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ALT-Lock: Logic and Timing Ambiguity-Based IP

Obfuscation Against Reverse Engineering
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AbstractÐ We present a logic ambiguity-based intellectual
property (IP) obfuscation method that replaces traditional key
gates with key-controlled functionally ambiguous logic gates,
called LGA gates. We also protect timing paths by develop-
ing timing-ambiguous sequential cells called TA cells. We call
this locking scheme ambiguous logic and timing logic locking
(referred to as ALT-Lock). ALT-Lock ensures a two-pronged
system-level security scheme where the attacker is forced to
unlock not only combinational logic obfuscation but also timing
obfuscation. We show that a combination of logic and timing
ambiguity (TA) provides security against oracle-guided attacks.
This method is superior to other traditional IP protection schemes
such as combinational or sequential locking as it guarantees
security against both oracle-guided and oracle-free attacks, while
ensuring low power, performance, and area (PPA) overhead.

Index TermsÐ Hardware security, intellectual property (IP)
security, standard cells, supply chain security, timing obfuscation.

I. INTRODUCTION

T
HE globalization of the integrated circuit (IC) supply

chain has led to outsourcing of IC fabrication, packag-

ing, assembly, and testing operations to third-party entities.

Guaranteeing the trustworthiness of all third-party vendors

part of the global supply chain is extremely challenging,

resulting in an untrusted IC supply chain. This globalized IC

manufacturing flow poses significant risk to the security of

intellectual property (IP). Exposing IP to untrusted third parties

in the supply chain may result in IP theft, counterfeiting,

IC overbuilding, or the insertion of hardware Trojans in the

design. A variety of countermeasures such as split manufac-

turing, IC metering, and IP obfuscation have been proposed

to tackle these threats [1].

Logic obfuscation, also called logic locking, protects the

IP by inserting additional ªlocking logicº into the design.

Unlocking is possible only upon the application of the correct

key. The two major techniques considered for logic locking are
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combinational and sequential locking. Combinational locking

techniques require the insertion of key gates into the com-

binational cone of logic within the design [2]. Sequential

locking techniques insert additional obfuscation states and

state transitions to prevent an adversary from ascertaining the

correct order of functional states within the IP [2].

Logic locking protects against IP theft through IC reverse

engineering, IP counterfeiting, and overbuilding as the design

remains functionally inoperable unless the appropriate unlock-

ing key is applied. However, different forms of attacks, aimed

at recovering functional key used for logic obfuscation, have

been developed. For example, SAT is an oracle-guided attack

that can break most combinational logic-locking solutions [3],

[4], [5]. In addition, other variants of SAT, such as KC2,

have been created to successfully attack sequential locking [5].

Thus, there exists a need for stronger locking schemes that

provide security against not only oracle-guided attacks such

as SAT-based attacks but also a rapidly expanding arsenal of

oracle-free attacks [6], [7], [8].

In this work, we present a logic and timing ambiguity

(TA)-based IP obfuscation technique that obfuscates both the

combinational logic paths and timing paths in the design

through the use of novel combinational and sequential locking

cells. We refer to this technique as ambiguous logic and timing

locking (referred to as ALT-Lock). Through ALT-Lock: 1)

logic ambiguity is achieved by the insertion of functionally

ambiguous gates, i.e., logic gates (termed as LGA gates)

whose functionality is determined based on the applied key

and 2) TA is achieved by the insertion sequential elements

whose timing properties change upon the application of the

appropriate key. The use of both logic and TA provides

twofold security such that not only the functionality of the

combinational logic but also the cycle-based timing behavior

of the circuit is obfuscated. Unlike the existing IP obfuscation

techniques that rely on the use of XOR-gates, look-up-tables

(LUTs), or multiplexers (MUXes) for locking, we present

functionally ambiguous logic gates (LGA gates) that contain

embedded key transistors (MOSFETs) to allow the logic gates

to change their functionality based on applied key [9], [10],

[11]. The use of LGA gates allows us to not only obfuscate the

design functionally but also control the output corruptibility

of the design. We show that combining both the LGA gates

with timing ambiguous sequential cells leads to significant

protection against both oracle-guided and oracle-free attacks.

The major contributions of this article are as follows.

1) We describe three different types of LGA gates

[NAND/NOR (NDNR), NAND/XOR (NDXR), and

NAND/XNOR (NDXNR)], which can achieve gate-level
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logic obfuscation. These gates provide the necessary

logic ambiguity for ALT-Lock.

2) We present a timing-ambiguous sequential cell (TA cell),

which can change its functionality between a buffer

(delay element), latch, and a flip-flop, based on the

applied key. This is used to achieve timing obfuscation.

3) We present a methodology for the insertion of the logic

and timing ambiguous obfuscation cells for ALT-Lock,

along with a dynamic obfuscation of logic paths using

TA cells that are driven by reconfigurable blocks (RBs).

4) We evaluate the effectiveness of ALT-Lock against state-

of-the-art oracle-guided and oracle-free attacks.

5) We present an assessment of the power, performance,

and area (PPA) overhead associated with ALT-Lock.

The rest of this article is organized as follows. Section II

reviews prior work along with the necessary background

and threat model. Section III presents the architecture of

the ALT-Lock obfuscation scheme along with the insertion

methodology. Section IV presents the security analysis of

ALT-Lock. Section V presents a discussion of the associated

overhead. Finally, Section VI concludes the article.

II. BACKGROUND AND MOTIVATION

A. Related Prior Work

Combinational logic locking using XOR/XNOR gates, LUTs,

or MUXes remains vulnerable to attacks based on key sensi-

tization and test-data access [2], [12]. Improved logic-locking

methods that exploit structural properties of the netlist to

prevent sensitization of key bits have been designed to protect

against such attacks [13]. By controlling output corruptibil-

ity and preventing key-bit sensitization, these logic-locking

methods can defend against previously stated attacks [13].

However, the attack described in [3] highlighted a new

vulnerability of logic locking solutions. The oracle-guided

Boolean Satisfiability (SAT) attack prunes the key search

space by identifying distinguishing input patterns (DIPs).

By identifying these patterns, the SAT attack is able to reverse

engineer (RE) secret key information from logic locking

solutions [3]. New SAT-resilient logic locking was created to

defend against the SAT attack [4] using point functions to

restrict the number of keys that can be eliminated in each

iteration of the SAT attack [4], [9]. However, while providing

defense against the SAT attack, these logic locking solutions

suffer from poor output corruption and are vulnerable to

removal and approximate attacks [14], [15].

Sequential locking techniques modify the design’s original

finite state machine (FSM), expanding the functional state

space through obfuscation states and state transitions [16],

[17]. Only through a specific input sequence can these

sequential logic locking circuits be unlocked. In addition, the

obfuscation state space can also include a set of authentication

states that can be traversed to generate a unique output.

This unique output from authentication states can be used

to watermark the design and detect tampering. Attacks that

reverse-engineer the underlying states from sequential logic

locking solutions using state transition graphs (STGs) have

been developed [18], [19]. Once the STG is known, the

locked FSM can be deobfuscated by recovering the appropriate

key sequence [18], [19]. It is important to note that these

attacks rely on an exhaustive search of the state space to

identify the STG. To defend against such attacks, [17] created

a method to add false state transitions to augment FSMs.

However, newer SAT attacks have been developed to attack

these sequential logic locking schemes [5]. Thus, there still lies

an inherent vulnerability with current logic locking techniques

(both sequential and combinational) [5].

