
Detection of Stealthy Bitstreams in Cloud FPGAs

using Graph Convolutional Networks∗

Jayeeta Chaudhuri and Krishnendu Chakrabarty

School of Electrical, Computer, and Energy Engineering

Arizona State University, Tempe, AZ, USA

Abstract—FPGAs are frequently utilized in cloud computing
environments for high performance computing and neural net-
work accelerators. Furthermore, multi-tenancy allows multiple
users to upload customized modules on the FPGA, while main-
taining logical isolation. However, attackers can take advantage
of the multi-tenant environment to launch voltage-based attacks
and denial-of-service (DoS). An attacker might stealthily split
power-wasting ring oscillators (ROs) across multiple windows
within an FPGA configuration bitstream, making it challenging
for traditional detection mechanisms to identify these dispersed
components as part of a larger malicious circuit. We propose a
methodology to detect these malicious bitstreams by transforming
individual windows within an FPGA bitstream into a graph-based
representation. Leveraging this graph structure, our method
employs graph convolutional networks (GCNs) in the training
phase to capture malicious patterns from the bitstreams. We use
the classification accuracy, true-positive rate, and false-positive
rate metrics to quantify the effectiveness of our method across
diverse power-wasting circuits on multiple FPGA boards.

I. INTRODUCTION

Multi-tenant FPGAs are reconfigurable hardware plat-

forms that are often used in cloud computing centers, high-

performance computing, and neural network accelerators.

However, the shared environment in multi-tenancy introduces

attack vectors that can be exploited by a third-party adversary.

Malicious bitstreams implementing ring oscillator (RO)-based

circuits can be configured on multi-tenant FPGAs. Composed

of an odd number of inverters, ROs can be manipulated

for generating high-frequency oscillations, leading to voltage-

based attacks and denial-of-service (DoS) attacks.

Prior work on bitstream detection focuses on checking a

bitstream before FPGA configuration via reverse-engineering

(RE) and machine learning (ML)-based methods. However,

RE is a time-intensive procedure and often requires significant

modification of the reversal tools to adapt to larger bitstreams

[1]. While ML-based methods used in [2] [3] [4] [5] success-

fully detect and diagnose a wide range of RO variants, loop-

free ROs, and several power-wasting circuits, the detection

of stealthy, power-wasting Trojans have not been explored.

An adversary can craft obfuscated ROs to increase power

consumption, while evading detection by ML-based methods

that rely on contiguous windows of an FPGA bitstream for

malicious circuit detection; these methods do not consider the

spatial relationship among the windows [3] [5]. For example,

an attacker can split the inverters of an RO design across

∗This work was supported in part by the National Science Foundation under
grant no. CNS-2011561.

multiple look-up tables (LUTs) of an FPGA, making the

malicious RO patterns in the bitstream appear to be distributed.

Hence, it is crucial to employ detection techniques that

consider the spatial context and are capable of identifying

dispersed and obfuscated malicious patterns. In this paper, we

analyze the impact of stealthy, malicious circuits on multi-

tenant FPGAs and present an efficient technique using Graph

Convolutional Networks (GCNs) to learn spatial relationships

in bitstream data and capture malicious patterns in FPGA

bitstreams. Based on a supervised learning approach, GCN

leverages both the structural information and the dependencies

within bitstream data to detect malicious patterns correspond-

ing to power-wasting circuits. Moreover, we show that the

proposed method is generalizable for larger bitstreams used

in realistic applications, thus making it a robust and scalable

mechanism for enhancing FPGA security.

The key contributions of our paper are as follows.

• We assess the impact of stealthy RO-based circuits on a

Pynq FPGA board.

• We present a similarity-based framework to generate a

graph adjacency matrix that captures spatial dependencies

among windows of an FPGA bitstream.

• We apply the knowledge of the graph embedding gener-

ated by a GCN model for a given bitstream’s adjacency

matrix in order to capture malicious patterns that are

indicative of stealthy behavior.

• We present an ML-based classification method that lever-

ages the GCN-generated graph embeddings to identify

bitstreams as malicious or benign.

• We generate a variety of bitstreams implementing stealthy

power-wasting circuits and benign circuits for training

and inferencing of the GCN model.

