
TaintLock: Hardware IP Protection against

Oracle-guided and Oracle-reconstruction Attacks∗

Jonti Talukdar†, Arjun Chaudhuri‡∗∗, Eduardo Ortega‡∗∗, and Krishnendu Chakrabarty‡∗∗

 Department of Electrical and Computer Engineering, Duke University, Durham, NC
!School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ

∗∗ASU Center for Semiconductor Microelectronics (ACME), Tempe, AZ

Abstract—Scan-obfuscation schemes used with logic locking lack
the ability to perform scan authentication on a per-pattern basis.
These methods are of limited effectiveness in obfuscating scan
data and they remain vulnerable to SAT-based scan deobfuscation
attacks. In addition, prior methods designed to perform scan-
data authentication are not adequate under the strongest threat
models used to assess logic locking. To alleviate these problems,
we propose enhancements to TaintLock, a lightweight dynamic
per-pattern authentication and encryption scheme that uses taint
and signature bits embedded within each test pattern to provide
authenticated scan access. To prevent IP theft through Oracle-free
and Oracle-guided attacks, TaintLock is paired with truly random
logic locking (TRLL). TaintLock cryptographically authenticates
each test pattern using the embedded taint and signature bits and
passing them through a substitution-permutation (SP) network.
It further uses cryptographically generated keys to dynamically
encrypt scan data for unauthenticated users. TaintLock, while
offering a low overhead and non-intrusive secure scan solution
may remain susceptible to a new class of Oracle-reconstruction
attacks that use machine learning. Additionally, assuming test
pattern security is compromised, it may be potentially vulnerable
to a template-based SAT attack aimed at partial key recovery. We
analyze the susceptibility of TaintLock against these threats and
demonstrate its resilience. We also demonstrate that TaintLock
can be easily integrated with popular test architectures such
as embedded deterministic test (EDT). Finally, we also discuss
the reconfigurable nature of TaintLock’s architecture to support
different levels of encryption and authentication.

I. INTRODUCTION

The production of integrated circuits (IC) is increasingly

reliant on a globalized supply chain leading to significant risk in

the security of on-chip intellectual property (IP). Of particular

concern is the vulnerability to IP theft through attacks such as

IC counterfeiting, IP piracy through overbuilding, and netlist-

reverse engineering [2], [3]. Security solutions that obfuscate IP

through logic locking offer protection against these attacks by

locking the IP using combinational key-gates and/or sequential

obfuscation states [4]. However, powerful SAT-based Oracle-

guided attacks are capable of rapidly pruning the key-search

space to extract the correct key [4].

Recent work has shown that combining scan chain security

with IP obfuscation methods such as truly random logic

locking (TRLL) can not only thwart Oracle-guided attacks

but also achieve resilience against Oracle-free attacks [5].

Existing scan protection schemes either obfuscate scan data

∗This research was supported in part by the Semiconductor Research
Corporation (Task ID 2994.001) and the National Science Foundation under
grant no. CNS-2011561. A preliminary version of this paper was presented at
European Test Symposium, 2022 [1].

or block scan access altogether [6]. The strongest scan-

obfuscation schemes use keys generated from an LFSR to

achieve dynamic obfuscation, i.e., dynamically obfuscating

scan data for each pattern. However, scan authentication is

not supported by such methods, thereby making it difficult to

determine the trustworthiness of the end-user accessing the

scan chains. Moreover, the use of linear obfuscation (using

LFSRs) makes these methods vulnerable to attacks that remodel

the dynamically obfuscated scan chains as a combinational

logic-locked netlist [7], [8].

Combining dynamic scan obfuscation with per-pattern au-

thentication offers the ability to independently validate the

authenticity of each scanned pattern while preventing unautho-

rized users from using the scan chains through scan obfuscation.

This requires embedding the information used for authentication

within every test pattern. Prior work has demonstrated the

vulnerabilities associated with scan authentication methods

under the latest (strongest) threat models used in context

of logic locking [1], [9], [10]. In this paper, we present

TaintLock, a dynamic scan data authentication and encryption

scheme that performs dynamic per-pattern authentication while

achieving secure dynamic obfuscation (through encryption) for

unauthorized users using taint bits embedded in the test pattern.

A preliminary version of TaintLock was presented in [1].

It has been shown that TaintLock is an effective low-

cost/overhead architecture that supports cryptographically se-

cure scan access through both test-pattern based authentication

and encryption. A unique authentication and encryption key,

that changes dynamically, is computed using the taint-bits

embedded within each test pattern itself. The same pattern

can have a different key embedding, based on the order in

which it is scanned. TaintLock employs a challenge-response

authentication mechanism using dynamically changing keys that

are generated cryptographically and on the fly from taint bits

embedded in each test pattern. The keys used for authentication

and encryption change based on the pattern and on the order

in which it is scanned in. Application of an incorrect key for a

given test pattern triggers scan data encryption. As TaintLock is

integrated with a low-overhead high output-corruptibility logic

locking scheme (TRLL), it is resilient against not only Oracle-

guided attacks but also against Oracle-free attacks, including

removal/bypass attacks. In addition, its lightweight non-linear

scan encryption scheme offers resilience against all existing

attacks mounted on obfuscated scan chains, while incurring

less than 0.2% area overhead for large circuits.

1

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



However, new classes of attacks have come to light since

TaintLock’s conception. In this work, we demonstrate the

applicability of a new class of Oracle-reconstruction attacks

that utilize machine learning (ML) techniques to reconstruct

locked IP protected by TaintLock [11]. We further demonstrate

that the scan-based authentication and encryption network

designed as part of the TaintLock architecture is able to limit the

effectiveness of machine learning-based Oracle reconstruction

attacks such as LORAX [11]. Furthermore, assuming that

test pattern security is compromised, we also demonstrate

the ineffectiveness of a template-based SAT attack aimed at

partial key recovery. We show that both categories of attacks

remain ineffective against the security guarantees provided

by TaintLock. In addition, we also perform a design space

exploration of the TaintLock architecture, analyzing the power,

performance, area, and security overhead of the TaintLock

architecture. While TaintLock offers security guarantees against

a wide array of reverse engineering attacks by embedding

signature and taint bits within scan patterns, we further show

it provides support for test compression schemes such as

embedded deterministic test (EDT).

The main contributions of this paper are as follows:

• We present a design space exploration of the TaintLock

architecture, a dynamic per-pattern scan data authentica-

tion and encryption mechanism that utilizes substitution-

permutation (SP) networks to authenticate every test

pattern based on embedded taint and signature bits.

• We devise an integer linear programming (ILP)-based

approach to optimally allocate taint and signature locations

for any set of test patterns and integrate it with the

parametrized TaintLock architecture to generate authenti-

cated test patterns.

• We integrate support for pattern compaction along with

EDT (embedded deterministic test) when considering test

authentication through TaintLock. This allows us to enable

signature- and taint-embedding while maintaining support

for EDT-based test compaction.

• We evaluate the effectiveness of ML-guided Oracle recon-

struction attacks that utilize machine learning techniques

to reconstruct the Boolean functionality of the IP without

scan access. We demonstrate that Oracle-reconstruction

attacks are of limited effectiveness against TaintLock.

• We demonstrate the effectiveness of TaintLock against

a template-based SAT attack that is aimed at recovering

partial keys by reusing the taint and signature information

present in a leaked test set.

• We show that TaintLock is adversarially indistinguishable,

resilient against known- and chosen-plaintext attacks and

any form of Oracle-guided attack, and secure against

state-of-the-art scan de-obfuscation attacks.

The rest of the paper is organized as follows: Section II

reviews the background and related prior work on secure

scan methods and highlights their vulnerabilities. Section III

describes the TaintLock architecture and its sub-blocks in detail.

Section IV presents a security analysis of TaintLock. Section

V presents testability analysis, Section VI presents its overhead

analysis, and Section VII concludes the paper.

II. BACKGROUND AND RELATED PRIOR WORK

In this section, we analyze the drawbacks of recent scan-

obfuscation methods and demonstrate their vulnerabilities

against the strongest threat models used in logic locking.

A. Secure Scan Chains and IP Protection

Secure scan methods have been paired with IP obfuscation to

prevent leakage of critical on chip data including locking keys

and functional state of the IP. Early scan-protection methods

majorly focused on protecting on-chip cryptographic cores from

data leakage and side-channel attacks by flipping scan bits and

scrambling the data stored in scan chains. By obfuscating scan

data through bit flips, such methods were able to attain data

security but remained vulnerable to attacks focused on netlist

reconstruction through structural reverse engineering [4].

Methods that replace certain scan-cells in the design with

custom secure scan cells achieve both logic- and scan-data

obfuscation. Secure scan-cells can block scan access and

introduce bit flips in scan data unless the IP is activated using

the functionally correct scan unlocking key [12], [13]. One

such method use embedded XOR gates in the scan chain to flip

scan data values dynamically through keys generated from on-

board LFSRs [12]. Other methods allow scan-cells to control

the polarity of the output (Q or Q) depending on the value of

the locking key [13]. Dynamic obfuscation can then achieved

by modifying the keys dynamically through the use of onboard

LFSRs. However, due to the use of linear structures (embedded

XOR gates and LFSRs), attacks such as DynUnlock [7] and

ScanSAT [8] can apply variations of the SAT attack to extract

the obfuscation key (LFSR seed).

Scan-obfuscation methods have also been proposed to cryp-

tographically encrypt scan data. However, these methods utilize

cryptographic macros and suffer from large area overhead and

test times [14]. Additionally, these methods also lack support for

in-field functional debug, dynamic per-pattern authentication,

while also impacting the timing profile of functional paths [6].

Although methods that support scan pattern authentication

exist, they suffer from test data and test time overhead due

to the requirement of additional security flops. They also lack

support for multi-pattern tests such as Launch-on-Capture

(LOC) / Launch-on-Shift (LOS). When applied in context

of stronger threat models today, these secure scan methods

remain vulnerable to reconstruction attacks aimed at extracting

the keys used for pattern authentication. One such method is

low-cost secure scan (LCSS) [9]. LCSS supports static scan-

data authentication by embedding the authentication key in

dummy flip-flops added to the original scan chain. The dummy

flip-flops used to store security bits also lead to increased

test time and tester memory overhead. Another method [10]

achieves dynamic scan data authentication by randomizing the

test keys (SSTKR) that are generated using an on-board LFSR.