SAT attack requires complete controllability and observ-

ability of the design [3]. Scan test access can be used to

apply the SAT attack on individual combinational blocks of

a sequential system. Defenses have been proposed to thwart

such attacks [20], [21]. These defenses lock scan chains and

obfuscate scan data to ensure the SAT attack requirements

are not met. Unlike sequential locking techniques, scan obfus-

cation does not obfuscate the state of the system. Instead,

it prevents scan readout by either corrupting scan chain data

or blocking scan access altogether [20], [22], [23]. Attacks

such as [7] can bypass scan data corruption by modeling the

scan obfuscation logic as part of the overall combinational

logic. However, these attacks are not effective against defenses

that restrict scan access altogether [21]. Therefore, oracle-

free bounded model-checking (BMC)-based sequential-SAT

attacks have been proposed against such defenses [24].

B. Need for Ambiguity in Both Logic and Timing

The different categories of IP obfuscation methods

described in prior work (combinational locking, sequential

locking, and test locking) have been tailored to be resilient

against specific categories of attacks, which broadly include

oracle-guided and oracle-free attacks. However, the inability

of these methods to obfuscate both the timing properties of

the circuit along with the functional logic prevents them from

achieving resilience against both simultaneously. Although it

is possible to combine all these methods to create an ensemble

locking scheme that is resilient against both the categories of

attacks, such a method is likely to suffer from a large area

overhead. This is because these methods require the insertion

of specialized blocks, such as point-function implementations,

along with scan obfuscation circuitry to prevent oracle access.

Instead of relying on different system-level approaches,

we address this problem by designing new types of locking

cells that can achieve both timing and logic obfuscation.

Unlike the use of traditional XOR-based key gates that flip the

signal phase (from 0/1) based on the key value, LGA gates

flip the functionality of the gate itself. Depending on the type

of LGA gate, functionality can be flipped between NDNR,

NDXR, and NDXNR respectively. Thus, depending on the

type of LGA gate and its location, the designer can control the

amount of output corruption induced. Similarly, obfuscating

the timing path by designing a sequential locking cell that

can shift its property between a flip-flop, latch, and buffer, the

key value can control whether the signal is latched (either

level or edge-triggered) or buffered through a given path.

We make minimal modifications to the existing CMOS-based

implementations to achieve low overhead while achieving both

logic and timing obfuscation.
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C. Threat Model and Assumptions

The threat model specifies the untrusted entities in the

IC supply chain and highlights their resources and con-

straints. The typical threat model used in logic-locking

literature assumes that both the foundry and the end-user are

untrusted [25]. Thus, it is assumed that the attacker has access

to the following resources [12].

1) Locked Netlist: The end-user can RE the locked netlist of

the IP using advanced imaging, delayering, depackaging

techniques [26]. Similarly, the foundry can reconstruct

the netlist of the locked IP by processing the GDSII

files.

2) Activated Chip: The untrusted entity can procure an

unlocked and fully functional chip from the open market.

The attacker can perform topological analysis of the RE’d

netlist (locked) and use it for functional simulations, equiv-

alence checking, etc. The attacker can also use the activated

chip as an oracle, using it to query functionally correct

input/output combinations. Both these resources allow the

attacker to launch oracle-guided attacks.

As discussed in [2] and [12], invasive probing attacks that

partially recover the key directly from activated chips do

not fall under the scope of attacks on logic-locking. This is

because these attacks do not exploit the underlying weakness

of the locking solution itself but rather exploit the vulnerabil-

ities associated with the fabrication technology used to manu-

facture the chip. Moreover, these attacks have not been demon-

strated beyond the 28-nm technology node thus far due to chal-

lenges associated with probing for smaller process nodes [27].

III. ALT-LOCK: ARCHITECTURE AND LOCKING

METHODOLOGY

In this section, we describe the circuit-level implementation

of the proposed logic and TA cells. We also present the

methodology used for inserting these cells.

A. Achieving LGA

The XOR-gates have been widely used as key gates due to

the ambiguity introduced in signal propagating through the

gate. Consider an XOR-based key gate GXOR,k(i), where k is

the locking key bit and i is the input bit. Depending on k, the

output of the XOR key gate, OXOR,k , is either i or i . Thus, using

XOR-gates as key gates introduces input signal ambiguity, i.e.,

for k = 0, the output signal remains unchanged, whereas

for k = 1, the output signal is flipped. Thus, the output of

the circuit is given by: OXOR,k = i ⊕ k = k(i) + k(i).

We define logic gate ambiguity (LGA) as the ability to control

the functional logic type of the combinational gate based on

the applied key. Unlike an XOR-based key gate, where the key

bit, k, only determines the phase of the input signal transmitted

to the output (i.e., phase ambiguity in i with either O = i or

O = i), LGA introduces Boolean functional ambiguity in the

output of the obfuscated gate.

Let GLGA,k denote an LGA gate controlled by key, k,

which performs the transformation GLGA,k :I → O , where

I = {0, 1}M and O = {0, 1}N represent an M-bit input

Fig. 1. CMOS implementation of the two-input NDXR, NDNR, and NDXNR
LGA gates.

and N -bit output in the Boolean domain, respectively. In this

work, we design LGA gates with two inputs and a single

output, and therefore, M = 2 and N = 1. Unlike XOR-

based key gates that work on obfuscating the phase of a

single bit (i.e., only for M = 1), GLGA,k obfuscates the

output as a function of the key and all the gate’s m input

bits, OLGA,k = GLGA,k(i1, i2, . . . , iM), where iM is the M th

input bit of the input vector, I . For example, if a logic gate

switches functionality between NAND and NOR operations,

then the value of the applied key will determine whether

OLGA = k(i1 · i2) + k(i1 + i2), where i1 and i2 are the two

inputs to the circuit and OLGA is the obfuscated output bit.

We implement three different types of mixed functionality

two-input LGA gates, namely, NDXR, NDNR, and NDXNR.

Depending on the value of the applied key, the LGA gates

function as follows.

1) NDXR gates can change their functionality between

NAND (k = 0) and XOR (k = 1). Thus, ONDXR =

k(i1 ⊕ i2) + k(i1 · i2).

2) NDNR gates can change their functionality between

NAND (k = 0) and NOR (k = 1). Thus, ONDNR =

k(i1 + i2) + k(i1 · i2).

3) NDXNR gates can change their functionality between

NAND (k = 0) and XOR (k = 1). Thus, ONDXNR =

k(i1 ⊕ i2) + k(i1 · i2).

Fig. 1 illustrates the CMOS implementation of the three

different types of LGA gates. LGA cells can be used to

both structurally and functionally obfuscate combinational

logic gates. They can be used to replace NAND, NOR, XOR,

or XNOR logic gates, all of which are prevalent in modern

designs. Using a combination of LGA gates, we can achieve

different levels of functional obfuscation, i.e., output corrup-

tion. This is illustrated through examples shown in Fig. 2.

In Fig. 2(a), a small combinational circuit consisting of three

series cascaded two-input NAND gates is obfuscated using

the NDXR variant of LGA gates. Note that different key

combinations produce different values of output corruption,

highlighted by the last column that indicates the percentage

match between the output of the unobfuscated and the LGA-

locked circuit. The key (0, 0, 1) produces maximum output

corruption. This is because K = (0, 0, 1) leads to the logic

gate driving the primary output (PO) of the circuit being

functionally obfuscated into an XOR gate, leading to maxi-

mum output corruption. Similarly, Fig. 2(b) shows the output
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Fig. 2. Example illustrating NDXR-type LGA-locking of combinational logic consisting of three two-input NAND gates (a) cascaded in series and (b) cascaded
in a tree topology. The tables highlight the corrupted output (in red) of both the locked designs due to the activation of LGA gates across all combinations
of inputs and key values.

corruption for an NDXR-type LGA-locked circuit consisting

of three NAND gates connected in a tree-based topology.

