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Abstract: Radar sensors, leveraging the Doppler effect, enable the nonintrusive capture of kinetic
and physiological motions while preserving privacy. Deep learning (DL) facilitates radar sens-
ing for healthcare applications such as gait recognition and vital-sign measurement. However,
band-dependent patterns, indicating variations in patterns and power scales associated with fre-
quencies in time—frequency representation (TFR), challenge radar sensing applications using DL.
Frequency-dependent characteristics and features with lower power scales may be overlooked during
representation learning. This paper proposes an Enhanced Band-Dependent Learning framework
(E-BDL) comprising an adaptive sub-band filtering module, a representation learning module, and a
sub-view contrastive module to fully detect band-dependent features in sub-frequency bands and
leverage them for classification. Experimental validation is conducted on two radar datasets, includ-
ing gait abnormality recognition for Alzheimer’s disease (AD) and AD-related dementia (ADRD) risk
evaluation and vital-sign monitoring for hemodynamics scenario classification. For hemodynamics
scenario classification, E-BDL-ResNet achieves competitive performance in overall accuracy and
class-wise evaluations compared to recent methods. For ADRD risk evaluation, the results demon-
strate E-BDL-ResNet’s superior performance across all candidate models, highlighting its potential as
a clinical tool. E-BDL effectively detects salient sub-bands in TFRs, enhancing representation learning
and improving the performance and interpretability of DL-based models.

Keywords: radar sensing; spectrogram; sub-band; deep learning; contrastive learning

1. Introduction

Utilizing the Doppler effect, which manifests itself as frequency or phase shifts in
returned signals, radar sensors can remotely capture kinetic and physiological motions of
individuals while maintaining privacy preservation [1-3]. Kinetic motions are presented
in the micro-Doppler frequency fluctuations resulting from movements of body joints,
encompassing vibrations or rotations alongside straight-line motion [1]. Similarly, subtle
chest expansion induced by physiological motions (breathing and heartbeat) is captured by
analyzing changes in both frequency and phase of radar signals [2,3]. The returned radar
signal is expected to contain adequate information about an individual’s body movements
and vital signs.

Artificial intelligence (AI) can extract salient information from radar signals, enabling
radar sensing to be applied in various healthcare domains, such as gait recognition, fall
detection, and vital-sign measurement [4—6]. Traditional Al approaches rely on feature
engineering to extract task-specific features from radar signals, followed by machine
learning (ML) models to correlate extracted features with ground truth labels. Unlike
traditional ML, deep learning (DL) models the relationship between inputs and outputs
while learning to identify effective features in an end-to-end manner [7]. Additionally, DL
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models have shown superiority in pattern learning and flexibility in adapting to various
applications over traditional ML models when applied to radar sensing data [5,6].

Representation schemes for radar data play a fundamental role in the overall perfor-
mance of DL-based frameworks [6,8,9]. One of the common schemes is time—frequency
representation (TFR), particularly spectrograms, which represent a signal in both time and
frequency domains. They can be extracted from the return signals of any continuous wave
radar, which is one of the simplest forms of radar systems using short-time Fourier trans-
form (STFT) [1]. TFR is treated as a 1-channel image in a DL-based framework. DL-based
models based on 2D convolution neural network (CNN) have had great success in recogni-
tion or classification tasks of radar sensing applications such as activity recognition [6], gait
classification [10], and hemodynamics scenarios classification [11].

However, current research in radar sensing applications utilizing TFR as the input
has not fully explored characteristics of band-dependent patterns: motion patterns vary
across frequency bands that depend on speeds of targets, and discernible differences in
power scales of patterns that depend on radar cross-sections (RCS) of targets. Using human
walking as an example, body joints such as hips, knees, and ankles move within various
ranges of angles and angular velocities, respectively [12]. Examples of micro-Doppler sig-
natures for human walking in [13] show that signatures indicating knee movements occur
below 200 Hz, while those indicating ankle and toe movements span the [0, 400] Hz range.
Additionally, the torso and hips move more slowly than the legs and feet. As seen in [10],
radar reflections from the torso and hips appear in low-frequency regions (<300 Hz), while
reflections from the legs and feet can reach higher-frequency regions (>300 Hz). Therefore,
detected motion patterns of body joints vary and fall into different frequency bands. RCS
varies with the target’s size, geometry, material, transmitter frequency, polarization, and
aspect angles relative to the radar transmitter and receiver, affecting power scales [1]. Un-
der specific radar equipment, RCS is associated with the properties of the target, so larger
body parts (e.g., torso) with higher RCS reflect significantly higher power in TFR, while
smaller body parts (e.g., feet) reflect relatively lower power. For the detection of vital signs,
compared to the human heartbeat (within 1-2.5 Hz), breathing occurs at lower frequencies
(within 0.1-0.9 Hz). It is characterized by more pronounced chest expansion, indicating a
larger RCS with higher power values [2,6].

