
A Smart Cache for a SmartNIC!
Scaling End-host Networking to 400 Gbps & Beyond

Annus Zulfiqar, Ali Imran, Venkat Kunaparaju, Ben Pfaff†, Gianni Antichi‡⇤, Muhammad Shahbaz
Purdue University †Feldera ‡Queen Mary University of London ⇤Politecnico di Milano

1 MOTIVATION & GOALS
The success of modern public/edge clouds hinges heavily
on the performance of their end-host network stacks if they
are to support the emerging and diverse tenants’ workloads
(e.g., distributed training in the cloud [22, 27, 42, 48] to fast
inference at the edge [14, 47]). Unlike the core network (e.g.,
switches and routers with 50 Tbps+ of aggregate through-
put and sub-`s latencies [19, 20]), the end-host network
has struggled to keep pace with the rising performance de-
mands [32–36, 49].
In this paper, we (1) argue that it is the past assump-

tions and conventional wisdom that are preventing end-
host networks from realizing their full potential, and (2)
show how modern programmable switch pipelines (e.g.,
OpenFlow [25, 39] and P4 [8]), offer a novel approach
to developing fast-path caches (Figure 1)—yielding signifi-
cantly higher hit rates compared to conventional caches (e.g.,
Megaflow [33]) while operating entirely within the limited
(hardware) rule space of Modern SmartNICs [18, 28, 29, 43].

1.1 End-host Networking: Past & Present
Since the late 90s, the end-host networking stack has trans-
formed into a switching substrate [21, 33], acting as the last-
hop layer in the modern distributed computing landscape—
routing traffic to/from virtual machines (VMs) and contain-
ers, connecting them to the outside world [12, 21, 33, 41].
Early incarnations of these switches primarily resulted in
mimicking the functionalities of fixed-function hardware
switches as hardcoded software switches (e.g., Linux Bridges
and OpenFlow Switches [13, 15]). We have come a long
way since then (a) through a series of software optimiza-
tions aimed at maximizing CPU performance [33, 35, 36]
to (b) leveraging hardware offloads using modern Smart-
NICs [16, 18, 28, 29, 43]. Nevertheless, the challenge persists:
the end-host networking stack struggles to scale effectively with
emerging workload and increasing link rates [36, 49].

• Software Optimizations. Applying the entire multi-table
switch pipeline (e.g., OpenFlow) on each incoming packet
proved prohibitively expensive; CPUs struggled with per-
forming multiple lookups, leading to significant performance
degradation with each additional lookup [33]. The first op-
timization, therefore, involved dividing the end-host soft-
ware switch into a slow-path (implementing the multi-table
pipeline) and a fast-path (hosting a single-lookup cache),

Slow Path

Fast Paths

(a) Megaflow
 High
 Low

(b) Accel. Megaflow
 High
 Moderate

(c) Gigaflow
 Low
 High

Miss Rate:
Lookup Speed:

SmartNICs

Figure 1: Comparing Megaflow, Accelerated Megaflow
(with hardware cache), and Gigaflow, in terms of cache
miss rates and (average) lookup speeds.

Figure 1a. The initial packet of a flow is processed by slow-
path pipeline, generating a single exact-match rule stored
in the fast-path cache; subsequent packets then match the
cached rule. The second optimization involved replacing
these early exact-match caches with wildcard caches (i.e.,
Megaflow [33]), thereby enhancing the aggregated switch
throughput by handling more traffic in the fast-path. And,
more recently, a third optimization focuses on improving the
lookup speed of fast-path caches by replacing the existing
Tuple Space Search (TSS) classifier [33, 38] with compact Ma-
chine Learning models (i.e., RangeQuery-Recursive Model
Index, RQ-RMI) [35, 36]. Despite these optimizations, the
inherent limitations of a CPU—declining performance due
to the slowdown of Moore’s Law [1]—restrict the overall
performance of these switches to less than 10Gbps per CPU.