Note that the same key, K = (0, 0, 1), produces maximum

output corruption. The designer can combine different types

of LGA cells and place them appropriately in the design to

achieve the desired levels of output corruption. This process

of security-aware LGA placement and insertion is described

in more detail in Section III-C.

B. Achieving TA

Recent work has shown that output corruption and

oracle-guided attacks resilience against SAT-based attacks

can be two competing objectives [28]. If a locking scheme

produces large amount of output corruption, it becomes easier

for the oracle-guided attack to find equivalence key sets of

large sizes that can be eliminated from the key search space.

Similarly, point-function-based schemes that produce very

less amount of output corruption fare much better against

such oracle-guided attacks due to the difficulty in finding

equivalence key classes of significant sizes, forcing the num-

ber of iterations required by the SAT-solver to approach

brute-force enumeration of the key search space. However,

by expanding the functional obfuscation space from purely

combinational to TA, the designer is no longer constrained

along the tradeoff between oracle-guided attack resilience

and output corruption [29]. Introducing TA in the design

through key-controlled sequential cells ensures that not only

the combinational functionality but also the timing behavior

of the reverse-engineered netlist is obfuscated. This makes it

impossible for the attacker to establish structural equivalence

(through timing behavior) between the oracle and the reverse-

engineered netlist, making oracle-guided attacks impossible.

This is described more formally in Section IV.

We design a TA sequential cell to change its timing proper-

ties between a flip-flop, a latch, and a delay element based on

the supplied value of the key bits. The basic element of a TA

cell consists of a key and clock-controlled inverter, as shown

in the box in Fig. 3. Note that when k = 0, the clock branches

of the inverter are bypassed transforming it into a regular

combinational inverter. However, when k = 1, the inverter

Fig. 3. Single TA cell consisting of two stages of clock and key-controlled
inverters with feedback.

becomes clock-controlled. These inverters can be connected

in a variety of ways to achieve the functionality of a latch,

a flip-flop, or a delay element. The TA cell is modeled as a

memory element with two key inputs, (k1, k2) such that the

output OTA changes as follows.

1) (k1 = 0, k2 = 0): This key configuration programs the

TA cell to work as a delay element consisting of a chain

of four inverters.

2) (k1 = 1, k2 = 1): This key configuration programs the

TA cell to work as a flip-flop, as both the feedback paths

of both the stages work.

3) (k1 = k2): This key configuration (where k1 is the

complement of k2, i.e., (k1, k2) = (0, 1) or (1, 0))

programs the TA cell to work as a latch, as one of the

clock-controlled feedback path is active while the other

is inactive.

Fig. 3 illustrates the building block along with two configura-

tions of the TA cell.

C. ALT-Lock: Security-Driven Insertion Methodology

In this section, we provide general guidelines on the

selection and placement of LGA gates and TA cells in a

security-aware manner.

1) Logic Ambiguity: Choosing LGA Type and Placement:

Depending on the type of gates present in the combinational

logic, the designer can choose to replace NAND, NOR, XOR,

or XNOR gates with their LGA equivalent. Each of these gate

types can be replaced with either of the three LGA gates
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Fig. 4. Computing (a) observability and (b) signal probability for different
nets in the design. (c) Table showing updated signal probability for different
input combinations and percentage match in functionality between LGA gate
candidates.

(NDNR, NDXR, or NDXNR). Therefore, the designer has

the following options when introducing logic-ambiguity-based

obfuscation to the design: 1) replace an existing two input

gate with an LGA variant and 2) insert a new LGA gate in

the design. Note that inserting a two-input LGA gate in a

single-bit signal path requires the other input of the LGA gate

to be tied, making it easier for removal style attacks. This

would necessitate the insertion of multiple gates to obfuscate

a single functional path, leading to the addition of unnecessary

delay and area overhead. As a result, in this work, we focus on

the first option, i.e., replacement of existing gates with LGA

gates. This brings us to the following guidelines.

1) LGA Placement: Which gate to pick for replacement?

The choice of gate for replacement with an LGA gate

is determined by the amount of functional corruption

(output corruption) desired at the PO. For example,

an LGA gate placed closer to the output has more

influence on perturbing that output. Thus, this decision

is tied very closely to the observability of the gate. The

more observable a net that is driven by an LGA gate, the

greater is the likelihood of functional corruption. This

is also evident from the example demonstrated in Fig. 2

where the specific key (0, 0, 1) leads to the gate closest

to the PO causing functional obfuscation.

2) LGA Impact: Which LGA gate type to use? The choice of

LGA gate is also based on the percentage of functional

corruption desired at the output. Once the original gate

is picked for replacement, the designer can choose

the LGA gate variant that maximizes output corruption.

This can be done by computing the change in signal

probability post replacement and comparing it across all

the potential LGA gate candidates.

a) Working example: Let us consider the example circuit

from the previous section consisting of three two-input NAND

gates in series (ND0, ND1, and ND2). To decide LGA

placement, i.e., which gate to replace; we compute the observ-

ability of the different nets in the design. As is consistent

with the example shown in Fig. 2(a), picking the gate with

highest observability (ND2) increases the ability to introduce

maximum output corruption. Fig. 4(a) shows the observability

values for all the nets in blue. To choose the LGA gate type for

replacement, we compute the input signal probabilities for the

different nets in the design. If Pi is the input signal probability

for the i th input net of an M input gate, then the output

signal probability for the different gates is given as follows: 1)

AND:
∏

i Pi ; 2) NAND: 1 −
∏

i (1 − Pi ); 3) OR: 6i Pi −
∏

i Pi ;

4) NOR: 1 − (6i Pi −
∏

i Pi ); 5) XOR: 6i, j Pi (1 − Pj ); and

6) XNOR: 1 − P(XOR). Using these rules, we compute the

signal probabilities for all the nets in the design. As we chose

ND2 for replacement (based on LGA Placement Guideline),

we compute the probability for output corruption for the

other three LGA candidates. This is done by identifying all

the inputs for which the output of the original gate differs

from the LGA gate, i.e., the output becomes corrupted. Let

Icorrupt ⊂ I , such that ∀i ∈ Icorrupt:GND2(i) ̸= GLGA(i).

Then, the probability of output corruption due to a given LGA

candidate is given by PLGA = 6i i Pi . Through data presented

in Fig. 4, we obtain PNDXR = 0.19, PNDXNR = 0.5, and

PNDXNR = 0.81. Thus, picking NDXNR LGA type will lead to

most output corruption. This is also evident if we observe the

percentage match in the output of the LGA candidates when

compared with the gate being replaced (ND2) from the last

row in the bottom table [see Fig. 4(c)]. It has the lowest match

percentage, indicating maximum output corruption.

Thus, the choice of which gate to replace in the design and

what type of LGA gate to replace it with are both driven by

the amount of functional corruption desired by the designer.

Fig. 5 illustrates the impact of choosing two extreme corners of

the LGA placement and LGA gate type guidelines described

above. In the first case, the least observable gate (ND0)

is chosen for replacement. Furthermore, ND0 is chosen to

be replaced with an NDXR LGA gate type, which has the

maximum functional overlap or percentage match in terms of

the number of inputs producing the same output. This leads to

poor output corruption (6%). In the second case, the gate with

maximum observability (ND2) is chosen and replaced with the

NDXNR LGA gate type which has the maximum functional

mismatch. This leads to significant output corruption (81%).

b) Preventing key-based logic sensitization: Placing

LGA gates in highly observable locations in the design,

although increases output corruption, can also facilitate func-

tional reverse engineering. This is because using oracle access,

the attacker can set the primary inputs (PIs) to the circuit such

that the LGA gate experiences all the four input combinations.