The remainder of the paper is organized as follows. Section

II provides an overview of attacks and countermeasures on

multi-tenant FPGAs. The threat model is described in Section

III. Section IV presents the security threats from stealthy

FPGA bitstreams. Details of our GCN-based malicious bit-

stream detection framework are provided in Section V. In

Section VI, we compare the effectiveness of the proposed

method with baseline detection techniques. Finally, Section

VII concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Attacks

A power distribution network (PDN) plays a critical role in

supplying power to all the modules within multi-tenant FP-

	

		

	

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 01:01:28 UTC from IEEE Xplore. Restrictions apply.

GAs. The PDN consists of resistive, capacitive, and inductive

elements. The voltage drop across the PDN is dependent on

the summation of voltage drops across all the reconfigurable

modules of the FPGA. An adversary might deploy malicious

power-wasting circuits on the FPGA that impacts the PDN,

leading to voltage fluctuations and subsequently, DoS. For

example, ROs can be maliciously crafted to consume excessive

power, thereby disrupting the normal functioning of multi-

tenant FPGAs. Even when occupying less than 12% on a

Kintex 7 FPGA board, the ROs can successfully crash the

FPGA [6]. In [7], glitch generator circuits using XOR gates

and delay lines have been implemented; these circuits draw

excessive power from the PDN, which can result in undesirable

voltage fluctuations affecting other modules on the same

FPGA. In extreme cases, such excessive power draw might

even lead to DoS of the FPGA. [8] demonstrates power-based

attacks on cloud FPGAs using circuits implementing loop-

free oscillators. These circuits evade the Design Rule Check

(DRC) on Amazon Web Services (AWS) instances, leading to

their deployment on the cloud infrastructure and resulting in

DoS scenarios. Additional power-wasting circuits have been

shown in [9]; by carefully inserting XOR gates between AES

rounds or by generating chains of shift registers, the authors

demonstrate voltage- and power-based attacks on the FPGA.

B. Prior Art in Detecting FPGA-Based Attacks

Several methods have focused on mitigating the deployment

of malicious circuits on multi-tenant FPGAs. AWS offers mul-

tiple fences to detect malicious signatures in design checkpoint

files that are being uploaded by third-party users [10]. These

fences include (a) netlist checking that identifies combinational

loops and floating nets, (b) secure bitstream generation when

a netlist is identified as benign, and (c) run-time power

monitoring of the FPGA to detect unusual voltage fluctuations.

However, malicious designs, utilizing glitch generation and

non-combinational loops, consume high power but remain

deployable on AWS due to the absence of explicit loops.

In [11], a RE-based method is used to detect combinational

loops that are indicative of RO circuits in technology-mapped

netlists. In this scenario, the netlist needs to be manually

analyzed and compared with the original (golden) netlist to

identify malicious behavior. Although this technique success-

fully detects combinational ROs, attackers might circumvent

this countermeasure by deploying loop-free oscillators, such

as self-clocked ROs and latched ROs [8] [12]. Extending

[11], the authors updated their bitstream checking mechanism

to detect combinational cycles and timing violations [12].

However, extending the applicability of the RE tool to FPGAs

in cloud environments may demand substantial modifications,

potentially impacting the cost-effectiveness and scalability.

Furthermore, stealthy ROs can be intentionally scattered across

various LUTs and logic elements of an FPGA, making it

challenging to distinguish them solely via manual inspection.

In [13], a malicious bitstream detection technique is pro-

posed that is suitable for large-scale cloud deployments. This

methodology detects glitches, short circuits, and large fanouts.

TABLE I: A qualitative comparison of the proposed method

with prior work on malicious circuit detection.
Parameter [3] [5] [11] [14] [15] [18] Proposed

method
Dataset B B B B B N B

Threat model CT CT CT CT FT CT CT ,
FT

Self-clocked RO ✓ : : : ✓ : ✓

detected?
RE used : : ✓ ✓ ✓ : :

Spatial analysis? : : : : : : ✓

Generalizability ✓ ✓ : ✓ ✓ : ✓

Detection latency Low Low Med Med Med Low Low

B: FPGA bitstream; N : RTL Netlist; CT : Co-tenants; FT : FPGA tools.

User PRR1 PRR2

Malicious co-tenant
RTL netlist

Implemented

design

Bitstream

generation

Placement of power-hungry

circuits

Bitstream interception

Cloud

FPGA tools

Fig. 1: Threat models considered in this paper.

In [14], the authors propose a run-time countermeasure against

voltage-based attacks on FPGAs by disabling the interconnects

of an attacker module. Another approach uses RE to identify

fan-outs in netlists, but with limited scalability in handling

larger and complex FPGA bitstreams [15].

