfuscation tech-
niques rely on training machine learning (ML) models. In this
section, we demonstrate the ALT-Lock’s resilience against
both these category of attacks.

1) Sequential Deobfuscation Attacks: The use of RB-driven
dynamic reconfiguration of TA cells in the logic paths of the
IP forces the attacker to rely on an unrolling-based oracle-free
technique for deobfuscation. This is because the sequential
state of the IP changes every clock cycle. Oracle-free model
checking-based sequential SAT attacks unroll the states of
the locked sequential circuit to identify distinguishing input
sequences (DISs) [24], [33]. Let C,,(i, s,) denote a sequential
oracle with input i and state register s,. An encrypted sequen-
tial system c.(i, s., k) is unlocked when there exists a key
k., such that

ki € Ky 2 Cos(i, S0) = Cos(i, S, ky) Vi € I, 2)

Therefore, c.; is considered unlocked when (2) is satisfied
for all the sequential input traces (i°,i',i%, ..., i%) e I,
where u is the max unroll count. Similar to SAT attacks, this is
done by applying the input traces to a Miter circuit to eliminate
incorrect keys from the search space. Sequential SAT attacks
are computationally very expensive and do not scale well for
large circuits [34]. A recent variant of this type of attack is
KC2 [24]. It uses additional simplification techniques, which
include integrating SAT with bounded model checking (BMC),
using BDD to simplify circuit representation, and simplifying
constraints using key sweeping. This attack has also been
modeled for delay locked designs [32].

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

TALUKDAR et al.: ALT-Lock: LOGIC AND TA-BASED IP OBFUSCATION AGAINST REVERSE ENGINEERING

TABLE I

EVALUATING THE INCREASING COMPLEXITY OF UNROLLING-BASED
SEQUENTIAL SAT ATTACK (KC2) ON ISCAS SEQUENTIAL BENCH-

1543

TABLE I

EVALUATING THE INCREASE IN MAXIMUM UNROLLING DEPTH OF KC2
ATTACK FOR 8- AND 16-bit RBS

MARKS LOCKED WITH 8- AND 16-bit RBS Benchmarks 8-bit Keys 16-bit Keys
8-bit RB -base -L.oC -base -LoC
Benchmark #SAT Variables #SAT Clauses Total Time (s) s27 2 3 NA NA
XOR-based ALT-Lock [XOR-based ALT-Lock [XOR-based ALT-Lock s382 6 11 7 43
$27 276 12969 764 40575 0.015 6.54 s713 8 16 8 56
$382 16844 24615 52349 76860 55 3600 s1512 11 45 14 70
s713 3162 104203 7868 276141 0.18 8596.43 s3384 15 67 20 82
s1512 36887 49566 90261 136289 9.12 TO
$3384 46922 139152 111931 381248 113.23 TO TABLE III
16-bit RB

#SAT Variables #SAT Clauses Total Time (s)

RESULTS FOR THE KC2 ATTACK APPLIED TO BENCHMARKS PROTECTED

Benchmark e n ased ALT-Lock |[XOR-based ALT-Lock |[XOR-based ALT-Lock USING 64- AND 128-bit RBS. TO: TIME-OUT OF 120 h, MEMORY
s27 NA NA NA NA NA NA LiMIT: 60000 Mb

$382 70685 45000 75391 78990 | 2597.44 7808.4 Benchmark % Flops RB Size Runtime (s) ¥ Clauses
s713 98762 114739 8504 310917 0.59 9284.85 64-bit TO 91 x 107
s1512 110344 150875 455291 541349 100.7 TO sha3_low 618 . ’ 5
$3384 168355 195413 | 226928 226928 1009.8 TO 128-bit TO 8.44 x 10
om acs 951 64-bit TO 6.5 x 107
gem- 128-bit TO 15.5 x 10°
64-bit TO 1.6 x 10?
In case of ALT-Lock, the use of RBs in the key initialization MIPS32R 2072 128-bit TO 8.6 x 10°
path drastically increases the effort for sequential deobfus- AES 11191 64-bit TO 4.3 x 102
cation attacks such as KC2 and timingSAT. Since KC2 and 128-bit TO 2.6 x 105
other sequential SAT attacks rely on unrolling the circuit, RocketCore 43357 1624;);; ;g 43'524XX11006

the use of reconfigurable feedback increases the number of
frames that need to be unrolled before a DIS can be iden-
tified. Furthermore, as the characteristics of the logic paths
themselves change during each clock cycle, all the potential
path configuration options must be accounted for during each
instance of unrolling. Depending on the configuration of every
TA cell, there exist four different logic paths that can be
created during each unrolling instance (depending on whether
the TA cell is unrolled into two types of latch configurations,
flop configuration, or buffer configuration). As a result, if the
design is unrolled for u instances, and four potential paths need
to be analyzed for every unrolled instance, the total number of
unrolling candidates is given by 4“. Different model checking
configurations can be used to determine the number of queries
and the maximum length of the DIS required to unlock the IP.
When the number of queries is bounded, a bounded model
checker (BMC) is used. To exhaustively continue unrolling
the IP until all the SAT constraints are satisfied, unbounded
model checkers (UMCs) are used. When using UMC mode,
the number of unrolling rounds is unconstrained and the
solver continues unrolling the IP and adding SAT clauses
to the solver until all the constraints specified in (2) are
satisfied. Note that the state space for the sequential deobfusca-
tion attack increases exponentially depending on the number
of unrolled sequences. This makes sequential deobfuscation
attacks intractable on ALT-Lock.