The band-dependent patterns challenge DL models using TER as input, particularly
CNNs. The variations of motion patterns conflict with the translation invariance property,
which is essential for CNN-based models [14]. Thus, CNN-based models may overlook
characteristics that depend on frequency in TFR. Additionally, bias in feature extraction
towards regions with high power scales leads to the loss of information from regions with
low power scales [15]. To address these issues, research in the audio field, also preferring
to use TFR as input, either limits kernel sharing of the convolution layer [16] or employs
independent convolution and normalization layers for each predivided sub-band [14,17].
However, the design of kernel sharing and division of sub-bands are heuristic or require
trial-and-error efforts. To divide sub-bands automatically, an adaptive filtering method
incorporating low-, band-, and high-pass filters effectively separates sub-bands by intro-
ducing trainable cut-off frequencies and damping ratios into a CNN-based framework [15].
However, this method may fragment signals from specific body parts (e.g., feet), which
span across entire frequency ranges, into three parts, and it overlooks the interaction among
visualized features in sub-bands for CNN. In addition, these works utilize parallel convolu-
tion models or layers whose parameters are not shared to extract feature representation for
sub-bands, thereby not fully leveraging the capacity and generalization of CNNs.

In radar sensing applications, research utilizing physiological motions mainly relies on
band-pass filtering approaches to decompose signals into sub-bands that reflect heartbeat
and breathing, respectively [6,11]. The ranges of passbands are empirically determined
and may vary from case to case. Regarding kinetic motions, a band-dependent learning
framework (BDL) is developed for abnormal gait recognition for Alzheimer’s disease
(AD) and AD-related dementia (ADRD) risk evaluation employed [10]. BDL uniformly
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divides a spectrogram containing gait signatures into multiple sub-bands with equal
sizes for representation learning and normalization. This approach mitigates the issue of
scale differences between sub-bands and avoids the loss of information in regions with
lower power values. However, the uniform division inevitably disperses gait features
into multiple sub-bands, making it challenging for DL models to capture the complete
information.

To adaptively identify salient sub-band regions and fully leverage band-specific fea-
tures, this study introduces a novel DL-based framework called the Enhanced Band-
Dependent Learning framework (E-BDL). This framework integrates adaptive sub-band
filtering, representation learning, and sub-view contrastive techniques in an end-to-end
manner. This research makes three primary contributions:

1.  E-BDL, leveraging band-dependent patterns, is proposed to enhance the recognition
ability of the DL-based models for radar sensing applications by addressing the
challenges from variations in patterns and differences in power scale associated with
sub-bands.

2. Anadaptive sub-band filtering module identifies salient sub-bands with band-dependent
patterns as sub-views. A representation module extracts and normalizes features
within each sub-view. A sub-view contrastive loss function supports both modules in
exploring distinct sub-view spaces and ensuring discrimination.

3.  The proposed model’s performance is validated using two radar-sensing datasets:
one for gait abnormality detection in ADRD risk evaluation and another for vital-sign
monitoring in hemodynamics scenario classification. Experimental results demon-
strate the superior performance of E-BDL-ResNet and the interpretability of E-BDL
through learned sub-band filters.

This paper is organized as follows. Section 2 provides the details of the proposed
framework, followed by the experiments in Section 3. The discussion and the conclusions
are presented in Section 4 and Section 5, respectively.

2. Proposed Method

An illustration of E-BDL is shown in Figure 1. A TFR x € RT*F* serves as the input
to the E-BDL following three modules: (1) An adaptive sub-band filtering module (see
Section 2.1): M sub-band filters denoted as {b; € RS | i = 1,2,..., M} are generated and
applied in parallel to x in parallel to produce M sub-views, {x; € RT*Fs | i=1,2,... M},
(2) A representation learning module: each x/ is transformed and normalized into a L-
dimensional representation vector, ||z;||, by a DL-based encoder (see Section 2.2); and (3) A
sub-view contrastive module: class proxies of each sub-view are initialized in representation
space, and a contrastive-based loss function is employed to adjust the metric distance
relationships between ||z;|| and corresponding proxies for filter learning and representation
space construction (see Section 2.3).
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Figure 1. Illustration of E-BDL framework in the case of using two filters.

2.1. Adaptive Sub-Band Filtering Module

Features in TFR have exhibited band-dependent patterns, including variations in
patterns and power scales associated with frequencies. An adaptive sub-band filtering
module is developed to identify salient sub-bands from a vision perspective by scaling
power values at each frequency. The generalized Gaussian distribution [18] is modified to
create a scaling factor for each frequency bin. Frequency bins ranging in [—Fs/2, Fs/2] are
linearly normalized to [—1, 1. Given a frequency bin, denoted as fb, the scaling factor is

determined by
b— B
8(fb;p,0,p) =e><p<—<f - V) ) ©)

where 1, 7, and 8 represent parameters of location, scale, and shape, respectively. A general
example is displayed in Figure 2a, where y and ¢ are initialized to be 0 and 1, respectively.
The scaling factors of the generated filter remain 1 in the salient sub-band (top) but decay
in the adjacent regions (sides).
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Figure 2. Illustration of adaptive sub—band filters. (a): A general example of a sub-band filter. (b): An
initialization example while the number of filters is 3.