Alternative ML-based approaches were explored in [2] [3],

and [5]. These methods have been shown to successfully detect

non-combinational ROs and glitch-based circuits. [16], [17],

and [18] explore ML-based techniques to detect hardware

Trojans from register-transfer level netlists, but they do not

specifically address the detection of malicious bitstreams.

Table I presents a qualitative comparison of the proposed

framework with prior malicious circuit detection techniques.

C. Motivation

Some of the prior work to analyze FPGA bitstreams via RE-

based methods do not evaluate a variety of non-combinational

ROs. Recent work [12] targets detection of loop-free ROs but

they might be ineffective against emerging stealthy circuits.

ML-based detection methods often rely on patterns extracted

from contiguous windows in FPGA bitstreams [2] [3] [5].

However, adversaries might intentionally disperse ROs across

different windows of the bitstream, such that each window

is classified as benign by the ML model. In other words,

detecting these dispersed elements becomes a challenging task

for ML models that do not consider spatial dependencies

present among bitstream data, thus limiting their ability to

effectively identify these circuits as being malicious.

III. THREAT MODEL

The threat model is illustrated in Fig. 1. In a multi-tenant

scenario, several users can upload their customized modules on

the partial reconfigurable regions (PRRs) of the FPGA (marked

as PRRx in Fig. 1). All the PRRs share a common power

distribution network (PDN). Thus, an attacker co-tenant can

attempt to induce a huge power consumption on the FPGA and

disrupt the performance of victim PRR modules. As shown in

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 01:01:28 UTC from IEEE Xplore. Restrictions apply.

[19], activating a large number of ROs at a particular frequency

is sufficient to cause significant power consumption, causing

the FPGA to shut down automatically. An attacker may deploy

malicious stealthy, power-wasting circuits for inducing voltage

fluctuations in the PDN of the FPGA, causing DoS. Moreover,

an attacker gaining illegitimate access to the placed and

routed netlist might embed malicious circuits before bitstream

generation. We also consider the scenario where an attacker

attempts to alter the bitstream during its transmission, before

FPGA deployment. Usually, a bitstream is decrypted before it

is configured on the FPGA [20]. Therefore, we evaluate our

method specifically on decrypted bitstreams.

We assume that the FPGA is configured within a trusted

cloud environment. The proposed detection framework op-

erates within this trusted cloud environment, external to the

FPGA chip, and is therefore secure against unauthorized

access. Therefore, an attacker would be unable to corrupt an

FPGA bitstream after its verification using our method.

IV. ANALYSIS OF STEALTHY FPGA BITSTREAMS

A. Dataset Generation

For our experimental analysis, we generate a dataset of

benign and malicious bitstreams. We obtain the benign cir-

cuits from diverse sources, including the ISCAS’85, ITC’99,

and EPFL benchmarks, alongside the OpenCore repository

including AES cores, microcontrollers, and arithmetic cores.

To generate the dataset of malicious bitstreams, we implement

a variety of power-wasting circuits:

1) NRO single-stage ROs, where NRO is sufficient to cause

voltage-based attacks on the Pynq and Virtex FPGAs [6].

2) NRO conditional ROs are selectively enabled using multi-

plexers to induce voltage fluctuations on the FPGA.

3) Non-combinational ROs, including latched and self-

clocked oscillators, implemented in [8] [12].

4) Glitch generator circuits that can result in DoS of the FPGA

are implemented using delay stages, which feed into N -

input XOR gates, 2 f N f 10, as detailed in [7].

5) Power-wasting AES circuits and chains of shift register

circuits are evaluated, per [9].

6) For this work, we specifically implement stealthy circuits

by dispersing the RO inverters of circuits detailed in (1)-(3).

Stealthy RO-based circuit generation involves strategically

scattering the inverters of ROs across different LUT blocks

and slices within the FPGA architecture, aiming to obscure

their presence within the hardware.

Evaluations were conducted across three distinct FPGA

boards: Virtex Ultrascale (VU440), Kintex Ultrascale

(KU085), and Pynq xc7z020 (Pynq). We generate 152 benign

bitstreams and 160 malicious bitstreams for each of the three

FPGA boards. To automate the bitstream generation process,

we execute a TCL script within the Vivado Design Suite.