The attacker can then analyze the POs for all those input

combinations, thereby reverse engineering the functionality

of the LGA gate. This is possible only when the LGA

gate’s inputs have high controllability and the outputs are

propagated without any form of interference from other LGA

gates. To prevent this type of reverse engineering, multiple

LGA gates should be placed in the design, such that the output

of neither LGA gate can be independently propagated to a PO.

An LGA gate covers a PO if its output can be propagated

to that PO. By ensuring that no PO is exclusively covered

by just one LGA, it becomes impossible for the attacker

to determine the functionality of an LGA without making

assumptions about other LGAs. This is shown in Lemma 1.

Lemma 1: If multiple LGAs are in the same logical path,

i.e., the fan-out cone of one LGA drives another LGA down-

stream, then the individual outputs of the LGAs in that path

cannot be independently propagated to the same PO without

exploring all possible key combinations for the interfering

LGAs.
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Fig. 5. Impact of two extreme corners of LGA gate placement and LGA gate type decisions on the output corruptibility.

Proof: Consider two LGA gates, GLGA1,k1
and GLGA2,k2

,

controlled by keys k1 and k2, respectively. The output of these

LGA gates (OLGA1,k1
, OLGA2,k2

) lies exclusively in the fan-in

cone of the PO, such that the output of the obfuscated design is

given by OPO = f (OLGA1,k1
, OLGA2,k2

, I ), where f represents

the logic transformation between the obfuscated output of the

LGA gates and the input I . Given that f is reconstructed from

the reverse-engineered netlist, the attacker’s goal is to find the

input vector I that can independently propagate either OLGA1,k1

or OLGA2,k2
to OPO. However, since the attacker is unaware

of either k1 or k2, they cannot propagate either OLGA1,k1
or

OLGA2,k2
without making assumptions about the other key

(k1 or k1). Thus, to propagate OLGA1,k1
to OPO, the attacker

must make GLGA2,k2
transparent, which cannot be done unless

k2 is known. Similarly, to propagate OLGA2,k2
to OPO, the

attacker is forced to make GLGA2,k2
transparent, which cannot

be done unless k1 is known. Thus, both the LGA gates in

the same logic path are said to be strongly connected, i.e.,

to propagate the output of one gate to the PO, the attacker is

forced to brute-force through all the keys of the other LGA

gate, thereby forcing the attacker to brute-force through the

entire key search space.

2) TA: Choosing Timing Paths and Key Configuration: The

designer has the option to replace the existing delay cells,

latches, or flip-flops in the design with the TA cell or insert

such cells additionally (and program them as delay elements to

prevent functional impact on timing). In either of these cases,

i.e., replacement of an existing element/cell or insertion of a

new element, the designer has to be wary of the attacker trying

to infer the sequential element type by analyzing the length of

the different timing paths. As the functional clock frequency of

the design might already be common knowledge and assumed

to be known to the attacker, the attacker can simply analyze

the length of all the paths and eliminate keys that lead to

extremely long paths. As a result, the following criteria must

be used for the insertion of (or replacement with) TA cells.

1) Any flip-flop can be replaced with a latch and vice versa.

Therefore, replace either a flip-flop or a latch with a

TA cell with key (0, 1) or (1, 0). This will directly

introduce a timing violation in the design as it may

propagate unwanted data transitions to the downstream

logic, thereby increasing the likelihood of capturing

incorrect data by sequential cells further downstream.

2) Buffers in long paths in the design can be replaced

(also known as splicing) with TA cells. This will also

introduce timing violation for all the keys except (0, 0).

3) TA cells can be inserted in longer paths in the design

with key (0, 0). This makes it difficult for the attacker

to reconstruct the design as the cell could function as

either a buffer or a sequential element from the attacker’s

perspective.

Preventing Combinational Loop-Based Reconstruction:

Modern digital designs seldom have combinational feedback

loops. Therefore, it is possible for the attacker to identify paths

exclusively with TA cells (and no other sequential elements)

that form feedback loops. Attackers can eliminate the buffer

functionality of TA cells in such paths as modern designs

avoid combinational feedback loops. Therefore, during TA

replacement or insertion, it should be ensured that the path

after TA cell insertion/replacement does not form a feedback

loop without the presence of other sequential elements that

can break such loops.

3) Logic and TA Co-Design: Note that LGA gates and TA

cells obfuscate designs by replacing the functional gates and

timing paths with key-controlled cells. Unlike traditional XOR-

based key gates, the design’s functionality remains structurally

and functionally hidden without the need for resynthesizing

the netlist. Furthermore, LGA gates and TA cells can be

co-inserted such that they can co-obfuscate logic and timing

paths, i.e., paths that are functionally obfuscated can also be

timing obfuscated. In the following lemma, we show that

TA, when combined with logic ambiguity, can make the

design functionally different from the original unobfuscated

design, thereby making it impossible to establish functional

equivalence between the two.

Lemma 2: TA cells on logic paths that are driven by

LGA gates make the obfuscated design functionally nonequiv-

alent to the original design unless the correct key is applied.

Proof: Consider a circuit that is obfuscated using p

LGA gates, such that q internal nets terminating in sequential

elements and/or POs are covered by the p LGA gates (q ≤ p).

Let us replace and/or insert q TA cells at these internal nets

terminating in sequential elements and/or POs, such that the

TA cells are driven by a q-bit key vector,
−−−→
KTA,q . As per

Lemma 1, the output at each of the q terminating nets will

be a function of the input vector (
−→
I ) and the p-bit LGA-

key vector (
−−−−→
KLGA,p), such that Oq = f (

−−−−→
KLGA,p,

−→
I ). For this

intermediate functional output (Oq ) to be correctly fed into

the subsequent logic, the TA cells will have to be initialized

with the correct key so that the output of the obfuscated

circuit is given by OALT = g(
−−−→
KTA,q , f (

−−−−→
KLGA,p,

−→
I )), where

g represents the subsequent timing obfuscated logic driven
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Fig. 6. Overall methodology for ALT-Lock insertion.

by the LGA-locked cells and PIs. Assuming that
−−−−→
KLGA,p is

correct, even if a single bit in
−−−→
KTA,q is incorrect, there is no

guarantee that the timing behavior of the obfuscated design

CALT will match the original unobfuscated design, Cor (due to

insertion guidelines for TA cells mentioned Section III-C2).

Thereby, making it impossible to prove the functional equiv-

alence between Cor and CALT.

From Lemma 2, we can infer that adding TA to paths that

are already obfuscated with LGA gates significantly increases

the attacker’s difficulty in proving functional equivalence

between the obfuscated and unobfuscated versions of the

circuit. Furthermore, the best design practice is to match the

number of LGA gates with the number of TA cells (q = p),

with both obfuscating part of the same logic paths. However,

it is possible to have q ≤ p if multiple LGA gates converge

to the same net. The overall ALT-Lock insertion method-

ology, consisting of LGA gate insertion and TA sequential

cell insertion, is illustrated in Fig. 6. Note that methods that

obfuscate timing paths have been presented before [30] and

[31]. Zhang et al. [30] present a method to obfuscate timing

through wave pipelining. However, it requires the removal of

flip-flops from the design. Furthermore, it cannot obfuscate

paths with delays below the clock period. Sweeney et al. [31]

do not support logic obfuscation and rely solely on obfuscating

timing paths. In addition, neither [30] nor [31] presents a

methodology to control output corruptibility.

4) Dynamic Obfuscation of Timing Cells: We develop a

method for dynamically obfuscating the state of the IP by

driving the key inputs to TA cells using an RB. An RB consists

of a linear feedback shift register (LFSR) with a reconfigurable

feedback path [20]. The RB can be programmed by loading

in the seed and the select lines to the MUXes in the feedback

path. The select lines can be set by the designer to achieve any

possible LFSR feedback polynomial. The initialization seed

can be used to determine the starting sequence of the LFSR.

