2024 1EEE European Test Symposium (ETS) | 979-8-3503-4932-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/ETS61313.2024.10567821

2024 29th IEEE European Test Symposium (ETS)

Detection of Stealthy Bitstreams in Cloud FPGAs
using Graph Convolutional Networks®

Jayeeta Chaudhuri and Krishnendu Chakrabarty
School of Electrical, Computer, and Energy Engineering
Arizona State University, Tempe, AZ, USA

Abstract—FPGAs are frequently utilized in cloud computing
environments for high performance computing and neural net-
work accelerators. Furthermore, multi-tenancy allows multiple
users to upload customized modules on the FPGA, while main-
taining logical isolation. However, attackers can take advantage
of the multi-tenant environment to launch voltage-based attacks
and denial-of-service (DoS). An attacker might stealthily split
power-wasting ring oscillators (ROs) across multiple windows
within an FPGA configuration bitstream, making it challenging
for traditional detection mechanisms to identify these dispersed
components as part of a larger malicious circuit. We propose a
methodology to detect these malicious bitstreams by transforming
individual windows within an FPGA bitstream into a graph-based
representation. Leveraging this graph structure, our method
employs graph convolutional networks (GCNs) in the training
phase to capture malicious patterns from the bitstreams. We use
the classification accuracy, true-positive rate, and false-positive
rate metrics to quantify the effectiveness of our method across
diverse power-wasting circuits on multiple FPGA boards.

I. INTRODUCTION

Multi-tenant FPGAs are reconfigurable hardware plat-
forms that are often used in cloud computing centers, high-
performance computing, and neural network accelerators.
However, the shared environment in multi-tenancy introduces
attack vectors that can be exploited by a third-party adversary.
Malicious bitstreams implementing ring oscillator (RO)-based
circuits can be configured on multi-tenant FPGAs. Composed
of an odd number of inverters, ROs can be manipulated
for generating high-frequency oscillations, leading to voltage-
based attacks and denial-of-service (DoS) attacks.

Prior work on bitstream detection focuses on checking a
bitstream before FPGA configuration via reverse-engineering
(RE) and machine learning (ML)-based methods. However,
RE is a time-intensive procedure and often requires significant
modification of the reversal tools to adapt to larger bitstreams
[1]. While ML-based methods used in [2] [3] [4] [5] success-
fully detect and diagnose a wide range of RO variants, loop-
free ROs, and several power-wasting circuits, the detection
of stealthy, power-wasting Trojans have not been explored.
An adversary can craft obfuscated ROs to increase power
consumption, while evading detection by ML-based methods
that rely on contiguous windows of an FPGA bitstream for
malicious circuit detection; these methods do not consider the
spatial relationship among the windows [3] [5]. For example,
an attacker can split the inverters of an RO design across

*This work was supported in part by the National Science Foundation under
grant no. CNS-2011561.

979-8-3503-4932-0/24/$31.00 ©2024 |IEEE

multiple look-up tables (LUTs) of an FPGA, making the
malicious RO patterns in the bitstream appear to be distributed.

Hence, it is crucial to employ detection techniques that
consider the spatial context and are capable of identifying
dispersed and obfuscated malicious patterns. In this paper, we
analyze the impact of stealthy, malicious circuits on multi-
tenant FPGAs and present an efficient technique using Graph
Convolutional Networks (GCNs) to learn spatial relationships
in bitstream data and capture malicious patterns in FPGA
bitstreams. Based on a supervised learning approach, GCN
leverages both the structural information and the dependencies
within bitstream data to detect malicious patterns correspond-
ing to power-wasting circuits. Moreover, we show that the
proposed method is generalizable for larger bitstreams used
in realistic applications, thus making it a robust and scalable
mechanism for enhancing FPGA security.

The key contributions of our paper are as follows.

o We assess the impact of stealthy RO-based circuits on a
Pynq FPGA board.

o« We present a similarity-based framework to generate a
graph adjacency matrix that captures spatial dependencies
among windows of an FPGA bitstream.

o We apply the knowledge of the graph embedding gener-
ated by a GCN model for a given bitstream’s adjacency
matrix in order to capture malicious patterns that are
indicative of stealthy behavior.

o We present an ML-based classification method that lever-
ages the GCN-generated graph embeddings to identify
bitstreams as malicious or benign.

o We generate a variety of bitstreams implementing stealthy
power-wasting circuits and benign circuits for training
and inferencing of the GCN model.

