

Interface Chemistry, Band Alignment, and Thermal Stability Study of Sn Metal Contact on Bulk and Monolayer MoS₂

Joy Roy ¹ Seong Yeoul Kim ¹ and Robert M. Wallace ^{1,a)}

¹Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, United States of America

a) Electronic mail: rmwallace@utdallas.edu

10 Two-dimensional semiconductors such as transition metal dichalcogenides are making
11 impressive strides in a short duration compared to other candidates. However, to unlock
12 their full potential for advanced logic transistors, attention must be given to improving the
13 contacts or interfaces they form. One approach is to interface with a suitable low work
14 function metal contact to allow the surface Fermi level (E_F) movement towards intended
15 directions, thereby augmenting the overall electrical performance. In this work, we
16 implement physical characterization to understand the Tin (Sn) contact interface on
17 monolayer and bulk molybdenum disulfide (MoS_2) via in-situ X-ray photoelectron
18 spectroscopy (XPS) and ex-situ atomic force microscopy (AFM). A Sn contact exhibited
19 a van der Waals (vdW) type weak interaction with the MoS_2 bulk surface where no reaction
20 between Sn and MoS_2 is detected. In contrast, reaction products with Sn-S bonding is
21 detected with a monolayer surface consistent with a covalent-like interface. Band
22 alignment at the interface indicates that the Sn deposition induces n-type properties in the
23 bulk substrate, while the E_F of the monolayer remains pinned. In addition, the thermal
24 stability of Sn on the same substrates is investigated in a sequential ultra-high vacuum
25 (UHV) annealing treatment at 100, 200, 300, and 400° C. Sn sublimated/desorbed from
26 (UHV) annealing treatment at 100, 200, 300, and 400° C. Sn sublimated/desorbed from

1 both substrates with increasing temperature, which is more prominent on the bulk substrate
2 after annealing at 400°C. Additionally, Sn significantly reduced the monolayer substrate
3 and produced detectable interface reaction products at higher annealing temperatures. The
4 findings can be strategized to resolve challenges with contact resistance that the device
5 community is having with TMDs.

6

7

8

9

10 **I. INTRODUCTION**

11 To allow continuous device scaling with enhancing mobility and without
12 performance variability, 2D Transition metal dichalcogenides (TMDs) can be a desirable
13 replacement for Si in near future for advanced field effect transistors (FETs).^{1,2} Numerous
14 research studies are underway to make the TMDs commercially feasible for modern-day
15 digital electronics. Whether chemical vapor deposition (CVD) grown or mechanically
16 exfoliated for research purposes, MoS₂ has attracted significant interest for decades being
17 highly suitable for electronic and optoelectronic applications due to its sizable band gap
18 and chemical stability.³⁻⁵ With a near-ideal passivated surface, MoS₂ can be scaled down
19 to atomically thin thicknesses without degradation of mobility.^{6,7} This inherent 2D
20 nature and enhanced functionality provided by MoS₂ allows hetero-integration at the
21 back-end-of-line (BEOL) processing for integrated circuit technology.^{8,9} Whereas Si
22 technology has its limitations, two fundamental challenges most TMD semiconductors
23 confront are surface defects and the highly resistive Schottky contact interface they

1 establish with metals. Since conventional doping can induce defects and is difficult to
2 control, metal contacts are more suitable for realizing the desired doping polarity.¹⁰ Low
3 contact resistance with near ohmic behavior ensures efficient carrier injection to the
4 channel material. Metals with reasonably low work functions that align with or close to
5 the conduction band of n-type TMDs have demonstrated the potential to address this
6 contact resistance issue.^{11,12}

7 The work function (Φ) is a crucial surface property of contact metals that implies
8 the minimum energy required for charge emission from the metal surface to a point in
9 vacuum immediately outside the surface.¹³ Essentially, Φ affects the Schottky barrier
10 height when a contact interface between a metal and semiconductor forms. Though
11 tuning the Schottky barrier height by Φ at the metal-TMD interface can be hindered by
12 various types of intrinsic defects, recent works using Sn, In, Bi, and Sb (low Φ)
13 successfully improved the contact resistance by minimizing the barrier height and
14 forming an Ohmic like contact.¹⁴⁻¹⁶ Chou et al. reported that Au capped Sn (contact)
15 remelting step achieves a conformal contact interface with monolayer MoS₂ and leads to
16 high current linearity at small V_{DS} (drain-source voltage) in their short channel n-type
17 FETs.⁵ Another study by Kumar et al. using Sn and In with Au capping lowered the
18 contact resistance on monolayer MoS₂, achieving an R_c \sim 200 Ω - μ m. Their statistical
19 analysis (~700 transistors) of the transistor performance found the contacts were stable up
20 to 250 °C, above which they turn to an alloy with Au and can be stable at temperatures as
21 high as 450 °C.¹⁴ In addition, the ultraclean van der Waals contact interface using In (low
22 Φ) has achieved a free adjustable barrier height with various TMD-based 2D
23 semiconductors.¹⁷ These prior studies demonstrate significant enhancements in contact

1 properties using these recently prevalent low Φ metals. However, they lack a systematic
2 understanding of the interfacial chemistry at the metal-TMD interface, as well as certain
3 band alignments, which play a major role in determining device performance variability.

4 In this work, we examined the correlation between the Sn contact interface with
5 bulk and monolayer MoS₂ substrates and their respective contact properties. Interfacial
6 chemistry and band alignments were obtained analytically and compared with pre-
7 metallization states for a fundamental understanding of contact interface chemistry. In
8 addition, to understand the robustness and compatibility of the BEOL processing
9 conditions, the thermal stability of the Sn contact on MoS₂ substrates was studied under
10 the UHV environment.

11

12 **II. EXPERIMENTAL**

13 Bulk crystals used in this work were purchased from HQ Graphene.¹⁸ The 1L-
14 MoS₂ film sample was cleaved into pieces from a wafer grown by 2DLayer.¹⁹ The
15 growth technique involves CVD of 1L-MoS₂ film on a 90 nm SiO₂/Si wafer substrate
16 with complete coverage of the 50 mm wafer. Exfoliated MoS₂ bulk crystals and the as-
17 received 1L-MoS₂ films were attached on a 4 inches stainless steel (SS) plate using SS
18 screws for surface analysis. Within a brief atmospheric exposure of around 30 seconds
19 after ex-situ exfoliation of a bulk MoS₂ crystal, the samples were loaded into the load
20 lock of the cluster system, a schematic diagram with process flow is available in the
supplementary material. In this work, approximately 1 nm of Sn metal was deposited on
freshly exfoliated bulk-MoS₂ and 1L-MoS₂ via a physical vapor deposition technique
23 using an electron beam under UHV (deposition chamber base pressure 2×10^{-11} mbar)

1 condition at room temperature. During metallization, polymer-assisted transfer or any
2 other processing steps, such as lithography, were avoided to prevent potential alterations
3 in the interface chemistry due to contaminants. After metallization, one set of samples
4 was unloaded to observe the changes in the morphology of the surfaces, and another set
5 went through sequential post-metallization annealing with *in-situ* characterization in
6 between steps. Samples were heated through indirect resistive heating under UHV
7 conditions at 100, 200, 300, and 400 °C for 1 hour. The anneal temperature was ramped
8 up and cooled down in ~1 hour enabling very low outgassing and a chamber pressure
9 below 5×10^{-9} mbar. The heater temperature reading is calibrated using Si and Ge wafers
10 on an SS plate with an error margin of ± 10 °C. For spectrum comparison studies, a
11 reference Sn thick film (~ 70 nm) was deposited on a Si/SiO₂ wafer under UHV
12 conditions.