The RB is programmed through a key stored in the tamper-

proof memory. The key inputs to the TA cells are driven by

the output of the RB. Fig. 7 illustrates the RB-driven dynamic

obfuscation of the TA cells. RBs have been previously demon-

strated as effective instruments to achieve dynamic obfuscation

for securing test paths [20], [21]. In this work, we use RBs

to dynamically obfuscate TA cells, therefore using the same

Fig. 7. Dynamic obfuscation of timing cells using an RB.

method to achieve dynamic obfuscation of timing paths in

the design. As will be described later, dynamically changing

the constituent timing properties of logic paths enhances the

security by achieving resilience against not only combinational

but also sequential deobfuscation attacks.

Dynamic obfuscation of the TA cells is achieved upon

the assertion of the scan enable pin. Activation of the scan

enable signal leads to the key inputs of the TA cells being

connected to the output of the RB. As this RB output changes

dynamically every clock cycle, this implies that at every clock

cycle, the initialization keys for the TA cells change depending

on the state of the RB. As a result, the configuration of

the TA cell can dynamically change between a flop, a latch,

and a buffer, respectively, depending on the variation in the

dynamic key sequence generated by the RB. This is illustrated

in Fig. 8, where Case 1 represents the static key in unlocked

state. During this stage, the TA cells are all configured as

flops (blue). Upon the assertion of the scan enable pin, the

key inputs to the TA cells are initialized from the dynamically

changing output of the RB, which changes the configuration

of the logic paths belonging to the IP dynamically with time.

Case 2 represents the reconfigured logic paths after the first

clock period. Note that TA cells TA1 and TA4 have been

reconfigured as latches (yellow). During the second clock

period, i.e., Case 3, TA cells TA2 and TA3 are reconfigured

as buffers (red). Case 4 represents the third clock period upon

the assertion of the scan enable signal. In this case, TA1 is

reconfigured as a buffer while TA3 is reconfigured as a latch.

Note that changing the state of the logic paths dynamically

in every clock cycle changes the logic state of the IP. This

is because changing the nature of sequential elements in a

logic path induces changes in the FSM transitions, in some

cases even changing the register size of the FSM (when some

flops are reconfigured as buffers). As a result, the IP no longer

remains functionally correct. Triggering this change in the

state of the IP dynamically with time upon the assertion of

the scan enable signal denies the attacker oracle access. In the

next section, we will discuss how this enhances the resilience

of ALT-lock against both oracle-guided and oracle-free attacks.

IV. SECURITY ANALYSIS OF ALT-LOCK

A. Brute-Force Resilience

Consider an IP that is protected through the insertion of m

LGA gates and n TA cells. In such a scenario, the attacker

can deobfuscate the circuit by guessing each key combination
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Fig. 8. Changing state of logic paths in IP due to dynamic obfuscation of
TA cells. All TA cells are initially flops (blue), but change their functionality
to latches (yellow) and buffers (red) depending on the dynamic key sequence
of the RB.

and testing it for functional correctness. While each LGA gate

consists of one unique key bit, each TA cell consists of two

unique key bits. Thus, the total key size is given by m + 2n.

As only one key among all the key values will be the correct

key, the brute-force resilience, which is quantified in terms of

the number of attempts the attacker must make in the worst

case to unlock ALT-Lock, is given by tbf = 2m+2n . For a total

key size of 128 bits, the total number of guesses needed is in

the range of 1038, which is prohibitively high.

B. Oracle-Guided Attacks

All the oracle-guided attacks rely on the ability of the

attacker to create SAT-based models of the reverse-engineered

IP. It is assumed that the attacker has access to the reverse-

engineered gate-level netlist of the design excluding the value

of the key. The attacker can then eliminate incorrect keys

quickly by generating distinguishing input pairs, i.e., inputs

that produce different outputs for two different keys, and

querying them with the oracle.

Oracle-guided attacks are easily applicable for combina-

tional logic locking as the timing properties of the circuit are

assumed to be unaffected. The timing and sequence in which

the Boolean inputs are applied to the circuit, and the output

responses are sampled from the circuit, are assumed to be

known. Therefore, an attacker can simply scan in the DIPs

and scan out the responses from the oracle without having to

take timing into account.

In ALT-Lock, the timing paths of the locked circuit are

also obfuscated. A TA cell could be a latch, buffer, or a

flop, thereby making it difficult for the attacker to ensure an

equivalent match in the timing and length of the input being

applied to the oracle and the locked design.

Theorem 1: Combinational SAT attack cannot identify

locked keys in the presence of TA in the locked circuit.

Proof: Let Cor be the oracle that performs the transfor-

mation Cor:I → O where I = {0, 1}M and O = {0, 1}N ,

representing M-bit inputs and N -bit outputs in the Boolean

domain B. In other words: ∀
−→
X i ∈ I :Cor(

−→
X i ) =

−→
Yi , where

−→
X i ∈ B

M ,
−→
Yi ∈ B

N . Now, consider na ALT-Locked circuit

CALT with combinational LGA-key,
−−−→
KLGA, and TA key,

−−→
KTA.

Consider a combinational SAT attack ASAT , which unlocks

the combinationally obfuscated circuit function CALT,LGA to

the functionally unlocked circuit Cor, i.e., ASAT :CALT,LGA →

Cor. This can be accomplished by extracting the correct key

vector
−→
K =

−−−→
KLGA such that the circuit can be unlocked. This

is equivalent to solving the quantified Boolean formula (QBF)

QBF: ∃
−−−→
KLGA ∀

−→
X i ∈ I : CALT,LGA

(−→
X i ,

−−−→
KLGA,

−→
Yi

)

∧ Cor

(−→
X i ,

−→
Yi

)

. (1)

However, due to TA of the locked circuit, the attacker only

has access to reverse-engineered gate-level netlist, CALT, where

both
−−→
KTA and

−−−→
KLGA are unknown. From Lemma 2, we infer

that Cor is not equivalent to CALT,LGA unless the right value

of KTA is specified. Since the timing impact of
−−→
KTA, which

is determined by the timing characteristics of the TA cells

and timing requirements of the original design, cannot be

specified using a Boolean expression,
−−→
KTA cannot be modeled

in (1). As a result, without the right value of
−−→
KTA, it is

impossible to verify the correctness of (1). As a result, the key

search space will not be pruned using any equivalence class

of keys, therefore forcing the attacker to resort to brute-force

key guessing.

C. Oracle-Free Attacks

As demonstrated through Theorem 1, the use of TA cells

makes combinational SAT attacks ineffective against ALT-

Lock. However, there exist another set of oracle-free attacks

that only require access to the locked design and obviate

the need for scan access. Such categories of attacks rely on

SAT-based sequential deobfuscation by unrolling the locked

IP [24], [32]. Furthermore, other sets of deobfuscation tech-

niques rely on training machine learning (ML) models. In this

section, we demonstrate the ALT-Lock’s resilience against

both these category of attacks.