The remainder of the paper is organized as follows. Section
I provides an overview of attacks and countermeasures on
multi-tenant FPGAs. The threat model is described in Section
III. Section IV presents the security threats from stealthy
FPGA bitstreams. Details of our GCN-based malicious bit-
stream detection framework are provided in Section V. In
Section VI, we compare the effectiveness of the proposed
method with baseline detection techniques. Finally, Section
VII concludes the paper.

II. BACKGROUND AND MOTIVATION
A. Attacks

A power distribution network (PDN) plays a critical role in
supplying power to all the modules within multi-tenant FP-

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 01:01:28 UTC from IEEE Xplore. Restrictions apply.

GAs. The PDN consists of resistive, capacitive, and inductive
elements. The voltage drop across the PDN is dependent on
the summation of voltage drops across all the reconfigurable
modules of the FPGA. An adversary might deploy malicious
power-wasting circuits on the FPGA that impacts the PDN,
leading to voltage fluctuations and subsequently, DoS. For
example, ROs can be maliciously crafted to consume excessive
power, thereby disrupting the normal functioning of multi-
tenant FPGAs. Even when occupying less than 12% on a
Kintex 7 FPGA board, the ROs can successfully crash the
FPGA [6]. In [7], glitch generator circuits using XOR gates
and delay lines have been implemented; these circuits draw
excessive power from the PDN, which can result in undesirable
voltage fluctuations affecting other modules on the same
FPGA. In extreme cases, such excessive power draw might
even lead to DoS of the FPGA. [8] demonstrates power-based
attacks on cloud FPGAs using circuits implementing loop-
free oscillators. These circuits evade the Design Rule Check
(DRC) on Amazon Web Services (AWS) instances, leading to
their deployment on the cloud infrastructure and resulting in
DoS scenarios. Additional power-wasting circuits have been
shown in [9]; by carefully inserting XOR gates between AES
rounds or by generating chains of shift registers, the authors
demonstrate voltage- and power-based attacks on the FPGA.

B. Prior Art in Detecting FPGA-Based Attacks

Several methods have focused on mitigating the deployment
of malicious circuits on multi-tenant FPGAs. AWS offers mul-
tiple fences to detect malicious signatures in design checkpoint
files that are being uploaded by third-party users [10]. These
fences include (a) netlist checking that identifies combinational
loops and floating nets, (b) secure bitstream generation when
a netlist is identified as benign, and (c) run-time power
monitoring of the FPGA to detect unusual voltage fluctuations.
However, malicious designs, utilizing glitch generation and
non-combinational loops, consume high power but remain
deployable on AWS due to the absence of explicit loops.

In [11], a RE-based method is used to detect combinational
loops that are indicative of RO circuits in technology-mapped
netlists. In this scenario, the netlist needs to be manually
analyzed and compared with the original (golden) netlist to
identify malicious behavior. Although this technique success-
fully detects combinational ROs, attackers might circumvent
this countermeasure by deploying loop-free oscillators, such
as self-clocked ROs and latched ROs [8] [12]. Extending
[11], the authors updated their bitstream checking mechanism
to detect combinational cycles and timing violations [12].
However, extending the applicability of the RE tool to FPGAs
in cloud environments may demand substantial modifications,
potentially impacting the cost-effectiveness and scalability.
Furthermore, stealthy ROs can be intentionally scattered across
various LUTs and logic elements of an FPGA, making it
challenging to distinguish them solely via manual inspection.
In [13], a malicious bitstream detection technique is pro-
posed that is suitable for large-scale cloud deployments. This
methodology detects glitches, short circuits, and large fanouts.

TABLE I: A qualitative comparison of the proposed method
with prior work on malicious circuit detection.

Parameter [3] 5] [T1] [14] [15] 18] Proposed
method

Dataset B B B B B N B

Threat model cT cT cT cT FT cT CT,
FT
Self-clocked RO v X X X v X v
detected?

RE used X X v v v X X
Spatial analysis? X X X X X X v
Generalizability v v X v v X v
Detection latency | Low | Low | Med | Med | Med | Low Low

B: FPGA bitstream; N: RTL Netlist; C'T: Co-tenants; F'T": FPGA tools.

Cloud
Bitstream interception o ~

RTL netlist — _I\i[al_lciois Eo_teilaln

|

User Implerpented Bitstrea}m :

design generation |

& .