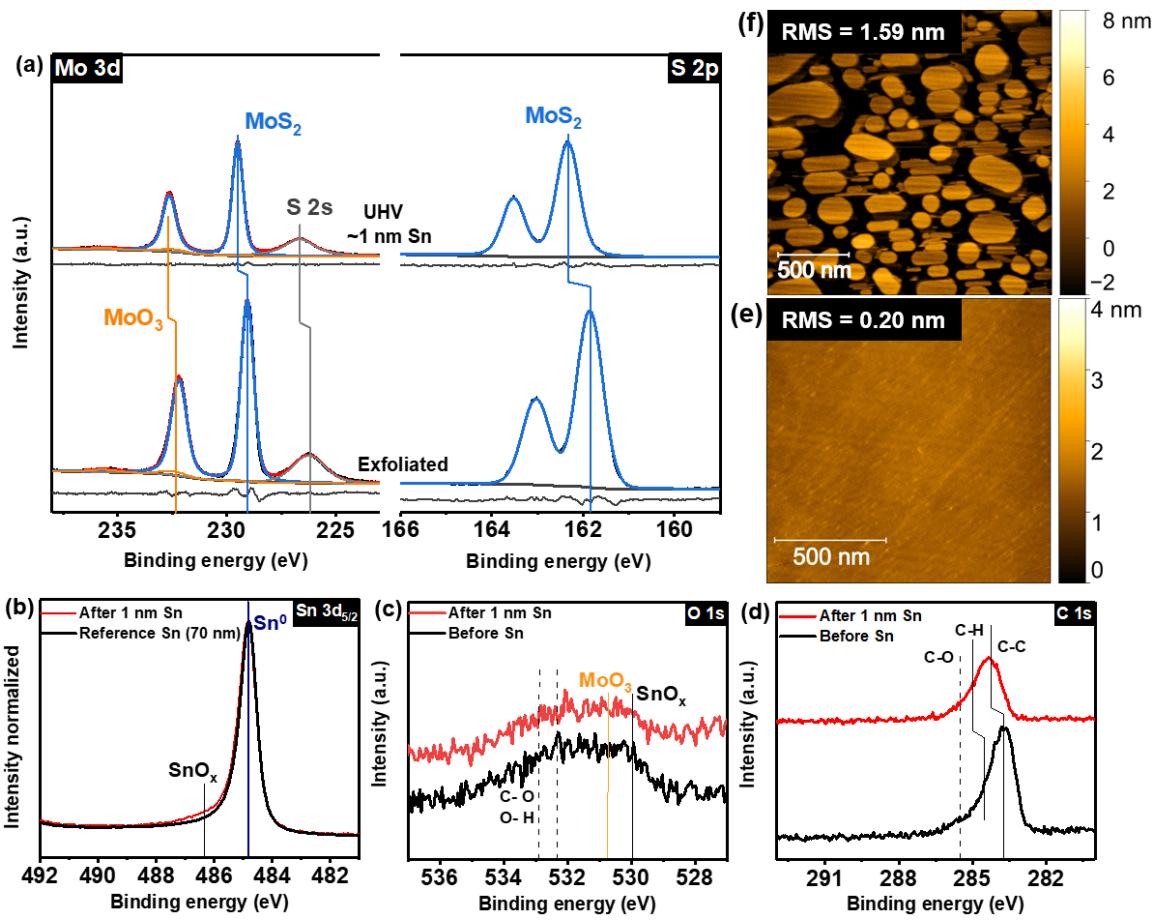
13 For characterization, XPS analysis on sample surfaces was conducted using a
14 monochromatic Al K α source and an Omicron EA125 hemispherical analyzer, achieving
15 a resolution of ± 0.05 eV. Initially, samples were characterized in their as-exfoliated or
16 loaded condition (control sample) before metal deposition. After UHV electron beam
17 metal depositions, the samples were transferred to the analytical chamber under UHV
18 conditions (3×10^{-11} mbar) via the transfer tube for *in-situ* characterization. XPS spectra
19 after metallization were compared to the freshly exfoliated surfaces. E_F shifts due to
20 metal deposition were extracted from the core level shifts.²⁰ Subsequently, further XPS
21 analysis was done after each annealing step maintaining the *in-situ* conditions. In addition
22 to XPS, AFM was used ex-situ to characterize the surface morphology of MoS₂ bulk
23 crystals and 1L-MoS₂ films. For this purpose, an Oxford Asylum Research Jupiter XF

1 AFM tool was used in non-contact tapping mode in the cleanroom facility. The AFM
2 analysis was done initially before loading the sample, then one set after metallization and
3 another after 400⁰ C annealing. Aanalyzer software²¹ was used for XPS analysis and
4 Gwyddion 2.60 software²² was used for measuring RMS (root mean square) roughness
5 from AFM data.

6

7 **III. RESULTS AND DISCUSSION**

8 **A. *Interface chemistry***


9 **1. *Sn contacts on bulk MoS₂***

10 Figure 1 shows XPS results of Sn/ MoS₂ bulk crystal surfaces/interfaces before
11 and after Sn deposition under UHV conditions. The initial (exfoliated) binding energy
12 (BE) position for Mo 3d and S 2p are found at 229.05 and 161.85 eV respectively,
13 attributed to the MoS₂ chemical bonding state²³ (Figure 1 (a)). The interface reaction after
14 Sn deposition is below the detection limit of XPS for Sn/MoS₂ bulk interface. The
15 formation of MoS₂ is thermodynamically favorable since the Gibbs free energy $\Delta G^{\circ}_{f, MoS_2}$
16 (-112.95 kJ/mol) is more negative relative to Sn-S bond formation ($\Delta G^{\circ}_{f, SnS} = -98.3$
17 kJ/mol).²⁴ Moreover, a reaction between Sn and Mo in MoS₂ or forming an intermetallic
18 alloy is unlikely at room temperature in UHV conditions.^{25,26} The absence of an
19 additional chemical state in Mo 3d and S 2p core levels after metallization under UHV
20 condition indicates the formation of a vdW bonding interface between Sn and MoS₂ bulk.
21 The full widths at half-maximum (FWHM) of the MoS₂ state in the Mo 3d (0.59 ± 0.05
22 eV) core levels stay almost the same before and after Sn depositions under UHV
23 conditions and indicate that the interface reaction of Sn and MoS₂ bulk is below the limit

1 of detection. The intensity of core levels (Mo 3d and S 2p) spectra decreased due to the
2 Sn metal layer on top of MoS₂.