• SmartNIC Offloads. There is an urgent push within
the networking industry to shift from CPU-based end-host
switching to SmartNICs, as indicated by the numerous new
NIC products introduced by key players such as Amazon (e.g.,
Nitro [2]), Nvidia (e.g., Connect X6 [28], Bluefield DPU [29]),
AMD (e.g., Pensando DPU [3, 4]), Intel (e.g., IPU [17]),
Marvell (e.g., LiquidIO [23]), and Microsoft (e.g., Fungible
DPU [26]). Equippedwith a hardware cache (Figure 1b), these
NICs can process and route traffic directly to/from the virtual
endpoints (e.g., using SR-IOV [30]), thereby bypassing the
software fast-path and the slow-path. These NICs can reach
link speeds of 400Gbps and higher [29] when the matching

1

rule is present in the hardware cache.1 However, the main
challenge with these NICs is the size of these hardware wild-
card caches, which typically hold in the order of 10K rules—
much smaller than the software fast-path caches [24, 33, 40].
This limitation is attributed to the restricted power budget of
these SmartNICs, typically around 75W [44], and the hard-
ware complexity associated with integrating a large TCAM
on-chip [9, 19, 20]. As a result, despite their performance
advantages, the high miss rate of these caches results in
significantly lower overall aggregate throughput. Therefore,
these hardware caches today handle only a small subset of
traffic, typically long flows, while the remainder is directed
to the software fast-/slow-path.

1.2 Towards Smart Pipeline-Aware Caching
In this paper, we offer a fresh perspective on storing rules
within the SmartNIC hardware. Until now, two assumptions
have guided the design of fast-path caching: (1) multi-table
lookups are expensive, thus necessitating the need for a
single-lookup cache (e.g., Megaflow); and (2) the only avail-
able locality information for guiding cache-rule generation
is derived from the traffic alone. However, these assumptions
no longer hold true today.
First, unlike CPUs, the modern SmartNICs can perform

multi-table lookups in the hardware at link speeds, similar
to network switches (e.g., PISA [9, 19]). A pipeline of smaller
TCAMs can operate at higher clock speeds compared to
a single large TCAM, thus, enabling NICs to sustain even
higher link rates. (This is particularly relevant as discussions
around the 800G Ethernet standard are underway [11].)

Second, modern switch (slow-path) pipelines are program-
mable (e.g., P4 and OpenFlow), letting the operators specify
which policies to apply (e.g., L2, L3, or ACL) and in what
order. We can leverage this pipeline-aware locality to further
inform how we generate the cached rules. For instance, an
exact-match rule captures the temporal locality of traffic (e.g.,
packets from a particular flow arriving frequently), while
a Megaflow rule exploits the spatial locality of traffic (e.g.,
packets from flows with matching prefixes arriving closer
in time). A Megaflow rule is, thus, an aggregate of multiple
exact-match rules.
Extending this further, we observe that a slow-path

pipeline is an aggregate of many Megaflow rules—each com-
plete traversal of the slow-path pipeline yields a Megaflow
rule. Conversely, a Megaflow rule is a composition of mul-
tiple sub-traversals of a slow-path pipeline, with different
Megaflow rules sharing a sub-traversal.

1Note that the on-NIC ARM/RISC-V cores are typically less powerful and
would likely result in even poorer performance compared to the server
cores [10].

Pipeline Rulespace Coverage Increase
Megaflow Gigaflow

OFD [31] 32.0K 14,674.6K 459⇥
PSC [37] 32.0K 4,977.4K 155⇥
ANT [5–7] 32.0K 1,283.4K 40⇥

Table 1: Rule space (#flow rules) coverage in Megaflow
versus Gigaflow for a high-locality environment.

0
20
40
60
80

100

ANT PSC OFD

C
ac

he
 H

it
% Megaflow Gigaflow

(a) Low Locality
0

20
40
60
80

100

ANT PSC OFD

C
ac

he
 H

it
%

(b) High Locality
Figure 2: Comparing cache hits (%) of Megaflow versus
Gigaflow using real-world vSwitch pipelines: Antrea
(ANT) [5–7], Pisces (PSC) [37], and OFDPA (OFD) [31].

