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Bi-Directional Semi-Supervised Training of
Convolutional Neural Networks for Ultrasound
Elastography Displacement Estimation

Ali K. Z. Tehrani

Abstract—The performance of ultrasound elastogra-
phy (USE) heavily depends on the accuracy of displacement
estimation. Recently, convolutional neural networks (CNNs)
have shown promising performance in optical flow estima-
tion and have been adopted for USE displacement estima-
tion. Networks trained on computer vision images are not
optimized for USE displacement estimation since there is
a large gap between the computer vision images and the
high-frequency radio frequency (RF) ultrasound data. Many
researchers tried to adopt the optical flow CNNs to USE
by applying transfer learning to improve the performance
of CNNs for USE. However, the ground-truth displacement
in real ultrasound data is unknown, and simulated data
exhibit a domain shift compared to the real data and are
also computationally expensive to generate. To resolve this
issue, semisupervised methods have been proposed in
which the networks pretrained on computer vision images
are fine-tuned using real ultrasound data. In this article,
we employ a semisupervised method by exploiting the first-
and second-order derivatives of the displacement field for
regularization. We also modify the network structure to
estimate both forward and backward displacements and
propose to use consistency between the forward and back-
ward strains as an additional regularizer to further enhance
the performance. We validate our method using several
experimental phantom and in vivo data. We also show
that the network fine-tuned by our proposed method using
experimental phantom data performs well on in vivo data
similar to the network fine-tuned on in vivo data. Our results
also show that the proposed method outperforms current
deep learning methods and is comparable to computation-
ally expensive optimization-based algorithms.
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I. INTRODUCTION

LTRASOUND (US) imaging has been increasingly
Uused by researchers and clinicians in diagnosis and
image-guided intervention since it is less expensive and more
portable compared to other imaging modalities. US elastogra-
phy (USE) is an imaging technique that detects viscoelastic
properties of the tissue and has been found useful in different
applications, including ablation monitoring [1], [2] and breast
lesion characterization [3]. USE methods track the motion of
the tissue and can be broadly categorized into two groups:
dynamic and quasi-static elastography. In dynamic elastogra-
phy, acoustic radiation force or an internal force is used to
generate fast motions in the tissue [4]. In contrast, the motions
in the tissue are slow in quasi-static elastography and can be
induced by simply pressing the probe by the operator (free-
hand palpation) or using a robotic arm [5]-[8].

In free-hand palpation USE, the operator compresses the
tissue by the probe usually in the axial direction. The US
radio frequency (RF) data before and after the compression are
compared to obtain the displacement map, which indicates the
movement of each individual sample. The displacement map
is utilized to obtain the strain map, which contains relative
elasticity information. In this article, we aim to estimate axial
displacement for quasi-static free-hand palpation USE.

Existing techniques for performing the displacement esti-
mation step can be categorized into conventional and deep
learning-based methods. Window-based [6], [9]-[12] and
optimization-based [8], [13]-[15] are two main groups of con-
ventional methods that have been used widely for USE. Recent
optimization-based methods have surpassed window-based
ones [14], [15]. The main idea of the optimization-based
methods is to determine an initial coarse estimation, usually
by dynamic programming (DP) [8], followed by minimizing
a regularized cost function to obtain the displacement map.
OVERWIND is a recent algorithm that combines the window-
and optimization-based methods [15]. OVERWIND employs
the L; norm as the regularizer to preserve the sharpness of
the displacements on the boundaries.
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Fig. 1. Overview of the proposed semisupervised training method. The network is first trained using computer vision datasets by supervised methods
(the block on top). The network is fine-tuned by real US data using the proposed unsupervised training method (bottom block). The network structure
is altered to be able to estimate both forward and backward flows. The layers connected by the dashed lines share weights. The cost volume and
optical flow estimation blocks with shared weights are used to estimate both forward and backward flows.

Deep learning-based methods, which have been recently
proposed for USE, employ optical flow convolutional
neural networks (CNNs) to obtain the displacement map.
The first few works used the optical flow CNNs as black
boxes for USE [16], [17] or as the initial estimator for
optimization-based methods instead of DP [18], [19].
However, the computer vision images and US data are vastly
different and the CNN architectures used for the former
are not optimized for high-frequency RF data. Motivated to
address this issue, we modified the well-known PWC-Net
architecture [20] to be adapted to USE, considering the
physics of RF data [21]. We called the network modified
PWC-Net (MPWC-Net) and obtained substantially more
accurate displacement compared to PWC-Net. In another
work, we proposed MPWC-Net++ that was an improved
version of MPWC-Net with a higher search range and more
accurate output displacement [22]. These methods require
a GPU to run efficiently and can perform high-frame-rate
USE given the rapidly increasing computational power of
GPUs. However, their main drawback is that they have a
larger variance compared to conventional methods since
they are not regularized in contrast to conventional methods.
Consequently, their strain images have lower overall quality
compared to conventional methods [21]-[23].

