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1 MOTIVATION & GOALS
The success of modern public/edge clouds hinges heavily
on the performance of their end-host network stacks if they
are to support the emerging and diverse tenants’ workloads
(e.g., distributed training in the cloud [22, 27, 42, 48] to fast
inference at the edge [14, 47]). Unlike the core network (e.g.,
switches and routers with 50 Tbps+ of aggregate through-
put and sub-`s latencies [19, 20]), the end-host network
has struggled to keep pace with the rising performance de-
mands [32–36, 49].
In this paper, we (1) argue that it is the past assump-

tions and conventional wisdom that are preventing end-
host networks from realizing their full potential, and (2)
show how modern programmable switch pipelines (e.g.,
OpenFlow [25, 39] and P4 [8]), offer a novel approach
to developing fast-path caches (Figure 1)—yielding signifi-
cantly higher hit rates compared to conventional caches (e.g.,
Megaflow [33]) while operating entirely within the limited
(hardware) rule space of Modern SmartNICs [18, 28, 29, 43].

1.1 End-host Networking: Past & Present
Since the late 90s, the end-host networking stack has trans-
formed into a switching substrate [21, 33], acting as the last-
hop layer in the modern distributed computing landscape—
routing traffic to/from virtual machines (VMs) and contain-
ers, connecting them to the outside world [12, 21, 33, 41].
Early incarnations of these switches primarily resulted in
mimicking the functionalities of fixed-function hardware
switches as hardcoded software switches (e.g., Linux Bridges
and OpenFlow Switches [13, 15]). We have come a long
way since then (a) through a series of software optimiza-
tions aimed at maximizing CPU performance [33, 35, 36]
to (b) leveraging hardware offloads using modern Smart-
NICs [16, 18, 28, 29, 43]. Nevertheless, the challenge persists:
the end-host networking stack struggles to scale effectively with
emerging workload and increasing link rates [36, 49].

• Software Optimizations. Applying the entire multi-table
switch pipeline (e.g., OpenFlow) on each incoming packet
proved prohibitively expensive; CPUs struggled with per-
forming multiple lookups, leading to significant performance
degradation with each additional lookup [33]. The first op-
timization, therefore, involved dividing the end-host soft-
ware switch into a slow-path (implementing the multi-table
pipeline) and a fast-path (hosting a single-lookup cache),
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Figure 1: Comparing Megaflow, Accelerated Megaflow
(with hardware cache), and Gigaflow, in terms of cache
miss rates and (average) lookup speeds.

Figure 1a. The initial packet of a flow is processed by slow-
path pipeline, generating a single exact-match rule stored
in the fast-path cache; subsequent packets then match the
cached rule. The second optimization involved replacing
these early exact-match caches with wildcard caches (i.e.,
Megaflow [33]), thereby enhancing the aggregated switch
throughput by handling more traffic in the fast-path. And,
more recently, a third optimization focuses on improving the
lookup speed of fast-path caches by replacing the existing
Tuple Space Search (TSS) classifier [33, 38] with compact Ma-
chine Learning models (i.e., RangeQuery-Recursive Model
Index, RQ-RMI) [35, 36]. Despite these optimizations, the
inherent limitations of a CPU—declining performance due
to the slowdown of Moore’s Law [1]—restrict the overall
performance of these switches to less than 10Gbps per CPU.

• SmartNIC Offloads. There is an urgent push within
the networking industry to shift from CPU-based end-host
switching to SmartNICs, as indicated by the numerous new
NIC products introduced by key players such as Amazon (e.g.,
Nitro [2]), Nvidia (e.g., Connect X6 [28], Bluefield DPU [29]),
AMD (e.g., Pensando DPU [3, 4]), Intel (e.g., IPU [17]),
Marvell (e.g., LiquidIO [23]), and Microsoft (e.g., Fungible
DPU [26]). Equippedwith a hardware cache (Figure 1b), these
NICs can process and route traffic directly to/from the virtual
endpoints (e.g., using SR-IOV [30]), thereby bypassing the
software fast-path and the slow-path. These NICs can reach
link speeds of 400Gbps and higher [29] when the matching
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rule is present in the hardware cache.1 However, the main
challenge with these NICs is the size of these hardware wild-
card caches, which typically hold in the order of 10K rules—
much smaller than the software fast-path caches [24, 33, 40].
This limitation is attributed to the restricted power budget of
these SmartNICs, typically around 75W [44], and the hard-
ware complexity associated with integrating a large TCAM
on-chip [9, 19, 20]. As a result, despite their performance
advantages, the high miss rate of these caches results in
significantly lower overall aggregate throughput. Therefore,
these hardware caches today handle only a small subset of
traffic, typically long flows, while the remainder is directed
to the software fast-/slow-path.