Placement of power-hungry | |= == = = = = = — — = |

FPGA tools

circuits

Fig. 1: Threat models considered in this paper.

In [14], the authors propose a run-time countermeasure against
voltage-based attacks on FPGAs by disabling the interconnects
of an attacker module. Another approach uses RE to identify
fan-outs in netlists, but with limited scalability in handling
larger and complex FPGA bitstreams [15].

Alternative ML-based approaches were explored in [2] [3],
and [5]. These methods have been shown to successfully detect
non-combinational ROs and glitch-based circuits. [16], [17],
and [18] explore ML-based techniques to detect hardware
Trojans from register-transfer level netlists, but they do not
specifically address the detection of malicious bitstreams.

Table I presents a qualitative comparison of the proposed
framework with prior malicious circuit detection techniques.
C. Motivation

Some of the prior work to analyze FPGA bitstreams via RE-
based methods do not evaluate a variety of non-combinational
ROs. Recent work [12] targets detection of loop-free ROs but
they might be ineffective against emerging stealthy circuits.
ML-based detection methods often rely on patterns extracted
from contiguous windows in FPGA bitstreams [2] [3] [5].
However, adversaries might intentionally disperse ROs across
different windows of the bitstream, such that each window
is classified as benign by the ML model. In other words,
detecting these dispersed elements becomes a challenging task
for ML models that do not consider spatial dependencies
present among bitstream data, thus limiting their ability to
effectively identify these circuits as being malicious.

ITII. THREAT MODEL

The threat model is illustrated in Fig. 1. In a multi-tenant
scenario, several users can upload their customized modules on
the partial reconfigurable regions (PRRs) of the FPGA (marked
as PRR, in Fig. 1). All the PRRs share a common power
distribution network (PDN). Thus, an attacker co-tenant can
attempt to induce a huge power consumption on the FPGA and
disrupt the performance of victim PRR modules. As shown in

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 01:01:28 UTC from IEEE Xplore. Restrictions apply.

[19], activating a large number of ROs at a particular frequency
is sufficient to cause significant power consumption, causing
the FPGA to shut down automatically. An attacker may deploy
malicious stealthy, power-wasting circuits for inducing voltage
fluctuations in the PDN of the FPGA, causing DoS. Moreover,
an attacker gaining illegitimate access to the placed and
routed netlist might embed malicious circuits before bitstream
generation. We also consider the scenario where an attacker
attempts to alter the bitstream during its transmission, before
FPGA deployment. Usually, a bitstream is decrypted before it
is configured on the FPGA [20]. Therefore, we evaluate our
method specifically on decrypted bitstreams.

We assume that the FPGA is configured within a trusted
cloud environment. The proposed detection framework op-
erates within this trusted cloud environment, external to the
FPGA chip, and is therefore secure against unauthorized
access. Therefore, an attacker would be unable to corrupt an
FPGA bitstream after its verification using our method.

IV. ANALYSIS OF STEALTHY FPGA BITSTREAMS

A. Dataset Generation

For our experimental analysis, we generate a dataset of
benign and malicious bitstreams. We obtain the benign cir-
cuits from diverse sources, including the ISCAS’85, ITC 99,
and EPFL benchmarks, alongside the OpenCore repository
including AES cores, microcontrollers, and arithmetic cores.
To generate the dataset of malicious bitstreams, we implement
a variety of power-wasting circuits:

1) Npgo single-stage ROs, where N is sufficient to cause
voltage-based attacks on the Pynq and Virtex FPGAs [6].

2) Ngo conditional ROs are selectively enabled using multi-
plexers to induce voltage fluctuations on the FPGA.

3) Non-combinational ROs, including latched and self-
clocked oscillators, implemented in [8] [12].

4) Glitch generator circuits that can result in DoS of the FPGA
are implemented using delay stages, which feed into V-
input XOR gates, 2 < N < 10, as detailed in [7].

5) Power-wasting AES circuits and chains of shift register
circuits are evaluated, per [9].

6) For this work, we specifically implement stealthy circuits
by dispersing the RO inverters of circuits detailed in (1)-(3).
Stealthy RO-based circuit generation involves strategically
scattering the inverters of ROs across different LUT blocks
and slices within the FPGA architecture, aiming to obscure
their presence within the hardware.