Similar to LCSS, the test keys are either embedded in dummy

flip-flops added to the original scan chain, or within don’t-

2

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



care bits of each test pattern. However, this approach does not

specify any selection criteria for the don’t-care bits, thereby

failing to address the issue of efficiently embedding the test

key across the don’t-care bits for patterns in the test data set.

Additionally, the authentication keys in the above methods are

not generated using specified bits embedded within the test

pattern itself, making it easy to reverse-engineer the key from

already available test data [1].

More recent methods that protect the scan interface through

the use of parallel latches and skew-based flip flops have been

proposed [15], [16]. In [15], a parallel latch-based architecture

is used to authenticate a user supplied key by comparing it

with an on-board key stored in a disposable programmable

read only memory. In [16], skew-based key flip-flops are used

to synchronize the delivery of the user supplied key to achieve

authentication. All of these methods rely on the authenticity

of both the value of the supplied key as well as the clock

cycle at which the key is supplied. Although these methods

work well to gate keep scan access from unauthorized users,

the overall netlist still remains unprotected from netlist-level

reverse engineering, thereby preventing these methods from

protection against IP theft.

B. Threat Model and Assumptions

The most pervasive threat model used in IP obfuscation

assumes that both the foundry and end-user are untrusted [4].

Thus, the attacker has access to the following: (1) Locked

Design (Clock): An untrusted end-user or foundry can obtain

the reverse-engineered (RE’d) netlist of the locked design; (2)

Activated Chip (Cor, also known as an Oracle or unlocked

chip): The adversary has access to an activated chip purchased

from the open market; (3) In-field Test Patterns (Pauth): The

untrusted end-user has access to authenticated test patterns

provided by the design house for in-field functional debug of

the activated chip.

While the first two assumptions are common across all

logic-locking techniques [4], the third assumption is relevant

when a scan-authentication mechanism allows an end-user to

apply authenticated test patterns to the activated device. These

patterns may be supplied by the design house for in-field

debug. Fig. 1 illustrates the typical flow of an obfuscated IP

through the supply chain. Based on the above threat model,

the attacker first uses the RE’d netlist to identify the type

of security architecture used for logic and scan obfuscation.

As the attacker has no control over the patterns included in

Pauth, these patterns are not sufficient to mount an Oracle-

guided attack. Thus, the attacker is forced to analyze Pauth to

extract the scan authentication key to gain Oracle access. We do

not consider invasive electrical probing attacks because these

methods do not exploit the vulnerability of the obfuscation

method itself, but rely on the shortcomings of the fabrication

technology [2].

As shown in [1], the patterns in Pauth are sufficient

to reconstruct the static scan authentication key, kstatic, in

LCSS, and the set of dynamic authentication keys, Kdyn =
{k1, k2, ..., kn}, in SSTKR. As the authentication keys are not

Barrier 
FSM

PRPG PIs

Secure Key 
Generator

Authenticator

Handshakec

IP 
BlockHandshake Lost

Error Injection 
Mechanism

Locked

Unlocked 

Fabrication / Foundry

Locked IP / 
Design House

Untrusted End-User/ Customer 
with Valid Test Patterns

• Manufacturing test
• Dummy Patterns based 

on Dummy Key

• End-user, customer
• Test patterns supplied for debug/test 

by design house can reveal key
• Must be prevented by making 

cryptographically secure.

Activating Locked IP 
/ Design House

• Reconfigure Unique keys for 
each device

• Supports watermarking / 
fingerprinting

Foundry
(Untrusted)

Design House
(Trusted)

End User
(Untrusted)

Locked IP Tested IP Activated IP

Design House
(Trusted)

• Reconfigure Unique keys for 
each device

• Supports watermarking / 
fingerprinting

Authenticated 
Test Data 

Reverse Engineered 
Netlist

Secure Scan Chain using 
SP-Network 

TRLL Locked 
Combinational Logic

(TaintLock)

Fig. 1: A scan-protected IP through the supply chain.

generated from specified bits embedded within the test pattern,

the attacker needs only a single authenticated pattern to extract

the authentication keys for existing static and dynamic key-

based authentication architectures. This motivates the need for

a more secure authentication mechanism.

III. TAINTLOCK: A GENERALIZED ARCHITECTURE

A. Overview

TaintLock supports both authentication and encryption.

Under the assumptions made by the threat model, as both

trusted and untrusted users may have access to the scan

chains, authentication is performed on a per-pattern basis. Scan

responses for unauthenticated test patterns are encrypted.

Authentication: TaintLock uses a challenge-response mech-

anism to validate the authenticity of each test pattern. For

each pattern Pi, there exists a corresponding signature value,

Si, computed using taint value, Ti, embedded in it. A Feistel

structure-based substitution permutation (SP) network with a

dynamic key schedule is used to compute Si = Fauth(Ti,Ki),
where Ki is a dynamically changing key generated from a

free-running reconfigurable block, and Fauth is a lightweight

block cipher implemented by the SP-network. The same Pi

can have a different Si, depending on the order in which the

pattern is scanned. Since an authenticated end-user is aware

of the key-schedule, they can compute Si for any Pi.

Encryption: TaintLock utilizes a stream cipher to dynamically

encrypt scan data using XOR gates placed in the scan

chain. The scan encryption key, Kencr, is generated by re-

purposing Fauth as a stream cipher in counter mode [17]. Thus,

Kencr = F (Ti,Ki)· ϕi, where ϕi is a dynamically changing

key, also generated from a free-running reconfigurable block.

The encrypted response is Rencr = Ri ·Kencr, where Ri is

the original response.

For each test pattern, taint bits are selected from the specified

locations within the test pattern while signature bits are

embedded within the test pattern by replacing carefully selected

don’t-care bits (X ′s). As the locations of X-bits used for

embedding Si may change for each pattern, an integer linear

programming (ILP)-based scheme selects the minimum number

of Si locations required to cover all ATPG-patterns in the test

set. The number of bits used in Ti and Si along with their

corresponding allocation is determined by the architecture

of Fauth, as discussed later in this section. Fig. 2 illustrates

dynamic authentication using TaintLock. Note that the locations

of the signature-bits change for each pattern.

3

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



1 0 1 1 0 1��1 0 1�� �� 1 0 0 0

0 0 1 1 0 0 10 1 1 0 1 1 0

0 1 0 1 0 01 0 1 1 0 1 0

0 1 1 0 0 11 0 0 0 1 1 1

Taint Bits (��)Dynamic Key Signature Bits (��)
������

������
������

0 1

0

0 1

0 0

Embedding �௜ among X’s in �௜
Fig. 2: Dynamic scan authentication using taint bits.

B. System Architecture

TaintLock consists of the following components (Fig. 3):

• Taint and Signature Cells: These scan cells are identical

to regular scan cells and are responsible for storing the

taint and selection bits associated with each pattern.

• Selection MUXes: Used to specify which signature cells

contain the signature bits for every pattern. If there exist r
signature cells, with each signature Si being q-bits wide,

then there will exist at most q such r : 1 MUXes. The

MUX select signals are scanned into a separate register

in parallel with the test pattern.

• Authentication Block (Fauth): Computes the authen-

tication signature using the supplied taint bits and a

dynamically generated key through an SP-network.

• Reconfigurable Block: Consists of several LFSRs with

reconfigurable feedback responsible for generating the

dynamic keys used for signature computation and scan

encryption. The LFSR seeds and feedback settings are

supplied from tamper-proof memory and only known to

authenticated users.

• Comparator: Performs comparison between the authen-

tication signature embedded in the test pattern and the

signature computed on-board using Fauth.

• Encryptor: In case of mismatch between the computed

and embedded signatures, it generates and stores the key,

Kencr, used to encrypt the test response.

During an authenticated test access, Pi is scanned in with

the appropriate Si embedded in it, leading to unobfuscated

scan operation. As Si can only be computed by a trusted user

with access to the dynamic keys used for authentication and

encryption, an untrusted user will be able to access only the

encrypted responses for the supplied pattern.

C. Feistel Structure-based SP-Network Design

The authentication block consists of five layers (Fig. 4),

alternating between permutation, key-whitening, and non-linear

diffusion layers. The baseline authentication block supports

two rounds of permutation (L1, L4) and key-whitening (L2,

L5) while performing one round of non-linear diffusion (L3)

using a dynamic key schedule.

Layer Architecture and Key Sizes: The sizes of L1–L5 and

k1–k4 are determined based on the number of signature bits (q
bits per pattern) and the size of MUXes used in the permutation

layers (2³:1 MUX). Given q and ³, the parametric values of the

layer and key sizes are shown in Fig. 4. The permutation layers

(L1, L4) use a network of 2:1 MUXes (³ = 1) to selectively

propagate half the incoming bits to the next layer. Thus, each

Authentication
Block

Reconfigurable
Block

Ta
m

pe
r-P

ro
of

M
em

or
y

Seeds and
Feedback Taps

D
ec

om
pr

es
so

r

Comparator

Signature Cells

Selection
MUXes

C
om

pa
ct

or

Taint Cells

Encryptor

scan_en

Fig. 3: TaintLock system architecture.

incoming bit has an equal probability of selection based on

the dynamic key used to drive its corresponding MUX select

line. The key-whitening layers (L2, L5) are used to encrypt

intermediate data and increase the size of the key space. The

diffusion layer (L3) uses several 6× 4 combinational S-Boxes

to perform non-linear mapping between input and output. The

number of S-Boxes is given by q × 2³−2. As ³ = 1 and we

can only have an integer number of S-Boxes, q must be an

even value. Finally, for ³ = 1, the number of taint bits, t = 6q.