3 Even though a Sn film does not result in detectable reaction products with the
4 MoS₂ bulk, the shifts of the MoS₂ state in Mo 3d and S 2p spectra following Sn
5 deposition show the change in the electronic property of the substrate. This shift of ~0.45
6 eV impacts the band alignment and barrier height at the Sn/bulk MoS₂ interface. The
7 shifts in the core level spectra and relevant discussions are displayed in the
8 supplementary material and the band alignment section. A small amount of oxidation of
9 the MoS₂ bulk surface detected before metal deposition might result from short air
10 exposure after exfoliation. The oxidation of MoS₂ bulk in the air is thermodynamically
11 favorable as

1

2

3 FIG. 1. (a) Mo 3d and S 2p, (b) Sn 3d_{5/2}, (c) O 1s and (d) C 1s spectra of bulk MoS_2
4 sample before and after Sn depositions under UHV condition, (e) Ex-situ AFM images of
5 MoS_2 bulk crystal surface after exfoliation and (f) after Sn deposition in UHV conditions
6 showing root mean square (RMS) roughness in nm unit. The gray plot below the spectral
7 data in (a) is the peak fit residual.

8

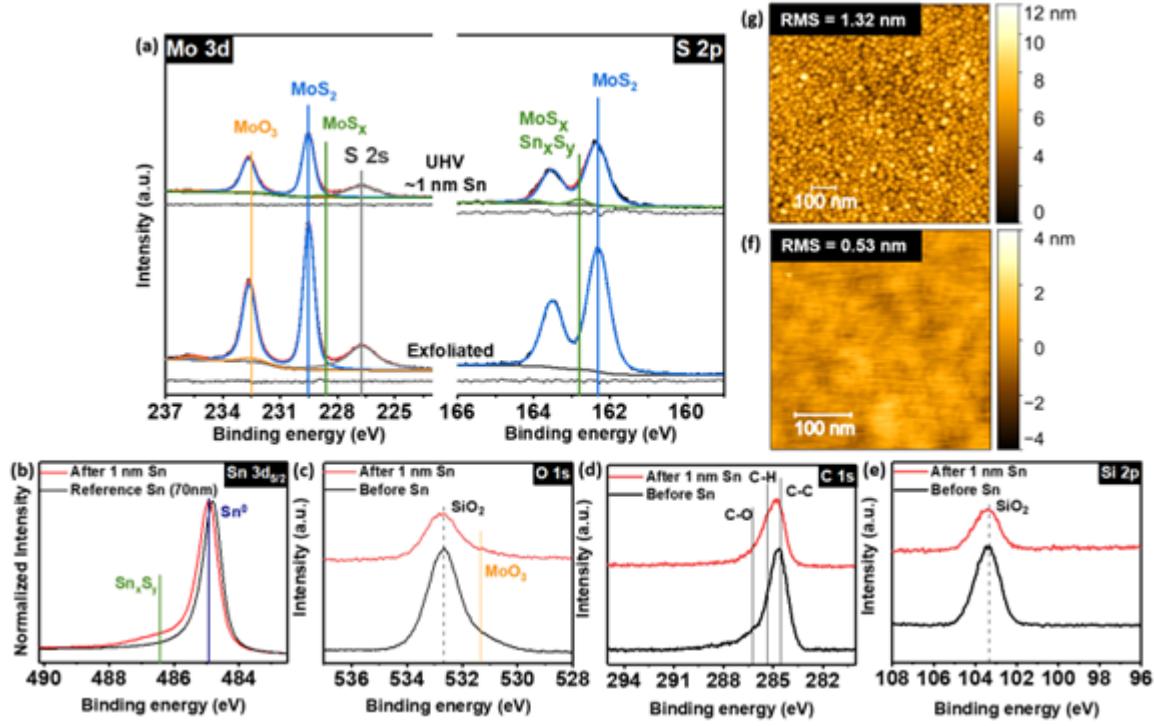
9 $\Delta G_f^{\circ, \text{MoO}_2} = -266.50 \text{ kJ/mol}$ and $\Delta G_f^{\circ, \text{MoO}_3} = -222.70 \text{ kJ/mol}$. Some studies have
10 highlighted slow oxidation is possible for MoS_2 in ambient conditions which prefers
11 MoO_3 .²⁷ In addition, S vacancies can induce MoS_2 surface oxidation.²⁸ In our sample, the
12 BE position suggests this type of oxidation prior to metallization. After contact interface
13 formation, a small concentration (<0.5 atom%) of SnO_x has been detected on the higher

1 BE shoulder of Sn 3d and lower BE tail of O 1s spectra (Figures 1(b) and 1(c)). Such
2 SnO_x formation is consistent with thermodynamic values for $\Delta G^{\circ}_{f, SnO} = -251.90$ kJ/mol,
3 and $\Delta G^{\circ}_{f, SnO_2} = -515.8$ kJ/mol.²⁴ In addition, the interdiffusion between Sn-MoO₃
4 resulting from the interaction at the interface may have a small contribution to the
5 oxidation process.²⁹ Adventitious carbon bonds (C-C, C=O, and C-O) in the bulk MoS₂
6 spectrum (Figure 1 (d)) are probably from the ex-situ transfer process. However, no
7 carbon reaction products are detected at lower binding energy (metal carbide~282 eV).³⁰
8 This indicates that carbon's reaction with Sn and MoS₂ bulk is below the detection limit
9 of XPS.

10 From AFM analysis after UHV metal depositions, Sn elliptical and circular islands
11 are observed. (Figures 1 (e) and (f)) These island formation characteristics infer that the
12 interface reaction between Sn and MoS₂ bulk is not favored. This observation is consistent
13 with both thermodynamic Gibbs free energy²⁴ and XPS analysis. Thus, a vdW gap contact
14 is expected at the Sn/ MoS₂ bulk interfaces for UHV deposition of Sn. The detection of Sn
15 islands on MoS₂ bulk in this work aligns with the observation of Volmer-Weber growth of
16 Ag metal film deposited similarly through physical vapor deposition on bulk MoS₂ flakes
17 under UHV conditions.³¹

18 **2. Sn contacts on 1-L MoS₂**

19 Unlike MoS₂ bulk systems, there is a notable difference for 1-L MoS₂. Interface
20 reactions are observed after Sn deposition. A slight reduction of MoS₂ is also detected at
21 Sn/1L-MoS₂ film interfaces deposited under UHV condition as shown in Figure 2 (a).
22 The presence of the MoS_x (sub-stoichiometric, x < 2) state in the Mo 3d spectra and an
23 additional Sn_xS_y/MoS_x state in the S 2p spectra, indicates a reaction occurring at the


1 metal/semiconductor interface. Since only a sub-stoichiometric state between Sn and S is
2 detected in Sn 3d and S 2p spectra, we will use Sn_xS_y to denote the reaction product in the
3 rest of the discussion of the Sn/1-L MoS₂ interface.