Table I shows the comparison between the number of SAT
clauses and SAT variables for ISCAS sequential benchmarks
locked with traditional XOR-gates and those locked with 8- and
16-bit RBs using ALT-Lock. It is evident that both the attack
effort and runtime increase significantly for circuits locked
with ALT-Lock. In addition, note that s27 is too small to be
locked with a 16-bit key. All the experiments were run on
an Intel Xeon-Gold Server with 60 GB of primary memory.
The increase in maximum unrolling depth of the solver is also
presented in Table II. Note that using 8- and 16-bit RBs can
significantly increase the complexity of unrolling of the model
checker, therefore increasing the attack effort.

We experimentally demonstrate the resilience of ALT-Lock
against sequential deobfuscation attacks. We ran KC2 on
several OpenCore benchmark circuits protected using ALT-
Lock. Every benchmark was protected using a 64- and 128-bit
RB, respectively. Note that every output bit of the RB drives
a TA cell, and therefore, the number of TA cells used for
protection is equal to the size of the RB. Table III shows
the result of the KC2 attack variant applied on the differ-
ent variants of the ALT-Lock architectures. A timeout of
120 h was set for every experiment. Note that the attack
times out for all the benchmarks, indicating the resilience
of the dynamic obfuscation architecture against sequential
deobfuscation attacks. Table III also shows the number of
SAT clauses that are added to the solver until time-out occurs
for all the dynamically obfuscated benchmarks. The explosion
in the number of SAT clauses is another indicator to the
difficulty faced by the existing constraint-based sequential
deobfusation attacks. Increasing the size of the RB will further
increase the number of SAT clauses, therefore increasing the
computational complexity at an exponential level. As a result,
computational resources will have to also scale exponentially
to attempt deobfuscation. As we refer to recent prior work
that also shows how increasing the number of SAT clauses also
increases the complexity of SAT-based deobfuscation, showing
that exponential growth in the number of SAT clauses also
increases deobfuscation time exponentially [35]. In [35], the
SAT solver is unable to converge to a solution with less than
2 x 10* clauses even after ten days. We conclude that scaling
the number and size of RBs beyond 128-bit keys will make
SAT-based deobfuscation computationally intractable.

2) ML-Guided Attacks: Oracle-free attacks only use the
reverse-engineered netlist of the design to deobfuscate the
IP. A wide class of ML-based attacks have been recently
proposed that rely on analyzing only the gate-level reverse-
engineered netlist of the design to reconstruct the original
circuit of the design [6], [8], [36]. These attacks have only been

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

1544

demonstrated to reverse-engineer combinational XOR gate-
based logic-locked netlists that rely on netlist resynthesis after
key-gate insertion.

a) GNN-guided netlist reverse engineering (OMLA):
OMLA uses graph neural networks (GNNs) to learn the
graph-based key embeddings from a combinationally locked
circuit. It relies on a large training dataset that must be gener-
ated by locking the circuit several times with the same number
of combinational key gates and resynthesizing the design.
Unlike traditional methods that use XOR-gates for locking the
design, ALT-Lock does not require gate-level resynthesis to
obfuscate the design. Furthermore, ALT-Lock does not use
traditional key gates to achieve locking. It obfuscates combina-
tional logic using custom implementations of LGA gates. Such
implementations cannot be modeled by the existing ML-based
reconstruction methods that rely on netlist reconstruction using
XOR-based key gates. Furthermore, TA cells in ALT-Lock add
an additional layer of obfuscation that cannot be modeled
using the existing GNN-based netlist reconstruction methods.
To reverse-engineer the complete ALT-Locked circuit, the
attacker will be forced to partition the entire design into
smaller subblocks of combinational logic, with boundaries
demarcated by location and placements of TA cells and flip-
flops. Furthermore, given that the key configuration of the
TA cells is unknown, combinational reconstruction of such
partitions will only lead to incomplete key recovery of the
ALT-Locked design. Finally, to verify the correctness of com-
binationally locked gates, the attacker will first have to ensure
that the timing paths are deobfuscated, which requires brute-
force effort, making such an oracle-guided attacks futile.

b) ML-guided latch unraveling attack: Latch-based logic
locking obfuscates certain timing critical paths in the design
by inserting key-programmable latches. These latches can be
phase-controlled depending on the supplied key, and then be
inserted into timing critical paths in the design by duplicating
selected flip-flops in those paths followed by retiming those
paths [31]. Latch-based locking also relies on the insertion
of additional decoy latches to obfuscate the design. An ML-
guided Latch Unraveling attack [31] has been proposed; it uses
Boolean analysis and ML-guided integer linear programming
(ILP) to deobfuscate latch-locked circuits. The attack runs in
two phases.

1) Phase 1: A sequential graph of the locked design is
built. Random Forest classifier is then used to identify
randomly inserted logic decoys and simplify the circuit.