Key Schedule: The keys (k1, k2, k3, k4) driving the permu-

tation and key-whitening layers are generated from on-chip

LFSRs with reconfigurable feedback (RB). The key schedule

is determined by the feedback configuration and seed of

each RB. An RB of size ¼ consists of ¼ − 1 MUXes in

its feedback path. The size of the seed for such an RB is

2¼− 1. The key update frequency is determined by the clock

signal of the RB. The clock input to the RB is driven by

the scan en signal, thereby updating the LFSR state, and

consequently the keys, dynamically for each pattern. Fig. 5

shows the illustration of the timing diagram of Taintlock’s

internal signals. When an authenticated pattern, Pa is scanned

in, the comparator’s output is 0, indicating that the generated

signature matched the embedded signature, leading to an

authenticated response. When an unauthenticated pattern, Pb

is scanned in, comparator’s output becomes 1, indicating a

signature mismatch leading to an encrypted output response.

As the initialization seed of each RB can be changed for each

IC/device, Taintlock supports a unique key per device.

Permutation Layer Design: This layer rearranges l incoming

bits into m new locations using m different n : 1 MUXes

(m < l). To maintain uniform permutation of incoming bits,

we must ensure that each incoming bit has an equal probability

of occurring at the MUX output. Thus, all the m× n MUX

inputs must be evenly distributed across the l incoming bits

leading to each incoming bit being connected to nm/l MUXes

on average. Note that nm g l. For e.g., consider l = 8, m = 5,

and n = 4. Using our strategy, it follows that each incoming

bit is connected to at least + 208 , = 2 and at most + 208 , = 3
unique MUXes. This ensures that every incoming bit can

occur at a given output location with an average probability

of 20/82 = 0.31.

Scan Authentication & Encryption: Let k1, k2, k3, and k4
represent the dynamic keys used in different layers, pi(ki, t) rep-

4

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



S-BoxS-BoxS-Box

bits

bits

bits

bits

bits

bits

Layer & Key Sizes

(L1, L4): Permutation Layer 
MUX size,

(L2, L5): Key-whitening Layer
Signature size,

L3: Non-Linear Layer

Functional Architecture

 

Reconfigurable Block 

Tamper-Proof
Memory

Seed

scan_en

tclk

Scan Encryption Key

Fig. 4: Feistel structure-based SP-network used for authentication.

resent the output of the ith permutation layer, and s(t) represent

the output of the substitution block. Then, the authentication

signature is expressed as s = k4 · p2(k3, s(k2 · p1(k1, t))).
Scan responses are encrypted through XOR gates distributed

uniformly across the scan chain. The encryption key is

generated by re-purposing the block cipher to a stream cipher

in counter mode, so that kencr = k1 · k3 · s. The keys k1
and k3 are truncated to match s. If q is the size of encryption

key, then the jth bit of the encrypted response is encrypted

with all the key bits following it, i.e., rencrj = rj
⊕q

i=j k
encr
j .

A working example is presented below:

Example: Consider an authentication architecture consisting

of four signature-bits. Thus, for q = 4, t is 24-bits wide, k1
and k2 are 12-bits wide, k3 and k4 are four-bits wide. Consider

the taint-bits embedded in the test pattern to be T such that,

T=0xB12D09 (in hexadecimal). Also, consider the keys gen-

erated by the RB for two consecutive test patterns be as follows,

k1=[0xC2F, 0xB4C], k2=[0x56A, 0x824], k3=[0x7,

0x3], k4=[0x9, 0xD]. The signatures for both test patterns

are obtained by passing the above values through Fauth, such

that S = Fauth(T, k1, k2, k3, k4) = [0x4, 0xE]. These

values are compared with the signature embedded within the

corresponding test patterns through the on-board comparator.

In case of a mismatch, the binary key used for encryption is

generated as follows: kencr = S · k1 · k3=[1100, 0001].

D. Extending TaintLock for General-Purpose Encryption

The previous sub-sections describe TaintLock’s key architec-

tural components, with the Feistel-inspired SP-network being

at the heart of the authentication and encryption scheme. The

overall architecture of the constituent layers associated with

the authentication block allow designers to extend the baseline

SP-network to support multiple rounds of encryption. This is

achieved by cascading a single SP unit encryption block end-

to-end multiple times, as illustrated in Fig. 6. A single SP unit

encryption block consists of three layers which include a key-

whitening layer (LKW ), a non-linear substitution layer (Lsub),

and a permutation layer (Lperm) in that order. The encryption

keys for both layers, LKW and Lperm, are generated from

independent RBs, namely RBKW and RBperm, respectively.

Both the RBs are represented together as RBSP to denote

the RB component of a single SP unit encryption block as

Authentication
Block

Reconfigurable
Block

Ta
m

pe
r-P

ro
of

M
em

or
y

Seeds and
Feedback Taps Comparator

Selection
MUXes

Taint Cells

Encryptor

scan_en

S-BoxS-BoxS-Box

bits

bits

bits

bits

bits

bits

Layer & Key Sizes

(L1, L4): Permutation Layer
MUX size,

(L2, L5): Key-whitening Layer
Signature size,

(b) 

L3: Non-Linear Diffusion Layer

Reconfigurable Block 

Tamper-Proof
Memory

Seed

scan_en

Authentication
Block

Reconfigurable
Block

Ta
m

pe
r-P

ro
of

M
em

or
y

Seeds and
Feedback Taps

D
ec

om
pr

es
so

r

Comparator

Signature Cells

Selection
MUXes

C
om

pa
ct

or

Taint Cells

Encryptor

scan_en

C
om

pa
ct

or

D
ec

om
pr

es
so

r

Signature Cells

Scan Clock

Scan Enable

Functional Clock

Comparator

Scan Out

Timing Diagram

Authenticated
Response

Encrypted
Response

Test
PatternsIP

ATPG Security
Requirements 

: X-budget
: Signature bits

per pattern

Parameters: Signature
Cells

Taint
Cells

Taint
Selection

Authenticated 
Patterns

Embedding 
SignaturesTaintLock

Architecture ILP

(a) 

(d) 

Authenticated Unauthenticated 

Input Signals

Output Signals

Fig. 5: Timing diagram for the different internal signals of TaintLock’s
authentication block.

Initial
Permutation

Layer

Layer
Architecture

SP Unit Encryption
Block 

SP Unit Encryption
Block 

Functional
Architecture

Taint Bits

Cascaded Unit
SP Encryption

Blocks

End Key-
whitening

Layer
Signature Bits

SP Unit Encryption Block 

S-BoxS-BoxS-Box

Key
Whitening

Layer
Substitution

Layer

Permutation
Layer

Fig. 6: General-purpose TaintLock authentication block comprising
multiple SP-unit encryption blocks cascaded in an end-to-end fashion.

shown in Fig. 6. Multiple such SP unit encryption blocks can

be cascaded together to support multiple rounds of encryption.

Note that the general-purpose authentication block is always

initialized with an initial permutation layer and a terminal

key-whitening layer in the end, irrespective of the number of

SP unit encryption blocks in between. It is important to note

that the sizes of all the multiplexers and S-Boxes used in the

authentication block is uniform across the entire architecture.

E. Optimizing Taint and Signature Cell Allocation using ILP

TaintLock promises per-pattern dynamic scan-authentication

and encryption support without any impact on overall test cost.

This is achieved by embedding authentication information

within the don’t care bits of the test pattern set. Since the

percentage of don’t care bits in a single test pattern is significant

for large designs [18], we formulate an ILP model that

minimizes the number of signature cells, r, while covering all

patterns in the test set. Let us consider a pattern set with n
patterns, each being m bits wide. We assume a single scan

chain. However, this analysis is also applicable for multiple

scan chains without any loss of generality. We use a binary

decision variable xij such that xij = 1 if the jth bit of the

ith pattern is selected, and xij = 0 if vice-versa. We next

pre-compute the location of the don’t care bits, i.e., the X-

locations across all patterns in the pattern set and store them

as matrix coefficients, where cij = 1 if the jth bit of the ith

pattern is an X and cij = 0 otherwise.

The reward score is computed next for each bit position j,

and is given as follows: dj =
∑n

i=1 cij ∀1 f j f m.The larger

the number of X’s in a bit location across all patterns in the test

5

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



ý௜௝ ൌý௜௝ ൌ

ሺýÿÿሻሺýÿሻ

ÿ ൌÿ ൌ ሼ ሽý௝

ÿÿ ýÿÿýýý௔௨௧௛ý ýଵ ýଶ ý௡ ÿ௜ ÿ௜
Fig. 7: (a) Illustrative example showing the different steps in the ILP-based selection of signature cells for a given test pattern set and X-budget
(χ). (b) Methodology for signature/taint cell allocation using ILP and generation of authenticated test pattern embeddings in TaintLock.

set, more likely is the selection of that location as a signature

cell. We also determine Ç, which is the minimum number of

X’s present among all patterns in the test set, also referred

to as the X-budget. We impose the constraint that we must

select exactly q X’s, i.e., q signature bits per pattern, where

q f Ç. Note that n such constraints exist, one for each pattern,

and is given by:
∑m

j=1 xij = q ∀1 f i f n. Our objective is

to maximize the reward function:
∑m

j=1 dj ·
∑n

i=1 xijcij . This

objective function ensures that bit locations with larger number

of X’s per pattern are given priority. It also ensures that all

X-bits in a column are selected during scoring. An example

illustrating this process for a representative test pattern set

containing four patterns generated for a scan chain consisting

of four scan cells is shown in Fig. 7(a).

After the r signature cells are allocated, the remaining

(m− r) cells associated with the specified bits in the test

pattern are considered for taint cell allocation. The number

of taint locations (t) is fixed for all patterns in the test set.

It is also ensured that (m − r) g t, where t = 6q. For each

remaining scan cell location, k, let ak and bk denote the number

of 0’s and 1’s occurring at that location across all test patterns,

respectively. As taint bits are used as inputs to the authentication

block, we select taint cells that have similar numbers of 1’s

and 0’s. This ensures that the input to the authentication block

is balanced. Thus, for each k, we evaluate ∆k = |ak− bk| and

µk = (ak+ bk)/2. Subsequently, we choose k with the highest

µk and lowest ∆k, thereby ensuring a balanced selection of

taint bits, leading to better authentication performance for the

block cipher.

Fig. 7(b) shows the overall methodology for integrating the

optimization process for signature and taint cell allocation

while co-selecting the different parameters for a baseline

TaintLock architecture to generate a set of authenticated test

patterns. We evaluate the ILP model on several IPs from

the Common Evaluation Platform (CEP) [2] protected using

different configurations of Fauth. We compute the number of

signature cells for IPs containing Fauth with q = 12 bits and

q = 16 bits, respectively. These results are shown in Table I.