In practice, the top part of the filter is determined by y and ¢. In other words, y and o
control the center frequency and the bandwidth of the filter, respectively. B determines the
slope of the side parts, controlling the transition of the band edge. Parameters y and ¢ are
trainable parameters. As a preliminary study, the j is set to 8 to ensure gradient quality
from the sides and convergence speed of the model. For the model initialization, y of filters
are uniformly distributed along the frequency axis according to the number of filters while
o of filters are set to 1 (see Figure 2b for an initialization example using three filters). The
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ith sub-band filter is b; = g(fb; u;, 03, B) € R1*FS and the ith sub-view x/ is determined by
X X bi-

2.2. Representation Learning Module

Each x/ represents a salient and unique sub-view filtered out from the input TFR. DL
models commonly treat TFR as a 1-channel image and transform TFR information into a
discriminative representation vector [5,6]. In this module, M sub-views are transformed
into L-dimensional representation vectors by the same encoders, and then the representa-
tion vectors are normalized onto a hypersphere space by Ly-normalization. Consequently,
{l|lzi]] € R™L | i =1,2,...,M} is obtained. Please note that using the same encoder
ensures that sub-views are transformed into the same representation space to achieve fair
contrast in the next module.

In this study, the backbone of the pretrained ResNet-18 [19] is employed for repre-
sentation learning to leverage its generalization capabilities on edge and shape detection.
The feature map output from the backbone is input to a projection head layer, comprising
a 512 x 512 linear layer followed by batch normalization, ReLU activation, and another
512 x 128 linear layer for feature refinement and compression. The combination of the
backbone and the projection layer is utilized as the encoder. To fulfill the input requirement
of the encoder (3-channel), the 1-channel spectrogram is replicated three times. During
training, gradients are propagated backward from the subsequent modules to update the
parameters of the encoder. The proposed approach is model-agnostic, since the encoder
can be replaced by any DL-based model.

2.3. Sub-View Contrastive Module

Data samples from radar sensing applications often exhibit low inter- and intraclass
differences, which poses challenges for the generalization of traditional approaches em-
ploying cross-entropy loss [20,21]. Cross-entropy loss, designed to match the probability
distributions of ground truths, does not account for interrelationships among represen-
tation vectors. An effective alternative is the use of metric-based loss functions, which
adjust metric relationships among representation vectors to increase interclass variability
and intraclass similarity [22]. Additionally, metric-based loss functions can be categorized
into sample-to-sample comparison and sample-to-proxy comparison [23,24]. The former
methods can capture local relations within a mini-batch but are computationally intensive
and require sufficient data for generalization. Instead, the sample-to-proxy comparison
strategy associates each sample with proxies of classes, requiring fewer data. In addition,
globally learned proxies may be more robust against noisy samples and outliers [23,24].

Data scarcity and model generalization challenges DL-based radar sensing applica-
tions [8,9]. Therefore, using the sample-to-proxy comparison strategy, a sub-view con-
trastive loss function (SCpss) based on metric distance is developed. As seen in Figure 1,
the transformed representation vector of each sub-view is assigned to adjust metric relation-
ships among sub-views and proxies in sub-view clusters. Each sub-view cluster contains
proxies that correspond to classes. SCj,ss has two primary objectives: (1) generating a
discriminative representation space for each sub-view, and (2) ensuring that sub-views
capture different valuable features.

The proxies are normalized and denoted as {||p; || € R | i = 1,2,...,Mand
c=1,2,...,C}, where C is the number of classes. Regarding each ||z;||, the proxies can
be divided into four groups: same-view-same-class, fj, same-view-different-classes, A(i),
different-views-same-class, B(i), and others. For each x in a mini-batch, {||z;||} is obtained
from the representation learning module, and the calculation of SCp,ss takes the following
form:

1M [PREA
SCLoss({HZiH}) = ﬁ Z;log< i ) (2)

ellpll-lzll 1 YpeAi) ellpll-llzll 4 Y peB(i) eReLU([p|l-[lzi1)
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where ReLU(x) = max(0,x). Utilizing the cosine similarity metric, this loss function
encourages ||z;|| to be closer to the proxy from the same view and class, while increasing the
distance to the proxies from the same view but different classes. To ensure that sub-views
capture distinguishable features, the similarity between ||z;|| and the proxies from the same
class but different views should be less than 0. The final loss value used for backpropagation
is the mean of the SCJ y¢; values of all x in a mini-batch. During testing, {||z;||} are compared
to proxies in {||p; .||} belonging to the same sub-view. Because discriminative features
might only occur in a specific sub-view, the class of the closest proxy—indicating the
minimum distance from the proxy to the sample—among all comparison results is adopted
as the prediction.

3. Experiments and Results
3.1. Datasets

Two datasets employing radar sensors are utilized: one for vital sign monitoring
in hemodynamics scenarios classification and another for gait detection in ADRD risk
evaluation. Details of the datasets and evaluation strategies are provided below.