1.2 Towards Smart Pipeline-Aware Caching
In this paper, we offer a fresh perspective on storing rules
within the SmartNIC hardware. Until now, two assumptions
have guided the design of fast-path caching: (1) multi-table
lookups are expensive, thus necessitating the need for a
single-lookup cache (e.g., Megaflow); and (2) the only avail-
able locality information for guiding cache-rule generation
is derived from the traffic alone. However, these assumptions
no longer hold true today.
First, unlike CPUs, the modern SmartNICs can perform

multi-table lookups in the hardware at link speeds, similar
to network switches (e.g., PISA [9, 19]). A pipeline of smaller
TCAMs can operate at higher clock speeds compared to
a single large TCAM, thus, enabling NICs to sustain even
higher link rates. (This is particularly relevant as discussions
around the 800G Ethernet standard are underway [11].)

Second, modern switch (slow-path) pipelines are program-
mable (e.g., P4 and OpenFlow), letting the operators specify
which policies to apply (e.g., L2, L3, or ACL) and in what
order. We can leverage this pipeline-aware locality to further
inform how we generate the cached rules. For instance, an
exact-match rule captures the temporal locality of traffic (e.g.,
packets from a particular flow arriving frequently), while
a Megaflow rule exploits the spatial locality of traffic (e.g.,
packets from flows with matching prefixes arriving closer
in time). A Megaflow rule is, thus, an aggregate of multiple
exact-match rules.
Extending this further, we observe that a slow-path

pipeline is an aggregate of many Megaflow rules—each com-
plete traversal of the slow-path pipeline yields a Megaflow
rule. Conversely, a Megaflow rule is a composition of mul-
tiple sub-traversals of a slow-path pipeline, with different
Megaflow rules sharing a sub-traversal.

1Note that the on-NIC ARM/RISC-V cores are typically less powerful and
would likely result in even poorer performance compared to the server
cores [10].

Pipeline Rulespace Coverage Increase
Megaflow Gigaflow

OFD [31] 32.0K 14,674.6K 459⇥
PSC [37] 32.0K 4,977.4K 155⇥
ANT [5–7] 32.0K 1,283.4K 40⇥

Table 1: Rule space (#flow rules) coverage in Megaflow
versus Gigaflow for a high-locality environment.
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Figure 2: Comparing cache hits (%) of Megaflow versus
Gigaflow using real-world vSwitch pipelines: Antrea
(ANT) [5–7], Pisces (PSC) [37], and OFDPA (OFD) [31].

Gigaflow: A Sub-Traversal Cache. Based on the previ-
ous two insights: (a) line-rate multi-table lookups inside
SmartNICs and (b) Megaflows with overlapping traversal,
we develop a new fast-path cache, Gigaflow, that stores sub-
traversals of a slow-path pipeline (Figure 1c). Upon a miss
in the NIC, a mapper in the slow-path computes a set of can-
didate sub-traversals to install in the NIC hardware tables.
The candidates are selected such that the cross-product of
the new sub-traversals and the existing ones across all tables
in the NIC yields the most rule-space coverage.

2 PRELIMINARY RESULTS
Our preliminary results show that Gigaflow can achieve up
to 20% higher hit rate than a hardware-accelerated Megaflow
cache (Figure 2) while capturing 200⇥ more rule space on
average (Table 1).
We implement Gigaflow as a 4-table P4 pipeline with 8K

entries each (32K entries in total), and Megaflow as a sin-
gle P4 table with 32K entries using the Xilinx’s P4-SDNet
compiler [45] on an Alveo U250 FPGA [46]. We generate
traffic with 100K unique flows and test it against three real-
world slow-path pipelines: Antrea OVS (ANT, 22 tables) [5–7],
Pisces L2L3-ACL (PSC, 7 tables) [37], and Cord OFDPA (OFD,
10 tables) [31].

On average, in low-locality environments (Figure 2a), Gi-
gaflow yields an 18.4% increase in hit rates compared to
Megaflow across all three pipelines; and in high-locality en-
vironments (Figure 2b), the hit rate is even higher with an
average increase of 46.8%. Moreover, Gigaflow is able to cap-
ture a rule space of up to 14.6M for OFD, whereas Megaflow
was limited to only 32K rules across all pipelines.
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