2) Phase 2: The simplified circuit is fed into an ML-
classifier, which outputs the probability of a latch being
a delay decoy. These probabilities are used as constraint
coefficients for an ILP optimizer whose objective is
to assign each sequential cell into its appropriate type
(primary/secondary/delay latch).

The key assumption made in this attack is that the sequential
graph of a latch-locked circuit must be two-colorable, i.e.,
alternating between primary and secondary latches. Since
latch-based locking inserts decoy latches in the design, it leads
to the creation of additional false paths in the design, which
also alters the colorability of the graph. The ML-guided

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

ILP optimizer can then identify such latches and recolor the
sequential graph of the locked circuit, deobfuscating it.

In contrast, ALT-Lock does not insert additional decoy cells,
thereby avoiding the creation of false paths. The existing
cells such as buffers and flip-flops are replaced with TA cells
without the addition of secondary bypass paths that could be
identified as potential false paths. The timing arcs within the
original path are preserved. Furthermore, we show below that
the sequential colorability of a circuit remains preserved in
ALT-Lock.

Definition 1: Let Guig(V, E) be the sequential graph of a
circuit, where V denotes the set of all sequential nodes in the
circuit, and E denotes the set of combinational paths (denoted
by an edge, e € E) connecting the nodes in V.

Definition 2: Let Garr(Varr, EaLr) be the sequential graph
of original circuit, locked by replacing existing sequential cells
with TA cells and inserting and/or replacing combinational
cells with LGA cells.

Lemma 3: Gorig(V, E) and Garr(Varr, Earr) are isomor-
phic.

Proof: LGA cells are combinational. Therefore, insertion
and/or replacement of LGA cells in Gig(V, E) does not alter
either V or E. Similarly, replacing an existing sequential cell
v € V with a TA cell vra does not create any additional edges
in E. As aresult, V = V1 and E = Epr7, therefore making
Gorig and Garr isomorphic. O

Theorem 2: TA cell replacement and LGA cell insertion
and/or replacement does not alter the sequential colorability
of the primary—secondary latches in the unlocked circuit.

Proof: From Lemma 3, we observe that insertion and/or
replacement of LGA cells does not alter the isomorphism
between Gorig and Gapr. Similarly, the replacement of sequen-
tial cells with TA cells preserves this isomorphism. Given
that Gy is two-colorable, and Gayr is isomorphic to Gorig;
therefore, Gart also remains two-colorable. O

We therefore conclude that ML-guided ILP optimization
used in latch unraveling attacks cannot be directly applied
against ALT-Lock, making ALT-Lock resilient against such
attacks. Furthermore, the insertion of new TA cells in the
combinational path of the circuit does not generate false
paths, thereby making the identification of logic decoys in
Phase 1 of the attack inapplicable. Finally, the insertion of TA
cells only in flop-to-flop paths of the circuit ensures that the
colorability properties of the original unlocked circuit can be
preserved.

3) Scan Deobfuscation Attacks: A recent category of
attacks rely on assuming that the scan chains are obfus-
cated/locked. These attacks (ScanSAT [37], DynUnlock [7])
aim at extracting the seed that is used to dynamically obfuscate
scan chains. However, such attacks assume that the attacker
is aware of the feedback polynomial that is used to obfuscate
the logic paths. In case of ALT-Lock, scan access is restricted
and the IP enters a dynamically obfuscated state such that the
nature of the logic paths themselves changes with every clock
cycle. This along with the use of LFSRs with reconfigurable
feedback makes it impossible to identify the correct feedback
polynomial required during the first stage of the attack. As a
result, ALT-Lock is resilient against attacks.

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

TALUKDAR et al.: ALT-Lock: LOGIC AND TA-BASED IP OBFUSCATION AGAINST REVERSE ENGINEERING

Input A

Input B

Weak pulldown path from

Input K [38-39] as compared to

NDNR LGA cell

Output Y
[38-39]

Output Y
[NDNR cell] S

Fig. 9. Output waveforms for the same set of inputs applied to the stacked
NDNR cell from [38] and [39] in orange and the NDNR LGA cell from
ALT-Lock in turquoise.

D. Comparison With Similar Security Techniques

Methods that use gate-level polymorphism and TA to obfus-
cate IP have been proposed.

1) Gate-Level Polymorphism: In [40] and [41], the authors
develop a technique to design polymorphic gates that can be
reconfigured using the value of the supply voltage. Depending
on Vg4, the gate functionality can be reconfigured between
NAND and NOR logic. However the key drawback of such
polymorphic logic gate designs is the need for multiple voltage
levels for functional operation. This makes it necessary to
incorporate additional circuits that can generate multiple levels
of power supply voltage in addition to voltage selection circuit
for all the key gates. As the LGA gates used in ALT-Lock
are completely digital and technology-independent, these stan-
dard cells do not suffer from voltage requirement issues as
other methods. In [42], the authors have developed a hybrid
method to achieve gate-level polymorphism by integrating
CMOS gates with memristors. This method suffers from the
challenges associated with memristor configuration during
initialization. Furthermore, this method suffers from poor write
endurance [43]. Finally, the use of memristors does not allow
this method to be scalable to purely digital CMOS designs.