*  Vital Sign: Radar is able to accurately monitor the physiological condition of subjects
with contact-free benefit. A 24 GHz continuous wave radar system based on Six-Port
technology is implemented to record cardiorespiratory activities, and this publicly
available dataset is collected by physicians at the Department of Palliative Medicine at
the university hospital Erlangen [25]. Five hemodynamic scenarios are established
for 30 healthy volunteers: resting, Valsalva, apnea, tilt-up, and tilt-down. These
scenarios are expected to result in various characteristics in cardiorespiratory activities
of subjects. The radar focuses on chest movements while subjects undergo each
scenario. The captured respiratory, heartbeat, and pulse activities can be derived from
the returned signals to understand characteristics of respiratory or cardiovascular
activity. In this study, raw radar signals are employed to verify the effectiveness of the
proposed approach in detecting these activities.

*  Gait: Human gait is an effective biomarker associated with the ADRD risk level,
and gait motions during walking can be detected by radar. Gait motions contain
micro-Doppler signatures from several body parts, including the torso, legs, feet, etc.
These signatures are characterized by different frequency bands, central frequencies,
bandwidths, and damp ratios. A large, real-world, publicly available gait dataset for
ADRD risk evaluation is lacking. Walking animations are simulated, representing four
ADRD levels: normal walk, subtle abnormality walk, moderate abnormality walk, and
severe abnormality walk. A total of 8000 animations are generated, with 2000 walking
animations for each category, and these animations are presented on a 10 m simulated
walking path. Gait motions during walking are monitored by a frequency-modulated
continuous-wave radar. The radar detects approximately a 4 s walking period. The
returned signals are transformed into micro-Doppler signatures using STFT. The gait
signatures representing gait motions are included in a spectrogram. More details can
be found in [10].

For the vital-sign dataset, a 5-fold cross-validation strategy, with 80% of the samples
for training and the remaining 20% for testing each time, was conducted in [11]. This 5-fold
cross-validation strategy is subject-dependent, meaning that samples in the training set
and test set could be from the same subject. To identify the model’s generalization across
different subjects, the leave-one-out (LOO) strategy is utilized. In this strategy, one subject’s
data are used for testing, and the other 29 subjects are used for training each time, ensuring
a subject-independent manner. Both validation strategies iteratively cover all samples for
testing, with 20% of the data in the training set used as the validation set. Following the
evaluation strategy in [10], 8000 samples in the gait dataset are randomly divided into a
training set, a validation set, and a test set in a ratio of 7:1.5:1.5. Thus, 1200 samples are
allocated to the test set.
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3.2. Data Preprocessing

Referring to the preprocessing steps described in [11], valid radar recordings from
the vital-sign dataset are extracted and downsampled to 100 Hz. The recordings are then
segmented into 20 s intervals with a 50% overlap, resulting in each segment containing
2000 complex data points with in-phase and quadrature components. Each segment is
filtered using a 4th-order Butterworth band-pass filter with cutoff frequencies of [0.1, 20] Hz.
To adapt to the input of CNN-based models, each filtered radar segment is transformed into
a two-sided complex spectrogram, which is considered as a time—frequency image, using
STFT with a configuration that includes 512 DFT and a Hanning window of 128 points with
a 108-sample overlap between windows. The magnitude and phase parts of a spectrogram
are extracted separately. The magnitude part is scaled by g(x) = 10 x log 10(|x| + 107°).
After standardization, an input sample is obtained by combining half of the magnitude part
and half of the phase part along the frequency axis. As summarized in Table 1, the samples
in the vital-sign dataset are severely imbalanced, with the resting category containing more
samples than the other categories. To address this issue, a data augmentation approach is
developed in which two samples are randomly selected from the resting class and each
of the other four classes. The approach then combines these selected samples in equal
proportions to generate a new augmented sample. The label assigned to this augmented
sample corresponds to the class from which the nonresting sample is chosen. It should be
noted that the data augmentation method is active only during training.

Table 1. Summary of datasets for comparison.

Dataset Frequency Band  # of Subjects Categories # of Samples
Resting 1860
Apnea 152
Vital-Sign 24 GHz 30 Valsalva 135
Tilt-Up 1564
Tilt-Down 1618
Normal 2000
. Subtle Abnormality 2000
Gait 24 GHz 8000 Moderate Abnormality 2000
Severe Abnormality 2000

For the gait dataset, following [10], an STFT configuration utilizes 512 discrete Fourier
transform (DFT) points, and a Kaiser window of 512 points with a 50% overlap between
windows is applied to the reflected radar signals. Dimensions of a spectrogram sample
are 512 and 776 for the frequency and time domains, respectively. Spectrograms are scaled
by f(x) = 20 x log;y(|x| + 1 x 107°) and then standardized. Consequently, a total of
8000 spectrograms are obtained, with 2000 spectrograms for each class (see Table 1).