Evaluations were conducted across three distinct FPGA

boards: Virtex Ultrascale (VU440), Kintex Ultrascale

(KUO085), and Pynq xc7z020 (Pynq). We generate 152 benign

bitstreams and 160 malicious bitstreams for each of the three

FPGA boards. To automate the bitstream generation process,

we execute a TCL script within the Vivado Design Suite.

B. Security Threats from Stealthy Bitstreams

An FPGA configuration bitstream consists of a sequence
of contiguous frames [21]. Each frame encapsulates a set
of LUTs and other functional blocks within the FPGA and
corresponds to a specific portion of the FPGA fabric. In other

a b
Fig. 2: 13(qu FPGA ﬂoorple(m) for: (a) Normal RO circuits
and (b) Stealthy RO circuits, (c) Experimental setup (yellow
circle indicates that the the stealthy RO circuit is successfully
programmed on the Pynq FPGA).

TABLE II: Power consumption of implemented RO circuits.

Type of RO circuit | % LUTs used | Power (W)
Normal 5.6 11.087
15 49.277
5.6 13.523
Stealthy 15 9,765

words, the bitstream configuration data is directly correlated to
the frames it configures on the FPGA. Therefore, if RO circuits
are intentionally dispersed across various LUTs, their patterns
in the resulting bitstream may not be contiguous. Sequentially
placed frames typically correspond to a consistent mapping
of configuration data on the bitstream [21]. By distributing

ROs across various frames, the attacker disrupts this sequential

alignment. ML-based detection methods that learn malicious

patterns from contiguous bitstream data may not be capable
of detecting these ROs as they are no longer in a recognizable

sequence within the bitstream [3] [5].

In order to evaluate the security threat posed by stealthy
bitstreams, we assess RO power consumption in two scenarios:
o Normal RO circuits: We implement multiple RO circuits,

with the inverters placed and routed in a single slice.

o Stealthy RO circuits: In this scenario, we consider RO
circuits with inverters dispersed across multiple LUT slices,
thus creating non-sequential configurations.

We computed the power consumption of the above two
types of circuits on a Pynq FPGA board, which consists of
53200 LUT elements. We use the ‘set_property’ metric within
the Vivado design suite to define the LUT coordinates for
manually placing the inverters across different LUT regions.
These constraints about the RO placements are automatically
generated and stored in a .xdc (Xilinx Design Constraints)
file, which we subsequently use to perform synthesis and
implementation of the RO circuits. Fig. 2 illustrates the placed
and routed netlists corresponding to normal and stealthy RO
circuits, each occupying 5.6% LUTs on the Pynq FPGA.
The power consumption is listed in Table II. The number of
ROs is chosen carefully so that they are sufficient to cause
overheating and DoS on the FPGA [6]. We observe that
stealthy RO circuits consume similar or significantly larger
power compared to normal RO circuits, even when they are
dispersed across multiple LUTs. When ROs occupy around
15% of LUTs, we obtain a warning that the FPGA junction
temperature has exceeded the safe threshold. For the Pynq
FPGA, the threshold thermal margin is 43.3 W; a value beyond
that leads to overheating, risking FPGA functionality.

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 01:01:28 UTC from IEEE Xplore. Restrictions apply.

V. PROPOSED 3-TIER DETECTION FRAMEWORK
A. GCN-Based Spatial Analysis of FPGA Bitstreams

A GCN is a semi-supervised ML model that operates on
graph-structured data. GCNs are widely used in applications
such as node classification, graph classification, and latent
space clustering [22] [23]. A graph consists of a set of
nodes and edges. A GCN aggregates feature information from
adjacent nodes and subsequently generates node embeddings.
These embeddings represent information about the nodes and
their spatial relations. An FPGA bitstream can be represented
as an undirected graph G, where the nodes correspond to
bitstream windows and edges signify spatial relationships
between these windows. Given the ability of GCNs to learn
spatial dependencies inherent in graph-structured data, they
offer a promising solution to address the problem of detecting
distributed malicious signatures in a bitstream [23].

The mapping of bits to LUTs, flip-flops and logic blocks
is stored in a sequential manner within the bitstream [20]
[21]. Therefore, we partition a bitstream into windows for
capturing spatial relationships as well as structural features
that are indicative of malicious circuits. Splitting a bitstream
into non-overlapping windows has the following advantages:
o Feature extraction from graphs: Each window contains

a distinct portion of the bitstream, allowing for a focused

extraction of the signatures within that window.