Gigaflow: A Sub-Traversal Cache. Based on the previ-
ous two insights: (a) line-rate multi-table lookups inside
SmartNICs and (b) Megaflows with overlapping traversal,
we develop a new fast-path cache, Gigaflow, that stores sub-
traversals of a slow-path pipeline (Figure 1c). Upon a miss
in the NIC, a mapper in the slow-path computes a set of can-
didate sub-traversals to install in the NIC hardware tables.
The candidates are selected such that the cross-product of
the new sub-traversals and the existing ones across all tables
in the NIC yields the most rule-space coverage.

2 PRELIMINARY RESULTS
Our preliminary results show that Gigaflow can achieve up
to 20% higher hit rate than a hardware-accelerated Megaflow
cache (Figure 2) while capturing 200⇥ more rule space on
average (Table 1).
We implement Gigaflow as a 4-table P4 pipeline with 8K

entries each (32K entries in total), and Megaflow as a sin-
gle P4 table with 32K entries using the Xilinx’s P4-SDNet
compiler [45] on an Alveo U250 FPGA [46]. We generate
traffic with 100K unique flows and test it against three real-
world slow-path pipelines: Antrea OVS (ANT, 22 tables) [5–7],
Pisces L2L3-ACL (PSC, 7 tables) [37], and Cord OFDPA (OFD,
10 tables) [31].

On average, in low-locality environments (Figure 2a), Gi-
gaflow yields an 18.4% increase in hit rates compared to
Megaflow across all three pipelines; and in high-locality en-
vironments (Figure 2b), the hit rate is even higher with an
average increase of 46.8%. Moreover, Gigaflow is able to cap-
ture a rule space of up to 14.6M for OFD, whereas Megaflow
was limited to only 32K rules across all pipelines.

2

REFERENCES
[1] MIT CSAIL Alliances. last accessed: 04/19/2024. The Death of

Moore’s Law: What it means and what might fill the gap going for-
ward. https://cap.csail.mit.edu/death-moores-law-what-it-means-and-
what-might-fill-gap-going-forward.

[2] Amazon. last accessed: 04/19/2024. AWS Nitro System. https://aws.
amazon.com/ec2/nitro/.

[3] AMD. last accessed: 04/19/2024. Pensando. https://www.amd.com/en/
accelerators/pensando.

[4] AMD. last accessed: 04/19/2024. Pensando DSC-200 Distributed Ser-
vices Card. https://www.amd.com/system/files/documents/pensando-
dsc-200-product-brief.pdf.

[5] Antrea. last accessed: 04/19/2024. Antrea: Enhance pod networking and
enforce network policies for Kubernetes clusters. https://antrea.io/.

[6] Antrea. last accessed: 04/19/2024. Antrea OVS Pipeline. https://antrea.
io/docs/main/docs/design/ovs-pipeline/.

[7] Antrea-IO. last accessed: 04/19/2024. Antrea OVS Pipeline. https://
github.com/antrea-io/antrea/blob/main/docs/design/ovs-pipeline.md.

[8] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
Independent Packet Processors. In ACM SIGCOMM CCR.

[9] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding Metamorphosis: Fast Programmable Match-Action Processing
in Hardware for SDN. In ACM SIGCOMM.

[10] Xuzheng Chen, Jie Zhang, Ting Fu, Yifan Shen, Shu Ma, Kun Qian,
Lingjun Zhu, Chao Shi, Ming Liu, and Zeke Wang. 2024. Demystifying
Datapath Accelerator Enhanced Off-path SmartNIC. arXiv preprint
arXiv:2402.03041 (2024).

[11] Ethernet Technology Consortium. last accessed: 04/19/2024. Ethernet
800G Specification. https://ethernettechnologyconsortium.org/wp-
content/uploads/2021/10/Ethernet-Technology-Consortium_800G-
Specification_r1.1.pdf.

[12] Daniel Firestone. 2017. VFP: A Virtual Switch Platform for Host SDN
in the Public Cloud. In USENIX NSDI.