3.3. Experimental Setup

To assess the performance of the proposed approach, ResNet-18 [19], BDL-ResNet [19],
EfficientNetV2-S [26], and ConvNeXt-T [27] are employed for comparison. EfficientNetV2-S
and ConvNeXt-T are two of the recent state-of-the-art CNN models. As seen in Table 2,
these two models contain approximately twice as many parameters and require more
inference time for both datasets compared to the other three ResNet-based models. In
this study, for simplicity, E-BDL uses the backbone of ResNet-18 as the representation
learning module. ResNet-18 is used for the ablation study to demonstrate the advantages
of E-BDL. All DL-based models utilize pretrained parameters to leverage their knowledge
from image classification tasks. For the vital-sign dataset, a feature-engineering-based
benchmark method, ANN [11], is also included in the 5-fold validation for comparison.
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Table 2. Summary of DL-based models for comparison.
Model # of Parameters (G) : Infc?rence Time per Sampl.e (ms)
Vital-Sign Data Gait Data

EfficientNetV2-S 20.8 10.4 ms 20.7 ms
ConvNeXt-T 28.2 6.2 ms 16.6 ms
ResNet-18 11.4 2.7 ms 3.3 ms
BDL-ResNet 114 - 3.1ms
E-BDL-ResNet (M = 3) 115 2.9 ms 6.3 ms

For the vital-sign dataset, the batch size for all DL-based models is 32. The learn-
ing rates are set to 0.0001, and 0.25 is used for the parameters of the sub-band filters to
achieve faster convergence. The models are trained for up to 15 epochs using the Adam
optimizer [28]. The number of filters, a hyperparameter ranging from 1 to 6, is determined
based on the validation results. For the gait dataset, the learning rate is set to 0.001, and
0.25 is employed for the parameters of sub-band filters. The batch size is set to 32. The seed
number for initialization and loading data is fixed at 1024. For achieving comprehensive
evaluations, accuracy (Acc) is adopted for the overall assessment, while precision (Pre) and
sensitivity (Sen) are used for class-wise evaluation. Due to the significant data imbalance in
the vital-sign dataset, balanced accuracy is employed for fair comparison. All experiments
are conducted on the Sol supercomputer [29] using the PyTorch 2.0.1 framework [30].

3.4. Experimental Results

The 5-fold and LOO validations are conducted for the vital-sign dataset. The evalua-
tion results are summarized in Table 3 for the 5-fold validation and Table 4 for the LOO
validation. For the gait dataset, the evaluation results on the test set are presented in
Table 5. It is important to mention that the 5-fold validation for the vital-sign dataset is
subject-dependent while the other two evaluations are subject-independent.

Table 3. Evaluation results on the vital-sign dataset (5-fold).

Overall Class-Wise
Model Resting Valsalva Apnea Tilt-Up Tilt-Down

Acc Pre Sen Pre Sen Pre Sen Pre Sen Pre Sen
ANN [11] 0.830 0.944 0.508 0.993 1.000 0.984 1.000 0.732 0.751 0.643 0.905
EfficientNetV2-S [26] 0.955 0.972 0.901 0.961 0.971 0.967 0.949 0.981 0.992 0.935 0.963
ConvNeXt-T [27] 0.969 0.973 0.934 0.977 0.978 0.974 0.964 0.985 0.997 0.942 0.970
ResNet-18 [19] 0.956 0.965 0.956 0.985 0.956 0.946 0.928 0.978 0.991 0.946 0.948
E-BDL-ResNet 0.959 0.970 0.967 0.943 0.963 0.972 0.914 0.984 0.992 0.959 0.959

Table 4. Evaluation results on the vital-sign dataset (LOO).

Class-Wise
Overall - . "
Model Resting Valsalva Apnea Tilt-Up Tilt-Down
Acc Pre Sen Pre Sen Pre Sen Pre Sen Pre Sen
EfficientNetV2-S [26] 0.714 0.552 0.502 0.887 0.873 0.793 0.877 0.805 0.874 0.476 0.446
ConvNeXt-T [27] 0.719 0.537 0.454 0.893 0.879 0.852 0.894 0.838 0.905 0.436 0.463
ResNet-18 [19] 0.707 0.558 0.439 0.874 0.862 0.826 0.862 0.853 0.872 0.463 0.550
E-BDL-ResNet 0.722 0.567 0.440 0.888 0.867 0.825 0.854 0.874 0.885 0.460 0.565
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Table 5. Evaluation results on the gait dataset.
Class-Wise
(0] 11
Model vera Normal Subtle . Moderatfe Severe .
Abnormality Abnormality Abnormality
Acc Pre Sen Pre Sen Pre Sen Pre Sen
EfficientNetV2-S [26] 0.900 0.949 0.997 0.774 0.888 0.925 0.718 0.998 0.994
ConvNeXt-T [27] 0.917 0.986 1.000 0.779 0.940 0.939 0.725 1.000 1.000
ResNet-18 [10] 0.884 0.877 0.861 0.770 0.876 0.899 0.805 0.997 0.996
BDL-ResNet [10] 0.923 0.977 0.996 0.822 0.902 0.920 0.794 0.995 0.997
E-BDL-ResNet 0.943 0.990 1.000 0.889 0.900 0.889 0.867 1.000 1.000