« Avoiding redundancy: Overlapping windows might intro-
duce ambiguity at the boundary between two consecutive
segments, making it difficult to capture the graph relation-
ships. In contrast, non-overlapping windows maintain inde-
pendent segment information, reducing redundant features.
A GCN consists of several convolutional layers; at each

layer, features from adjacent nodes are aggregated and used
to update the representation of each node. Therefore, the
GCN learns to incorporate both local and global patterns
from bitstream data, enriching the representation of each
node in the graph. The aggregated node feature matrix H'
at a particular convolutional layer [is denoted as: H' =
o(DZ -A-D7Z - H'=' . W!'=1), where H'"! is the node
feature matrix at (I — 1) layer, A is the adjacency matrix,
D is the diagonal matrix of node degrees in the graph,
W!=1 is the weight matrix at layer [— 1, and o is the non-
linear activation function that is applied to the node feature
aggregation operation. From the above equation, we observe
that choosing the number of convolutional layers in a GCN
model is pivotal in leveraging spatial relationships among
bitstream data to identify malicious circuits.

B. Graph and Feature Extraction from Bitstream Data

Adjacency matrix generation For a bitstream split into v
windows, the resultant adjacency matrix A will have dimen-
sions ¥ x 1. We use the structural similarity index (SSIM)
metric for generating A. SSIM is chosen as it compares images
based on multiple features of similarity such as luminance,
contrast, and structure. This facilitates the construction of a
meaningful graph structure that captures spatial similarities
within the bitstream windows and subsequently aids the GCN

Similarity
calculation

All images
evaluated?

Fig. 3: Bitstream-to-graph conversion before GCN evaluation.

model in identifying malicious signatures. We convert each
bitstream window W; (stored as Numpy file) into an image
representation /m;. For an image pair (Im;, Im;),1 <i,j <
¥,1 # j, the SSIM value(£24] is calgg}la})e%(gs: b))
HIm;HIm; ’1 OImg,Im; 2

SSIM(Im;, Im;) = W, F e TR0 (T, 40T, HhaD)
where iy, (Urm;) indicates the mean pixel value of
Imi(Imy;), o3, (07,) is the variance of Im;(Imy),
Olm;,Im; is the covariJance of the image pair, and [is the
range of the pixel values i.e., 255. The default values for k;
and ko are 0.01 and 0.03, respectively. The range of SSIM
is [0, 1], where 1 indicates a high similarity and O indicates
no similarity. If SSIM(Im,, Im;) is greater than a pre-defined
threshold c¢pres, 0 < pres < 1, we set A;; = 1 (indicating
an edge), else we set A;; = 0 (indicating no edge), where A;;
indicates the presence or absence of edges between windows
W; and W;. Fig. 3 illustrates the graph generation procedure.

Node feature matrix generation We split the FPGA bit-
stream into v non-overlapping windows. For a VU440 FPGA
bitstream, the size of each window is %@. The choice
of ¢ depends on the specific FPGA bitstream and is obtained
by hyperparameter tuning as described below.

FPGA bitstreams comprises numerous features (in the order
of 108 for a VU440 bitstream), which is a challenge for tradi-
tional ML-based classification algorithms. However, Support
Vector Machine (SVM) models are particularly useful in han-
dling high-dimensional datasets, especially FPGA bitstreams
[25]. We partition each of the benign and malicious bitstreams
into ¥ non-overlapping windows. Each set of i) benign and
malicious windows is trained on) identical SVM classifiers,
following the procedure outlined in [2]. We use the average
training accuracy obtained from the ¢ SVM classifiers in
determining the optimum value of . Fig. 4 shows the best
choice of 7 for the evaluated FPGA boards.

The high-dimensional windows can be challenging for direct
usage as feature matrices to the GCN model; they can lead to
increased training time and reduced computational efficiency
[26]. Hence, we utilize convolutional neural network (CNN)
layers to reduce the dimensionality of the windows while
capturing essential bitstream patterns required for subsequent
evaluation by the GCN model. For the i bitstream window
W;,1 < i < 1, the reduced feature vector for the i** window
is I} = f(W,), where f denotes the convolution and pooling
transformations applied by the CNN model, namely CNN-
1. Subsequently, the output of CNN-1 is the reduced feature

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 01:01:28 UTC from IEEE Xplore. Restrictions apply.

95
90
85
80
75
70
65
60

--VU440

KUO085

—--Pynq
89.7,

923

3 6 9 10 12 15 18
Number of windows Y

Fig. 4: Evaluating the best choice of 1 for different FPGA
boards (marked by green dotted lines).