[13] The Linux Foundation. last accessed: 04/19/2024. Linux Bridge.
https://wiki.linuxfoundation.org/networking/bridge.

[14] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelli-
gence Beyond the Edge: Inference on Intermittent Embedded Systems.
In ACM ASPLOS.

[15] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martín Casado,
Nick McKeown, and Scott Shenker. 2008. NOX: towards an operating
system for networks. In ACM SIGCOMM CCR.

[16] Malvika Gupta. last accessed: 04/19/2024. Open vSwitch Offload by
SmartNICs on Arm. https://community.arm.com/arm-community-
blogs/b/tools-software-ides-blog/posts/open-vswitch-offload-by-
smartnics-on-arm.

[17] Intel. last accessed: 03/12/2024. Intel Infrastructure Processing Units
(IPUs) and Smart-NICs. https://www.intel.com/content/www/us/en/
products/details/network-io/ipu.html.

[18] Intel. last accessed: 04/19/2024. Intel Ethernet Controller 700 Series
- Open vSwitch Hardware Acceleration Application Note. https:
//builders.intel.com/docs/networkbuilders/intel-ethernet-controller-
700-series-open-vswitch-hardware-acceleration-application-note.pdf.

[19] Intel. last accessed: 04/19/2024. Tofino: P4-programmable Eth-
ernet switch ASIC that delivers better performance at lower
power. https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-series.html.

[20] Intel. last accessed: 04/19/2024. Tofino2: Second-generation
P4-programmable Ethernet Switch ASIC that Continues to

Deliver Programmability without Compromise. https://www.in-
tel.com/content/www/us/en/products/network-io/programmable-
ethernet-switch/tofino-2-series.html.

[21] Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anu-
pam Chanda, Bryan Fulton, Igor Ganichev, Jesse Gross, Paul In-
gram, Ethan Jackson, Andrew Lambeth, Romain Lenglet, Shih-Hao Li,
Amar Padmanabhan, Justin Pettit, Ben Pfaff, Rajiv Ramanathan, Scott
Shenker, Alan Shieh, Jeremy Stribling, PankajThakkar, DanWendlandt,
Alexander Yip, and Ronghua Zhang. 2014. Network Virtualization in
Multi-tenant Datacenters. In USENIX NSDI.

[22] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael Swift. 2021. ATP: In-network Aggregation
for Multi-tenant Learning. In USENIX NSDI.

[23] Marvell. last accessed: 04/19/2024. Data Processing Units (DPU). https:
//www.marvell.com/products/data-processing-units.html.

[24] Marvell. last accessed: 04/19/2024. Marvell LiquidIO III.
https://www.marvell.com/content/dam/marvell/en/public-collateral/
embedded-processors/marvell-liquidio-III-solutions-brief.pdf.

[25] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
2008. OpenFlow: Enabling Innovation in Campus Networks. In ACM
SIGCOMM CCR.

[26] Microsoft. last accessed: 04/19/2024. Microsoft announces
acquisition of Fungible to accelerate datacenter innovation.
https://blogs.microsoft.com/blog/2023/01/09/microsoft-announces-
acquisition-of-fungible-to-accelerate-datacenter-innovation/.

[27] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei
Zaharia. 2019. PipeDream: generalized pipeline parallelism for DNN
training. In ACM SOSP.

[28] Nvidia. last accessed: 04/19/2024. CONNECTX-6 DX. https://www.
nvidia.com/en-us/networking/ethernet/connectx-6-dx/.

[29] Nvidia. last accessed: 04/19/2024. NVIDIA BLUEFIELD DATA
PROCESSING UNITS. https://www.nvidia.com/en-us/networking/
products/data-processing-unit/.

[30] Nvidia. last accessed: 04/19/2024. Single Root IO Virtualization - SR-
IOV. https://docs.nvidia.com/networking/display/mlnxofedv461000/s-
ingle+root+io+virtualization+(sr-iov).