B. Security Threats from Stealthy Bitstreams

An FPGA configuration bitstream consists of a sequence

of contiguous frames [21]. Each frame encapsulates a set

of LUTs and other functional blocks within the FPGA and

corresponds to a specific portion of the FPGA fabric. In other

(a) (b) (c)

Fig. 2: Pynq FPGA floorplan for: (a) Normal RO circuits

and (b) Stealthy RO circuits, (c) Experimental setup (yellow

circle indicates that the the stealthy RO circuit is successfully

programmed on the Pynq FPGA).

TABLE II: Power consumption of implemented RO circuits.
Type of RO circuit % LUTs used Power (W)

Normal
5.6 11.087
15 49.277

Stealthy
5.6 13.523
15 49.765

words, the bitstream configuration data is directly correlated to

the frames it configures on the FPGA. Therefore, if RO circuits

are intentionally dispersed across various LUTs, their patterns

in the resulting bitstream may not be contiguous. Sequentially

placed frames typically correspond to a consistent mapping

of configuration data on the bitstream [21]. By distributing

ROs across various frames, the attacker disrupts this sequential

alignment. ML-based detection methods that learn malicious

patterns from contiguous bitstream data may not be capable

of detecting these ROs as they are no longer in a recognizable

sequence within the bitstream [3] [5].

In order to evaluate the security threat posed by stealthy

bitstreams, we assess RO power consumption in two scenarios:

• Normal RO circuits: We implement multiple RO circuits,

with the inverters placed and routed in a single slice.

• Stealthy RO circuits: In this scenario, we consider RO

circuits with inverters dispersed across multiple LUT slices,

thus creating non-sequential configurations.

We computed the power consumption of the above two

types of circuits on a Pynq FPGA board, which consists of

53200 LUT elements. We use the ‘set property’ metric within

the Vivado design suite to define the LUT coordinates for

manually placing the inverters across different LUT regions.

These constraints about the RO placements are automatically

generated and stored in a .xdc (Xilinx Design Constraints)

file, which we subsequently use to perform synthesis and

implementation of the RO circuits. Fig. 2 illustrates the placed

and routed netlists corresponding to normal and stealthy RO

circuits, each occupying 5.6% LUTs on the Pynq FPGA.

The power consumption is listed in Table II. The number of

ROs is chosen carefully so that they are sufficient to cause

overheating and DoS on the FPGA [6]. We observe that

stealthy RO circuits consume similar or significantly larger

power compared to normal RO circuits, even when they are

dispersed across multiple LUTs. When ROs occupy around

15% of LUTs, we obtain a warning that the FPGA junction

temperature has exceeded the safe threshold. For the Pynq

FPGA, the threshold thermal margin is 43.3 W; a value beyond

that leads to overheating, risking FPGA functionality.

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 01:01:28 UTC from IEEE Xplore. Restrictions apply.

V. PROPOSED 3-TIER DETECTION FRAMEWORK

A. GCN-Based Spatial Analysis of FPGA Bitstreams

A GCN is a semi-supervised ML model that operates on

graph-structured data. GCNs are widely used in applications

such as node classification, graph classification, and latent

space clustering [22] [23]. A graph consists of a set of

nodes and edges. A GCN aggregates feature information from

adjacent nodes and subsequently generates node embeddings.

These embeddings represent information about the nodes and

their spatial relations. An FPGA bitstream can be represented

as an undirected graph G, where the nodes correspond to

bitstream windows and edges signify spatial relationships

between these windows. Given the ability of GCNs to learn

spatial dependencies inherent in graph-structured data, they

offer a promising solution to address the problem of detecting

distributed malicious signatures in a bitstream [23].

The mapping of bits to LUTs, flip-flops and logic blocks

is stored in a sequential manner within the bitstream [20]

[21]. Therefore, we partition a bitstream into windows for

capturing spatial relationships as well as structural features

that are indicative of malicious circuits. Splitting a bitstream

into non-overlapping windows has the following advantages:

• Feature extraction from graphs: Each window contains

a distinct portion of the bitstream, allowing for a focused

extraction of the signatures within that window.

• Avoiding redundancy: Overlapping windows might intro-

duce ambiguity at the boundary between two consecutive

segments, making it difficult to capture the graph relation-

ships. In contrast, non-overlapping windows maintain inde-

pendent segment information, reducing redundant features.