Unsupervised training was another avenue that has been
followed by the researchers. Delaunay et al. [24], [25] trained
a U-Net using real US data and developed a recurrent network
to deal with a sequence of frames. In [26], we used a light

network, referred to as LiteFlowNet [27], and trained it in a
semisupervised fashion. We first used computer vision datasets
with known ground truths to train the network using supervised
techniques. In the next step, real US data were used to
fine-tune the network using an unsupervised method. We sub-
stantially improved the strain image quality by using this
technique without requiring a large amount of training data.

In this article, we follow the semisupervised training
approach. The overview of the method is shown in Fig. I.
We first employ computer vision datasets to train the network
in a supervised fashion. We use MPWC-Net++, which
has shown high performance in USE. We then fine-tune the
network by real US data and extend our idea of semisupervised
method by proposing bi-directional unsupervised fine-tuning.
We change the structure of MPWC-Net++ to estimate
both forward and backward displacements, which is more
efficient than running the network two times to estimate
them. Consistency loss is also proposed, which is obtained
by comparing forward and backward strains. Furthermore,
we shed light on the choice of weights for regularization
by relating some of them to others. We demonstrate the
high-performance of the proposed methods using experimental
phantom and in vivo data.

[I. MATERIAL AND METHOD
A. Deep Supervised CNNs

In this section, several CNNs used in USE displacement
estimation are explained.
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1) PWC-Net: Sun et al. [20] proposed using cost volume
and warping of the features for optical flow estimation. They
achieved the state-of-the-art performance in different computer
vision datasets. PWC-Net used a pyramidal structure, in which
the optical flow was estimated in different resolution levels.
At each pyramid level, the features of the second image were
warped by the estimated flow of the previous pyramid to
reduce the flow in the next pyramid level. In the next step,
cost volume was employed to compare the features of the
fixed and warped moved images. In the last step, the optical
flow was estimated and used in the next pyramid. Using
pyramid structure resulted in the reduction of the number of
learnable weights and improved the performance of optical
flow estimation [20]. Recently, a variant of PWC-Net called
iterative residual refinement PWC-Net (IRR-PWC-Net) was
proposed [28]. This network reduced the number of learnable
weights even further by using the optical flow estimation block
iteratively.

2) MPWC-Net: PWC-Net was proposed for computer
vision images originally and was not well suited to
the high-frequency RF data. We modified the structure
of PWC-Net and proposed MPWC-Net for USE [21].
We removed the strides of the first feature extraction layer
to preserve high-frequency information in RF data. In order
to avoid failure of the network in low pyramid levels, where
RF data do not have enough information due to downsam-
pling, we used envelope and B-mode images as additional
input channels. We obtained competitive performance with
conventional optimization-based methods. The code and the
simulation dataset for fine-tuning are available online at
code.sonography.ai.

3) MPWC-Net++: MPWC-Net had a low displacement
range since strides of the first feature extraction layer were
removed. In addition, we showed that the real displacement
range is much lower than the theoretical one since only
a small quantity of training data has high displacement
ranges. Therefore, the network is not trained enough to deal
well with large displacements, and the predicted flows are
noisy in this condition. To address these problems, instead
of removing both strides, we only removed one of them
and kept the other one. Also, the search range of the cost
volume was increased from 4 to 5 in each pyramid level.
By doing these modifications, the network had a higher
search range and could work better for large displacements.
Furthermore, we used IRR-PWC-Net [28] since it has a more
efficient structure. Although we applied these modifications
to improve the performance in the USE application, they
also led to an improvement even for the computer vision
dataset [22].

However, the improvements came with costs. Due to modi-
fying the network structure, we had to train the network from
scratch (MPWC-Net did not require training from scratch).
The training itself was slower compared to the original
PWC-Net for two reasons: first, having larger feature maps
after removing strides; and second, increasing the cost volume
search range. The MPWC-Net++ was trained from scratch
using computer vision images, while LiteFlowNet used in [26]
was pretrained, and we only fine-tuned it using real US data.

Training from scratch takes 840 h using an NVIDIA Tesla
P6 GPU, substantially more time compared to the fine-tuning
since the network is randomly initialized and a large dataset
(for MPWC-Net++ 22 000 pairs) is employed to train the
network. The network weights are publicly available online at
code.sonography.ai.