3.4.1. Results on the Vital-Sign Dataset in 5-Fold Validation

The proposed method, E-BDL-ResNet, achieves an overall accuracy of 0.959, which
is slightly higher than ResNet-18 (0.956) and EfficientNetV2-S (0.955), but marginally
lower than ConvNeXt-T (0.969). This indicates that E-BDL-ResNet is highly effective
and competitive among the candidates across all classes. For the resting category, E-
BDL-ResNet achieves the highest sensitivity of 0.967 and competitive precision (0.970),
though slightly below ConvNeXt-T (0.973). This verifies the robustness of E-BDL-ResNet
in detecting true positives for the resting category. While ANN shows perfect performance
in precision (0.993) and sensitivity (1.000) for the Valsalva category, E-BDL-ResNet still
performs commendably, with a sensitivity of 0.963 and a precision of 0.943. Similarly, for the
apnea category, ANN achieves the highest precision (0.984) and sensitivity (1.000). The few
samples in these two categories challenge the DL-based models, but the DL-based models
still exhibit competitive precision and sensitivity for the Valsalva and apnea categories
while maintaining balanced performance across different categories. For the tilt-up category,
E-BDL-ResNet exhibits excellent performance with a precision of 0.984 and a sensitivity
of 0.992. These metrics are close to the best-performing ConvNeXt-T (0.985 and 0.997,
respectively), showcasing E-BDL-ResNet’s capability in this class. E-BDL-ResNet achieves
the highest precision of 0.959 among all models. Its sensitivity is also high at 0.959, though
marginally lower than ConvNeXt-T (0.970). This highlights E-BDL-ResNet’s balanced and
reliable performance for this category.

While ConvNeXt-T achieves the highest overall accuracy and excels in several class-
wise metrics, E-BDL-ResNet exhibits comparable accuracy and is competitive across all
classes using fewer parameters and less inference time (See Table 2). Additionally, compared
to ResNet-18, E-BDL-ResNet has demonstrated improvements in overall accuracy and its
superiority in the resting, tilt-up, and tilt-down categories regarding precision and sensitivity,
indicating the benefit of E-BDL. In practice, the resting, tilt-up, and tilt-down categories exhibit
the most similar pattern, highlighting the superiority of E-BDL in capturing subtle differences.

3.4.2. Results on the Vital-Sign Dataset in LOO Validation

In addition to the 5-fold validation, where the DL-based models have shown excellent
performance, the LOO validation results are presented in Table 4. This validation is deployed
in a subject-independent manner to assess the models’ generalization across various subjects.
Significant declines are observed in all evaluation metrics in LOO validation compared to
the results in the 5-fold validation, attributed to the variance in the subjects of the dataset.

E-BDL-ResNet achieves the highest overall accuracy (0.722) among the evaluated
models, slightly surpassing ConvNeXt-T (0.719) and EfficientNetV2-S (0.714). This demon-
strates the superior capability of E-BDL-ResNet in generalizing across the entire dataset
when using the LOO validation. The performance of all models is drastically degraded
in identifying the resting and tilt-down samples. E-BDL-ResNet leads with a precision of
0.567 and a sensitivity of 0.565 in the resting and tilt-down categories, respectively, while
EfficientNetV2-S achieves the highest sensitivity (0.502) and precision (0.476) in the resting
and tilt-down categories, respectively. This suggests that E-BDL-ResNet is competitive
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in tackling the challenges caused by the variations of heartbeat and respiration patterns
among individuals. ConvNeXt-T leads in performance in both the Valsalva and apnea
classes. For Valsalva, ConvINeXt-T achieves the highest precision (0.893) and sensitivity
(0.879), closely followed by E-BDL-ResNet with a precision and sensitivity of 0.888 and
0.867, respectively. In the apnea class, ConvNeXt-T outperforms other models with preci-
sion (0.852) and sensitivity (0.894). E-BDL-ResNet shows competitive performance with
precision (0.825) and sensitivity (0.854), but ConvNeXt-T maintains a marginal edge. For
the tilt-up category, E-BDL-ResNet excels with the highest precision (0.874), outperforming
ConvNeXt-T (0.838) and EfficientNetV2-S (0.805), and a competitive sensitivity (0.885).
These results demonstrate that E-BDL-ResNet is a highly competitive model compared to
the two latest state-of-art (SOTA) CNN-based models.

Compared to ResNet-18, E-BDL-ResNet achieves a 1.5% increase in accuracy relative
to ResNet, larger than that observed in 5-fold validation. For the class-wise evaluation,
E-BDL-ResNet improves precision and sensitivity in the resting, Valsalva, and tilt-up
categories while maintaining comparable results in the apnea and tilt-down categories.
Particularly, E-BDL-ResNet significantly improves precision by 2.1% and sensitivity by
1.3% in the tilt-up category. Although the limited number of subjects challenges the model’s
generalization, E-BDL still demonstrates its ability to improve ResNet’s performance as
SOTA when handling heavy subject variabilities.