Average training accuracy (%)

matrix F} : {F{}, where the dimensionality of F} is 9 x k
(k is the number of features obtained after reduction). We
introduce another feature vector by performing Fast Fourier
Transform (FFT) on each bitstream window. FFT captures
frequency-domain characteristics, aiding in the identification
of malicious patterns [4]. We obtain the FFT entropy value Fi
for each window W, using the scipy.fft function from Scikit
library [27], and generate the feature matrix Fy : {Fi}. The
dimensionality of Fy is ¥ x 1. Finally, we merge F} and F5
to obtain the feature matrix F' for the FPGA bitstream.

C. Stealthy Bitstream Identification using Graph Embedding

Fig. 5 shows the 3-tier pipeline for detection of stealthy
FPGA bitstreams. The adjacency matrix A and the node
feature matrix F' are fed as inputs to the GCN model, namely
GCN-2. For a graph having 1) nodes, we obtain ¢ node em-
beddings after training GCN-2. The GCN-2 model generates
node embeddings Hf for window W,;, 1 < ¢ < 1, which
capture the low-dimensional representations of each node in
the graph based on its neighboring nodes. Next, we take an
average of the i) node embeddings to generate a single graph
embedding for the bitstream, denoted by: M = i Z;’b:l H!.
We pass M' through a multilayer perceptron (MLP) model,
namely MLP-3. An MLP consists of an input layer and an
output layer with one or multiple hidden layers; the neurons
in each layer are fully connected. The output of MLP-3 passes
through a series of activation functions, allowing the model to
distinguish between benign and malicious graph embeddings.

The training loss for binary classification (‘benign’ or ‘mali-
cious’) by MLP-3 is determined by comparing its predictions
to the ground truth labels. This loss guides weight updates
across CNN-1, GCN-2, and MLP-3 models during training.
We run Ny, iterations of training of the pipeline. The aipyes
metric influences edge creation in the graph representation. We
apply grid search to determine the oyp.es value that yields
the highest training accuracy of MLP-3 [28]; the results are
shown in Fig. 6(a). This metric contributes to the generation
of the adjacency matrix for a particular FPGA bitstream. It
is subsequently used for generating graph embeddings via the
GCN model. The optimum ayp.es value remains fixed for a
given family of FPGA bitstreams during inferencing.

Fig. 6(b) depicts the SSIM values for bitstream image pairs.
The hyperparameters for the ML classifiers are shown in Table
III, where I (O) indicates the input size (output feature size),

Bitstream Spatial dimensionality reduction

= =N
g
= Wy
A— Feature set Feature
F, vector F
Frequency domain
characteristics GCN-2
Loss' MLP-3 Graph
calculation embedding

Fig. 5: Training and evaluation of the GCN-based framework.
Note that, during training, the loss value of MLP-3 is back-
propagated to MLP-3, GCN-2, and CNN-1 for end-to-end
training of the classification framework.

< -+-VU440 -8-KUO085 -e-Pynq

<97 963s 954 fm

>]

292 ‘

$t

387 Img

2

é082

E 77 : -

E72 cdmeo g

0.86 0.88 0.9 0.920.940.960.98 1 | I

Xthres : *
(a) (b)

Fig. 6: (a) Evaluating best choice of a5 for different FPGA
boards based on MLP-3 training accuracy; for VU440 FPGA
bitstream (cypnres: 0.98) implementing a single-stage self-
clocked RO: (b) SSIM(Imq,Img) = 0.99, which indicates
a high similarity between I'm and I'mg; SSIM(Im1, Img) =
0.93 indicates a lower similarity between Im; and Img.

L is the number of layers in forward propagation of the GCN
model, H is the number of hidden layers, and I7 is the learning
rate. The loss function for MLP-3 is chosen as CrossEntropy.

VI. RESULTS AND COMPARISON WITH PRIOR WORK
A. Experimental Setup

We generate the bitstreams using Xilinx Vivado 2018.2.
We utilize the PyTorch framework for seamless integration
of CNN, GCN, and MLP into a 3-tier malicious bitstream
detection pipeline. We train the framework for 200 iterations
using the best choice of hyperparameters (obtained by hy-
perparameter tuning) mentioned in Table III. Training and
inferencing of the ML models are run on a 2.1 GHz Intel
Xeon Gold 6230 CPU with 192 GB of RAM.