B. Semisupervised Method

Simulation data do not model nonlinear or multiple scat-
tering effects present in real US data [24], [26]. Therefore,
we proposed to use real US data for fine-tuning. This method
was semisupervised since we first used a pretrained network
trained on computer vision images by supervised methods.
In the next step, real US data were used to fine-tune the
network.

The moved image was warped with the forward flow and
compared with the first image, which is called photomet-
ric loss. This loss alone resulted in noisy displacements;
therefore, inspired by the physics of RF data, we pro-
posed using the first second-order derivatives of displace-
ment in the axial and lateral directions as the regularization.
The detailed description of the loss function can be
found in [26].

In order to preserve the information of high-frequency RF
data, we were not allowed to downsample images and had to
use large image sizes during unsupervised fine-tuning, which
is challenging due to GPU memory limitations. We used a light
network (LiteFlowNet [27]) and gradient checkpointing [29]
to be able to train the network on our GPU (Nvidia TITAN V
with 12 GB of RAM). Furthermore, we limited the training to
only forward flow and the backward flow was used to detect
occluded regions.

C. Proposed Method

Let I;, I, € R¥>*W>xH denote the fixed and moved images
having three channels with width W and height H, and
W/ e R>*WxH and WP e R>*W*H denote the forward flow
(I} = ) and backward flow (I, — I;), respectively. The
data loss function for unsupervised fine-tuning can be defined
as [26]

(D

where I, is the second image warped by the W7, and
unlike [26], a window of size (w x w) around the sample
of interest is selected to compute the loss to reduce the noise
caused by interpolation step of warping operation (here, we use
a 3 x 3 window). @ is the Charbonnier loss that has been
widely used in unsupervised optical flow training [30] and
defined in the following [31]:

D(x) = |(x* +¢)°, 2

loss = (1) — b)

wXw

where |.|; denotes the L; norm and o can be altered to give
different importance to x. We used a = 0.5 for the data
loss (would be L; norm) and a = 0.2 for smoothness and
consistency loss to emphasize small values of x. It should be
mentioned that inspired by [23], RF data, the envelope and
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imaginary part of Hilbert transform of RF data, are utilized as
three separate channels of input images.

In order to have a smooth displacement field, the first-order
derivatives of the displacements in the axial and lateral direc-
tions are used for regularization

ow./ o, ow/
loss! = 411 @ L (=w/ A1n® ‘
0% = 4n (aa <aa a| ) TP\
ow/ ow/
+00 | =L )+ in® : (3)
oa ol

where W/, W/, (1/0a), (1/08l), and A denote axial, lateral
displacements, the derivative in axial and lateral directions, and
their corresponding weights, respectively. The axial derivative
of the axial displacement is subtracted by its mean ({.) denotes
the mean value) to reduce the bias of the regularization similar
to [15].

The second-order derivatives of the displacements have been
found useful for USE [24], [26], [32]. Hence, they can be used
to regularize the displacements

2w,/ 2w/

loss? = A3, @ a 23 ® ‘

0885 =431 ( 5%a )+ 32 (aaal
WI

Unlike [25] that used the first- and second-order derivatives of
only axial displacement, we used the first- and second-order
derivatives of both axial and lateral displacement in both
directions. The second-order derivatives do not introduce bias,
but they require higher weights to be as effective as the first-
order derivatives.

1) Hyperparameter Tuning: It can be seen that there are
eight hyperparameters that we need to set before training the
network. In our recent work [26], we set them empirically,
while in this article, we tried to reduce the number of
hyperparameters by relating some of them to others using US
principles.

The distance between two adjacent samples in the axial and
lateral directions is also vastly different since the sampling
frequencies and the number of samples are widely dissimilar.
The distance between two adjacent samples in the axial
direction can be obtained by c¢/(2f;), where ¢ denotes the
sound speed and f; is the sampling frequency. A rough
approximation of the lateral distance between two samples
would be the distance between two adjacent A-lines, which
is much larger than the axial distance in a typical US image.
Therefore, 11> and 15, must be several times smaller than A,
and /121.