3.4.3. Results on the Gait Dataset

The gait data include radar reflections from all body joints across various frequency
ranges. Compared to the vital-sign data, which mainly relate to the heartbeat and respi-
ration, more complex band-dependent patterns are observed in the gait data. As shown
in Table 5, E-BDL-ResNet outperforms all candidates in terms of overall accuracy, achiev-
ing 0.943, while EfficientNetV2-S achieves 0.900, ConvNeXt-T 0.917, BDL-ResNet 0.923,
and ResNet 0.884. This highlights the superior performance and generalization of E-
BDL-ResNet in ADRD risk level evaluation using gait data. Compared to ResNet-18,
E-BDL-ResNet significantly improves accuracy by 5.9%. Additionally, E-BDL-ResNet sur-
passes BDL-ResNet, which uniformly divides frequency bands, by achieving a 2% increase
in accuracy through the adaptive identification of salient sub-views in frequency. As seen
in Table 2, E-BDL only increases parameters by 0.1 G and requires approximately twice the
inference time per sample compared to ResNet-18.

For the class-wise evaluation, E-BDL-ResNet achieves the highest precision (0.990) and
perfect sensitivity (1.000) for normal gait, surpassing BDL-ResNet’s precision of 0.977 and
sensitivity of 0.996, and ResNet’s precision of 0.877 and sensitivity of 0.861. ConvNeXt-T
also achieves perfect sensitivity (1.000) but with slightly lower precision (0.986). This
indicates that E-BDL-ResNet can correctly identify normal gait patterns with minimal
false positives. For the subtle abnormality group, E-BDL-ResNet significantly improves
precision from ResNet-18’s 0.770 to 0.889 while maintaining competitive sensitivity (0.900).
ConvNeXt-T has a slightly higher sensitivity (0.940) but lower precision (0.779). These
results are desirable, indicating that the proposed method can better categorize normal
walking and more accurately detect subtle abnormalities (early stage) with fewer “false
alarms”. For the severe abnormality group, all candidates exhibit excellent performance.
E-BDL-ResNet achieves perfect scores in both precision and sensitivity (1.000), marginally
improving on BDL-ResNet’s precision of 0.995 and sensitivity of 0.997, and ResNet’s
precision of 0.997 and sensitivity of 0.996. In the moderate abnormality class, E-BDL-
ResNet shows competitive precision (0.889) and the highest sensitivity (0.867) compared
to other models. ConvNeXt-T has a slightly higher precision (0.939) but lower sensitivity
(0.725). This indicates that E-BDL-ResNet can maximally detect subjects in the moderate
abnormality group with high sensitivity, allowing unhealthy subjects to be identified at an
early step. E-BDL-ResNet balances precision and sensitivity well in detecting subtle and
moderate abnormalities, but it is our intention to enhance the model’s ability to capture
precise differences between subtle and moderate abnormalities.
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The number of sub-band filters (M) is a hyperparameter in this approach and is
determined based on validation results. As seen in Table 6, E-BDL-ResNet achieves the
highest accuracy on both the validation and test sets with three sub-band filters. Therefore,
M is set to three in this experiment. The learned parameters of the sub-band filters are
displayed on the right side of Table 6. Using more sub-band filters aims to extract more
sub-views from the input. However, using more filters does not necessarily lead to better
performance. The accuracy results significantly decrease when the filter number is set to
six. The centers of the filters are closer when the filter number is six, increasing the overlap
among the filters. A large number of sub-filters, indicating more sub-views generated,
challenges SCj s in maintaining differences among salient sub-views, resulting in that
SCross cannot guarantee a discriminative representation space for classification.

Table 6. Accuracy results of E-BDL-ResNet using different sub-band filter number.

Filter Accuracy on Validation Accuracy on Test Learned Parameter Sets
Number Set Set (u, o)

1 0.923 0.915 (-0.61, 3.13)

2 0.931 0.915 (-0.36, 2.43); (2.27, -0.56)

3 0.948 0.943 (-0.58, 1.25); (0.04, 2.59); (0.86, 1.17)
(—2.04, -0.65); (1.53, 2.36); (-0.67, 3.30);

4 0.938 0.929 (0.93, 1.05)
(-0.66, 1.23); (-0.02, 2.70); (0.88, 1.73);

> 0940 0-936 (0.32, 3.35); (2.64, -1.07)

6 0.787 0.791 (-3.14, -2.63); (-2.66, —0.58); (-0.48, 3.52);

(~0.82, 1.61); (0.60, 1.39); (0.75, 0.84)

To further shed light upon the behavior of E-BDL-ResNet, the three learned filters are
displayed in Figure 3a. Sub-views after filtering are shown in Figure 3c—e. Compared to the
input spectrogram sample (Figure 3b), the second sub-view retains all frequency regions of
the original sample, while the other two sub-views preserve distinct aspects of the sample by
adjusting the power values in different frequency regions, respectively. Specifically, the first and
third filters adjust the power values in the low-frequency regions (the middle part), while the
first and third filters suppress the positive and negative high-frequency regions, respectively.
The sub-view in Figure 3c mainly contains Doppler signatures from the torso, hips, legs, ankles,
and feet, while Figure 3e emphasizes low-power signatures from the lower legs, ankles, and
feet, allowing the low-power signatures to remain in the final representation vectors. This result
highlights the interpretability of E-BDL. Additionally, the learning process of the sub-band
filters is visualized in Figure A1l. Compared to the sub-band filters at initialization (Epoch 0
in the figure), the first sub-band filter gradually adjusts the power values around 50-200 Hz,
while the third one continuously reduces the power values around 0 to —130 Hz. The second
sub-view tends to include more information from high-frequency ranges. This learning process
demonstrates that the sub-band filters are able to adaptively identify salient sub-bands through
gradient-based learning in an end-to-end manner.