1) Sequential Deobfuscation Attacks: The use of RB-driven

dynamic reconfiguration of TA cells in the logic paths of the

IP forces the attacker to rely on an unrolling-based oracle-free

technique for deobfuscation. This is because the sequential

state of the IP changes every clock cycle. Oracle-free model

checking-based sequential SAT attacks unroll the states of

the locked sequential circuit to identify distinguishing input

sequences (DISs) [24], [33]. Let Cos(i, so) denote a sequential

oracle with input i and state register so. An encrypted sequen-

tial system ces(i, se, k∗) is unlocked when there exists a key

k∗, such that

k∗ ∈ K∗ : cos(i, so) = ces(i, se, k∗) ∀i ∈ I ∞. (2)

Therefore, ces is considered unlocked when (2) is satisfied

for all the sequential input traces ⟨i0, i1, i2, . . . , iu⟩ ∈ I ∞,

where u is the max unroll count. Similar to SAT attacks, this is

done by applying the input traces to a Miter circuit to eliminate

incorrect keys from the search space. Sequential SAT attacks

are computationally very expensive and do not scale well for

large circuits [34]. A recent variant of this type of attack is

KC2 [24]. It uses additional simplification techniques, which

include integrating SAT with bounded model checking (BMC),

using BDD to simplify circuit representation, and simplifying

constraints using key sweeping. This attack has also been

modeled for delay locked designs [32].
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TABLE I

EVALUATING THE INCREASING COMPLEXITY OF UNROLLING-BASED

SEQUENTIAL SAT ATTACK (KC2) ON ISCAS SEQUENTIAL BENCH-
MARKS LOCKED WITH 8- AND 16-bit RBS

In case of ALT-Lock, the use of RBs in the key initialization

path drastically increases the effort for sequential deobfus-

cation attacks such as KC2 and timingSAT. Since KC2 and

other sequential SAT attacks rely on unrolling the circuit,

the use of reconfigurable feedback increases the number of

frames that need to be unrolled before a DIS can be iden-

tified. Furthermore, as the characteristics of the logic paths

themselves change during each clock cycle, all the potential

path configuration options must be accounted for during each

instance of unrolling. Depending on the configuration of every

TA cell, there exist four different logic paths that can be

created during each unrolling instance (depending on whether

the TA cell is unrolled into two types of latch configurations,

flop configuration, or buffer configuration). As a result, if the

design is unrolled for u instances, and four potential paths need

to be analyzed for every unrolled instance, the total number of

unrolling candidates is given by 4u . Different model checking

configurations can be used to determine the number of queries

and the maximum length of the DIS required to unlock the IP.

When the number of queries is bounded, a bounded model

checker (BMC) is used. To exhaustively continue unrolling

the IP until all the SAT constraints are satisfied, unbounded

model checkers (UMCs) are used. When using UMC mode,

the number of unrolling rounds is unconstrained and the

solver continues unrolling the IP and adding SAT clauses

to the solver until all the constraints specified in (2) are

satisfied. Note that the state space for the sequential deobfusca-

tion attack increases exponentially depending on the number

of unrolled sequences. This makes sequential deobfuscation

attacks intractable on ALT-Lock.

Table I shows the comparison between the number of SAT

clauses and SAT variables for ISCAS sequential benchmarks

locked with traditional XOR-gates and those locked with 8- and

16-bit RBs using ALT-Lock. It is evident that both the attack

effort and runtime increase significantly for circuits locked

with ALT-Lock. In addition, note that s27 is too small to be

locked with a 16-bit key. All the experiments were run on

an Intel Xeon-Gold Server with 60 GB of primary memory.

The increase in maximum unrolling depth of the solver is also

presented in Table II. Note that using 8- and 16-bit RBs can

significantly increase the complexity of unrolling of the model

checker, therefore increasing the attack effort.

TABLE II

EVALUATING THE INCREASE IN MAXIMUM UNROLLING DEPTH OF KC2
ATTACK FOR 8- AND 16-bit RBS

TABLE III

RESULTS FOR THE KC2 ATTACK APPLIED TO BENCHMARKS PROTECTED

USING 64- AND 128-bit RBS. TO: TIME-OUT OF 120 h, MEMORY

LIMIT: 60 000 Mb

We experimentally demonstrate the resilience of ALT-Lock

against sequential deobfuscation attacks. We ran KC2 on

several OpenCore benchmark circuits protected using ALT-

Lock. Every benchmark was protected using a 64- and 128-bit

RB, respectively. Note that every output bit of the RB drives

a TA cell, and therefore, the number of TA cells used for

protection is equal to the size of the RB. Table III shows

the result of the KC2 attack variant applied on the differ-

ent variants of the ALT-Lock architectures. A timeout of

120 h was set for every experiment. Note that the attack

times out for all the benchmarks, indicating the resilience

of the dynamic obfuscation architecture against sequential

deobfuscation attacks. Table III also shows the number of

SAT clauses that are added to the solver until time-out occurs

for all the dynamically obfuscated benchmarks. The explosion

in the number of SAT clauses is another indicator to the

difficulty faced by the existing constraint-based sequential

deobfusation attacks. Increasing the size of the RB will further

increase the number of SAT clauses, therefore increasing the

computational complexity at an exponential level. As a result,

computational resources will have to also scale exponentially

to attempt deobfuscation. As we refer to recent prior work

that also shows how increasing the number of SAT clauses also

increases the complexity of SAT-based deobfuscation, showing

that exponential growth in the number of SAT clauses also

increases deobfuscation time exponentially [35]. In [35], the

SAT solver is unable to converge to a solution with less than

2 × 104 clauses even after ten days. We conclude that scaling

the number and size of RBs beyond 128-bit keys will make

SAT-based deobfuscation computationally intractable.

2) ML-Guided Attacks: Oracle-free attacks only use the

reverse-engineered netlist of the design to deobfuscate the

IP. A wide class of ML-based attacks have been recently

proposed that rely on analyzing only the gate-level reverse-

engineered netlist of the design to reconstruct the original

circuit of the design [6], [8], [36]. These attacks have only been

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:56:51 UTC from IEEE Xplore.  Restrictions apply. 



1544 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 32, NO. 8, AUGUST 2024

demonstrated to reverse-engineer combinational XOR gate-

based logic-locked netlists that rely on netlist resynthesis after

key-gate insertion.

a) GNN-guided netlist reverse engineering (OMLA):

OMLA uses graph neural networks (GNNs) to learn the

graph-based key embeddings from a combinationally locked

circuit. It relies on a large training dataset that must be gener-

ated by locking the circuit several times with the same number

of combinational key gates and resynthesizing the design.

Unlike traditional methods that use XOR-gates for locking the

design, ALT-Lock does not require gate-level resynthesis to

obfuscate the design. Furthermore, ALT-Lock does not use

traditional key gates to achieve locking. It obfuscates combina-

tional logic using custom implementations of LGA gates. Such

implementations cannot be modeled by the existing ML-based

reconstruction methods that rely on netlist reconstruction using

XOR-based key gates. Furthermore, TA cells in ALT-Lock add

an additional layer of obfuscation that cannot be modeled

using the existing GNN-based netlist reconstruction methods.

To reverse-engineer the complete ALT-Locked circuit, the

attacker will be forced to partition the entire design into

smaller subblocks of combinational logic, with boundaries

demarcated by location and placements of TA cells and flip-

flops. Furthermore, given that the key configuration of the

TA cells is unknown, combinational reconstruction of such

partitions will only lead to incomplete key recovery of the

ALT-Locked design. Finally, to verify the correctness of com-

binationally locked gates, the attacker will first have to ensure

that the timing paths are deobfuscated, which requires brute-

force effort, making such an oracle-guided attacks futile.

b) ML-guided latch unraveling attack: Latch-based logic

locking obfuscates certain timing critical paths in the design

by inserting key-programmable latches. These latches can be

phase-controlled depending on the supplied key, and then be

inserted into timing critical paths in the design by duplicating

selected flip-flops in those paths followed by retiming those

paths [31]. Latch-based locking also relies on the insertion

of additional decoy latches to obfuscate the design. An ML-

guided Latch Unraveling attack [31] has been proposed; it uses

Boolean analysis and ML-guided integer linear programming

(ILP) to deobfuscate latch-locked circuits. The attack runs in

two phases.

1) Phase 1: A sequential graph of the locked design is

built. Random Forest classifier is then used to identify

randomly inserted logic decoys and simplify the circuit.