Fig. 8: Signature cell selection through ILP as a function of the
required number of security bits.

As taint bits drive the block cipher, Fauth, taint-cell alloca-

tion is done to ensure that the input to cipher is balanced. Thus,

for each bit position j, we evaluate the number of 1s and 0s

across all patterns i, and select bits with close to equal number

of both. We also ran incremental optimization experiments,

where we increased the number of signature bits required per

pattern from zero to the X-budget and evaluated the minimum

number of signature cells obtained to cover all the test patterns;

see Fig. 8. It can be seen that as the number of security bits

required per pattern increases, the corresponding increase in the

number of signature cells selected per pattern also increases in

order to cover all test patterns in the test set. This is because as

the bit locations with most number of X ′s are already selected,

it becomes increasingly rare to find additional X bit locations

that are shared across all the test patterns.

IV. SECURITY ANALYSIS

A. Encryption Quality and Adversarial Indistinguishability

As TaintLock supports dynamic per-pattern authentication

and encryption, based on the dynamic key schedule the

same pattern can have different signatures and encrypted

responses. For a test set containing n patterns, each pattern will

have at least n different signatures and encrypted responses,

respectively. For a given signature size and key schedule, we

evaluate the authentication quality of a pattern Pi by analyzing

6

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Evaluating the number of signature cells
required to support different TaintLock versions across
CEP benchmarks.

IP
Pattern Pattern

Ç
r (from ILP)

Count Length q=12 q=16
GPS 230 347 70 51 57
FIR 160 448 66 20 25
IIR 183 672 219 160 197

SHA256 306 1040 267 27 32
AES192 598 6854 4504 20 25
Rocket 2183 43140 39856 23 23

q: # of signature bits, r: # of signature cells, t: # of taint cells,
t = 6q, thus t = 72 and 96 for 12 and 16 bit signatures,
respectively, Ç: X-budget.

the distribution of 1’s and 0’s associated with each signature

bit location j (1 f j f q) across all n signatures. For each Pi,

let the pair (µj
i,1, µ

j
i,0) denote the average fraction of 1s and 0s

associated with the jth signature bit across all n signatures. We

next evaluate the mean (µsign
i,1 , µsign

i,0 ) and standard deviation

(Ãsign
i,1 , Ãsign

i,0 ) of these j ordered pairs. Here, µsign
i,1 is the

average fraction of 1’s in all the signature bits for all n
signatures. Similarly, Ãsign

i,1 is the standard deviation in the

average fraction of 1’s across the j signature bits for all n
signatures. Note that because µsign

i,1 = 1 − µsign
i,0 , it follows

that Ãsign
i,1 = Ãsign

i,0 . A value of µsign
i,∗ close to 0.5 and a very

low value of Ãsign
i,∗ are indicative of a balanced authentication

function. Next, we use the Hamming distance between a scan

response Ri, and its encrypted counterpart Rencr,i, to evaluate

encryption quality. Given Ri, let Rj
i,encr represent its jth

encrypted response such that 1 f j f n. Then, µHD
i represents

the average Hamming distance between the true response and

all other n encrypted responses. A Hamming distance of 0.5 is

indicative of a balanced encryption function. The authentication

quality (µsign
i,∗ , Ãsign

i,∗ ) and encryption quality (µHD
i ) values are

averaged across all patterns in the test set and presented for IPs

in Table II. We observe that the baseline version of TaintLock

performs balanced authentication and encryption.

From Table II, we observe that the baseline version of

TaintLock is adversarially indistinguishable, i.e., given the

encrypted ciphertext, Ri,encd, an adversary can learn no partial

information about the plaintext, Ri. For a given private-key

encryption scheme Π, consider an experiment PrivKA,Π in

which a probabilistic polynomial time (PPT) adversary A
outputs two messages m0,m1 out of which one of them is

encrypted at random. We define PrivKA,Π as follows: (1) An

adversary A is given an input 1n and generates a pair of output

messages m0,m1 with |m0| = |m1|. (2) A key is generated at

random by running Gen(1n), and either message m0 or m1

is chosen at random depending on a uniform bit b ∈ {0, 1}.
The challenge ciphertext c ← Enck(mb) is generated. (3)

PrivKA,Π = 1 if A identifies correct mb for given c. We next

introduce the following definitions [19].

Definition 1. A function f from the natural numbers to

non-negative real numbers is negligible if for every positive

polynomial p, there is an N such that ∀ n > N ; f(n) < 1
p(n) .

Definition 2. A given private-key encryption scheme Π is con-

sidered adversarially indistinguishable if for a PPT adversary

A, there is a negligible function negl such that for all n,

TABLE II: Evaluating the authentication and obfuscation quality for
12- and 16-bit baseline TaintLock versions across CEP benchmark IPs.

IP
12-bit 16-bit

µ
sign
avg,1 Ã

sign
avg,1 µHD

avg µ
sign
avg,1 Ã

sign
avg,1 µHD

avg

FIR 0.506 0.030 0.485 0.497 0.036 0.509
IIR 0.494 0.049 0.480 0.505 0.032 0.492

SHA256 0.501 0.026 0.486 0.501 0.033 0.487
AES192 0.502 0.022 0.488 0.503 0.018 0.496

RocketCore 0.501 0.010 0.495 0.495 0.012 0.495

TABLE III: Evaluating the authentication and obfuscation quality for
12- and 16-bit cascaded TaintLock versions consisting of two SP unit
encryption blocks across CEP benchmark IPs.

IP
12-bit 16-bit

µ
sign
avg,1 Ã

sign
avg,1 µHD

avg µ
sign
avg,1 Ã

sign
avg,1 µHD

avg

FIR 0.490 0.089 0.498 0.513 0.016 0.512
IIR 0.487 0.079 0.487 0.504 0.052 0.508

SHA256 0.499 0.045 0.495 0.499 0.053 0.494
AES192 0.510 0.098 0.502 0.509 0.034 0.510

RocketCore 0.489 0.045 0.512 0.488 0.043 0.505

P [PrivKA,Π = 1] f 1
2 + negl(n).

From the definitions above, we note that µHD
avg,1 provides us

with an indirect measure of the adversarial indistinguishability

of an encryption scheme. From Table II, we observe that

µHD
avg,1 ≈ 0.5 for all IPs analyzed. This implies that there exists

an equal probability of the scan response bit being encrypted

or not, thus indicating the adversarial indistinguishablity of the

baseline version of TaintLock.

We next also compute the same metrics for an extended

version of the baseline TaintLock architecture comprising of

two cascaded SP unit encryption blocks for the same signature

sizes. These results are also presented in Table III. Both

the baseline version of TaintLock and the cascaded version

comprising of more rounds of substitution and permutation

perform well in terms of their quality of encryption and

adversarial indistinguishability. The difference in µsign and

µHD between both versions is statistically insignificant. As a

result, the baseline version of the TaintLock architecture may

be sufficient for most security applications.

B. Security Analysis

TaintLock prevents Oracle access by using a decentralized

and non-intrusive method for cryptographically authenticating

and encrypting scan access. Pairing it with a low overhead and

high output corruptibility IP obfuscation method such as truly

random logic-locking (TRLL) makes it immune to existing

netlist analysis-based removal attacks [5]. In this section, we

evaluate TaintLock’s ability to resist a wide range of attacks

such as cryptanalysis attacks, Oracle-guided attacks, and Oracle-

free attacks including state-of-the-art scan deobfuscation attacks.

1) Brute-force Resilience

In this sub-section, we compare the brute-force attack efforts

for different different signature sizes of the baseline TaintLock

architecture. Given q signature bits per pattern, an attacker can

attempt to guess Si for a given Pi. The probability of success

P (Si|Pi) for the attacker is 1/2q. However, due to dynamic

per-pattern authentication, Si will change not only based on the

pattern itself but also based on the order of patterns in the test

7

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV: Comparison of different brute-force attack efforts
for various versions of the baseline TaintLock architecture,
determined by q.

q (k1, k2, k3, k4) λsum n× 2q tbf = 2λsum

10 (30, 30, 10, 10) 156 1.23× 105 9.13× 1046

12 (36, 36, 12, 12) 188 4.91× 105 3.92× 1056

14 (42, 42, 14, 14) 220 1.96× 106 1.68× 1066

16 (48, 48, 16, 16) 252 7.86× 106 7.23× 1075

For this analysis, the average number of patterns n is 120, which
is an optimistic choice in the context of oracle-guided attacks.

set. For n patterns, the attacker must try all n× 2q signature

combinations to find the correct Si for each Pi. Furthermore,

this does not unlock the IP as the attacker will be forced to

repeat this process in case of a new pattern set. Thus, the

attacker is forced to guess the seed used to generate the correct

keys, (k1, k2, k3, k4), to unlock the IP. Note that due to the use

of RBs, if ¼i is the size of the ith key, then the size of the RB

seed used to generate that key is 2¼i − 1. Brute-force attack

resilience is quantified by the number of attempts required by

the attacker to uncover the correct key. For TaintLock, this is

given by tbf = 2¼sum , where ¼sum = 2(¼1+¼2+¼3+¼4)−4
is the total seed size. The attack effort is prohibitively high

for the different brute-force approaches discussed above (For

e.g., tbf = 3.92× 1056 for q = 12). More data is presented in

Table IV. Note that cascaded SP networks provide significantly

more security against brute-force attacks. This is because the

key size used for encryption increases with the number of

intermediate SP networks. Furthermore, since brute-force attack

effort increases exponentially with the key size, increasing

the layer count linearly may give significantly better security

against such attacks

2) Cryptographic Attacks

Given access to authenticated debug patterns, Pauth, the

attacker may apply known-plaintext attacks [20]. However,

TaintLock is resilient to both known-plaintext (KPA) and

chosen-plaintext attacks (CPA). If the attacker can collect

2m plaintext-ciphertext pairs, i.e., the number of patterns in

Pauth is 2m, the resilience of the system will be reduced to

2¼sum−m, where ϵ = ¼sum−m. However, given the small size

of Pauth, m << ¼sum. This makes such attacks infeasible

in practice. Additionally, given that TaintLock obscures the

circuit test responses, the attacker does not have control over

the original patterns being scanned out of the design, making

chosen-plaintext attacks also infeasible. We first define the

notion of security in context of a PPT adversary APPT that

can make queries in polynomial time [21].