A GCN consists of several convolutional layers; at each

layer, features from adjacent nodes are aggregated and used

to update the representation of each node. Therefore, the

GCN learns to incorporate both local and global patterns

from bitstream data, enriching the representation of each

node in the graph. The aggregated node feature matrix H l

at a particular convolutional layer l is denoted as: H l =
σ(D

−1

2 · A · D
−1

2 · H l−1 · W l−1), where H l−1 is the node

feature matrix at (l − 1)th layer, A is the adjacency matrix,

D is the diagonal matrix of node degrees in the graph,

W l−1 is the weight matrix at layer l − 1, and σ is the non-

linear activation function that is applied to the node feature

aggregation operation. From the above equation, we observe

that choosing the number of convolutional layers in a GCN

model is pivotal in leveraging spatial relationships among

bitstream data to identify malicious circuits.

B. Graph and Feature Extraction from Bitstream Data

Adjacency matrix generation For a bitstream split into ψ

windows, the resultant adjacency matrix A will have dimen-

sions ψ × ψ. We use the structural similarity index (SSIM)

metric for generating A. SSIM is chosen as it compares images

based on multiple features of similarity such as luminance,

contrast, and structure. This facilitates the construction of a

meaningful graph structure that captures spatial similarities

within the bitstream windows and subsequently aids the GCN

Bitstream

Split into �	windows

� � � �&
Image

files

SSIM ���, ���

>��/���?

�

Add edge

Yes

No edge

�

All images

evaluated?

Graph

NoYes

No

Data pre-processing

SSIM metric

Adjacency matrix generation

Similarity
calculation

Fig. 3: Bitstream-to-graph conversion before GCN evaluation.

model in identifying malicious signatures. We convert each

bitstream window Wi (stored as Numpy file) into an image

representation Imi. For an image pair (Imi, Imj), 1 f i, j f
ψ, i ̸= j, the SSIM value [24] is calculated as:

SSIM(Imi, Imj) =
(2µImi

µImj
+(k1l)

2)(2σImi,Imj
+(k2l)

2)

(µ2

Imi
+µ2

Imj
+k1l)(σ2

Imi
+σ2

Imj
+k2l)

,

where µImi
(µImj

) indicates the mean pixel value of

Imi(Imj), σ2
Imi

(σ2
Imj

) is the variance of Imi(Imj),
σImi,Imj

is the covariance of the image pair, and l is the

range of the pixel values i.e., 255. The default values for k1
and k2 are 0.01 and 0.03, respectively. The range of SSIM

is [0, 1], where 1 indicates a high similarity and 0 indicates

no similarity. If SSIM(Imi, Imj) is greater than a pre-defined

threshold αthres, 0 f αthres f 1, we set Aij = 1 (indicating

an edge), else we set Aij = 0 (indicating no edge), where Aij
indicates the presence or absence of edges between windows

Wi and Wj . Fig. 3 illustrates the graph generation procedure.

Node feature matrix generation We split the FPGA bit-

stream into ψ non-overlapping windows. For a VU440 FPGA

bitstream, the size of each window is 128966372
ψ

. The choice

of ψ depends on the specific FPGA bitstream and is obtained

by hyperparameter tuning as described below.

FPGA bitstreams comprises numerous features (in the order

of 108 for a VU440 bitstream), which is a challenge for tradi-

tional ML-based classification algorithms. However, Support

Vector Machine (SVM) models are particularly useful in han-

dling high-dimensional datasets, especially FPGA bitstreams

[25]. We partition each of the benign and malicious bitstreams

into ψ non-overlapping windows. Each set of ψ benign and

malicious windows is trained on ψ identical SVM classifiers,

following the procedure outlined in [2]. We use the average

training accuracy obtained from the ψ SVM classifiers in

determining the optimum value of ψ. Fig. 4 shows the best

choice of ψ for the evaluated FPGA boards.

The high-dimensional windows can be challenging for direct

usage as feature matrices to the GCN model; they can lead to

increased training time and reduced computational efficiency

[26]. Hence, we utilize convolutional neural network (CNN)

layers to reduce the dimensionality of the windows while

capturing essential bitstream patterns required for subsequent

evaluation by the GCN model. For the ith bitstream window

Wi, 1 f i f ψ, the reduced feature vector for the ith window

is F i1 = f(Wi), where f denotes the convolution and pooling

transformations applied by the CNN model, namely CNN-

1. Subsequently, the output of CNN-1 is the reduced feature

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 01:01:28 UTC from IEEE Xplore. Restrictions apply.