In [38] and [39], an NDNR stack-based locking cell is
proposed that is similar in structure to the NDNR LGA gate.
However, there exist important differences in the placement
and connectivity of the key transistors used for reconfiguring
the NDNR functionality of the LGA gate. The placement of
key gates on both the branches of the nMOS stack leads
to a stronger pulldown path for the NDNR LGA cell when
compared with prior work in [38] and [39] leading to better
performance. Fig. 9 shows comparison of the output for both
the NDNR locking cell from [38] and [39] and the NDNR
LGA cell from ALT-Lock. Note that for the case where the
input signal B transitions from a low value to a high value
while signal A is tied to a low value, the NDNR cell provides
a strong pulldown path for the output signal’s (Y) transition
from a high value to a low value when compared with the
locking cell from [38] and [39]. Moreover, unlike ALT-Lock,
these methods do not use timing obfuscation in combination
with functional logic obfuscation, which provides resilience
against a wide array of oracle-guided and oracle-free attacks
with a very low footprint controlled by the designer.

2) TA Through Timing Camouflage: The goal here is to
achieve TA in using wave pipelining [30]. Two data waves

1545

are propagated on a logic path at the same time. However,
due to the constraints imposed by signal propagation delay
across logic paths, this method is only applicable to paths
whose signal propagation delay (#;) is in the range of T <
t; < 2T, where T is the clock period. Another drawback of
this method is the need to duplicate combinational logic gates
in the paths being locked with wave pipelining. Furthermore,
this method remains susceptible to process variations, aging,
and small delay defects, which can alter the signal propagation
delay across different logic paths over time. This can lead
to unanticipated locking of the circuit if the wave pipelining
constraints are violated due to aging and timing degradation
of logic paths. In contrast, the TA cells in ALT-Lock can be
implemented for at-speed synchronous logic designs without
path delay constraints while making the method robust against
process variations.

3) Latch-Based Locking: As discussed above, latch-based
locking uses key-programmable latches to obfuscate IP [31].
Additional decoy latches act as both logic decoys and delay
decoys. This method leads to the creation of false paths, which
can then be exploited by the attacker to reconstruct the locking
keys, as shown above in the ML-guided latch unraveling
attack. As highlighted in the previous subsection, ALT-Lock
offers several advantages over traditional latch-based locking,
without incurring the addition of false paths and preserving the
properties of sequential graphs. In addition, dynamic obfusca-
tion using RBs ensures that ALT-Lock remains resilient against
unrolling attacks. Furthermore, we show in Section V, that
TA cells are more area-efficient than the key-programmable
latches.

4) Delay Locking: In [44], the authors use tunable delay key
gates (TDKSs) to obfuscate the timing profile of combinational
paths. Applying the correct key to the TDK gate, which
comprises a conventional key gate (XOR/XNOR gate) paired
with a tunable delay buffer, satisfies the timing constraints of
the obfuscated combinational path. Delay locking has been
shown to be vulnerable against SAT-based attacks such as
TimingSAT [32]. The timing information of every gate in the
design is thus embedded in SAT formulation through a charac-
terization step carried out by the foundry. The correct key can
then be reconstructed by querying the oracle and generated
DIPs like the traditional SAT attack. It should be noted that
while delay locking remains vulnerable to TimingSAT attack,
ALT-Lock offers natural resilience against such attacks due to
the following reasons.

1) Timing profile of a path locked by a TA cell cannot
be characterized unless an assumption is made about its
key.

2) Embedding the timing profile of delay obfuscated paths
in delay locking assumes that the gate-level functionality
of the circuit is known before-hand. This is not true for
paths locked using TA cells, which could be functionally
different depending on the supplied key.

3) ALT-Lock is resilient against oracle-guided attacks
including variants of the SAT-attack (see Theorem 1).

4) Dynamic reconfiguration of TA cells in ALT-Lock makes
unrolling attacks such computationally intractable for
large enough keys (see Section IV-C).

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

1546

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

TABLE IV

EVALUATING THE IMPACT OF NONSCANNED TA CELLS ON FAULT COVERAGE AND THE EFFECTIVENESS OF SEQUENTIAL ATPG IN RECOVERING THE
Loss IN FAULT COVERAGE

. Initial Reduced Fault Coverage Recovered using Percentage of Original coverage
rp | BaselineFault) @ rn Coverage (%) Sequential ATPG (%) New Pattern Count Recovered (%)
Coverage (%)
Count 32 64 128 32 64 128 32 64 128 32 64 128

GPS 93.81 356 92.17 86.74 81.22 93.28 9233 91.11 | 357 395 468 |99.43503 98.42234 97.121842

FIR 95.67 160 90.52 83.6 - 92.51 91.85 - 203 240 - 96.69698 96.00711 -

IR 87.98 193 82.46 7723 75.69 87.62 82.56 79.84 | 250 268 302 [99.59082 93.83951 90.7478972
SHA256 99.54 316 99.07 97.825 95.75 99.32 98.95 98.77 | 402 454 490]99.77898 99.40727 99.2264416