Definition 3. An encryption scheme Π is ϵ-secure if a PPT

adversary APPT after p(ϵ) queries cannot unlock the scheme

with a probability greater than
p(ϵ)
2ϵ .

In the above definition, p(ϵ) represents a polynomial number

of queries. The following theorems characterize the security

guarantees provided by TaintLock.

Theorem 1. TaintLock is ϵ-secure against known-plaintext

attacks.

Proof. If the attacker can collect 2m plaintext-ciphertext pairs,

i.e., the number of patterns in Pauth is 2m, the resilience of

the system will be reduced to 2¼sum−m, where ϵ = ¼sum−m.

However, given the small size of Pauth, m << ¼sum implying

that ϵ is a very large value. The probability that the attacker

can unlock the encryption scheme after p(ϵ) queries is 1
2ϵ−p(ϵ) .

Therefore, the probability Pl that the attacker cannot unlock the

encryption scheme after p(ϵ) queries is: Pl = 1− 1
2ϵ−p(ϵ) =

2ϵ−p(ϵ)−1
2ϵ−p(ϵ) > 2ϵ−p(ϵ)−1

2ϵ . As p(ϵ) is polynomial in the number

of queries, p(ϵ) < 2ϵ−1 =⇒ 2ϵ − p(ϵ) > p(ϵ). Consequently,

Pl >
2ϵ−p(ϵ)−1

2ϵ ≈ 2ϵ−p(ϵ)
2ϵ > p(ϵ)

2ϵ . This makes TaintLock ϵ-
secure against known-plaintext attacks, rendering such attacks

infeasible in practice.

We illustrate the implication of the theorem above through a

real-world example. Let us consider the number of patterns in

a large IP such as RocketCore. From Table I, we observe that

RocketCore has close to 2200 test patterns when rounded up

to the nearest hundred. The closest whole value of m for that

case is 12. Assuming that RocketCore is protected using the

baseline version of the TaintLock architecture while supporting

a 10-bit signature, the value of ϵ = 156−12 = 144. In practice,

the attacker will need close to 2ϵ patterns to mount an effective

attack, which is in the order of 1043, a very large number.

Theorem 2. The TaintLock encryption scheme is resilient

against chosen-plaintext attacks.

Proof. By construction, the TaintLock architecture does not

support scan-out of unauthenticated test patterns. Thus, unau-

thenticated test responses are encrypted dynamically based

on the pattern order. As a result, plaintext m ← R remains

unavailable to the adversary APPT . As only the ciphertext

c← Rencr remains available, chosen-plaintext attacks become

infeasible in practice.

More recent attacks mounted on dynamically obfuscated scan

chains, such as DynUnlock and ScanSAT, aim to model the

obfuscation logic consisting of the LFSRs into a logic-locked

combinational design, with the key being the obfuscation key

(LFSR seed). They can then utilize combinational SAT attack

using the obfuscated test responses. This is because: (1) The

attackers can create obfuscation logic does not (2) The use of

non-linear cryptographic functions make

3) Oracle-guided and Oracle-free Attacks

We next show that Oracle-guided attacks such as the SAT

attack are ineffective in case of TaintLock.

Theorem 3. TaintLock makes the Oracle dysfunctional in

unauthenticated mode.

Proof. Oracle-guided attacks rely on scan chains to provide

functionally correct input-output pairs. For unauthenticated

test patterns, APPT will only have access to Rencr. Since

TaintLock is adversarially indistinguishable, almost half the

output bits are flipped at random. Thus, the Oracle response

becomes dysfunctional.

8

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



ሺÿÿÿýýሻ

ÿ ∨ ÿ௜

ÿ௔௨௧௛
ÿ ÿýÿÿÿý

Fig. 9: Illustration of Template-based SAT attack with constrained
DIPs generated from leaked authenticated test patterns (Pauth) using
a tainted Oracle (Ctaint).

We show in [22] that a dysfunctional IP guarantees resilience

against all forms of Oracle-guided attacks. TaintLock encrypts

test response data thereby making it resilient against attacks.

We later show that the attacker can use a tainted Oracle,

by utilizing partial authentication information, to attempt to

reconstruct locking keys. However, such an attack no longer

fits under the purview of an Oracle-guided attack.

Scan deobfuscation attacks such as ScanSAT and DynUnlock

belong to a class of Oracle-free that aim to extract the LFSR

seed used for dynamic scan obfuscation. These attacks model

the obfuscation logic responsible for pattern transformation into

a combinational cone of logic-locked netlist activated using

the LFSR seed. Applying the SAT attack on this locked netlist

allows such attacks to reverse engineer the LFSR seed. These

attacks are successful because: (1) the feedback polynomial

of the LFSR used for dynamic obfuscation is known to the

attacker from the RE’d netlist, allowing them to model the

pattern transformation as a function of the LFSR seed; (2) the

obfuscation logic does not contain non-linear blocks, allowing

easier construction of their combinational logic equivalent. Both

of these drawbacks are addressed by TaintLock. The use of

LFSRs with reconfigurable feedback (RBs) makes it impossible

for the attacker to extract the correct feedback polynomial

used for key generation from the RE’d netlist. Moreover, the

attacks described above cannot model the encryption blocks

used in the SP-network (permutation layers and S-boxes) into

a combinational design logic-locked using the RB seed due

to their non-linear nature [7], [8]. Finally, resetting the IP

clears data in scan cells including signature values, triggering

encryption. This makes TaintLock resilient against state-of-the-

art scan deobfuscation attacks.

4) Template-based SAT Attack

Although traditional SAT attack remains ineffective against

TaintLock, we consider the scenario where the attacker lever-

ages the already available set of authenticated test patterns,

Pauth, to mount a variation of the SAT attack aimed at

recovering partial keys to the combinationally locked netlist.

Based on the strongest version of the threat model, we assume

that the attacker not only has access to the reverse engineered

netlist of the locked design but is also aware of the location of

the taint and signature bits in Pauth. As a result, the attacker has

Input: C, eval ▷ eval generates scan response

Output: Kc

i← 1;

F1 ← C((
−→
X ( µi),

−→
K1,
−→
Y1) ' C((

−→
X ( µi),

−→
K2,
−→
Y2);

while sat[Fi ' (
−→
Y1 ̸=

−→
Y2)] do

−→
Xi ← sat assignment−→

X
([Fi ' (

−→
Y1 ̸=

−→
Y2)]);

−→
Yi ← eval(

−→
Xi);

Fi+1 ← Fi ' C((
−→
Xi ( µi),

−→
K1,
−→
Y1) ' C((

−→
Xi ( µi),

−→
K2,
−→
Y2);

i← i+ 1;
end
−→
Kc ← sat assignment−→

K1

(Fi);

return Kc

Algorithm 1: Procedure for template-based SAT attack.

the ability to modify specific bit locations in every pattern while

keeping the taint and signature locations within those patterns

unchanged. This allows the attacker to partially control certain

bit locations of each pattern in the test set thereby providing

them with partial scan access. As the attacker must maintain

the taint and signature bits for each test pattern along with the

order in which the pattern is scanned in, there are additional

constraints imposed on the generation of DIPs (distinguishing

input patterns) thereby making such an attack more difficult.

Suppose ASAT , has access to the locked netlist C and

a tainted Oracle, Ctaint protected using TaintLock. Ctaint

only produces the correct output when supplied with the

embedded security information. Assuming that the attacker

has access to Pauth, let Γmask represent that set of all patterns

(in the same order as in Pauth) with non-security bits set

to 0. Thus, every pattern in Γmask when OR’ed with the

corresponding test pattern in Pauth will generate the same

test pattern. Thus, ASAT aims at finding the key vector
−→
Kc

by solving the following QBF (quantified Boolean formula):

∃
−→
Kc∀
−→
Xi ∈ I : C((

−→
Xi ( µi),

−→
Kc,
−→
Yi) = Ctaint((

−→
Xi ( µi),

−→
Yi),

where
−→
Xi and

−→
Yi are the ith inputs and outputs of the circuit

and µi is the ith pattern in Γmask. The overall procedure is

shown in Algorithm 1 and illustrated in Fig. 9. The attack

creates a miter circuit indicated by the SAT formula, Fi, where

the same
−→
X when applied with the constraint µi produces two

different outputs for two different keys. The SAT solver tries

to create a SAT assignment, iterating over more values of
−→
X ,

until all incorrect keys are eliminated.

We implemented this attack on CEP benchmark IPs locked

using the baseline version of the TaintLock architecture and

considered a signature size of 12 bits and 16 bits respectively.

The combinational netlist was locked using 128 embedded

TRLL key gates. The RANE platform was repurposed to mount

the template-based SAT attack [23]. All experiments were run

on an Intel Xeon CPU. We evaluated the effectiveness of three

powerful SMT solvers including Yices [24], Z3 [25], and MSAT

[26] solvers. Table V summarizes the results. We ovserve that

none of the solvers are able to converge to the correct keys.

This can be explained by comparing the QBF for ASAT with

that of the regular SAT attack. As compared to the regular

SAT attack, template-based SAT attack imposes additional

constraints on the miter configuration, making the process of

9

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V: Evaluating the effectiveness of template-based SAT
attack on CEP benchmark IPs protected using 128 bit TRLL
keys and the baseline version of the TaintLock architecture.

IP
12-bit 16-bit

Yices Z3 MSAT Yices Z3 MSAT

FIR TO TO TO TO TO TO
IIR TO TO TO TO TO TO

SHA256 TO TO TO TO TO TO
AES192 TO TO TO TO TO TO

RocketCore TO TO TO TO TO TO

TO: Timeout due to non-convergence of the SAT solver, limited to
72 hours.

TABLE VI: Number of SAT clauses generated by applying the internal
KC2 solver with template-based SAT attack constraints on CEP
benchmark IPs locked using 128 bit TRLL keys and 12-bit signature.