2) Phase 2: The simplified circuit is fed into an ML-

classifier, which outputs the probability of a latch being

a delay decoy. These probabilities are used as constraint

coefficients for an ILP optimizer whose objective is

to assign each sequential cell into its appropriate type

(primary/secondary/delay latch).

The key assumption made in this attack is that the sequential

graph of a latch-locked circuit must be two-colorable, i.e.,

alternating between primary and secondary latches. Since

latch-based locking inserts decoy latches in the design, it leads

to the creation of additional false paths in the design, which

also alters the colorability of the graph. The ML-guided

ILP optimizer can then identify such latches and recolor the

sequential graph of the locked circuit, deobfuscating it.

In contrast, ALT-Lock does not insert additional decoy cells,

thereby avoiding the creation of false paths. The existing

cells such as buffers and flip-flops are replaced with TA cells

without the addition of secondary bypass paths that could be

identified as potential false paths. The timing arcs within the

original path are preserved. Furthermore, we show below that

the sequential colorability of a circuit remains preserved in

ALT-Lock.

Definition 1: Let Gorig(V, E) be the sequential graph of a

circuit, where V denotes the set of all sequential nodes in the

circuit, and E denotes the set of combinational paths (denoted

by an edge, e ∈ E) connecting the nodes in V .

Definition 2: Let GALT(VALT, EALT) be the sequential graph

of original circuit, locked by replacing existing sequential cells

with TA cells and inserting and/or replacing combinational

cells with LGA cells.

Lemma 3: Gorig(V, E) and GALT(VALT, EALT) are isomor-

phic.

Proof: LGA cells are combinational. Therefore, insertion

and/or replacement of LGA cells in Gorig(V, E) does not alter

either V or E . Similarly, replacing an existing sequential cell

v ∈ V with a TA cell vTA does not create any additional edges

in E . As a result, V ≡ VALT and E ≡ EALT, therefore making

Gorig and GALT isomorphic.

Theorem 2: TA cell replacement and LGA cell insertion

and/or replacement does not alter the sequential colorability

of the primary±secondary latches in the unlocked circuit.

Proof: From Lemma 3, we observe that insertion and/or

replacement of LGA cells does not alter the isomorphism

between Gorig and GALT. Similarly, the replacement of sequen-

tial cells with TA cells preserves this isomorphism. Given

that Gorig is two-colorable, and GALT is isomorphic to Gorig;

therefore, GALT also remains two-colorable.

We therefore conclude that ML-guided ILP optimization

used in latch unraveling attacks cannot be directly applied

against ALT-Lock, making ALT-Lock resilient against such

attacks. Furthermore, the insertion of new TA cells in the

combinational path of the circuit does not generate false

paths, thereby making the identification of logic decoys in

Phase 1 of the attack inapplicable. Finally, the insertion of TA

cells only in flop-to-flop paths of the circuit ensures that the

colorability properties of the original unlocked circuit can be

preserved.

3) Scan Deobfuscation Attacks: A recent category of

attacks rely on assuming that the scan chains are obfus-

cated/locked. These attacks (ScanSAT [37], DynUnlock [7])

aim at extracting the seed that is used to dynamically obfuscate

scan chains. However, such attacks assume that the attacker

is aware of the feedback polynomial that is used to obfuscate

the logic paths. In case of ALT-Lock, scan access is restricted

and the IP enters a dynamically obfuscated state such that the

nature of the logic paths themselves changes with every clock

cycle. This along with the use of LFSRs with reconfigurable

feedback makes it impossible to identify the correct feedback

polynomial required during the first stage of the attack. As a

result, ALT-Lock is resilient against attacks.
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Fig. 9. Output waveforms for the same set of inputs applied to the stacked

NDNR cell from [38] and [39] in orange and the NDNR LGA cell from
ALT-Lock in turquoise.

D. Comparison With Similar Security Techniques

Methods that use gate-level polymorphism and TA to obfus-

cate IP have been proposed.

1) Gate-Level Polymorphism: In [40] and [41], the authors

develop a technique to design polymorphic gates that can be

reconfigured using the value of the supply voltage. Depending

on Vdd, the gate functionality can be reconfigured between

NAND and NOR logic. However the key drawback of such

polymorphic logic gate designs is the need for multiple voltage

levels for functional operation. This makes it necessary to

incorporate additional circuits that can generate multiple levels

of power supply voltage in addition to voltage selection circuit

for all the key gates. As the LGA gates used in ALT-Lock

are completely digital and technology-independent, these stan-

dard cells do not suffer from voltage requirement issues as

other methods. In [42], the authors have developed a hybrid

method to achieve gate-level polymorphism by integrating

CMOS gates with memristors. This method suffers from the

challenges associated with memristor configuration during

initialization. Furthermore, this method suffers from poor write

endurance [43]. Finally, the use of memristors does not allow

this method to be scalable to purely digital CMOS designs.

In [38] and [39], an NDNR stack-based locking cell is

proposed that is similar in structure to the NDNR LGA gate.

However, there exist important differences in the placement

and connectivity of the key transistors used for reconfiguring

the NDNR functionality of the LGA gate. The placement of

key gates on both the branches of the nMOS stack leads

to a stronger pulldown path for the NDNR LGA cell when

compared with prior work in [38] and [39] leading to better

performance. Fig. 9 shows comparison of the output for both

the NDNR locking cell from [38] and [39] and the NDNR

LGA cell from ALT-Lock. Note that for the case where the

input signal B transitions from a low value to a high value

while signal A is tied to a low value, the NDNR cell provides

a strong pulldown path for the output signal’s (Y) transition

from a high value to a low value when compared with the

locking cell from [38] and [39]. Moreover, unlike ALT-Lock,

these methods do not use timing obfuscation in combination

with functional logic obfuscation, which provides resilience

against a wide array of oracle-guided and oracle-free attacks

with a very low footprint controlled by the designer.

2) TA Through Timing Camouflage: The goal here is to

achieve TA in using wave pipelining [30]. Two data waves

are propagated on a logic path at the same time. However,

due to the constraints imposed by signal propagation delay

across logic paths, this method is only applicable to paths

whose signal propagation delay (td ) is in the range of T ≤

td ≤ 2T , where T is the clock period. Another drawback of

this method is the need to duplicate combinational logic gates

in the paths being locked with wave pipelining. Furthermore,

this method remains susceptible to process variations, aging,

and small delay defects, which can alter the signal propagation

delay across different logic paths over time. This can lead

to unanticipated locking of the circuit if the wave pipelining

constraints are violated due to aging and timing degradation

of logic paths. In contrast, the TA cells in ALT-Lock can be

implemented for at-speed synchronous logic designs without

path delay constraints while making the method robust against

process variations.

3) Latch-Based Locking: As discussed above, latch-based

locking uses key-programmable latches to obfuscate IP [31].

Additional decoy latches act as both logic decoys and delay

decoys. This method leads to the creation of false paths, which

can then be exploited by the attacker to reconstruct the locking

keys, as shown above in the ML-guided latch unraveling

attack. As highlighted in the previous subsection, ALT-Lock

offers several advantages over traditional latch-based locking,

without incurring the addition of false paths and preserving the

properties of sequential graphs. In addition, dynamic obfusca-

tion using RBs ensures that ALT-Lock remains resilient against

unrolling attacks. Furthermore, we show in Section V, that

TA cells are more area-efficient than the key-programmable

latches.