As noted in [32], the second-order derivatives are much
smaller than the first-order ones. Therefore, to be as effective
as the first-order derivatives, their weight should be several
times larger than the first-order derivatives. We set this weight
to be A3; = 511;. We also set the lateral derivative weights
similar to the first-order derivatives (14; = S A3;). Finally, the

smoothness regularizer can be written as
loss, = @ (8:;({ - <%Waf>)+ﬂ(1) (6;{?)
+0.50 (%) +0.560 (%)
el () o (5)
+ 0.50 (8;215) +0.580 (a;?;[f)} 5)

where f depends on the ratio of the sampling frequency
in the axial and lateral directions. Setting the weights does
not require an exact calculation of the sampling frequencies
and should be less than 1; we set this hyperparameter to
0.1. Finally, for incompressible materials, Poisson’s ratio is
approximately 0.5 [33], which means that the strain in the
lateral direction is half of the axial one. Therefore, 1,; can
be substituted by 0.54,;. It should be noted that the explained
method to tune the weights of the regularizers is only a rough
estimate of the optimal values; therefore, the training is not too
sensitive to the variations of these weights and even changing
the weights by as much as 100% yields similar results.

2) Bi-directional Strain Consistency: In this article, inspired
by recent unsupervised methods in optical flow estima-
tion [34], we proposed to utilize forward and backward
consistency in addition to the data and smoothness losses.
In unsupervised optical flow methods, the difference between
forward and backward displacements was used for consistency
loss [34].

Strain images are often showed in USE as a surrogate
of the elastic modulus. Therefore, it would be useful to
utilize the derivatives of the displacements for the consistency
loss. Assuming a uniform tissue, the estimated forward and
backward axial strains can be written as

el = ey + N (u, ("2)
" = ey + N(-p, %) (6)

where we assumed that the strain true value is ¢, and the
error is modeled by a normal distribution with the bias and
variance of u and o2, respectively. The forward and backward
consistency losses can be defined as

loss. = @(e/ + ). (7)
Substituting (6) into (7) yields
loss, = ®(N(0, 0%/2)). (8)

This equation indicates that minimizing loss, results in reduc-
ing the variance in estimation of forward and backward strains.
Similar to the smoothness loss (lossy), the strain in both axial
and lateral directions were employed, which can be written as

ow!  ow? ow/!  ow?
lossczfl)( + ”)+0.5ﬁc1>( Ly L )

oa oa ol ol

where we used the same weights of the smoothness loss.
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By using the loss functions defined in (1), (5), and (9), the
total loss function can be written as

loss = lossy + Alossg + 7y loss,. (10)

Because of reducing the number of hyperparameters, only
A and y should be tuned for the training, which can be done
based on the training data. Too large values of A and y lead
to a blurry strain image, while too small values result in noisy
strain images. We set these hyperparameters (4 = 0.03 and
y = 0.05) by visually inspecting the strain images of the
validation set after training with different values of 4 and y.
It is worth mentioning that similar data and smoothness loss
can be used for the backward flow. However, the consistency
loss that we added has a similar behavior since it tries to make
the backward strain close to the inverse of the forward one.

Adding the consistency loss demands high memory since
both forward and backward flows are used for backpropa-
gation. We utilized an NVIDIA A100 GPU with 40 GB of
RAM to be able to train using the proposed loss function and
simultaneously avoid downsampling to preserve RF data high-
frequency information. Since training this network might be
infeasible for some researchers, we have made the networks’
weights available online at code.sonography.ai.

D. Data Collection

1) Experimental Phantom: We used a tissue-mimicking
breast phantom made from Zerdine (Model 059, CIRS: Tissue
Simulation and Phantom Technology, Norfolk, VA, USA) for
data collection. The phantom contained a number of hard
inclusions. The background has an elastic modulus of 20 kPa
and the inclusions have at least twice elastic modulus of the
background. This phantom was utilized to obtain training and
test data. We made sure that different parts of the phantom
were imaged for training and testing to avoid data leakage.

We employed Alpinion E-Cube R12 research US machine
(Bothell, WA, USA) for training and test. The L3-12H linear
array probe with the center frequency of 10 MHz and the sam-
pling frequency of 40 MHz was utilized for image acquisition.

2) InVivo Data: In vivo data were collected at Johns Hopkins
Hospital using a research Antares Siemens system by a VF
10-5 linear array. The sampling frequency was 40 MHz and
the center frequency was 6.67 MHz. Data were collected from
patients with liver cancer during open-surgical RF thermal
ablation. For more information, please see [8]. The institu-
tional review board approved the study with the consent of
the patients.

E. Training Schedule

We first collected data using the Alpinion machine from
the breast phantom. We then selected image pairs having
maximum axial displacement larger than three pixels. In total,
2200 image pairs were used for training. The networks were
trained for 40 epochs and the learning rate was set to 30e~°
that is reduced by 1/2 every ten epochs. For in vivo data results,
we also fine-tuned the network trained by the bi-directional
method using in vivo data. This network was fine-tuned using
500 in vivo image pairs for 20 epochs and the learning rate

was 20e~® and reduced by a factor of 2 every five epochs.
In our experiments, we named this network as bi-directional
unsupervised-+ft.