Benchmark IP Number of SAT Clauses

FIR 1.7× 104

IIR 1.8× 104

SHA256 2.8× 104

AES192 2.3× 105

RocketCore 3.5× 105

finding DIPs to solve the SAT assignment in Algorithm 1

very challenging. In addition to finding equivalence classes of

keys that satisfy (
−→
Y1 ̸=

−→
Y2), every DIP must also satisfy the

masking constraint to maintain authenticated Oracle access, i.e.

C(
−→
Xi(µi). Moreover, as i← i+1, the new masking state µi+1,

also changes (due to changing location of the security bits) and

is added to the original SAT assignment.This severely limits

the ability of the SAT solver to eliminate large categories of

equivalence key classes with the addition of every new pattern,

eventually exhausting all patterns in the authenticated test set,

Pauth. We also evaluated the number of SAT clauses that

are generated until time out when a sequential deobfuscation

attack such as the KC2 attack is applied on CEP benchmark

IPs locked with TaintLock under the constraints imposed by

template-based SAT attack [27]. This data is presented in Table

VI and shows the increasing complexity of the template-based

SAT attacks with the size of the IP as the number of clauses

increases significantly for larger IPs. Recent prior work has

also shown that increasing the number of SAT clauses leads to

a further increase in complexity of SAT-based deobfuscation,

showing that exponential growth in the number of SAT clauses

also increases deobfuscation time exponentially [28]. In [28],

the SAT solver is unable to converge to a solution with less than

2× 104 clauses even after 10 days. This shows the increasing

difficulty associated with applying the template-based SAT

attack to IPs protected with TaintLock.

5) Oracle Reconstruction Attacks

A new class of machine learning-based attacks that are

aimed reconstructing the Boolean functionality of the locked

combinational part of the netlist have been proposed. Such

attacks include LORAX [11], which relies on gaining access

to a limited number of functionally correct IO-pairs from

the circuit and utilizing them to train ensemble ML models

to predict the Boolean functionality of the locked cone of

combinational logic. Such attacks assume that only a limited

number of IO-pairs are available for training (<< 2m, where

m is the number of primary inputs in the circuit).

Attacks such as LORAX can be potentially applied against

TaintLock as follows:

• As this attack is only applicable to the part of the netlist

containing combinational logic locking, the attacker will

have to gain access to the different cones of logic protected

using TRLL in a design protected using TiantLock.

• In order to gain access to these combinational logic cones,

the attacker will be forced to utilize scan chains. This

is because not all combinational cones in a design are

accessible exclusively through the PIs of the design.

• Let T denote the set of training samples used to train

LORAX on a locked cone of combinational logic. As

the scan chains are protected though TaintLock, every

response Pres ∈ T will be encrypted. As a result, LORAX

will be trained on encrypted responses to scanned in

patterns.

To evaluate the effectiveness of a LORAX-based Oracle

reconstruction attack on IP protected using TaintLock, we

encrypted the combinational responses of the scanned in test

patterns for a wide variety of IWLS 2020 benchmark circuits

locked using TRLL and TaintLock [29]. The IWLS 2020

benchmarks were used for analysis in [11], and thus were

also used in this study to perform a fair comparison. Fig.

10 compares the effectiveness of the Oracle-reconstruction

attack using decision tree and random forest-models when

applied to different cones of logic protected using the TaintLock

architecture. We observe that the reconstruction accuracy for

majority of the benchmark circuits after passing through

the TaintLock encryption scheme is close to 50%, which is

equivalent to having a random guess.

V. TESTABILITY ANALYSIS

In this section, we describe how TaintLock can support

test and debug during different stages of the product lifecycle

including manufacturing/fabrication, activation, and test during

in-field deployment.

A. Testability Support during Product Lifecycle

Manufacturing Test: TaintLock can support manufacturing

test using scan-based ATPG in the presence of dummy keys.

The IP remains deactivated without loading the tamper-proof

memory. There is no impact on test coverage due to the

extraction of taint bits directly from scan-based test patterns

generated from ATPG. Furthermore, signature bits can be pre-

computed and embedded in each test pattern by replacing the

don’t-care bits (X) within the ATPG patterns. The original

scan architecture remains unchanged. In the next sub-section,

we discuss how TaintLock can support EDT-based compressed

test pattern generation. In Section VI, we also show that

the combinational path delay of the authentication block

responsible for on-chip signature generation is negligible,

especially when compared to other logic paths and the clock

frequency of the design. Moreover, TaintLock supports two-

pattern delay tests such as launch-on-shift (LOS)/launch-on-

capture(LOC) in encrypted mode. For these tests, the first

pattern is applied with the embedded signature. However, the

second pattern is obtained either from the circuit’s response

10

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 10: Reconstruction accuracy for Oracle reconstruction using LORAX-based decisions trees (top) and random forest (bottom) ensemble
models for benchmark logic cones protected using TaintLock architecture.

(LOC), or by shifting a single bit (LOS). Due to the lack of

control over the bits in the second pattern, it is unlikely that

the correct signature will be embedded for that pattern. Thus,

the scan responses for LOC/LOS will be encrypted. However,

because TaintLock uses a symmetric cryptographic scheme, a

trusted user can decrypt the scan responses using the encryption

key. Furthermore, the use of unique keys per pattern ensures

that the encrypted response can be uniquely mapped to the

expected response. This allows the user to pre-compute the

expected fault-free encrypted responses for LOC/LOS tests.

Testability of TaintLock-Specific Peripherals: The process

to test TaintLock’s peripheral blocks, namely selection MUXes,

authentication blocks, comparator, and encryption units will

not be any different than the process discussed above. As

there are no intermediate unscanned flops in TaintLock’s

peripheral logic, the path used for on-chip signature generation

remains covered by scan flops. Since manufacturing test is

performed without IP activation, the tamper proof memory

is not loaded until after manufacturing, when the fabricated

product is shipped back to the design house for placement

and assembly of the tamper-proof memory. Thus, inputs to the

tamper-proof memory can also be utilized as test points for

structural testing. Furthermore, due to the purely combinational

nature of TaintLock’s authentication block, it will receive full

scan coverage. The registers used to store Kencr are also scan

driven. Finally, all RBs can be tested as part of scan chain

integrity testing by loading a combination of test patterns

identical to march testing through the input test points directly

driving the interface of the tamper-proof memory.

IP Activation: TaintLock supports seamless IP activation

process after the tested IP is shipped back to the design house.

The activation process is done in a trusted site. The design

house can generate additional test patterns to ascertain IP

integrity during functional mode. This also involves additional

steps to diagnose issues in manufacturing that lead to functional

failure, which include specifically targeting functionally critical

areas of logic using targeted tests [30], [31]. During this step,

the designers also have the opportunity to identify malicious

modifications in the IP, including scan chains, control logic,

or hardware Trojans embedded within the IP.

In-field Test and Diagnosis: TaintLock can be integrated

with built-in self test (BIST) techniques. Since BIST requires

the use of pre-generated test patterns, authenticated BIST pat-

terns and their corresponding signatures can be pre-computed

depending on the keys used for IP activation. Furthermore, to

maximize test coverage, the designers can choose to operate

BIST in obfuscation mode, where the input test patterns are

pre-generated to cover maximum number of faults. Since

the designers also know the scan encryption key, Kencr. for

every test pattern, they can also compute the golden signatures

accordingly. Furthermore, in the next sub-section, we show that

TaintLock’s scan encryption mechanism does not introduce

additional aliasing in the computed output signatures, thereby

indicating that it will have no impact on fault diagnosis

as compared to a baseline BIST implementation without

TaintLock. As TaintLock is a plug-and-play solution, note

that designers can integrate authentication-aware test-plans for

both BIST and ATPG-based structural testing during IP design

and development stage itself.

B. Test Compression Support

TaintLock supports advanced test compression architecture

including embedded deterministic test (EDT) [32]. EDT-based

methods achieve effective compression by supplying EDT test

patterns through a limited number of scan channels which

are then decompressed on-chip to concurrently drive a large

number of scan patterns through multiple scan chains in the

design. The effective compression achieved by EDT is limited

by the chain-to-channel ratio or compression factor, Ω, which

is the ratio between the the number of scan chains in the

design and the number of input scan channels supplying test

patterns to the design. Higher compression is achieved if a small

number of input scan channels supply compressed patterns to

a large number of scan chains in the design. Aggressive EDT-

based compression schemes may compete with TaintLock’s

signature embedding, therefore leading to some drop in test

coverage. However, unlike other scan obfuscation methods that

require test compression engines such as EDT to always be

11

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



set to bypass mode [12], TaintLock is compatible with test

compression due to the following reasons:

1) Test cubes in large designs today have a significant

percentage of don’t care bits to support large compression

ratios along with security bit embedding.

2) EDT-based compression schemes provide designers with

the ability to place constraints on specific locations of

scan cells, providing flexibility with signature embedding

while achieving high compression ratios with minimum

drop in test coverage.

3) TaintLock’s obfuscated responses do not cause aliasing

when paired with EDT. This implies that any loss in

test coverage due to TaintLock’s signature embedding

with EDT compression can be recovered by operating

TaintLock in obfuscation mode.

Note that commercial EDA tools such as Siemens Tessent allow

EDT-based test patterns to be generated alongside baseline

ATPG, which do not have compression enabled by default.

TaintLock can be utilized in both these scenarios. Designers

have the ability to apply constraints to specific scan cells in

the IP during EDT-based compressed test pattern generation,

thereby enabling them to embed security bits during the

compressed test pattern generation process itself. Adding

constraints for signature embedding during EDT-based test

generation can have some impact on the test coverage. In

Table VII, we evaluate the test coverage impact of embedding

signature bits of varying sizes across a wide range of EDT-

driven compression ratios for IPs of varying sizes. We observe

that increasing compression ratios (from 10x to 100x) leads

to some drop in the baseline test coverage. This is because

aggressive compression leads to a higher utilization of don’t

care bits, thereby targeting less number of faults. We also

observe that increasing the size of signature embedding (from

8 bits to 16 bits), for the same compression ratio, can also

lead to some drop in test coverage. However, note that the

average drop in test coverage across all compression ratios and

all IPs is less than 2%. Also note that for very large IPs such

as AES192, which contain hundreds of thousands of gates,

the average drop in test coverage is less than 0.6%. This is

because of the large number of don’t-care bits associated with

large designs, as is also evident from Table I.