E. Implications on Testability

1) Manufacturing Testing: Scan-based manufacturing test
can be done in an untrusted setting on the deactivated IP
(without loading the tamper-proof memory). Structural testing
of the LGA cell will be no different than any other standard
cell. Furthermore, the TA cell has key-controlled feedback
paths that could be tested in all four configurations without
the use of additional scan-based hardware overhead. System-
level testing can be performed by loading dummy key values
for both LGA gates and TA cells. As TA cells may not be
scan-enabled (to save area overhead), there will be some loss
in fault coverage due to the replacement of certain scan-
enabled flip-flops in the design with TA cells. Using Mentor
Tessent, we experimentally evaluate the percentage loss in
fault coverage due to the replacement of a certain number
of scan cells in the design with TA cells across a range of
CEP benchmark circuits (see Table IV). We replace 32, 64,
and 128 scan cells in the design with TA cells and observe
the corresponding loss in fault coverage. We then show that
using sequential ATPG can successfully recover on average
over 95% of the original fault coverage, thereby showing that
TA cell insertion can be done with minimal impact on fault
coverage. It should also be noted that the experiments are
conservative in assuming that all the TA cell insertions are
scan cell replacements, which is unlikely to be the case in
practice. Note that for the FIR IP, making 128 replacements
is not possible due to the size of the scan chains.

2) IP Activation: Due to the globalization of the fabrication
process, it is reasonable to assume that the IP will be fabricated
in an untrusted environment. As a result, the fabricated IP
will be shipped to the design house for activation, i.e., for
loading the tamper-proof memory. Since activation of the IP
is done in a trusted setting, the design house can also perform
additional testing using precomputed test vectors to ensure
that the chip has not been tampered with. The integrity of the
dynamic obfuscation scheme can be ascertained by deliber-
ately applying incorrect keys and performing scan operation.
Additional testing can also be done to detect Trojans [45].

3) In-Field Testing: Since in-field test is also a form of
structural test, it can be done on a deactivated/dysfunctional
IP. ALT-Lock does not require modification of scan cells to
suit the needs for testing either LGA gates or TA cells. During
in-field test, the test patterns and the test response signatures
can be evaluated and stored based on the dynamic sequence of
keys generated by the RB. Since these signatures are computed
for the compacted test responses, they will not reveal internals
of the IP or facilitate any form of partial oracle-guided attack.

Clock & Key Controlled INV

SDFF

G Ug OUBEE ROTHEDAEAUE UabEd
|

QU DT |6 pagey

Fig. 10. LGA gates (NDNR, NDXR, and NDXNR) and TA cell implemented
in the ASAP 7-nm technology. Two-input NAND, two-input XOR, and SDFF
cells from ASAP7 PDK for reference.

TABLE V

EVALUATING THE PPA IMPACT OF THE LGA GATES AND TA CELL IMPLE-
MENTED USING ASAP7 PDK

Staggl?rd)il];:ln)l ‘Ellt)rlnn)l (2;?) Delay (ns) Power (uW)
XOR 0.684 0.314 0.214776 1.16 2.12
NDNR 0.757 0.314 0.237698 2.17 6.87
NDXR 0.918 0.314 0.288252 2.98 4.39
NDXNR 1.296 0.314 0.406944 1.82 6.85
SDFF 1.673 0.314 0.525322 4.09 17.45
TA Cell 2.32 0.314 0.72848 6.09 30.32

V. OVERHEAD ANALYSIS OF ALT-LoCK

In this section, we evaluate the overhead associated with
the ALT-Lock scheme. The layout for all the LGA cells
(including NDNR, NDXR, and NDXNR along with the TA
cell) is carried out using Cadence Virtuoso and the ASAP7 7-
nm PDK. Library characterization including area, power, and
delay numbers are then obtained from the postlayout files and
through SPICE simulations. For delay evaluation of standard
cells, a fan-out of four inverters (FO4 load) is used as the
parasitic load.

The two-input XOR gate from the ASAP7 PDK is used
as the control for evaluation of the area, power, and delay
overheads for the LGA cells. Since two-input XOR gates are
widely used in traditional logic locking, it is a good baseline
to perform a fair comparison. Similarly, the scan-based D flip-
flop (SDFF) from the ASAP7 PDK is used as the baseline for
overhead evaluation of the TA cell. Fig. 10 shows the standard
cell layouts of all the LGA gates and the TA cell implemented
using the ASAP7 PDK. Two-input NAND, XOR, and the SDFF
cell are also shown from the same PDK for comparison.

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

TALUKDAR et al.: ALT-Lock: LOGIC AND TA-BASED IP OBFUSCATION AGAINST REVERSE ENGINEERING

TABLE VI

COMPARATIVE PERCENTAGE OVERHEAD RESULTS FOR THE PPA OF (a) TA
SEQUENTIAL CELL WITH LATCH-BASED LOCKING [31] AND (b) ALT-
Lock SCHEME WITH DIFFERENT KEY S1ZES USED FOR LOCKING
CEP BENCHMARK IPS

) % Overhead
Locking Cell

Area Delay Power

TA Cell 38.0 9.20 42.45

Prior Work [31] 86.0 11.0 64.32

@)
u o
ALT L?Ck. Total Key Size in bits % Overhead
Benchmark IP | Key Size in bits
(Knpxnr + Kra) | Area | Delay | Power
(Knpxnr K1a)
(64, 64) 128 0.51 | 0.15 | 0.40
FIR IP (128, 128) 256 0.73 | 0.25 | 0.66
(512,512) 1024 1.25| 043 | 0.85
(64, 64) 128 0.69 | 0.10 | 0.33
IIR IP (128, 128) 256 0.82 | 0.23 | 0.66
(512,512) 1024 2.02 | 0.53 1.95
(64, 64) 128 0.71 | 0.12 | 0.89
GPS IP (128, 128) 256 1.31 | 0.42 1.15
(512,512) 1024 218 | 1.15 | 245
(b)