F. Compared Methods
The compared methods are listed as follows.

1) OVERWIND is an optimization-based method that esti-
mates subpixel displacement. This method requires the
initial displacement, which is obtained by DP [8].
OVERWIND considers a window around each sample
and uses total variation for the regularization. This
method obtains high-quality strain images [15].

2) The recently proposed network MPWC-Net++ that is
the modified version of MPWC-Net. This network is
only trained on computer vision images and no training
on US data is done [22].

3) We fine-tune MPWC-Net++ using the unsupervised
technique without the consistency loss. Also, similar
to [26], it has the second-order derivatives only in the
direction of the displacement (A3, 141 = 0). In this
case, the unsupervised fine-tuning would be similar
to the semisupervised method [26] with some minor
improvements. The difference is that a better net-
work (MPWC-Net++) with more suitable regularization
weights is employed.

4) Our proposed bi-directional unsupervised fine-tuning
method. In this method, the consistency loss is added to
the unsupervised loss function and all the second-order
derivatives are employed in the smoothness loss.

5) For in vivo data section, we also fine-tune the
bi-directional network using in vivo data.

We compare our bi-directional semisupervised method with
recent methods in USE: OVERWIND is a high-performance
and nondeep learning method. MPWC-Net++ is one of
the best networks used for USE without training on US
data. The unsupervised variant of MPWC-Net++ com-
bines this high-performance network with the unsupervised
fine-tuning [26].

Il1. RESULTS
A. Quantitative Metrics

Contrast-to-noise ratio (CNR) and strain ratio (SR) are two
popular metrics that have been used to assess the performance
of the elastography methods. These metrics are suitable for
experimental phantom and in vivo data where the ground-truth
strain is unknown. Windows around the target and background
are chosen to compute these metrics. CNR and SR can be
obtained by [5]

— 25h —F 2
SR=2>' CNR= 1/7(32’ S’Z
Sp o~ + 0y

where 5; and 5, are the mean of the strain in the selected target
and background regions, respectively, and o, and o}, are the
standard deviations of the target and the background regions,
respectively. Assuming that the target strain is to be lower than
the background region, lower SR represents a higher difference

Y
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Fig. 2. Phantom result 1 with the maximum strain value of 3%. Green
boxes indicate windows for computing CNR and SR.

between the mean strain value of the target and the background
region and is therefore desired. CNR provides some notion of
detectability, which combines the difference in mean between
two samples is detectable and their background noise.

Instead of selecting the target and background windows
and calculating a single value for SR and CNR, thousands
of SR and CNR values are calculated as follows. First, two
large background and target windows are selected. We then
select small patches within these windows and calculate SR
and CNR for different combinations of target and background
windows. The number of these small patches should be
large enough to produce statistically reliable estimates of SR
and CNR. It should be mentioned that we selected large
windows in regions with uniform strains (as marked in the
figures) and small overlapping patches inside these windows
to compute the CNR and SR. We then reported the mean
and standard deviation of these values similar to our previous
works [21], [22], [26].

B. Experimental Phantom Results

The results of different parts and compression levels of the
experimental phantom are shown in Figs. 2-5. In Fig. 2, the
inclusions are not visible in the B-mode images, while they
can be detected by USE methods. Comparing deep learning
methods, unsupervised training substantially improves the
strain quality of MPWC-Net++. Our proposed bi-directional
method obtains similar or higher quality strain images com-
pared to the unsupervised method and substantially better
results in all experiments compared to MPWC-Net++-, espe-
cially when the compression is low (e.g., Figs. 4 and 5).
It can be seen that for those images, MPWC-Net++ does
not provide a clear image of the inclusion, while the pro-
posed method obtains the highest quality strain images among
the compared deep learning methods. OVERWIND obtains
high-quality strain images and the proposed method performs
comparably to OVERWIND in terms of strain quality.

The quantitative results are listed in
Tables I (for CNR) and II (for SR). In terms of CNR,

B-mode OVERWIND MPWC-Net++

10 20 30 10 20 30 10 20 30
Width (mm) Width (mm) Width (mm)
Unsupervised Bi-directional Unsupervised

%103

10 20 30 10 20 30
Width (mm) Width (mm)

Fig. 3. Phantom result 2 with the maximum strain value of 0.4%. Green
boxes indicate windows for computing CNR and SR.