We split the training and test datasets in the ratio 70:30; this
ensures a substantial number of samples for model training,

TABLE III: Best hyperparameters for the selected classifiers
for different FPGA bitstreams.

Classifier Selected hyper-parameters
VU440 RU085 Pyng
CNN-1 T1:64 x 2149438, | I: 64 X 753930, | I:32 X 126424,
O: 128 0: 128 O: 64
GCN-2 L:6, L:5, L:6,
I:128, H: 32 I1:128, H: 32 I:64, H: 16
MLP-3 H: 32, [r:0.001 H:32,1r:0.01 H: 16, [r: 0.001

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 01:01:28 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Performance comparison of proposed framework
with previous methods (baselines) for bitstream detection.

Type of Method T =T T F;(I;)R (z)
FPGA board TPR% ¢
o) [Ac (%) [TPR (%) [Ac (%)
2] 100 957 75 84 6.5 883
VU440 [3] 88 85.9 68.75 76.5 152 | 242
[5] 80 83 60.4 72.3 152 | 233
Proposed 100 98.5 93.75 95.7 2.1 55.9
2] 92 92.9 79.1 86.1 6.5 62.5
KU085 [3] 80 85.9 60.4 74.4 10.8 191
[5] 80 87.3 60.4 74.4 8.69 188
Proposed 96 94.3 93.75 93.6 6.5 34.9
[2] 96 92.9 66.6 78.7 869 | 21.8
Pynq [3] 76 84.5 62.5 75.5 10.86 | 112
[5] 80 83 64.5 74.4 152 | 113.2
Proposed 96 95.7 95.8 95.7 434 |11.62

TABLE V: Breakdown of time overhead for inferencing on
FPGA bitstreams.

Operation Time (s)

VU440 | KUO85 Pynq

Split bitstream into windows 46.2 274 9.5
FFT-based feature extraction 1.3 0.8 0.15

Feature reduction using CNN-T 54 4.9 1.5
Graph generation 0.3 0.27 0.07

Obtain node embeddings using GCN-2 2.7 1.6 0.4

Classification using MLP-3 Te * Te % 5.8¢%

without the risk of overfitting [29]. The training (test) dataset

includes 106 (46) benign bitstreams and 112 (48) malicious

bitstreams. Within the test dataset comprising malicious bit-
streams, 23 bitstreams incorporate stealthy RO-based circuits.

B. Evaluation Metrics
We use the following metrics to evaluate the efficiency of

the proposed 3-tier classification framework.

« True Positive Rate (T'PR) is the percentage of malicious bit-
streams that are correctly detected by the proposed method.

« False Positive Rate (F'PR) is the percentage of benign
bitstreams that are incorrectly classified as malicious.

o Classification accuracy (A.) is computed as: A, = T—;’ X
100%, where C) is the number of correct predictions and
T, is the total number of predictions.

o Detection latency ¢ (in seconds) is the time taken during
model inferencing for the test bitstream.

C. Performance Evaluation of GCN-based Framework
Table IV presents a comparison of the proposed GCN-

based framework with three baseline methods [2] [3] [5].

We perform two independent experiments on the malicious

bitstreams included in the test dataset: (1) 7, — T, which

excludes the set of stealthy bitstreams T from evaluation, and

(2) T, which includes the full set of malicious bitstreams.

We observe that baseline frameworks detect ROs when these

ROs are placed in contiguous LUTs of the FPGA but are

less effective in identifying stealthy ROs because they do not

consider spatial relationships within the bitstream data during
model training. In contrast, our method performs efficiently in
both sets of experiments and detects stealthy bitstreams within

a short duration (less than 1 minute of run time).

D. Time Overhead
We also computed the time overheads (in seconds) associ-

ated with evaluating a test bitstream across different FPGA

boards using the GCN-based method; see Table V. Note that
the FFT-based feature extraction, CNN-based feature reduc-
tion, and graph generation procedures are independent of each

C

other and are therefore performed concurrently. Consequently,
for these operations, the total time overhead is influenced by
the operation with the highest time overhead. From Table IV
and Table V, we see that the evaluation time for a bitstream
is significantly lower than previous bitstream detection tech-
niques [2] [3] [5] across all FPGA boards.
VII. CONCLUSION
We have presented a GCN-based framework to analyze
spatial relationships among FPGA bitstream data and detect
stealthy bitstreams. The proposed framework outperforms
baseline detection methods in terms of classification accuracy
across multiple FPGA boards.
REFERENCES
[1] S. Choi and H. Yoo, “Fast logic function extraction of LUT from
bitstream in Xilinx FPGA,” Electronics, vol. 9, no. 7, p. 1132, 2020.