60

65

70

75

80

85

90

95

3 6 9 10 12 15 18

VU440 KU085 Pynq

A
v
er

ag
e

tr
ai

n
in

g
 a

cc
u
ra

cy
 (

%
)

Number of windows �

90.2 89.7
92.3

Fig. 4: Evaluating the best choice of ψ for different FPGA

boards (marked by green dotted lines).

matrix F1 : {F i1}, where the dimensionality of F1 is ψ × k

(k is the number of features obtained after reduction). We

introduce another feature vector by performing Fast Fourier

Transform (FFT) on each bitstream window. FFT captures

frequency-domain characteristics, aiding in the identification

of malicious patterns [4]. We obtain the FFT entropy value F i2
for each window Wi using the scipy.fft function from Scikit

library [27], and generate the feature matrix F2 : {F i2}. The

dimensionality of F2 is ψ × 1. Finally, we merge F1 and F2

to obtain the feature matrix F for the FPGA bitstream.

C. Stealthy Bitstream Identification using Graph Embedding

Fig. 5 shows the 3-tier pipeline for detection of stealthy

FPGA bitstreams. The adjacency matrix A and the node

feature matrix F are fed as inputs to the GCN model, namely

GCN-2. For a graph having ψ nodes, we obtain ψ node em-

beddings after training GCN-2. The GCN-2 model generates

node embeddings H l
i for window Wi, 1 f i f ψ, which

capture the low-dimensional representations of each node in

the graph based on its neighboring nodes. Next, we take an

average of the ψ node embeddings to generate a single graph

embedding for the bitstream, denoted by: M l = 1
ψ

∑ψ
i=1H

l
i .

We pass M l through a multilayer perceptron (MLP) model,

namely MLP-3. An MLP consists of an input layer and an

output layer with one or multiple hidden layers; the neurons

in each layer are fully connected. The output of MLP-3 passes

through a series of activation functions, allowing the model to

distinguish between benign and malicious graph embeddings.

The training loss for binary classification (‘benign’ or ‘mali-

cious’) by MLP-3 is determined by comparing its predictions

to the ground truth labels. This loss guides weight updates

across CNN-1, GCN-2, and MLP-3 models during training.

We run Nepoch iterations of training of the pipeline. The αthres
metric influences edge creation in the graph representation. We

apply grid search to determine the αthres value that yields

the highest training accuracy of MLP-3 [28]; the results are

shown in Fig. 6(a). This metric contributes to the generation

of the adjacency matrix for a particular FPGA bitstream. It

is subsequently used for generating graph embeddings via the

GCN model. The optimum αthres value remains fixed for a

given family of FPGA bitstreams during inferencing.

Fig. 6(b) depicts the SSIM values for bitstream image pairs.

The hyperparameters for the ML classifiers are shown in Table

III, where I (O) indicates the input size (output feature size),

Bitstream

�
 w

in
d
o
w

s

CNN-1 Feature set �1

Spatial dimensionality reduction

GCN-2

FFT

Frequency domain
characteristics

Feature set
�2

Feature

vector F

Graph

�#

�$

�%

....

Graph
embedding

MLP-3

Benign Malicious

Loss

calculation

Fig. 5: Training and evaluation of the GCN-based framework.

Note that, during training, the loss value of MLP-3 is back-

propagated to MLP-3, GCN-2, and CNN-1 for end-to-end

training of the classification framework.

(b)(a)

��

��

��72

77

82

87

92

97

0.86 0.88 0.9 0.92 0.94 0.96 0.98 1

VU440 KU085 Pynq

T
ra

in
in

g
 a

cc
u

ra
cy

 (
%

)

!!"#$%

95.496.3
96.6

Fig. 6: (a) Evaluating best choice of αthres for different FPGA

boards based on MLP-3 training accuracy; for VU440 FPGA

bitstream (αthres: 0.98) implementing a single-stage self-

clocked RO: (b) SSIM(Im1, Im6) = 0.99, which indicates

a high similarity between Im1 and Im6; SSIM(Im1, Im9) =
0.93 indicates a lower similarity between Im1 and Im9.

L is the number of layers in forward propagation of the GCN

model, H is the number of hidden layers, and lr is the learning

rate. The loss function for MLP-3 is chosen as CrossEntropy.

VI. RESULTS AND COMPARISON WITH PRIOR WORK

A. Experimental Setup

We generate the bitstreams using Xilinx Vivado 2018.2.

We utilize the PyTorch framework for seamless integration

of CNN, GCN, and MLP into a 3-tier malicious bitstream

detection pipeline. We train the framework for 200 iterations

using the best choice of hyperparameters (obtained by hy-

perparameter tuning) mentioned in Table III. Training and

inferencing of the ML models are run on a 2.1 GHz Intel

Xeon Gold 6230 CPU with 192 GB of RAM.