B-mode OVERWIND MPWC-Net++

10 20 30 10 20 30 10 20 30
Width (mm) Width (mm) Width (mm)
Unsupervised Bi-directional Unsupervised

Depth (mm)
N N
o o

w
S

10 20 30 10 20 30

Width (mm) Width (mm)

Fig. 4. Phantom result 3 with the maximum strain value of 0.3%. Green
boxes indicate windows for computing CNR and SR.

our proposed method substantially increases the CNR of
MPWC-Net++ and outperforms the unsupervised method
in most cases. To be more specific, the bi-directional
unsupervised method increases the CNR of MPWC-Net++
from 12.02, 8.74, 5.12, 3.73, and 10.25 to 27.71, 17.19,
13.84, 12.82, and 21.40. It also obtains CNR values close to
OVERWIND or even better (in Fig. 4).

The SR results agree with [21] where we showed that
MPWC-Net has better SR compared to another optimization-
based method. In most cases (except Fig. 3), a bi-directional
unsupervised method has the better SR and is close to the
lowest ones in that case.

The visual and quantitative results of the experimental
phantoms confirm that our proposed method improves the
overall quality of the strain images.

1) Smoothing Window Effect on Strain Image: After dis-
placement estimation, a smoothing window along with the
derivative kernel is used to reduce the error and compute
the derivative of the displacement. Larger windows smooth
the displacement more but sacrifice the resolution of the
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TABLE |
CNR RESULTS (HIGHER IS BETTER). THE BOLD FONT HIGHLIGHTS THE BEST, AND THE UNDERLINE INDICATES THE BEST DEEP LEARNING
RESULTS. NUMBERS MARKED WITH ASTERISKS INDICATE RESULTS THAT ARE NOT STATISTICALLY SIGNIFICANT (p-VALUE > 0.01), E.G.,
OVERWIND AND THE PROPOSED METHOD IN FIG. 2

Fig. 2 Fig. 3 Fig. 4 Fig. 5 (1) Fig. 5 (2)
OVERWIND 27.26+4.27F 25.28+6.62 12.40+£2.38 12.83+£5.35" 27.84+8.82
MPWC-Net++ 12.02+1.59  8.74+1.85  5.12+1.11 4.83+2.09 7.82£3.66
Unsupervised 31.78+7.47 15.12+4.12 9.94+1.64 8.67+£4.09  14.37£4.27
Bi-directional Unsupervised 27.714£5.20* 17.19£4.45 13.84+4.49 12.82+4.83* 21.4043.69
TABLE Il

SR(%) RESULTS (LOWER IS BETTER). THE BOLD FONT HIGHLIGHTS THE BEST, AND THE UNDERLINE INDICATES THE BEST DEEP LEARNING
RESULTS. NUMBERS MARKED WITH ASTERISKS AND STAR INDICATE RESULTS THAT ARE NOT STATISTICALLY SIGNIFICANT (p-VALUE > 0.01)

Fig. 2 Fig. 3 Fig. 4 Fig. 5 (1) Fig. 5 (2)

OVERWIND 62.26+0.71  40.21£3.2  50.04+3.08* 61.78+5.74* 36.56+2.00

MPWC-Net++ 61.56+1.70* 35.08£6.26 49.29+4.41*  69.43+8.46 40.20£10.3

Unsupervised 61.274+0.67* 25.89+3.97 48.15+6.16"* 60.964+9.67* 32.06+£7.47

Bi-directional Unsupervised  59.24+0.50 28.12+4.12  45.82+2.53 58.79+5.72  30.32+2.90
B-mode OVERWIND MPWC-Net++ T OVERWIND

Depth (mm)
N -
o o

w
S}

10 20 30 10 20 30 10 20 30

Width (mm)

Unsupervised

Width (mm) Width (mm)

Bi-directional Unsupervised

%10

10 20 30 10 20 30
Width (mm) Width (mm)

Fig. 5. Phantom result 4 with two inclusions having different elasticities
with the maximum strain value of 0.5%. Green boxes indicate windows
for computing CNR and SR.

strain image. Therefore, displacement estimation methods
that require smaller windows are preferred. When a USE
displacement estimation method does not require a large
smoothing window, it shows that the method produces a
displacement map with a low variance error. To compare the
methods, we compute the strain image of two image pairs
with smoothing windows of sizes 5, 15, 30, and 40. The
CNR values of different smoothing window lengths are shown
in Fig. 6. It can be seen that OVERWIND has high CNR
values even when the smallest smoothing window is employed.
Unsupervised and bi-directional unsupervised methods have
good CNR values close to that of OVERWIND. It should be
mentioned that the difference between the unsupervised and
bi-directional methods in Fig. 6 was not statistically significant
(p-value = 0.112). MPWC-Net++ has very low CNR when