[31] Cord OF-DPA. last accessed: 04/19/2024. OpenSwitch OF-DPA User
Guide. https://netbergtw.com/wp-content/uploads/Files/OPS_of_dpa.
pdf.

[32] Open-vSwitch. last accessed: 04/19/2024. ofproto-dpif-upcall.c.
https://github.com/openvswitch/ovs/blob/master/ofproto/ofproto-
dpif-upcall.c.

[33] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou,
Jarno Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar,
Keith Amidon, and Martin Casado. 2015. The Design and Implementa-
tion of Open vSwitch. In USENIX NSDI.

[34] Diana Andreea Popescu. last accessed: 04/19/2024. Latency-driven
performance in data centers. https://www.cl.cam.ac.uk/techreports/
UCAM-CL-TR-937.pdf.

[35] Alon Rashelbach, Ori Rottenstreich, and Mark Silberstein. 2020. A
Computational Approach to Packet Classification. In ACM SIGCOMM.

[36] Alon Rashelbach, Ori Rottenstreich, andMark Silberstein. 2022. Scaling
Open vSwitch with a Computational Cache. In USENIX NSDI.

[37] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick
Feamster, Nick McKeown, and Jennifer Rexford. 2016. PISCES: A Prog-
rammable, Protocol-Independent Software Switch. InACM SIGCOMM.

[38] V. Srinivasan, S. Suri, and G. Varghese. 1999. Packet Classification
Using Tuple Space Search. ACM SIGCOMM CCR (1999).

[39] Jean Tourrilhes, Justin Pettit, et al. last accessed: 04/19/2024. Open-
Flow Switch Specification, Version 1.5.1 (Protocol version 0x06).

3

https://opennetworking.org/wp-content/uploads/2014/10/openflow-
switch-v1.5.1.pdf.

[40] YanshuWang, Dan Li, Yuanwei Lu, JianpingWu, Hua Shao, and Yutian
Wang. 2022. Elixir: A High-performance and Low-cost Approach to
Managing Hardware/Software Hybrid Flow Tables Considering Flow
Burstiness. In USENIX NSDI.

[41] Chengkun Wei, Xing Li, Ye Yang, Xiaochong Jiang, Tianyu Xu, Bowen
Yang, Taotao Wu, Chao Xu, Yilong Lv, Haifeng Gao, Zhentao Zhang,
Zikang Chen, Zeke Wang, Zihui Zhang, Shunmin Zhu, and Wenzhi
Chen. 2023. Achelous: Enabling Programmability, Elasticity, and Reli-
ability in Hyperscale Cloud Networks. In ACM SIGCOMM.

[42] Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran
Chen, and Hai Li. 2017. TernGrad: ternary gradients to reduce com-
munication in distributed deep learning. In NeurIPS.

[43] Xilinx. last accessed: 04/19/2024. Alveo SN1000 SmartNICs.
https://www.xilinx.com/content/dam/xilinx/publications/product-
briefs/sn1000-product-brief.pdf.

[44] Xilinx. last accessed: 04/19/2024. Alveo U25 SmartNIC. https://www.
xilinx.com/products/boards-and-kits/alveo/u25.html.

[45] AMD Xilinx. last accessed: 04/11/2024. Vitis Networking P4. https://
www.xilinx.com/products/intellectual-property/ef-di-vitisnetp4.html.

[46] AMD Xilinx. last accessed: 04/19/2024. Alveo U250 Data Center Accel-
erator Card. https://www.xilinx.com/products/boards-and-kits/alveo/
u250.html.

[47] Xiaowei Xu, Yukun Ding, Sharon Xiaobo Hu, Michael Niemier, Jason
Cong, Yu Hu, and Yiyu Shi. 2018. Scaling for edge inference of deep
neural networks. In Nature Electronics.

[48] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex Smola. 2010.
Parallelized Stochastic Gradient Descent. In NeurIPS.

[49] Annus Zulfiqar, Ben Pfaff,William Tu, Gianni Antichi, andMuhammad
Shahbaz. 2023. The Slow Path Needs an Accelerator Too!. In ACM
SIGCOMM CCR.

4