In this study, we employed Grad-CAM++ [31] to generate heatmaps that visualize the
attention regions of the backbone model on each sub-view. As mentioned above, the second
filter retains the original input, while the first and third filters preserve distinct frequency
regions. In Figure 4, distinct frequency regions are activated in each sub-view, indicating
that the backbone model captures features from different salient sub-bands. Specifically,
in Figure 4a, compared to the second sub-view, the backbone model focuses more on the
regions above 100 Hz and below 64 Hz in the first and third sub-views, respectively. Similar
effects can be observed in the subtle and severe abnormality examples. For the moderate
abnormality, the backbone model is distracted by reverse leg movements and noise in the
high-frequency regions. However, the third sub-view helps preserve features in the positive
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frequency regions. In general, relying solely on the second sub-view, which is equivalent
to the original input, would cause the backbone model to miss some useful features. The
first and third sub-views act as supplements to these lost features. Additionally, features
detected from each sub-view implicitly embed the location information of frequencies.
These characteristics ensure that E-BDL-ResNet effectively addresses the challenges posed
by the band-dependent patterns.
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Figure 3. The learned filters and sub-views for the gait dataset: (a) The learned filters, (b) an example
sample, (c) the first sub—view, (d) the second sub—view, and (e) the third sub—view.
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Figure 4. Heatmap visualization using Grad-CAM++.

4. Discussion

The proposed framework holds significant potential for recognizing gait abnormalities
and classifying hemodynamics scenarios, based on experimental results. E-BDL enhances
the representation learning of DL-based models by identifying significant sub-views in
the adaptive sub-band filtering module and making use of band-specific features in the
sub-view contrastive module. Experiments are conducted using two datasets including the
vital-sign dataset, which includes separate heartbeat and respiration signals across various
frequencies, and the gait dataset, comprising gait patterns reflecting body parts such as
feet, legs, and hips across varied frequency bands.

Experimental results on the vital-sign dataset have demonstrated that E-BDL-ResNet
achieves competitive performance in both subject-dependent and subject-independent
settings. Compared to the recent CNN-based models, EfficientNetV2-S and ConvNeXt-T,
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E-BDL can enhance the performance of ResNet-18 with barely an increase in computa-
tional cost. Particularly, E-BDL-ResNet exhibits superior ability in hemodynamic scenario
classification in the LOO validation. It demonstrates the potential to address challenges
related to subject variability. Additionally, E-BDL-ResNet outperforms other candidates in
overall accuracy and excels in a majority of class-wise evaluations in the in the ADRD risk
evaluation using gait signatures, where more complicate band-dependent patterns can be
observed compared to the vital-sign data. The computational cost of E-BDL-ResNet also
qualified its characteristics of efficiency in implementation and prediction. Rather than
uniformly dividing sub-bands, as in the BDL framework, E-BDL automatically identifies
distinct and salient sub-bands as sub-views to maximally detect valuable features from gait
signatures. Its superiority in interpretability is also justified by the learned filter parame-
ters. The experimental results also reveal the potential of E-BDL-ResNet with fewer “false
alarms” to healthy subjects and higher sensitivity to mild-impaired patients.

In future research, these limitations should be addressed. First, the adaptive sub-
band filter module utilizes a modified Gaussian distribution function with two trainable
parameters: location and scale. The shape parameter in the function could also be treated as
a trainable parameter with constraints. Second, the sub-views are handled independently
in the final two modules. Incorporating a feature fusion section could effectively integrate
knowledge from all sub-views. Additionally, E-BDL is model-agnostic, and its performance
was validated using the pretrained ResNet-18 as the backbone encoder for generalization.
There is significant potential to apply alternative encoders to E-BDL. Considering the
validated superiority of the proposed method, it is expected to be implemented in edge
radar computing equipment for real-time detection.

5. Conclusions

This paper introduces a novel DL-based framework, E-BDL, to address the challenges
posed by band-dependent patterns in radar sensing applications. E-BDL is end-to-end
trained to explore and utilize band-dependent features in TFR. In E-BDL, an adaptive sub-
band filtering module learns to identify salient sub-bands as sub-views from the original
input and adjust the power scale in each sub-view, enabling more adequate band-dependent
features to be extracted in the representation learning module. A sub-view contrastive
module with a novel loss function is proposed to generate discriminative sub-view clusters
for classification and ensure that each sub-view cluster focuses on different and valuable
sub-views in the representation space. Experimental results demonstrate the effectiveness
and robustness of E-BDL, showing superior performance in both hemodynamic scenario
classification and ADRD risk evaluation, which rely on physiological and kinetic motions
detected by micro-Doppler radar, respectively.
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