Table V shows the area, delay, and power consumption of
the LGA gates and the TA cell. When compared with a tradi-
tional XOR-based key gate, the NDNR LGA gate has a 10.67%
higher area. Similarly, the NDXR LGA gate has an area over-
head of 34.21%, and the NDXNR LGA gate has an 89.47%
area overhead. As LGA gates replace regular logic gates in
place, they do not incur the delay associated with an additional
XOR-gates that must be inserted in the combinational paths as
additional key gates. Table VI(a) presents the overhead of the
TA sequential cell and prior work on latch-based logic locking
compared with a standard flip-flop [31]. Note that TA cell is
quite small compared with the existing latch-based sequential
locking schemes [31], thereby making it more attractive for
timing obfuscation. Table VI(b) shows the PPA overhead for
the ALT-Lock scheme, consisting of the largest LGA gate
(NDXNR) paired with the TA cell, used to lock various IPs of
the common evaluation platform (CEP) benchmark suite. CEP
is a popular benchmark suite used for evaluation of hardware
overheads for security solutions [20], [21]. When compared
with other standard cells in the design, it is important to note
that although the LGA gates are bigger than regular standard
cells, their delay overhead is not significant when we consider
combinational logic paths containing tens of standard cells.
Furthermore, the total key size when used to lock practical
circuits (containing tens of thousands of standard cells) is
unlikely to exceed 500 [23], which means that the overall
impact of the ALT-Lock scheme will be minimal. The designer
can decide which type of LGA gate to insert based on the PPA
budget available for the given design. When replacing a NAND
gate, NDXR will provide a corruption rate of 25% with an area
overhead of about 35%. Similarly, using NDNR will achieve
an output corruption rate of 50% with only 10% area overhead.
NDXNR will achieve the highest corruption at 75% while also
using 89%. The cost of replacement can therefore be used
to guide the insertion process. Although the individual LGA
overhead may seem significant when compared with traditional
standard cells, the overhead at the IP level is very small as can
be seen from Table VI(b).

1547

VI. CONCLUSION

We have demonstrated a logic and TA-based IP obfuscation
method, ALT-Lock. We have presented a methodology for
insertion of logic ambiguity (LGA)-based gates and TA-based
sequential cells. We have demonstrated security against both
oracle-guided and oracle-free attacks. In addition, we have
shown the PPA of our overhead.

ACKNOWLEDGMENT

The authors acknowledge the contribution of Akshay Vyas
in standard-cell characterization of LGA and TA cells.

REFERENCES

[1] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware
security: Models, methods, and metrics,” Proc. IEEE, vol. 102, no. 8,
pp. 1283-1295, Aug. 2014.

[2] B. Tan et al., “Benchmarking at the frontier of hardware security:
Lessons from logic locking,” 2020, arXiv:2006.06806.

[3] P. Subramanyan, S. Ray, and S. Malik, “Evaluating the security of logic
encryption algorithms,” in Proc. Int. Symp. Hardw. Orient. Secur. Trust
(HOST), 2015, pp. 137-143.

[4] Y. Xie and A. Srivastava, “Anti-SAT: Mitigating SAT attack on logic
locking,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 38, no. 2, pp. 199-207, Feb. 2019.

[5] Y. Hu, Y. Zhang, K. Yang, D. Chen, P. A. Beerel, and P. Nuzzo, “On the
security of sequential logic locking against oracle-guided attacks,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst, vol. 42, no. 11, pp.
3628-3641, 2023.

[6] L. Alrahis, S. Patnaik, M. Shafique, and O. Sinanoglu, “OMLA:
An oracle-less machine learning-based attack on logic locking,” IEEE
Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 3, pp. 1602-1606,
Mar. 2022.

[71 N. Limaye and O. Sinanoglu, “DynUnlock: Unlocking scan chains
obfuscated using dynamic keys,” in Proc. Design, Autom. Test Eur. Conf.
Exhib. (DATE), Mar. 2020, pp. 270-273.

[8] P. Chakraborty, J. Cruz, and S. Bhunia, “SURF: Joint structural func-
tional attack on logic locking,” in Proc. IEEE Int. Symp. Hardw. Oriented
Secur. Trust (HOST), May 2019, pp. 181-190.

[91 M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. Rajendran, and

O. Sinanoglu, “Provably-secure logic locking: From theory to prac-

tice,” in Proc. ACM SIGSAC Conf. Comput. Commun. Security, 2017,

pp. 1601-1618.

S. M. Plaza and 1. L. Markov, “Solving the third-shift problem in

IC piracy with test-aware logic locking,” IEEE Trans. Comput.-Aided

Design Integr. Circuits Syst., vol. 34, no. 6, pp. 961-971, Jun. 2015.

H. M. Kamali, K. Z. Azar, K. Gaj, H. Homayoun, and A. Sasan, “Lut-

lock: A novel LUT-based logic obfuscation for FPGA-bitstream and

ASIC-hardware protection,” in Proc. IEEE Comput. Soc. Annu. Symp.,

Jul. 2018, pp. 405-410.