20 | —f—MPWC-Net++
Unsupervised

—I— Bi-directional Unsupervised

10 20 30 40 50
Smoothing Window Length

Fig. 6. CNR values of the compared method using different smoothing
window lengths. The strain images are shown in Fig. 7.

the smoothing window is small. It indicates that this method
is highly sensitive to the length of smoothing window and
requires larger ones to produce acceptable strain images,
whereas OVERWIND and the two unsupervised methods
do not need a large smoothing window to produce reliable
strain images and have low variance errors. The strain images
are shown in Fig. 7 for smoothing windows of 5 (top),
15 (middle), and 30 (bottom), and the target and background
windows for computation of CNR are highlighted. We can
see that MPWC-Net++ generates noisy strain images for
small smoothing windows, where the inclusion is not visually
detectable. However, both unsupervised fine-tuning methods
provide a better performance, close to OVERWIND, and
generate less variations compared to MPWC-Net++-.

C. Lateral Strain

The lateral strain (%) has much lower quality than the

axial strain since the main movement is in the axial direction,
and the lateral sampling frequency and resolution are low. The
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OVERWIND

Unsupervised

Bi-directional Unsupervised
e

10 20 30 10 20 30 10 20 30 10 20 30
Width (mm) Width (mm) Width (mm) Width (mm)

Fig. 7. Strain images of the compared methods. Smoothing window size
is 5 (top), 15 (middle), and 30 (bottom).
B-mode

OVERWIND MPWC-Net++

10 20 30 10 20 30 10 20 30
Width (mm) Width (mm) Width (mm)

Unsupervised Bi-directional Unsupervised

0

Width (mm)

Width (mm)

Fig. 8.  Lateral strain results. The proposed bi-directional method
provides a smooth strain image close to OVERWIND, while MPWC-
Net-++ and the unsupervised method generate noisy strain images and
the inclusion is barely visible.

lateral strain can be utilized in inverse problem methods to
find the elastic modulus [35]. Fig. 8 shows the lateral strain
obtained by the compared methods (refer to the Supplementary
Materials for the axial strain). It can be seen that MPWC-
Net++ and the unsupervised method obtain very noisy strain
images and the inclusion is hardly visible. However, the pro-
posed bi-directional method and OVERWIND obtain accept-
able strain images and the inclusion can be detected.

D. In Vivo Results

Compared methods are evaluated with two in vivo data
belonging to two patients. We also fine-tuned the bi-directional
network using in vivo data to find out whether further
improvements can be achieved. The strain images of the
compared methods are given in Fig. 9 and 10. OVER-
WIND produces high-quality strain images with low noise,
while the strain images obtained by MPWC-Net++ have
some oversmoothing, especially in the lateral direction.
Both unsupervised methods substantially improve the strain
image qualities of MPWC-Net++. The bi-directional+ft also

B-mode MPWC-Net++

OVERWIND

Depth (mm)
8

10 15 20 25 30
Width (mm)

10 15 20 25 30
Width (mm)

10 15 20 25 30
Width (mm)

Unsupervised Bi-directional Bi-directional + ft

10 15 20 25 30
Width (mm)

10 15 20 25 30
Width (mm)
EE

10 15 20 25 30
Width (mm)

Fig. 9. Strain images of in vivo data 1. The tumor has a lower absolute
strain value but looks brighter since the strain is negative.

B-mode OVERWIND MPWC-Net++

Depth (mm)

10 15 20 25 30
Width (mm)

10 15 20 25 30
Width (mm)

10 15 20 25 30
Width (mm)

Unsupervised Bi-directional Bi-directional + ft

Depth (mm)

_— —
10 15 20 25 30
Width (mm)

10 15 20 25 30
Width (mm)

10 15 20 25 30
Width (mm)

%103

Fig. 10. Strain images of in vivo data 2. The tumor has a lower absolute
strain value and looks darker since the strain is positive.

obtains high-quality strain images, but the difference with the
bi-directional method is not discernible.

The quantitative results are given in Table III. OVER-
WIND achieves the highest CNR for in vivo data 1, while
bi-directional unsupervised+ft has the best CNR for in vivo
data 2. It can also be seen that fine-tuning on in vivo data
does not result in considerable CNR improvement (it has
slightly better CNR than bi-directional for in vivo data 2 and
worse CNR for in vivo data 1). In terms of SR, bi-directional
and bi-directional+ft have the best SR values. MPWC-Net++
and OVERWIND have the highest SR among the compared
methods.