4 Under UHV conditions, there have been reports of a reduction reaction occurring
5 in the Ni/ MoS₂ bulk system that is analogous to the aforementioned reaction
6 mechanism.³¹ Though, reactions between Sn and MoS₂ at room temperature are not
7 thermodynamically favorable,²⁴ charge transfer between Sn and MoS₂ bulk induced by
8 the intrinsic defects of 1-L MoS₂ (like S vacancies)³² could shift the $\Delta G^{\circ}_{\text{f},\text{SnS}}$ more
9 negative than that of MoS₂. This Sn reduction reaction observed only in Sn/1L- MoS₂
10 film systems indicates that the Sn metal contact reaction with MoS₂ is not inherent and
11 varies significantly with the surface defect density (CVD grown 1-L MoS₂). In addition,
12 core levels of Mo 3d and S 2p didn't shift after metallization. This kind of behavior is
13 attributed to E_F pinning, most probably caused by surface defect states.

14 The (slight) oxidation of the 1L- MoS₂ film (figures 2 (a) and (c)) is rational due
15 to the air exposure during the ex-situ loading process.^{27,28} The intensities of oxide states
16 in Mo 3d decreased after Sn deposition under UHV conditions. This is likely due to the
17 metal deposition causing the overall lowering of core level intensities of 1-L MoS₂
18 substrate. Carbon and oxygen reactions with Sn are below the detection limit of XPS
19 after Sn deposition as shown in Figures 2 (b-d). The absence of any additional metal
20 silicide chemical states in the Si 2p spectra (Figure 2 (e)) indicates that the reaction
21 between Sn and SiO₂ substrate of 1L- MoS₂ film is also below the detection limit of XPS.

22 An increased surface roughness is detected by ex-situ AFM analysis after Sn
23 depositions on 1L- MoS₂ films under UHV conditions as shown in Figures 2 (f) and (g).

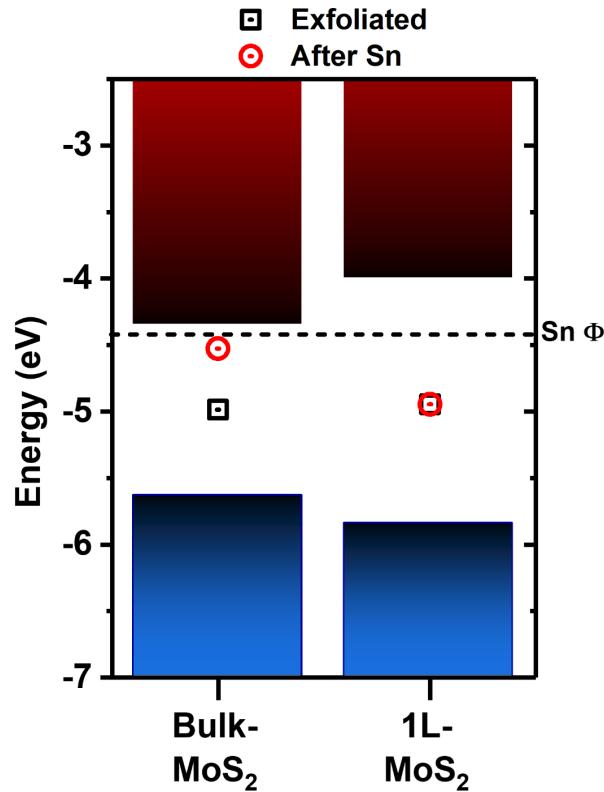
1

2

3 FIG. 2. (a) Mo 3d and S 2p, (b) Sn 3d_{5/2}, (c) O 1s, (d) C 1s, and (e) Si 2p core level
 4 spectra of 1L MoS₂ sample before and after Sn depositions under UHV condition, (f) Ex-
 5 situ AFM images of the monolayer crystal surface and (g) after Sn deposition in UHV
 6 conditions showing root mean square (RMS) roughness in nm unit. The gray plot below
 7 the spectral data in (a) is the peak fit residual.

8

9 Sn islands or clusters are significantly smaller and well-connected in this case compared
 10 to the bulk MoS₂ substrate (Figure 1 (f)). Since sub-stoichiometric MoS_x and Sn_xS_y
 11 bonding states are detected at the Sn/1L- MoS₂ interface in XPS analysis, greater
 12 interaction (covalent bonding) between Sn and the monolayer surface is facilitated. As
 13 noted in the AFM image results, this enhanced interaction leads to a layer-by-layer
 14 growth morphology instead of forming larger islands. Moreover, the surface morphology
 15 of 1L- MoS₂ prior to deposition is more uneven compared to bulk crystal which suggests


1 that nonuniform growth of MoS₂ layer on Si/SiO₂ substrate occurs. Taken together, the
2 results suggest that it is reasonable to attribute the clusters in AFM images to the mixture
3 of mostly Sn metal and some Sn/ MoS₂ reaction products. This finding is consistent with
4 the theory that defects (grain boundaries, S vacancies) may facilitate reactions between
5 metals and TMDs, since a CVD-deposited MoS₂ film exhibits a heightened density of
6 defects.³²⁻³⁵

7 **B. Band alignment**

8 In addition to the previously mentioned interface chemistry, the band alignments
9 between the metal and MoS₂ substrates can be determined by analyzing the shifts of the
10 Mo 3d spectra following metal deposition.³¹ The shifts of Mo 3d peaks are based on the
11 binding energies of the MoS₂ state before and after metal depositions under UHV
12 conditions, see supplementary material, Table S1, and Figure S2. The electron affinities
13 (χ) and ionization energy (E_i) which is related to the work function of substrates and are
14 calculated from the secondary electron (SE) cutoff and valence band spectra measured by
15 XPS. The E_i and χ of MoS₂ bulk used in this study are consistent with those employed by
16 Wang et al.³¹ Spectra with detailed measurement values are available in supplementary
17 material.