[2] J. Chaudhuri and K. Chakrabarty, “Diagnosis of malicious bitstreams in
cloud computing FPGAs,” IEEE TCAD, vol. 42, no. 11, 2023.

[3] ——, “Detection of malicious FPGA bitstreams using CNN-based
learning,” in 2022 IEEE European Test Symposium (ETS), 2022.
[4] ——, “Criticality analysis of ring oscillators in FPGA bitstreams*,” in

2023 IEEE European Test Symposium (ETS), 2023.

R. Elnaggar et al., “Learning malicious circuits in FPGA bitstreams,”

IEEE Trans. CAD, 2022.

[6] D. Gnad et al., “Voltage drop-based fault attacks on FPGAs using valid
bitstreams,” in FPL, 2017, pp. 1-7.

[71 K. Matas et al., “Power-hammering through glitch amplification —

attacks and mitigation,” in FCCM, 2020, pp. 65-69.

T. Sugawara et al., “Oscillator without a combinatorial loop and its threat

to FPGA in data centre,” Electronics Letters, 2019.

G. Provelengios et al., “Power wasting circuits for cloud FPGA attacks,”

in FPL, 2020.

[10] T. La et al, ‘“Denial-of-servicce on FPGA-based

infrastructures—attack and defense,” JACR TCHES, 2021.

D. Gnad et al, “Checking for electrical level security threats in

bitstreams for multi-tenant FPGAs,” in FPT, 2018, pp. 286-289.

J. Krautter et al., “Mitigating Electrical-level Attacks towards Secure

Multi-Tenant FPGAs in the Cloud,” ACM TRETS, vol. 12, no. 3, 2019.

T. M. La et al., “FPGADefender: Malicious self-oscillator scanning for

Xilinx UltraScale + FPGAs,” ACM TRETS, 2020.

H. Nassar et al., “LoopBreaker: Disabling interconnects to mitigate

voltage-based attacks in multi-tenant FPGAs,” in /ICCAD, 2021.

J. Yoon et al., “A bitstream reverse engineering tool for FPGA hardware

trojan detection,” in ACM SIGSAC, 2018.

H. S. Choo et al., “Machine-learning-based multiple abstraction-level

detection of hardware trojan inserted at register-transfer level,” in ATS,

2019, pp. 98-980.

J. Yang et al., “Hardware trojans detection through RTL features

extraction and machine learning,” in AsianHOST, 2021, pp. 1-4.

K. Hasegawa et al., “Trojan-feature extraction at gate-level netlists

and its application to hardware-trojan detection using random forest

classifier,” in ISCAS, 2017, pp. 1-4.

J. Krautter, D. Gnad, and M. Tahoori, “FPGAhammer: Remote voltage

fault attacks on shared FPGAs, suitable for DFA on AES,” 2018.

Xilinx, “Ultrascale architecture configuration,” https://bit.ly/3yyxvQ9 .

J.-B. Note and E. Rannaud, “From the bitstream to the netlist,” in Proc.

of ACM/SIGDA FPGA, 2008, pp. 264-264.

T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv

preprint arXiv:1611.07308, 2016.

[23] , “Semi-supervised classification with graph convolutional

networks,” arXiv preprint arXiv:1609.02907, 2016.

Z. Wang et al., “Multiscale structural similarity for image quality

assessment,” in ACSSC, 2003.

T. Joachims, “Text categorization with support vector machines:

Learning with many relevant features,” in ECML. Springer, 1998.

H. Gao et al., “Large-scale learnable graph convolutional networks,” in

ACM SIGKDD, 2018.

SKlearn, “Fourier transforms,” bit.ly/3hco841.

——, “Grid search with cross validation,” https://bit.ly/3hEHNnQ .

Scikit-learn, “Machine learning in Python,” https://bit.ly/30zdLBZ .

%
A

[8

—_

[9

—

cloud
[11]
[12]
[13]
[14]
[15]

[16]

(171

(18]

[19]

[20]
(21]

[22]

[24]
[25]
[26]
[27]

[28]
[29]

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 01:01:28 UTC from IEEE Xplore. Restrictions apply.