4) Delay Locking: In [44], the authors use tunable delay key

gates (TDKs) to obfuscate the timing profile of combinational

paths. Applying the correct key to the TDK gate, which

comprises a conventional key gate (XOR/XNOR gate) paired

with a tunable delay buffer, satisfies the timing constraints of

the obfuscated combinational path. Delay locking has been

shown to be vulnerable against SAT-based attacks such as

TimingSAT [32]. The timing information of every gate in the

design is thus embedded in SAT formulation through a charac-

terization step carried out by the foundry. The correct key can

then be reconstructed by querying the oracle and generated

DIPs like the traditional SAT attack. It should be noted that

while delay locking remains vulnerable to TimingSAT attack,

ALT-Lock offers natural resilience against such attacks due to

the following reasons.

1) Timing profile of a path locked by a TA cell cannot

be characterized unless an assumption is made about its

key.

2) Embedding the timing profile of delay obfuscated paths

in delay locking assumes that the gate-level functionality

of the circuit is known before-hand. This is not true for

paths locked using TA cells, which could be functionally

different depending on the supplied key.

3) ALT-Lock is resilient against oracle-guided attacks

including variants of the SAT-attack (see Theorem 1).

4) Dynamic reconfiguration of TA cells in ALT-Lock makes

unrolling attacks such computationally intractable for

large enough keys (see Section IV-C).
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TABLE IV

EVALUATING THE IMPACT OF NONSCANNED TA CELLS ON FAULT COVERAGE AND THE EFFECTIVENESS OF SEQUENTIAL ATPG IN RECOVERING THE

LOSS IN FAULT COVERAGE

E. Implications on Testability

1) Manufacturing Testing: Scan-based manufacturing test

can be done in an untrusted setting on the deactivated IP

(without loading the tamper-proof memory). Structural testing

of the LGA cell will be no different than any other standard

cell. Furthermore, the TA cell has key-controlled feedback

paths that could be tested in all four configurations without

the use of additional scan-based hardware overhead. System-

level testing can be performed by loading dummy key values

for both LGA gates and TA cells. As TA cells may not be

scan-enabled (to save area overhead), there will be some loss

in fault coverage due to the replacement of certain scan-

enabled flip-flops in the design with TA cells. Using Mentor

Tessent, we experimentally evaluate the percentage loss in

fault coverage due to the replacement of a certain number

of scan cells in the design with TA cells across a range of

CEP benchmark circuits (see Table IV). We replace 32, 64,

and 128 scan cells in the design with TA cells and observe

the corresponding loss in fault coverage. We then show that

using sequential ATPG can successfully recover on average

over 95% of the original fault coverage, thereby showing that

TA cell insertion can be done with minimal impact on fault

coverage. It should also be noted that the experiments are

conservative in assuming that all the TA cell insertions are

scan cell replacements, which is unlikely to be the case in

practice. Note that for the FIR IP, making 128 replacements

is not possible due to the size of the scan chains.

2) IP Activation: Due to the globalization of the fabrication

process, it is reasonable to assume that the IP will be fabricated

in an untrusted environment. As a result, the fabricated IP

will be shipped to the design house for activation, i.e., for

loading the tamper-proof memory. Since activation of the IP

is done in a trusted setting, the design house can also perform

additional testing using precomputed test vectors to ensure

that the chip has not been tampered with. The integrity of the

dynamic obfuscation scheme can be ascertained by deliber-

ately applying incorrect keys and performing scan operation.

Additional testing can also be done to detect Trojans [45].

3) In-Field Testing: Since in-field test is also a form of

structural test, it can be done on a deactivated/dysfunctional

IP. ALT-Lock does not require modification of scan cells to

suit the needs for testing either LGA gates or TA cells. During

in-field test, the test patterns and the test response signatures

can be evaluated and stored based on the dynamic sequence of

keys generated by the RB. Since these signatures are computed

for the compacted test responses, they will not reveal internals

of the IP or facilitate any form of partial oracle-guided attack.

Fig. 10. LGA gates (NDNR, NDXR, and NDXNR) and TA cell implemented
in the ASAP 7-nm technology. Two-input NAND, two-input XOR, and SDFF
cells from ASAP7 PDK for reference.

TABLE V

EVALUATING THE PPA IMPACT OF THE LGA GATES AND TA CELL IMPLE-
MENTED USING ASAP7 PDK

V. OVERHEAD ANALYSIS OF ALT-LOCK

In this section, we evaluate the overhead associated with

the ALT-Lock scheme. The layout for all the LGA cells

(including NDNR, NDXR, and NDXNR along with the TA

cell) is carried out using Cadence Virtuoso and the ASAP7 7-

nm PDK. Library characterization including area, power, and

delay numbers are then obtained from the postlayout files and

through SPICE simulations. For delay evaluation of standard

cells, a fan-out of four inverters (FO4 load) is used as the

parasitic load.

The two-input XOR gate from the ASAP7 PDK is used

as the control for evaluation of the area, power, and delay

overheads for the LGA cells. Since two-input XOR gates are

widely used in traditional logic locking, it is a good baseline

to perform a fair comparison. Similarly, the scan-based D flip-

flop (SDFF) from the ASAP7 PDK is used as the baseline for

overhead evaluation of the TA cell. Fig. 10 shows the standard

cell layouts of all the LGA gates and the TA cell implemented

using the ASAP7 PDK. Two-input NAND, XOR, and the SDFF

cell are also shown from the same PDK for comparison.
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TABLE VI

COMPARATIVE PERCENTAGE OVERHEAD RESULTS FOR THE PPA OF (a) TA
SEQUENTIAL CELL WITH LATCH-BASED LOCKING [31] AND (b) ALT-

LOCK SCHEME WITH DIFFERENT KEY SIZES USED FOR LOCKING

CEP BENCHMARK IPS

Table V shows the area, delay, and power consumption of

the LGA gates and the TA cell. When compared with a tradi-

tional XOR-based key gate, the NDNR LGA gate has a 10.67%

higher area. Similarly, the NDXR LGA gate has an area over-

head of 34.21%, and the NDXNR LGA gate has an 89.47%

area overhead. As LGA gates replace regular logic gates in

place, they do not incur the delay associated with an additional

XOR-gates that must be inserted in the combinational paths as

additional key gates. Table VI(a) presents the overhead of the

TA sequential cell and prior work on latch-based logic locking

compared with a standard flip-flop [31]. Note that TA cell is

quite small compared with the existing latch-based sequential

locking schemes [31], thereby making it more attractive for

timing obfuscation. Table VI(b) shows the PPA overhead for

the ALT-Lock scheme, consisting of the largest LGA gate

(NDXNR) paired with the TA cell, used to lock various IPs of

the common evaluation platform (CEP) benchmark suite. CEP

is a popular benchmark suite used for evaluation of hardware

overheads for security solutions [20], [21]. When compared

with other standard cells in the design, it is important to note

that although the LGA gates are bigger than regular standard

cells, their delay overhead is not significant when we consider

combinational logic paths containing tens of standard cells.

Furthermore, the total key size when used to lock practical

circuits (containing tens of thousands of standard cells) is

unlikely to exceed 500 [23], which means that the overall

impact of the ALT-Lock scheme will be minimal. The designer

can decide which type of LGA gate to insert based on the PPA

budget available for the given design. When replacing a NAND

gate, NDXR will provide a corruption rate of 25% with an area

overhead of about 35%. Similarly, using NDNR will achieve

an output corruption rate of 50% with only 10% area overhead.

NDXNR will achieve the highest corruption at 75% while also

using 89%. The cost of replacement can therefore be used

to guide the insertion process. Although the individual LGA

overhead may seem significant when compared with traditional

standard cells, the overhead at the IP level is very small as can

be seen from Table VI(b).

VI. CONCLUSION

We have demonstrated a logic and TA-based IP obfuscation

method, ALT-Lock. We have presented a methodology for

insertion of logic ambiguity (LGA)-based gates and TA-based

sequential cells. We have demonstrated security against both

oracle-guided and oracle-free attacks. In addition, we have

shown the PPA of our overhead.
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