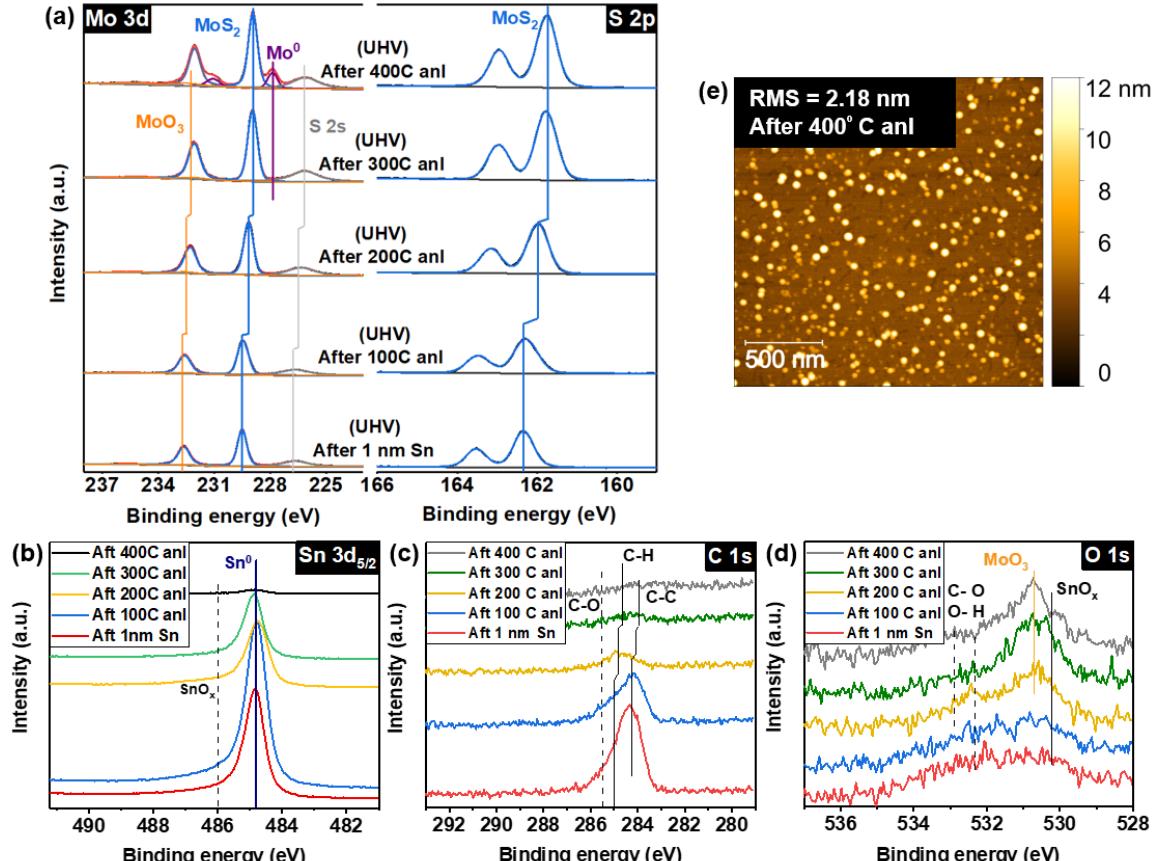
18 Figure 3 shows the band alignment study of bulk and 1-L MoS₂ before and after
19 metallization. Since in the UHV ambient, where spurious residual water or carbon species
20 were minimal, the reproducibility of Fermi levels, measured from the valence band, SE
21 cutoff, and core level shifting, should be expected. Considerable differences in the
22 positions of E_F are observed depending upon the MoS₂ substrate for Sn metal contacts. The
23 E_F of Sn/1L-MoS₂ film after metal depositions is located close to the original E_F's of the

1 as-received 1L-MoS₂ films before metal depositions. This finding indicates that the gap
2 states induced by pre-existing defects of 1L-MoS₂ films probably saturated the charge
3 transfer

5
6 FIG. 3. Band alignment of contact metal/MoS₂ systems before and after metal depositions
7 under UHV conditions.

8
9 during Sn/1L-MoS₂ interface formation,³⁶ which ultimately led to E_F pinning. For the MoS₂
10 bulk sample with a lower defect density, the E_F has moved near the conduction band
11 minima (CBM) of bulk MoS₂ which is likely induced by the work function of Sn metal³⁷
12 after metal deposition as anticipated. With a low Schottky barrier height, Sn is able to
13 nearly form an ohmic contact if active defects can be reduced to a reasonable amount,

1 ($\leq 10^{11}/\text{cm}^2$).³⁸⁻⁴⁰ The results indicate the advantages of using low-work function metal for
2 n-type contact formation at the Sn/MoS₂ bulk interfaces after Sn deposition. This
3 additionally clarifies the low contact resistance of the exfoliated MoS₂ monolayer with Sn
4 contacts reported in the reference.¹⁴


5 **C. Thermal stability**

6 1. *Sn/MoS₂ bulk crystal interface*

7 The interface chemistry of the Sn/MoS₂ bulk crystal after Sn deposition and
8 following the in-situ annealing (UHV) process at different temperatures is illustrated in
9 Figure 4. After Sn deposition, only the MoS₂ bulk bonding state was detected in both Mo
10 3d and S 2p at the Sn/bulk MoS₂ interface, and after subsequent UHV annealing, no
11 additional state appeared. The reaction between Sn and MoS₂ stayed below the detection
12 limit until 300°C annealing (Figure 4 (a)). However, with increasing temperature (above
13 100 °C), Sn starts to sublimate from the sample surface, and the intensity of metallic Sn⁰
14 in Sn 3d decreases (Figure 4 (b)). This finding is consistent with the high vapor pressure
15 and low melting point of Sn ($T_m=232^\circ\text{C}$).⁴¹ Upon annealing above 300 °C, most Sn metal
16 desorbs from the interface. Due to only vdW interactions between Sn and bulk MoS₂ and
17 no capping layer on top, Sn readily detaches from the substrate surface through
18 annealing.

19 Though no interface reaction is observed up to 300 °C, above this temperature, Sn
20 likely initiated a reaction with the bulk MoS₂. The metallic Mo 3d feature (Figure 4(a)
21 “Mo⁰”) appeared after 400 °C annealing, denoting the reduction process of MoS₂. The
22 sub-stoichiometric state (MoS_x) stays below the detection limit throughout the annealing.

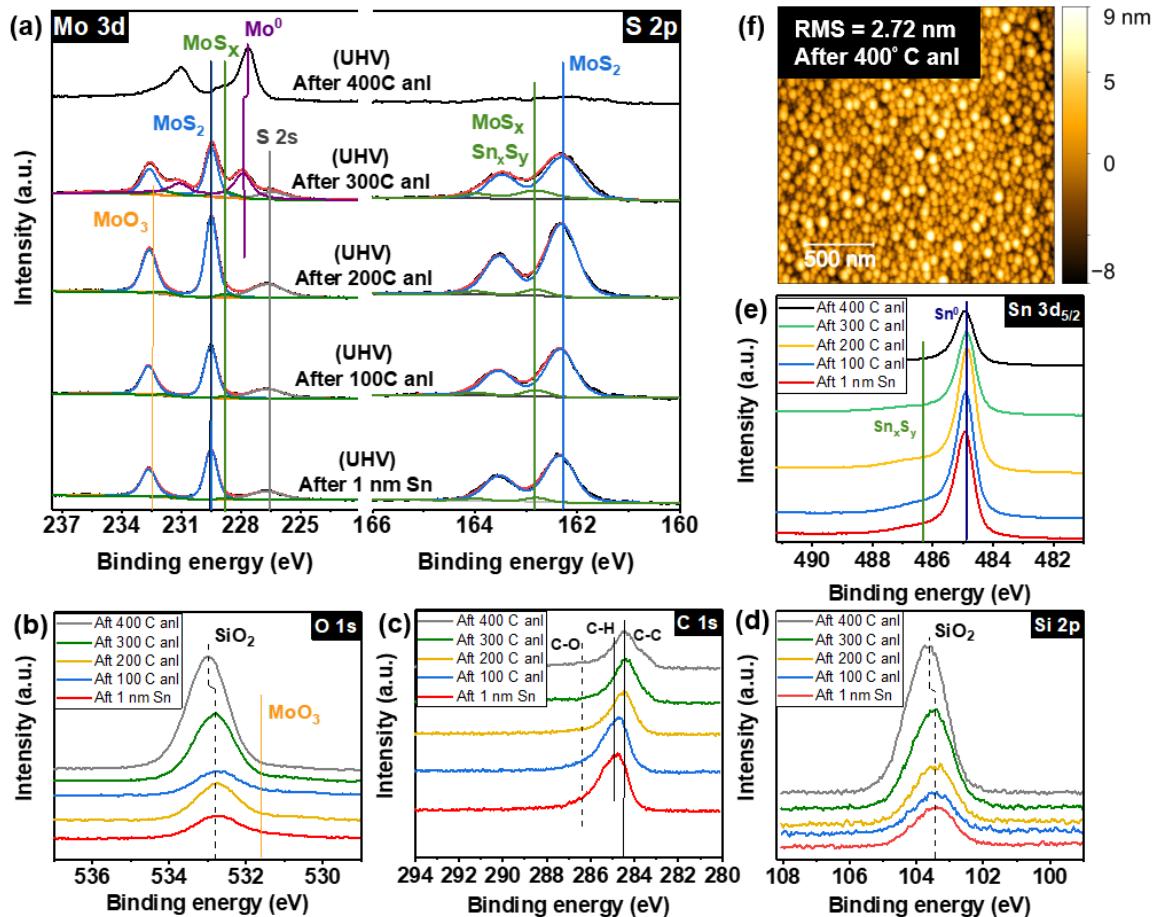
1 Nevertheless, the presence of metallic Mo^0 at the Sn/bulk MoS_2 interface indicates that at
 2 a higher temperature (300-400 °C). some Sn in the form of Sn-S sublimes from the
 3