We split the training and test datasets in the ratio 70:30; this

ensures a substantial number of samples for model training,

TABLE III: Best hyperparameters for the selected classifiers

for different FPGA bitstreams.
Classifier Selected hyper-parameters

VU440 KU085 Pynq
CNN-1 I: 64× 2149438, I: 64× 753930, I: 32× 126424,

O: 128 O: 128 O: 64
GCN-2 L: 6, L: 5, L: 6,

I: 128, H: 32 I: 128, H: 32 I: 64, H: 16
MLP-3 H: 32, lr: 0.001 H: 32, lr: 0.01 H: 16, lr: 0.001

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 01:01:28 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Performance comparison of proposed framework

with previous methods (baselines) for bitstream detection.

Type of Method
Tm − Ts Tm FPR t

FPGA board
(%) (s)

TPR (%) Ac (%) TPR (%) Ac (%)
[2] 100 95.7 75 84 6.5 88.3

VU440 [3] 88 85.9 68.75 76.5 15.2 242
[5] 80 83 60.4 72.3 15.2 233

Proposed 100 98.5 93.75 95.7 2.1 55.9
[2] 92 92.9 79.1 86.1 6.5 62.5

KU085 [3] 80 85.9 60.4 74.4 10.8 191
[5] 80 87.3 60.4 74.4 8.69 188

Proposed 96 94.3 93.75 93.6 6.5 34.9
[2] 96 92.9 66.6 78.7 8.69 21.8

Pynq [3] 76 84.5 62.5 75.5 10.86 112
[5] 80 83 64.5 74.4 15.2 113.2

Proposed 96 95.7 95.8 95.7 4.34 11.62

TABLE V: Breakdown of time overhead for inferencing on

FPGA bitstreams.
Operation Time (s)

VU440 KU085 Pynq
Split bitstream into windows 46.2 27.4 9.5
FFT-based feature extraction 1.3 0.8 0.15

Feature reduction using CNN-1 5.4 4.9 1.5
Graph generation 0.3 0.27 0.07

Obtain node embeddings using GCN-2 2.7 1.6 0.4

Classification using MLP-3 7e−4
7e−4

5.8e−4

without the risk of overfitting [29]. The training (test) dataset

includes 106 (46) benign bitstreams and 112 (48) malicious

bitstreams. Within the test dataset comprising malicious bit-

streams, 23 bitstreams incorporate stealthy RO-based circuits.

B. Evaluation Metrics

We use the following metrics to evaluate the efficiency of

the proposed 3-tier classification framework.

• True Positive Rate (TPR) is the percentage of malicious bit-

streams that are correctly detected by the proposed method.

• False Positive Rate (FPR) is the percentage of benign

bitstreams that are incorrectly classified as malicious.

• Classification accuracy (Ac) is computed as: Ac =
Cp

Tp
×

100%, where Cp is the number of correct predictions and

Tp is the total number of predictions.

• Detection latency t (in seconds) is the time taken during

model inferencing for the test bitstream.

C. Performance Evaluation of GCN-based Framework

Table IV presents a comparison of the proposed GCN-

based framework with three baseline methods [2] [3] [5].

We perform two independent experiments on the malicious

bitstreams included in the test dataset: (1) Tm − Ts, which

excludes the set of stealthy bitstreams Ts from evaluation, and

(2) Tm, which includes the full set of malicious bitstreams.

We observe that baseline frameworks detect ROs when these

ROs are placed in contiguous LUTs of the FPGA but are

less effective in identifying stealthy ROs because they do not

consider spatial relationships within the bitstream data during

model training. In contrast, our method performs efficiently in

both sets of experiments and detects stealthy bitstreams within

a short duration (less than 1 minute of run time).

D. Time Overhead
We also computed the time overheads (in seconds) associ-

ated with evaluating a test bitstream across different FPGA

boards using the GCN-based method; see Table V. Note that

the FFT-based feature extraction, CNN-based feature reduc-

tion, and graph generation procedures are independent of each

other and are therefore performed concurrently. Consequently,

for these operations, the total time overhead is influenced by

the operation with the highest time overhead. From Table IV

and Table V, we see that the evaluation time for a bitstream

is significantly lower than previous bitstream detection tech-

niques [2] [3] [5] across all FPGA boards.