V. DISCUSSION

In this article, we employed semisupervised training to
improve the performance of an optical flow network for USE.
Although we used MPWC-Net++, which outperformed other
networks for USE, the training method can be applied to other
networks as well. It should be mentioned that the optical
flow networks usually have a pyramidal structure, meaning
that the displacements are estimated in different resolutions.
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TABLE Il
QUANTITATIVE RESULTS OF in vivo DATA. THE PAIRS MARKED BY ASTERISK OR STAR ARE NOT STATISTICALLY SIGNIFICANT (p-VALUE > 0.01)

In vivo data 1

In vivo data 2

CNR SR(%) CNR SR(%)
OVERWIND 17.28+5.31 21.80+4.16 7.18£1.58*  51.40+6.06*
MPWC-Net++ 11.51£3.08 25.50+6.63 7.31+£2.47* 48.89+11.61*
Unsupervised 11.91+£2.62 19.20+£5.30 6.73£3.09  47.83+20.83**
Bi-directional Unsupervised 16.2745.26 19.35+£5.46  7.91£3.18 45.60+11.83
Bi-directional Unsupervised + ft  14.37+£4.40 19.1946.10 8.86+2.64  46.141+12.91

TABLE IV
SSIM (%) oF STRAIN IMAGES OF OVERWIND VERSUS
DEEP LEARNING METHODS

Fig. 2 Fig. 3 Fig.4 Fig.5 invivol invivo?2
MPWC-Net++ 90.12 7336 60.84 90.77 | 92.66 93.79
Unsupervised 98.96 95.56 94.86 96.11 | 90.08 91.13
Bi-directional Unsupervised 98.89  96.27 95.76  96.90 | 93.57 96.62

Similar to previous works [21], [26] and unsupervised optical
flow works [30], we only used the last output resolution for
fine-tuning.

The optical flow CNNs trained on computer vision images
do not employ regularizations due to abrupt changes in scenes
such as a moving car in front of a fixed background. However,
the displacement in USE is usually smooth without any sudden
changes. The effect of the absence of the regularization can
be seen in Fig. 7 (top), where the smoothing window is
very small. The strain estimated by MPWC-Net++ has a
high variance, whereas the bi-directional unsupervised method
provides smooth and high-quality strain images by incorporat-
ing smoothness and consistency constraints in the estimated
displacement.

The values reported in Tables I-III are the mean and stan-
dard deviation of CNR and SR values. We have conducted a
statistical analysis to find out whether the difference between
obtained values is statistically significant. We employ the
Friedman test [36], and the p-values are given in the Sup-
plementary Materials.

Regarding the choice of weights, the explained method of
tuning the weights only gives a rough estimate of the optimum
weights. However, the output strain image is not considerably
sensitive to these weights and similar performance can be
obtained by different weights.

To consider texture (which is not captured by SR or CNR),
structural similarity index (SSIM) [37] has been used to
evaluate the texture similarity between OVERWIND and the
deep learning methods. The results are provided in Table IV.
It is clear that the proposed bi-directional method achieves
a higher SSIM score compared to the other methods, which
indicates that it produces strain images closer to OVERWIND
than the other compared methods.

Running time is another important aspect that needs to
be investigated. The deep learning methods shine in this
aspect, and our proposed method can provide high-quality
strain images close to OVERWIND for real-time appli-
cations. To give a general view about the computation
time, OVERWIND takes 26 s for an image pair of

size 1920 x 384 on CPU (eighth generation, core i7).
It should be noted that this is a MATLAB implementa-
tion, and an optimized implementation in C will be much
faster. MPWC-Net++ and bi-directional MPWC-Net++ take
0.166 and 0.174 s on NVIDIA A100 GPU, respectively. The
bi-directional variant of MPWC-Net++ takes slightly more
time than MPWC-Net++ since it estimates both forward and
backward displacements; however, it still takes much less time
than running the network two times and computing forward
and backward displacements separately.

V. CONCLUSION

In this article, we proposed a bi-directional semisupervised
deep learning method. We used strain consistency along with
data and smoothness loss. We also employed the second-order
derivatives regularization of axial and lateral displacements
in both directions. Furthermore, we reduced the number of
hyperparameters by relating some of them to others by con-
sidering the underlying principles of the US. We showed that
our proposed method substantially improved current optical
flow networks used for USE. We validated our method using
different experimental phantom and in vivo data. Our proposed
method obtained strain images close to OVERWIND.
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