4
 5 FIG. 4. (a) Mo 3d and S 2p, (b) Sn 3d_{5/2}, (c) C 1s and (d) O 1s spectra of bulk MoS_2
 6 sample after Sn depositions and after sequential thermal annealing under UHV condition,
 7 (e) Ex-situ AFM image of MoS_2 bulk crystal surface after 400°C annealing reveals very
 8 few islands compared to the surface before annealing.

9
 10 interface. The small quantity of SnO_x detected after metallization remained relatively
 11 constant throughout the annealing process. (Figure 4 (b)). The adventitious carbon
 12 concentration started to reduce around 200 °C and went down close to the XPS detection

1 limit after 300 °C (Figure 5 (d)) consistent with the desorption of weakly bound species.
2 In addition to the interface chemistry, charge transfer causes a downward shift of the core
3 levels (Mo 3d and S 2p) in BE with increasing annealing temperature. (Figure 4 (a)) and
4 move them back to their previous BE before Sn deposition.

5 AFM analysis after 400 °C annealing shows very few small islands (Figure 4 (e))
6 compared to post metallization AFM image (Figure 1 (f)). As Sn undergoes annealing at
7 temperatures higher than its T_m , Sn sublimates, and the agglomerated Sn islands
8 exhibited after metallization resulted in a reduction in their size and gradually left the
9 MoS₂ surface exposed. From XPS analysis after 400 °C, we observed an extremely low
10 Sn concentration survives which is likely leaving regions of exposed substrate visible in
11 the AFM image. The XPS spectrum also shows metallic Mo features as MoS₂ is reduced
12 above 300 °C. Therefore, most of the tiny islands observed in the AFM image indicate a
13 composition of metallic Mo. Additionally, the MoS₂ bulk surface morphology shows
14 increased surface roughness after annealing probably due to the presence of Mo islands.


15

16 2. *Sn/1L-MoS₂/SiO₂/Si interfaces*

17 The interface chemistry of Sn/1L-MoS₂/SiO₂/Si stack after Sn deposition and
18 after in-situ annealing in UHV at different temperatures is illustrated in Figure 5. After 1
19 nm Sn deposition in UHV, the previously observed reduction reaction product in the Mo
20 3d and S 2p spectra (cf. Figure 3 (a)) indicated the Sn reduction of 1L-MoS₂ film. Now
21 through thermal annealing, we can illustrate the progression of the reaction species and
22 sub-stoichiometric MoS_x state.

1 As the annealing temperature increases, the intensity of the MoS_2 in Mo 3d and S
 2 2p spectra enhances. In contrast, the amount of reaction products and the intensity of
 3 metallic Sn^0 in Sn 3d remain almost unchanged (Figure 5(a) and (e)) up to 200 °C. This is
 4 probably due to the small cluster formation by Sn. Above 200 °C, the reaction at the Sn/
 5 1L- MoS_2 interface is elevated and at 300 °C excessive reduction by Sn metal of

6

7 FIG. 5. (a) Mo 3d and S 2p, (b) O 1s, (c) C 1s, (d) Si 2p, and (e) Sn 3d_{5/2} core level in-situ
 8 spectra of Sn/1L MoS_2 interface showing thermal stability after subsequent UHV
 9 annealing, (f) Ex-situ AFM image of the monolayer MoS_2 after 400°C annealing in UHV
 10 conditions showing increasing roughness after thermal annealing.

11
 12 .

1 monolayer MoS₂ is identified by the appearance of metallic Mo⁰. In addition, the
2 intensity of the MoS₂ peak in Mo 3d and S 2p spectra decreased. This finding highlights
3 the Sn reaction with the CVD 1L-MoS₂ film and subsequent evaporation from the
4 interface, which was observed in small amounts for the Sn/ bulk MoS₂ interface after
5 annealing at 400 °C. This reduction phenomenon at the Sn/ 1L MoS₂ interface is
6 exaggerated after annealing at 400 °C, resulting in the S 2p intensity nearing the detection
7 limit and a substantial portion of MoS₂ converting to metallic Mo⁰. However, compared
8 to the bulk substrate (Figure 4(b)), a noticeable amount of Sn remained at the interface
9 (Figure 5 (e)). The covalent bonding at the interface between Sn and monolayer MoS₂ is
10 probably the underlying cause. There is no shifting in the core level of Mo 3d and S 2p
11 after Sn deposition and subsequent annealing. As discussed above, surface defects are
12 likely the cause of such E_F pinning effects.

13 The peaks of SiO₂ in both O 1s and Si 2p spectra do not shift after annealing up to
14 300°C within the binding energy resolution limits (Figure 5 (b) and (d)). This outcome
15 indicates weak bonding between the 1L-MoS₂ film and the SiO₂ substrate. However, after
16 annealing at 400 °C, the peaks corresponding to SiO₂ bonding in both O 1s and Si 2p
17 spectra shift to higher binding energies. Between 300 °C and 400 °C, Sn sublimated from
18 the surface in the form of Sn_xS_y, leading to excessive reduction and degradation of the
19 1L-MoS₂ film. As a result, a significant amount of metallic Mo and a small quantity of
20 Sn_xS_y reaction products emerged at the 1L-MoS₂/SiO₂ interface. This most likely changes
21 the band offsets of the monolayer MoS₂/SiO₂ interface as possible charge transfer is
22 expected when a CVD-grown MoS₂/SiO₂ interface is formed.⁴² The removal of S by Sn

1 metal, away from the 1L-MoS₂/SiO₂ interface, could also contribute to the shifts of the
2 SiO₂ orbital states to higher binding energies in the O 1s and Si 2p spectra.