A. Chakraborty et al., “Keynote: A disquisition on logic locking,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10,

pp. 1952-1972, Oct. 2020.

[13] J. Rajendran et al., “Fault analysis-based logic encryption,” IEEE Trans.

Comput., vol. 64, no. 2, pp. 410-424, Feb. 2015.

M. Yasin, B. Mazumdar, O. Sinanoglu, and J. Rajendran, “Removal

attacks on logic locking and camouflaging techniques,” IEEE Trans.

Emerg. Topics Comput., vol. 8, no. 2, pp. 517-532, Apr. 2020.

K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, “AppSAT:

Approximately deobfuscating integrated circuits,” in Proc. IEEE Int.

Symp. Hardw. Oriented Secur. Trust, May 2017, pp. 95-100.

R. S. Chakraborty and S. Bhunia, “HARPOON: An obfuscation-

based SoC design methodology for hardware protection,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 28, no. 10,

pp. 1493-1502, Oct. 2009.

H. M. Kamali, K. Z. Azar, H. Homayoun, and A. Sasan, “SCRAMBLE:

The state, connectivity and routing augmentation model for building

logic encryption,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI

(ISVLSI), Jul. 2020, pp. 153-159.

M. Fyrbiak et al., “On the difficulty of FSM-based hardware obfus-

cation,” IACR Trans. Cryptograph. Hardw. Embedded Syst., vol. 2018,

pp. 293-330, Aug. 2018.

[10]

(11]

[12]

[14]

[15]

[16]

(17]

[18]

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

1548

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

A. Patooghy, E. Aerabi, H. Rezaei, M. Mark, M. Fazeli, and M. A. Kinsy,
“Mystic: Mystifying IP cores using an always-ON FSM obfuscation
method,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI (ISVLSI),
Jul. 2018, pp. 626-631.

J. Talukdar, S. Chen, A. Das, S. Aftabjahani, P. Song, and
K. Chakrabarty, “A BIST-based dynamic obfuscation scheme for
resilience against removal and Oracle-guided attacks,” in Proc. IEEE
Intl. Test Conf., Oct. 2021, pp. 170-179.

J. Talukdar, A. Chaudhuri, and K. Chakrabarty, “TaintLock: Preventing
IP theft through lightweight dynamic scan encryption using taint bits,”
in Proc. IEEE Eur. Test Symp. (ETS), May 2022, pp. 1-6.

R. Karmakar and S. Chattopadhyay, “On securing scan obfuscation
strategies against ScanSAT attack,” in Proc. 21st Int. Symp. Quality
Electron. Design (ISQED), Mar. 2020, pp. 213-218.

N. Limaye, E. Kalligeros, N. Karousos, I. G. Karybali, and O. Sinanoglu,
“Thwarting all logic locking attacks: Dishonest Oracle with truly random
logic locking,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 40, no. 9, pp. 1740-1753, Sep. 2021.

K. Shamsi, M. Li, D. Z. Pan, and Y. Jin, “KC2: Key-condition crunching
for fast sequential circuit deobfuscation,” in Proc. Design, Autom. Test
Eur. Conf. Exhib. (DATE), Mar. 2019, pp. 534-539.

J. Talukdar, A. Chaudhuri, J. Kim, S. K. Limt, and K. Chakrabarty,
“Securing heterogeneous 2.5D ICs against IP theft through dynamic
interposer obfuscation,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Apr. 2023, pp. 1-2.

R. Torrance and D. James, “The state-of-the-art in semiconductor reverse
engineering,” in Proc. 48th ACM/EDAC/IEEE Des. Autom. Conf. (DAC),
Jun. 2011, pp. 333-338.

M. T. Rahman, S. Tajik, M. S. Rahman, M. Tehranipoor, and
N. Asadizanjani, “The key is left under the mat: On the inappropriate
security assumption of logic locking schemes,” in Proc. IEEE Int.
Symp. Hardw. Oriented Secur. Trust (HOST), Dec. 2020, pp. 262-272.
Y. Zhong and U. Guin, “Complexity analysis of the SAT attack on
logic locking,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst,
vol. 42, no. 10, pp. 3143-3156, 2022.

D. Duvalsaint and R. D. S. Blanton, “Characterizing corruptibility of
logic locks using ATPG,” in Proc. IEEE Int. Test Conf. (ITC), Oct. 2021,
pp. 213-222.

G. L. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann, “Tim-
ingCamouflage: Improving circuit security against counterfeiting by
unconventional timing,” in Proc. Design, Autom. Test Eur. Conf. Exhib.
(DATE), Mar. 2018, pp. 91-96.

J. Sweeney, V. M. Zackriya, S. Pagliarini, and L. Pileggi, “Latch-based
logic locking,” in Proc. IEEE Int. Symp. Hardw. Orient. Security Trust
(HOST), Dec. 2020, pp. 132-141.

M. Li, K. Shamsi, Y. Jin, and D. Z. Pan, “TimingSAT: Decamouflaging
timing-based logic obfuscation,” in Proc. IEEE Int. Test Conf. (ITC),
Oct. 2018, pp. 1-10.