There may exist scenarios where extremely large compres-

sion ratios are necessary. Furthermore, situations may arise

where the baseline test pattern set is updated to target new faults

and not all don’t care locations overlap for each pattern. In such

situations, TaintLock can remain operational in obfuscation

mode. Through Theorem 4 below, we show that TaintLock

can continue operating in obfuscation mode, i.e., no signature

bits embedded in the supplied test patterns, without causing

any aliasing when the design’s obfuscated output response is

passed through the EDT-based response compactor. Theorem 4

shows that the obfuscated test responses generated by TaintLock

will maintain their uniqueness in the signature so long as the

uniqueness of the golden (non-obfuscated) test responses is

maintained.

TABLE VII: Impact of embedding TaintLock’s signature bits of various
sizes on test coverage across different compression ratios.

IP
# # Scan Ω Test Coverage (%)

Gates Cells Baseline 8-bit 12-bit 16-bit

IIR 16145 672

10 99.71 99.70 99.70 99.69
25 99.05 98.14 97.82 97.85
50 98.32 97.74 97.60 96.84
100 97.93 97.25 96.79 95.29

FIR 11193 448

10 99.72 99.62 99.57 99.56
25 99.41 98.68 98.58 98.24
50 99.10 98.45 97.97 97.22
100 98.85 98.07 97.58 94.83

28440 1040

10 99.63 99.49 99.40 99.36
SHA- 25 97.34 96.79 95.88 93.74
256 50 94.23 94.22 92.97 91.21

100 94.01 92.33 91.89 90.51

469321 6854

10 98.97 98.97 98.97 98.87
AES- 25 98.93 98.87 98.87 98.60
192 50 98.89 98.87 98.54 97.90

100 98.86 98.84 98.37 97.47

Ω: Compression ratio, i.e., ratio between number of scan chains in the design
and number of input scan channels for EDT.

Theorem 4. For EDT-based response compaction using XOR

trees, obfuscated test responses do not lead to aliasing if

unobfuscated test responses do not lead to aliasing.

Proof. Consider an XOR-based test compactor with N scan

chains feeding M compactor outputs (N > M ). Consider an

n bit scan slice feeding an n:1 XOR-tree in the compactor

(n f N ). Let E denote the set of bits in V that are identical

between the unobfuscated fault-free (Ru) and faulty responses

(R′
u), and D denote the set of bits in Ru that are complimentary

to those in R′
u due to fault propagation. Consequently, D′

denotes the corresponding set of bits with complementary

values in R′
u. Let (e0, e1) be the ordered pair of 0- and 1-

counts in E and (d0, d1) be the ordered pair of 0- and 1-counts

in D. Therefore, 0- and 1-counts for D′ are (d1, d0).
The output of the XOR-tree is 0 (1) if the 1-count of the input

bits is even (odd). Without scan obfuscation and aliasing, Ru

produces a different output signature than R′
u after compaction.

Thus, (e1 + d1) must have a different parity than (e1 + d0)
=⇒ d0 and d1 must have different parities =⇒ (d0 + d1)
is an odd number, as the sum of two numbers with different

parities is always odd. Upon enabling obfuscation, both Ru

and R′
u undergo the same transformations, leading to some

bits in E and D undergoing even or odd number of flips.

For Ru, let the 1-count in the component of D undergoing

odd (even) bit-flips be do1 (de1) and let the 0-count in the

component of D undergoing odd (even) bit-flips be do0 (de0).

Note that for R′
u, the 1-count in the component of D′

undergoing odd (even) bit-flips is equal to the 0-count in the

corresponding component of D. Without scan obfuscation, there

is no aliasing and dsum = d0+d1 = (do0+de0)+(do1+de1) is odd.

With scan obfuscation, the 1-count in D is d(Ru) = de1 + do0.

This is because the 1-count in the obfuscated response is

determined by the 1-count of the original response affected by

even number of bit-flips and 0-count of the original response

affected by odd number of bit-flips. Similarly, the 1-count in D′

of transformed R′
u is d(R′

u) = do1+de0. As E contains equal 1-

counts for Ru and R′
u after transformation, and d(Ru)+d(R′

u)
is odd, it implies that the if the 1-count in the transformed Ru

is odd, then the corresponding 1-count in the transformed R′
u

must be even, and vice-versa. Therefore, Ru produces different

12

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



compacted signature than R′
u.

VI. OVERHEAD ANALYSIS

To evaluate its power, performance, and area (PPA) overhead,

TaintLock is integrated with different IPs from the CEP

benchmark circuit suite [2]. The overhead is computed for 12-

bit and 16-bit signature versions of the TaintLock architecture.

It has been shown in previous sections that 12-bit and 16-bit

signature versions of TaintLock provide strong security metrics

and are paired with 128-bit TRLL logic-locked netlist. For the

experiments, all benchmarks were synthesized with the Nangate

45 nm standard cell library using Synopsys Design Compiler.

Timing closure was achieved at a frequency of 500 MHz. Place

and route was then run on the synthesized designs, followed by

parasitic extraction using Cadence Innovus to generate the final

design layout. To evaluate circuit timing impact and power

consumption, Cadence Tempus was used.

Table VIII shows TaintLock’s PPA overhead on five CEP

benchmark IPs. We observe that TaintLock has minimal impact

on area and timing overhead of the designs. This is because the

TaintLock authentication functions are purely combinational

in nature, thereby leading to no impact on scan frequency and

thus, supporting at-speed testing. TaintLock’s authentication

and obfuscation logic have fixed area for a given security

architecture. Thus, the 12-bit or 16-bit signature architecture

when paired with 128-bit TRLL keys will produce the same

logical area irrespective of the size of the IP being protected.

There may be changes in the wire length due to variability in

routing, but this will not have any impact on the logic overhead.

As a result, for the same architectural configuration selected

for TaintLock, both area and power overhead will decrease

with an increase in the size of the IP under protection.

RocketCore is the largest IP among the CEP benchmark

suite, (over 200,000 gates). TaintLock has an area overhead

of less than 0.2% for RocketCore. Although TaintLock does

not modify the functional implementation of the design, it

may impact the floorplan of the IP due to optimizations in

the routing paths available for scan stitching, thereby affecting

wire delay. From Table VIII, we observe that this impact on

wire delay is minimal. Finally, the latency of generating the

encryption keys, Kencr, is evaluated at ∼ 1.3 ns, which is less

than the functional clock period of 2 ns. The results show that

the area and the timing impact of TaintLock are negligible,

and the authentication function can compute the signatures

from test patterns in real-time without impacting scan clock

frequency and also support at-speed testing.

Table IX presents a comparison of the TaintLock architecture

with other similar scan obfuscation methods. We compare

TaintLock with methods such as LCSS [9], SSTKR [10], scan

encryption using block ciphers (SEBC) [14], scan encryption

using stream ciphers (SESC) [33], DOSC [12], and parallel

latch-based lock [15]. TaintLock offers significant advantages

over other methods in the following categories: (1) Security

against SAT-based deobfuscation attacks such as ScanSAT and

DynUnlock. LCSS, DOSC, and SSTKR do not offer resistance

against these class of attacks. (2) Support for dynamic per

TABLE VIII: PPA overheads associated with TaintLock and
PRESENT.

IP
Security Cell area Wirelength Power consumption ∆crit

configuration (µm2) (µm) (mW) (ns)

FIR

Baseline 6010.5 28103.1 2.88 1.98
∆prsnt (%) 30.64 29.03 17.69 0.71
∆12 (%) 6.38 10.47 3.13 0.22
∆16 (%) 7.5 14.65 3.94 0.72

IIR

Baseline 9864.6 46255.5 7.02 1.98
∆prsnt (%) 18.66 17.64 7.26 8.78
∆12 (%) 4.19 6.07 3.52 0.27
∆16 (%) 4.83 11.78 4.24 0.42

SHA256

Baseline 15077.6 114915.1 7.26 1.98
∆prsnt (%) 12.21 7.1 7.02 0.05
∆12 (%) 2.64 5.42 2.16 0.12
∆16 (%) 3.57 7 4.4 0.05

AES192

Baseline 267278.4 3794342.7 71.91 1.99
∆prsnt (%) 0.69 0.21 0.71 0.45
∆12 (%) 0.13 1.66 0.04 0.6
∆16 (%) 0.16 2.61 0.54 0.13

RocketCore

Baseline 375386.6 2979859.8 71.1 1.68
∆prsnt (%) 0.49 0.28 0.72 0.45
∆12 (%) 0.11 2.05 0.06 0.85
∆16 (%) 0.13 2.03 0.54 0.42

∆prsnt: percentage overhead associated with the insertion of PRESENT; ∆12(∆16):
percentage overhead associated with the insertion of 12-bit (16-bit) signature version of
TaintLock; ∆crit: critical path delay; Units are for Baseline values only.

pattern authentication. Existing encryption based methods like

SEBC, SESC, and parallel lath-based lock do not support

dynamically changing signatures for authentication. (3) Support

for test compression unlike DOSC, LCSS, and SSTKR. (4)

Support for multi-pattern tests such as LOC/LOS with no

timing overhead unlike parallel latch-based lock. In summary,

TaintLock offers a cryptographically strong method to not only

authenticate but also encrypt scan data. Further, it offers a

decentralized and non-intrusive way to embed scan security

with any of the existing logic locking techniques.

To present a head to head comparison with another state-

of-the-art encryption scheme, we compare TaintLock with

a lightweight cryptographic encryption scheme that may be

re-purposed for scan authentication, called PRESENT [34].

Unlike PRESENT, TaintLock provides security against not only

known- and chosen-plaintext attacks, but also against Oracle-

guided attacks. Moreover, it does so at over 3× lower area

overhead. As shown in Table VIII, the overall PPA footprint

of TaintLock is lower as compared to PRESENT. In addition,

PRESENT requires multiple rounds of encryption that take

up significant time, thereby adversely impacting the scan shift

frequency. PRESENT also has a fixed block size, thereby is not

parameterizable and hence not useful for small IP. Our results

show that a lightweight scan authentication scheme using taint

bits, such as TaintLock, can successfully offer security against

state-of-the-art attacks.