3 Previously in the interface chemistry section, we observed that the interfacial
4 reaction between the 1L-MoS₂ film and the SiO₂ substrate is below the detection limit of
5 XPS for the control sample before Sn deposition (Figure 2 (e)). Moreover, since CVD
6 1L-MoS₂ film is typically deposited on the SiO₂/Si wafer at ~ 800 °C,⁴³ a temperature
7 exceeding 400 °C during the annealing process in this work, no additional reaction is
8 anticipated between monolayer MoS₂ and SiO₂. Therefore, it is reasonable to speculate
9 that the Sn reduction reaction of 1L-MoS₂ could induce substantial defects (S vacancies)
10 at the 1L-MoS₂/SiO₂ interface, and as the MoS₂ reduction is enhanced above 300 °C, the
11 core level of Si 2p shifted to a higher BE.

12 AFM analysis of the 1L MoS₂ surface shows higher roughness values compared
13 to the surface before annealing (Figure 2 (g) and Figure 5 (f)). Based on XPS analysis,
14 the significant reduction in MoS₂ states after annealing at 400 °C, with only a few percent
15 of sulfur remaining, suggests that most of the surface area in the AFM image is likely
16 covered with metallic Sn and Mo islands. This observation accounts for the combined
17 desorption of Sn and S as Sn_xS_y reaction products. As both the Mo⁰ and Sn metal features
18 dominate the surface morphology, an increase in surface roughness was observed after
19 annealing at 400 °C.

20

21 **IV. SUMMARY AND CONCLUSIONS**

22 In conclusion, Sn contacts' interface chemistry and band alignment on MoS₂
23 substrates are thoroughly studied via in-situ XPS and ex-situ AFM analysis. Sn forms a

1 vdW contact interface with the bulk substrate and a covalent-type interface with the
2 monolayer substrate. The Sn aligns the E_F of bulk MoS₂ close to the CBM with a
3 minimum barrier height while E_F pinning is observed in Sn/1L-MoS₂ interface due to
4 intrinsic defects in CVD-grown MoS₂. In addition, the thermal stability of an uncapped
5 Sn metal contact is examined on both substrates up to 400 °C. Although the Sn/bulk
6 MoS₂ interface reaction is below the detection limit of XPS until 300 °C, excessive
7 sublimation of Sn from the surface left a bare bulk surface after annealing above 300 °C.
8 The reaction products at Sn/1L MoS₂ from the reduction of monolayer substrate
9 increased gradually with subsequent annealing process. Above 300 °C the Sn/1L MoS₂
10 indicated a highly reactive interface and consequently, after 400 °C Sn substantially
11 reduced the MoS₂ surface and formed metallic Mo. Both substrates got reduced by Sn
12 when the temperature exceeded 300°C, and the excessive desorption and reduction of the
13 S 2p signal suggest combined evaporation of Sn_xS_y from the surfaces, particularly for
14 monolayer MoS₂.

15

16 SUPPLEMENTAL MATERIAL

17 The following files are available free of charge.
18 The deposition/analysis process flow, core level BE and FWHMs of the bulk MoS₂
19 substrates with the Sn contact interface, and the band alignment extraction procedure are
20 available.

21 22 ACKNOWLEDGMENTS

1 The authors acknowledge useful discussions with Prof. Servando Aguirre on the XPS
2 spectra interpretation. This work was supported in part by NEWLIMITS, a center in
3 nCORE, a Semiconductor Research Corporation (SRC) program sponsored by NIST
4 through award number 70NANB17H041, and by the National Science Foundation
5 through award DMR-2002741.

6

7 AUTHOR DECLARATIONS

8 **Conflict of Interest:** The authors have no conflicts to disclose.

9 **Author Contributions:** Joy Roy: Conceptualization (lead); data curation (lead);
10 methodology (lead); writing – original draft (lead); formal analysis (lead); writing –
11 review and editing (equal). Seong Yeol Kim: Methodology (equal); formal analysis
12 (equal); writing – review and editing (equal). Robert M. Wallace: Conceptualization
13 (equal); funding acquisition (lead); methodology (equal); resources (lead); supervision
14 (lead); writing – review and editing (equal).

15

16 DATA AVAILABILITY

17 The data that support the findings of this study are available within the article and its
18 supplementary material as figures. The data that support the findings of this study are
19 also available from the corresponding author upon reasonable request.

20

21 REFERENCES

22 ¹ R. Ganatra, and Q. Zhang, ACS Nano **8**, 4074 (2014).

¹ ² A. Penumatcha, K.P. O'Brien, K. Maxey, W. Mortelmans, R. Steinhardt, S. Dutta, C.J. Dorow, C.H. Naylor A., K. Kitamura, T. Zhong, T. Tronic, P. Buragohain, C. Rogan, C.-C. Lin, M. Kavrik, J. Lux, A. Oni, A. Vyatskikh, S. Lee, N. Arefin, P. Fischer, S. Clenndenning, M. Radosavljevic, M. Metz, and U. Avci, in *2023 International Electron Devices Meeting* (IEEE, 2023), pp. 1–4.

⁶ ³ Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, and H. Zhang, *ACS Nano* **6**, 74 (2012).

⁸ ⁴ H. Li, J. Wu, Z. Yin, and H. Zhang, *Acc. Chem. Res.* **47**, 1067 (2014).

⁹ ⁵ A.-S. Chou, C.-C. Cheng, S.-L. Liew, P.-H. Ho, S.-Y. Wang, Y.-C. Chang, C.-K. Chang, Y.-C. Su, Z.-D. Huang, F.-Y. Fu, C.-F. Hsu, Y.-Y. Chung, W.-H. Chang, L.-J. Li, and C.-I. Wu, *IEEE Electron Device Lett.* **42**, 272 (2021).

¹² ⁶ G. Arutchelvan, Q. Smets, D. Verreck, Z. Ahmed, A. Gaur, S. Sutar, J. Jussot, B. Groven, M. Heyns, D. Lin, I. Asselberghs, and I. Radu, *Sci. Rep.* **11**, 6610 (2021).

¹⁴ ⁷ S. Wang, X. Liu, and P. Zhou, *Adv. Mater.* **34**, 2106886 (2022).

¹⁵ ⁸ J. Lin, S. Monaghan, N. Sakhija, F. Gity, R.K. Jha, E.M. Coleman, J. Connolly, C.P. Cullen, L.A. Walsh, T. Mannarino, M. Schmidt, B. Sheehan, G.S. Duesberg, N. McEvoy, N. Bhat, P.K. Hurley, I.M. Povey, and S. Bhattacharjee, *2D Mater.* **8**, 025008 (2020).