M. E. Massad, S. Garg, and M. Tripunitara, “Reverse engineering cam-
ouflaged sequential circuits without scan access,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Nov. 2017, pp. 33-40.

T. Meade, Z. Zhao, S. Zhang, D. Pan, and Y. Jin, “Revisit sequential
logic obfuscation: Attacks and defenses,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), May 2017, pp. 1-4.

S. M. Rahman et al., “Security assessment of dynamically obfuscated
scan chain against oracle-guided attacks,” ACM Trans. Design Autom.
Electron. Syst., vol. 26, no. 4, pp. 1-27, 2021.

P. Chakraborty, J. Cruz, and S. Bhunia, “SAIL: Machine learning
guided structural analysis attack on hardware obfuscation,” in Proc.
Asian Hardw. Oriented Secur. Trust Symp. (AsianHOST), Dec. 2018,
pp. 56-61.

L. Alrahis et al., “ScanSAT: Unlocking static and dynamic scan obfusca-
tion,” IEEE Trans. Emerg. Topics Comput., vol. 9, no. 4, pp. 1867-1882,
Oct. 2021.

K. Juretus and I. Savidis, “Reduced overhead gate level logic encryp-
tion,” in Proc. Int. Great Lakes Symp. VLSI (GLSVLSI), May 2016,
pp. 15-20.

I. Savidis and K. Juretus, “Reduced overhead gate level logic encryp-
tion,” U.S. Patent 11282414, Mar. 22, 2022.

R. Ruzicka, L. Sekanina, and R. Prokop, “Physical demonstration of
polymorphic self-checking circuits,” in Proc. 14th IEEE Int. On-Line
Test. Symp., Jul. 2008, pp. 31-36.

R. Ruzicka and V. Simek, “NAND/NOR gate polymorphism in low
temperature environment,” in Proc. IEEE 15th Int. Symp. Design Diag.
Electron. Circuits Syst. (DDECS), Apr. 2012, pp. 34-37.

[42] A. Rezaei, J. Gu, and H. Zhou, “Hybrid memristor-CMOS obfuscation
against untrusted foundries,” in Proc. IEEE Comput. Soc. Annu. Symp.
VLSI (ISVLSI), Jul. 2019, pp. 535-540.

[43] M. Lanza et al., “Standards for the characterization of endurance in resis-
tive switching devices,” ACS Nano, vol. 15, no. 11, pp. 17214-17231,
Nov. 2021.

[44] Y. Xie and A. Srivastava, “Delay locking: Security enhancement of logic
locking against IC counterfeiting and overproduction,” in Proc. 54th
ACM/EDAC/IEEE Des. Autom. Conf. (DAC), Jun. 2017, pp. 1-6.

[45] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia,
“MERO: A statistical approach for hardware Trojan detection,” in Proc.
Int. Workshop Cryptograph. Hardw. Embedded Syst., 2009, pp. 396-410.

Jonti Talukdar received the B.Tech. degree in ECE
from Nirma University, Ahmedabad, India, in 2018,
and the M.S. and Ph.D. degrees in ECE from Duke
University, Durham, NC, USA, in 2020 and 2024,
respectively. His Ph.D. Thesis was on IP security for
2.5-D/3-D HI systems.

His research interests include intersection of hard-
ware security, test, and applied machine learning for
silicon security, health, and lifecycle management.

Woo-Hyun Paik received the bachelor’s and mas-
ter’s degrees in chip design from Korea University,
Seoul, South Korea, in 2012 and 2014, respectively.
He was a Visiting Researcher with Duke Univer-
sity, Durham, NC, USA, and expanded his area to
hardware security. He is a Memory Chip Designer.
His research interests include 3-D memory architec-
ture, hardware security, and design automation.

Eduardo Ortega received the B.A./B.S. degree in
integrated engineering from the University of San
Diego, San Diego, CA, USA, in 2020. He is cur-
rently working toward the Ph.D. degree at the Ira
A. Fulton Schools of Engineering, School of Elec-
trical, Computer, and Energy Engineering, Arizona
State University, Tempe, AZ, USA.

He is a Fulton Fellow of the Ira A. Fulton Schools
of Engineering, School of Electrical, Computer, and
Energy Engineering, Arizona State University.

Krishnendu Chakrabarty (Fellow, IEEE) received
the B.Tech. degree from Indian Institute of Technol-
ogy at Kharagpur, Kharagpur, India, in 1990, and
the M.S.E. and Ph.D. degrees from the University of
Michigan, Ann Arbor, MI, USA, in 1992 and 1995,
respectively.

He is currently a Fulton Professor of Microelec-
tronics with the School of Electrical, Computer
and Energy Engineering, Arizona State University
(ASU), Tempe, AZ, USA. He is also the Director of
the ASU Center on Semiconductor Microelectronics
and the CTO of the Department of Defense Microelectronics Commons
Southwest Advanced Prototyping (SWAP) Hub. His current research interests
include design-for-test of 2.5-D/3-D ICs and heterogeneous integration, hard-
ware security, Al accelerators, microfluidic biochips, and Al for healthcare.

Dr. Chakrabarty is a fellow of ACM and AAAS and a Golden Core Member
of the IEEE Computer Society.

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore. Restrictions apply.