VII. CONCLUSION

We have presented the vulnerabilities associated with existing

scan data authentication techniques and how TaintLock, a

low overhead authentication and encryption method that uses

embedded signature and taint bits, can address them. We have

evaluated the effectiveness of TaintLock against a variety of

SAT-based Oracle-guided attacks and machine learning-based

Oracle-free attacks. We have also shown that TaintLock does

not have any impact on circuit testing and can support existing

test compression schemes.

13

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IX: Comparing prior secure scan methods with TaintLock.

Metrics LCSS [9] SSTKR [10] SEBC [14] SESC [33] DOSC [12] Parallel Latch-based Lock [15] TaintLock

Scan deobfuscation
: : ✓ ✓ : : ✓

attacks [7], [8]
Removal attacks [4] : : : : : : ✓

Dynamic per-pattern authentication : ✓ : : : : ✓

Support response encryption : : ✓ ✓ ✓ : ✓

Support LOC/LOS : : ✓ : ✓ ✓ ✓

Support test compression : : ✓ ✓ : ✓ ✓

Total test-time overhead (cycles) p × d p × d 4N None None k ∗ p None

k: key size in [15]; p: Pattern count; d: # of dummy flops; N : Round register size in [14].

REFERENCES

[1] J. Talukdar et al., “TaintLock: Preventing IP theft through lightweight
dynamic scan encryption using taint bits,” in IEEE European Test Symp.
(ETS), 2022, pp. 1–6.

[2] B. Tan et al., “Benchmarking at the frontier of hardware security: lessons
from logic locking,” arXiv preprint arXiv:2006.06806, 2020.

[3] J. Talukdar et al., “Securing Heterogeneous 2.5 D ICs Against IP Theft
through Dynamic Interposer Obfuscation,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2023, pp. 1–2.

[4] A. Chakraborty et al., “Keynote: A disquisition on logic locking,” IEEE
Trans. CAD, vol. 39, pp. 1952–1972, 2019.

[5] N. Limaye et al., “Thwarting all logic locking attacks: Dishonest oracle
with truly random logic locking,” IEEE Trans. CAD, vol. 40, pp. 1740–
1753, 2020.

[6] K. Z. Azar et al., “From cryptography to logic locking: A survey on the
architecture evolution of secure scan chains,” IEEE Access, 2021.

[7] N. Limaye et al., “DynUnlock: unlocking scan chains obfuscated using
dynamic keys,” in IEEE DATE, 2020, pp. 270–273.

[8] L. Alrahis et al., “ScanSAT: Unlocking static and dynamic scan
obfuscation,” IEEE Trans. on Emerging Topics in Computing, vol. 9,
no. 4, pp. 1867–1882, 2019.

[9] J. Lee et al., “A low-cost solution for protecting IPs against scan-based
side-channel attacks,” in IEEE VLSI Test Symp. (VTS), 2006, pp. 1–6.

[10] M. A. Razzaq et al., “SSTKR: Secure and testable scan design through
test key randomization,” in IEEE Asian Test Symp., 2011, pp. 60–65.

[11] W. Zeng et al., “LORAX: Machine learning-based oracle reconstruction
with minimal I/O patterns,” in IEEE ISVLSI, 2021, pp. 126–131.

[12] D. Zhang et al., “Dynamically obfuscated scan for protecting IPs against
scan-based attacks throughout supply chain,” in IEEE VTS, 2017.

[13] R. Karmakar et al., “A scan obfuscation guided design-for-security
approach for sequential circuits,” IEEE TCAS-II: Express Briefs, 2019.

[14] M. Da Silva et al., “Preventing scan attacks on secure circuits through
scan chain encryption,” IEEE Trans. CAD, vol. 38, 2018.

[15] W. Wang et al., “A secure scan architecture using parallel latch-based
lock,” Integration, 2023.

[16] H. Woo et al., “A Secure Scan Architecture Protecting Scan Test and
Scan Dump Using Skew-Based Lock and Key,” IEEE Access, 2021.

[17] M. Dworkin, “Block cipher modes of operation: The CCM mode for
authentication and confidentiality,” NIST Special Publication, 2003.

[18] K. J. Balakrishnan et al., “Relationship between entropy and test data
compression,” IEEE Trans. CAD, vol. 26, pp. 386–395, 2007.

[19] A. Sahai et al., “How to use indistinguishability obfuscation: deniable
encryption, and more,” in ACM Symp. on Theory of Comp., 2014.

[20] M. Matsui, “Linear cryptanalysis method for DES cipher,” in Workshop
on the Theory and App. of Cryptographic Tech., 1993, pp. 386–397.

[21] J. Katz et al., Introduction to modern cryptography: principles and
protocols. Chapman and hall/CRC, 2007.

[22] J. Talukdar et al., “A BIST-based dynamic obfuscation scheme for
resilience against removal and oracle-guided attacks,” in IEEE Intl. Test
Conference, 2021, pp. 170–179.

[23] S. Roshanisefat et al., “RANE: An open-source formal de-obfuscation
attack for reverse engineering of logic encrypted circuits,” in IEEE Great
Lakes Symp. on VLSI, 2021, pp. 221–228.

[24] B. Dutertre, “Yices 2.2,” in Intl. Conference on Computer Aided
Verification, 2014, pp. 737–744.

[25] L. De Moura et al., “Z3: An efficient SMT solver,” in Intl. conf. on Tools
and Algorithms for the Construction and Analysis of Systems, 2008.

[26] R. Bruttomesso et al., “The MATHSAT 4 SMT solver: Tool paper,” in
20th Intl. Conference on Computer Aided Verification, 2008, pp. 299–303.

[27] K. Shamsi et al., “KC2: Key-condition crunching for fast sequential
circuit deobfuscation,” in IEEE DATE, 2019, pp. 534–539.

[28] M. S. Rahman et al., “Security assessment of dynamically obfuscated
scan chain against oracle-guided attacks,” ACM Transactions on Design
Automation of Electronic Systems (TODAES), pp. 1–27, 2021.

[29] S. Rai et al., “Logic synthesis meets machine learning: Trading exactness
for generalization,” in IEEE DATE, 2021, pp. 1026–1031.

[30] A. Chaudhuri et al., “Fault-criticality assessment for ai accelerators using
graph convolutional networks,” in IEEE DATE, 2021.

[31] ——, “Functional criticality analysis of structural faults in AI accelera-
tors,” IEEE Trans. CAD, vol. 41, pp. 5657–5670, 2022.

[32] J. Rajski et al., “Embedded deterministic test,” IEEE Trans. CAD, vol. 23,
pp. 776–792, 2004.

[33] E. Valea et al., “Stream vs block ciphers for scan encryption,” Micro-
electronics Journal, vol. 86, pp. 65–76, 2019.

[34] A. Bogdanov et al., “PRESENT: An ultra-lightweight block cipher,”
in Cryptographic Hardware and Embedded Systems-CHES, 2007, pp.
450–466.

Jonti Talukdar received the B. Tech. degree in ECE
from Nirma University, Ahmedabad, India, in 2018,
and M.S.and Ph.D. degrees in ECE from Duke Uni-
versity, Durham, in 2020 and 2024, respectively. His
research interests lie at the intersection of hardware
security, test, and applied machine learning for silicon
security, health, and lifecycle management. His Ph.D.
thesis is on IP security for 2.5D/3D HI Systems. He
currently works as a senior DFX engineer at NVIDIA
in Santa Clara, CA.

Arjun Chaudhuri received the B.Tech. degree in
ECE from IIT Kharagpur, Kharagpur, India, in 2017.
He received both the M.S. and Ph.D. degrees in ECE
from Duke University, Durham, NC, in 2022. He
currently works as a senior DFX Engineer at NVIDIA
in Santa Clara, CA and also holds an appointment
as an adjunct faculty at Arizona State University.

Eduardo Ortega Eduardo Ortega received the
B.A./B.S. degrees in Integrated Engineering from the
University of San Diego (2020). He is a Fulton Fellow
of the Ira A. Fulton Schools of Engineering, School
of Electrical, Computer, and Energy Engineering at
Arizona State University, Tempe, AZ, where he is
also currently pursuing the Ph.D. degree.

Krishnendu Chakrabarty (Fellow, IEEE) received
the B. Tech. degree from the Indian Institute of
Technology, Kharagpur, in 1990, and M.S.E. and
Ph.D. degrees from University of Michigan, Ann
Arbor, in 1992 and 1995, respectively. He is now the
Fulton Professor of Microelectronics in the School
of Electrical, Computer and Energy Engineering
at Arizona State University (ASU). He is also the
Director of the ASU Center on Semiconductor Micro-
electronics and CTO of the Department of Defense
Microelectronics Commons Southwest Advanced

Prototyping (SWAP) Hub. Prof. Chakrabarty’s current research projects
include: design-for-testability of 2.5D/3D integrated circuits and heterogeneous
integration; hardware security; AI accelerators; microfluidic biochips; AI for
healthcare. He is a Fellow of ACM, IEEE, and AAAS, and a Golden Core
Member of the IEEE Computer Society.

14

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3416865

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Arizona State University. Downloaded on October 09,2024 at 00:59:23 UTC from IEEE Xplore.  Restrictions apply. 


	Introduction
	Background and Related Prior Work
	Secure Scan Chains and IP Protection
	Threat Model and Assumptions

	TaintLock: A Generalized Architecture
	Overview
	System Architecture
	Feistel Structure-based SP-Network Design
	Extending TaintLock for General-Purpose Encryption
	Optimizing Taint and Signature Cell Allocation using ILP

	Security Analysis
	Encryption Quality and Adversarial Indistinguishability
	Security Analysis
	Brute-force Resilience
	Cryptographic Attacks
	Oracle-guided and Oracle-free Attacks
	Template-based SAT Attack
	Oracle Reconstruction Attacks


	Testability Analysis
	Testability Support during Product Lifecycle
	Test Compression Support

	Overhead Analysis
	Conclusion
	References
	Biographies
	Jonti Talukdar
	Arjun Chaudhuri
	Eduardo Ortega
	Krishnendu Chakrabarty