¹⁹ ⁹ D. Akinwande, C. Huyghebaert, C.-H. Wang, M.I. Serna, S. Goossens, L.-J. Li, H.-S.P. Wong, and F.H.L. Koppens, *Nature* **573**, 507 (2019).

²¹ ¹⁰ A. Rai, H.C.P. Movva, A. Roy, D. Taneja, S. Chowdhury, and S.K. Banerjee, *Crystals* **8**, 316 (2018).

²³ ¹¹ Y. Wang, and M. Chhowalla, *Nat. Rev. Phys.* **4**, 101 (2022).

²⁴ ¹² J. Kang, W. Liu, and K. Banerjee, *Appl. Phys. Lett.* **104**, 93106 (2014).

²⁵ ¹³ H. Lu, Z. Liu, X. Yan, D. Li, L. Parent, and H. Tian, *Sci. Rep.* **6**, 24366 (2016).

1 ¹⁴ A. Kumar, K. Schauble, K.M. Neilson, A. Tang, P. Ramesh, H.-S.P. Wong, E. Pop, and K.
2 Saraswat, in *2021 International Electron Devices Meeting* (IEEE, 2021), p. 7.3.1-
3 7.3.4.

4 ¹⁵ P.-C. Shen, C. Su, Y. Lin, A.-S. Chou, C.-C. Cheng, J.-H. Park, M.-H. Chiu, A.-Y. Lu, H.-
5 L. Tang, M.M. Tavakoli, G. Pitner, X. Ji, Z. Cai, N. Mao, J. Wang, V. Tung, J. Li, J.
6 Bokor, A. Zettl, C.-I. Wu, T. Palacios, L.-J. Li, and J. Kong, *Nature* **593**, 211 (2021).

7 ¹⁶ A.-S. Chou, T. Wu, C.-C. Cheng, S.-S. Zhan, I.-C. Ni, S.-Y. Wang, Y.-C. Chang, S.-L.
8 Liew, E. Chen, W.-H. Chang, C.-I. Wu, J. Cai, H.-S.P. Wong, and H. Wang, in *2021*
9 *IEEE International Electron Devices Meeting* (IEEE, 2021), p. 7.2.1-7.2.4.

10 ¹⁷ Y. Wang, J.C. Kim, R.J. Wu, J. Martinez, X. Song, J. Yang, F. Zhao, A. Mkhoyan, H.Y.
11 Jeong, and M. Chhowalla, *Nature* **568**, 70 (2019).

12 ¹⁸ HQ Graphene. www.hqgraphene.com (accessed 12 June 2024)

13 ¹⁹ 2dlayer. <https://2dlayer.com/> (accessed 12 June 2024).

14 ²⁰ C.M. Smyth, R. Addou, C.L. Hinkle, and R.M. Wallace, *J. Phys. Chem. C* **124**, 14550
15 (2020).

16 ²¹ XPS Oasis. <https://xpsoasis.org/> (accessed 12 June 2024).

17 ²² Gwyddion. <http://gwyddion.net/> (accessed 12 June 2024).

18 ²³ X. Wang, C.R. Cormier, A. Khosravi, C.M. Smyth, J.R. Shallenberger, R. Addou, and
19 R.M. Wallace, *Surf. Sci. Spectra* **27**, 014019 (2020).

20 ²⁴ W.M. Haynes, *CRC Handbook of Chemistry and Physics* (CRC Press, Boca Raton, 2016).

21 ²⁵ H. Mo, X. Zhang, Y. Liu, P. Kang, H. Nan, X. Gu, K.K. Ostrikov, and S. Xiao, *ACS Appl.*
22 *Mater. Interfaces* **11**, 39077 (2019).

23 ²⁶ T.B. Massalski, H. Okamoto, Pr. Subramanian, L. Kacprzak, and W.W. Scott, *Binary Alloy*
24 *Phase Diagrams* (ASM International, Materials Park, OH, 1986).

25 ²⁷ R. Szoszkiewicz, *Materials* **14**, 5979 (2021).

1 ²⁸ R. Addou, and R.M. Wallace, *J. Electron Spectros. Relat. Phenomena* **231**, 94 (2019).

2 ²⁹ A.F. Lee, and R.M. Lambert, *Phys. Rev. B* **58**, 4156 (1998).

3 ³⁰ J.F. Moulder, W.F. Stickle, W.M. Sobol, and K.D. Bomben, *Handbook of X-Ray*
4 *Photoelectron Spectroscopy*, (PHI Division, Perkin-Elmer Corporation, 1992).

5 ³¹ X. Wang, S.Y. Kim, and R.M. Wallace, *ACS Appl. Mater. Interfaces* **13**, 15802 (2021).

6 ³² J. Hong, Z. Hu, M. Probert, K. Li, D. Lv, X. Yang, L. Gu, N. Mao, Q. Feng, L. Xie, J.
7 Zhang, D. Wu, Z. Zhang, C. Jin, W. Ji, X. Zhang, J. Yuan, and Z. Zhang, *Nat*
8 *Commun.* **6**, 6293 (2015).

9 ³³ C. Durand, X. Zhang, J. Fowlkes, S. Najmaei, J. Lou, and A.-P. Li, *J. Vac. Sci. Technol., B*
10 **33**, 02B110 (2015).

11 ³⁴ D.J. Trainer, J. Nieminen, F. Bobba, B. Wang, X. Xi, A. Bansil, and M. Iavarone, *npj 2D*
12 *Mater. Appl.* **6**, 1 (2022).

13 ³⁵ X. Fan, R. Siris, O. Hartwig, G.S. Duesberg, and F. Niklaus, *ACS Appl. Mater. Interfaces*
14 **12**, 34049 (2020).

15 ³⁶ Y.Y. Illarionov, A.G. Banshchikov, D.K. Polyushkin, S. Wachter, T. Knobloch, M.
16 Thesberg, L. Mennel, M. Paur, M. Stöger-Pollach, A. Steiger-Thirsfeld, M.I. Vexler,
17 M. Waltl, N.S. Sokolov, T. Mueller, and T. Grasser, *Nat. Electron.* **2**, 230 (2019).

18 ³⁷ M. Akbi, and A. Lefort, *J. Phys. D: Appl. Phys.* **31**, 1301 (1998).

19 ³⁸ R. Addou, L. Colombo, and R.M. Wallace, *ACS Appl. Mater. Interfaces* **7**, 11921 (2015).

20 ³⁹ F. Bussolotti, J. Yang, H. Kawai, C.P.Y. Wong, and K.E.J. Goh, *ACS Nano* **15**, 2686
21 (2021).

22 ⁴⁰ S.M. Gali, A. Pershin, A. Lherbier, J.-C. Charlier, and D. Beljonne, *J. Phys. Chem. C* **124**,
23 15076 (2020).

24 ⁴¹ Y. Lan, and C. Huang, *J. Energy Storage* **54**, 105203 (2022).

⁴³ D. Zhou, H. Shu, C. Hu, L. Jiang, P. Liang, and X. Chen, Cryst. Growth Des. **18**, 1012 (2018).

5