VII. CONCLUSION

We have presented a GCN-based framework to analyze

spatial relationships among FPGA bitstream data and detect

stealthy bitstreams. The proposed framework outperforms

baseline detection methods in terms of classification accuracy

across multiple FPGA boards.

REFERENCES

[1] S. Choi and H. Yoo, “Fast logic function extraction of LUT from
bitstream in Xilinx FPGA,” Electronics, vol. 9, no. 7, p. 1132, 2020.

[2] J. Chaudhuri and K. Chakrabarty, “Diagnosis of malicious bitstreams in
cloud computing FPGAs,” IEEE TCAD, vol. 42, no. 11, 2023.

[3] ——, “Detection of malicious FPGA bitstreams using CNN-based
learning,” in 2022 IEEE European Test Symposium (ETS), 2022.

[4] ——, “Criticality analysis of ring oscillators in FPGA bitstreams*,” in
2023 IEEE European Test Symposium (ETS), 2023.

[5] R. Elnaggar et al., “Learning malicious circuits in FPGA bitstreams,”
IEEE Trans. CAD, 2022.

[6] D. Gnad et al., “Voltage drop-based fault attacks on FPGAs using valid
bitstreams,” in FPL, 2017, pp. 1–7.

[7] K. Matas et al., “Power-hammering through glitch amplification –
attacks and mitigation,” in FCCM, 2020, pp. 65–69.

[8] T. Sugawara et al., “Oscillator without a combinatorial loop and its threat
to FPGA in data centre,” Electronics Letters, 2019.

[9] G. Provelengios et al., “Power wasting circuits for cloud FPGA attacks,”
in FPL, 2020.

[10] T. La et al., “Denial-of-service on FPGA-based cloud
infrastructures—attack and defense,” IACR TCHES, 2021.

[11] D. Gnad et al., “Checking for electrical level security threats in
bitstreams for multi-tenant FPGAs,” in FPT, 2018, pp. 286–289.

[12] J. Krautter et al., “Mitigating Electrical-level Attacks towards Secure
Multi-Tenant FPGAs in the Cloud,” ACM TRETS, vol. 12, no. 3, 2019.

[13] T. M. La et al., “FPGADefender: Malicious self-oscillator scanning for
Xilinx UltraScale + FPGAs,” ACM TRETS, 2020.

[14] H. Nassar et al., “LoopBreaker: Disabling interconnects to mitigate
voltage-based attacks in multi-tenant FPGAs,” in ICCAD, 2021.

[15] J. Yoon et al., “A bitstream reverse engineering tool for FPGA hardware
trojan detection,” in ACM SIGSAC, 2018.

[16] H. S. Choo et al., “Machine-learning-based multiple abstraction-level
detection of hardware trojan inserted at register-transfer level,” in ATS,
2019, pp. 98–980.

[17] J. Yang et al., “Hardware trojans detection through RTL features
extraction and machine learning,” in AsianHOST, 2021, pp. 1–4.

[18] K. Hasegawa et al., “Trojan-feature extraction at gate-level netlists
and its application to hardware-trojan detection using random forest
classifier,” in ISCAS, 2017, pp. 1–4.

[19] J. Krautter, D. Gnad, and M. Tahoori, “FPGAhammer: Remote voltage
fault attacks on shared FPGAs, suitable for DFA on AES,” 2018.

[20] Xilinx, “Ultrascale architecture configuration,” https://bit.ly/3yyxvQ9 .
[21] J.-B. Note and É. Rannaud, “From the bitstream to the netlist,” in Proc.

of ACM/SIGDA FPGA, 2008, pp. 264–264.
[22] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv

preprint arXiv:1611.07308, 2016.
[23] ——, “Semi-supervised classification with graph convolutional

networks,” arXiv preprint arXiv:1609.02907, 2016.
[24] Z. Wang et al., “Multiscale structural similarity for image quality

assessment,” in ACSSC, 2003.
[25] T. Joachims, “Text categorization with support vector machines:

Learning with many relevant features,” in ECML. Springer, 1998.
[26] H. Gao et al., “Large-scale learnable graph convolutional networks,” in

ACM SIGKDD, 2018.
[27] SKlearn, “Fourier transforms,” bit.ly/3hco841.
[28] ——, “Grid search with cross validation,” https://bit.ly/3hEHNnQ .
[29] Scikit-learn, “Machine learning in Python,” https://bit.ly/3OzdLBZ .

Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 01:01:28 UTC from IEEE Xplore. Restrictions apply.

