
IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 69, NO. 4, APRIL 2022 1181

Bi-Directional Semi-Supervised Training of
Convolutional Neural Networks for Ultrasound

Elastography Displacement Estimation
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Abstract— The performance of ultrasound elastogra-
phy (USE) heavily depends on the accuracy of displacement
estimation. Recently, convolutional neural networks (CNNs)
have shown promising performance in optical flow estima-
tion and have been adopted for USE displacement estima-
tion. Networks trained on computer vision images are not
optimized for USE displacement estimation since there is
a large gap between the computer vision images and the
high-frequency radio frequency (RF) ultrasound data. Many
researchers tried to adopt the optical flow CNNs to USE
by applying transfer learning to improve the performance
of CNNs for USE. However, the ground-truth displacement
in real ultrasound data is unknown, and simulated data
exhibit a domain shift compared to the real data and are
also computationally expensive to generate. To resolve this
issue, semisupervised methods have been proposed in
which the networks pretrained on computer vision images
are fine-tuned using real ultrasound data. In this article,
we employ a semisupervised method by exploiting the first-
and second-order derivatives of the displacement field for
regularization. We also modify the network structure to
estimate both forward and backward displacements and
propose to use consistency between the forward and back-
ward strains as an additional regularizer to further enhance
the performance. We validate our method using several
experimental phantom and in vivo data. We also show
that the network fine-tuned by our proposed method using
experimental phantom data performs well on in vivo data
similar to the network fine-tuned on in vivo data. Our results
also show that the proposed method outperforms current
deep learning methods and is comparable to computation-
ally expensive optimization-based algorithms.
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I. INTRODUCTION

U
LTRASOUND (US) imaging has been increasingly

used by researchers and clinicians in diagnosis and

image-guided intervention since it is less expensive and more

portable compared to other imaging modalities. US elastogra-

phy (USE) is an imaging technique that detects viscoelastic

properties of the tissue and has been found useful in different

applications, including ablation monitoring [1], [2] and breast

lesion characterization [3]. USE methods track the motion of

the tissue and can be broadly categorized into two groups:

dynamic and quasi-static elastography. In dynamic elastogra-

phy, acoustic radiation force or an internal force is used to

generate fast motions in the tissue [4]. In contrast, the motions

in the tissue are slow in quasi-static elastography and can be

induced by simply pressing the probe by the operator (free-

hand palpation) or using a robotic arm [5]–[8].

In free-hand palpation USE, the operator compresses the

tissue by the probe usually in the axial direction. The US

radio frequency (RF) data before and after the compression are

compared to obtain the displacement map, which indicates the

movement of each individual sample. The displacement map

is utilized to obtain the strain map, which contains relative

elasticity information. In this article, we aim to estimate axial

displacement for quasi-static free-hand palpation USE.

Existing techniques for performing the displacement esti-

mation step can be categorized into conventional and deep

learning-based methods. Window-based [6], [9]–[12] and

optimization-based [8], [13]–[15] are two main groups of con-

ventional methods that have been used widely for USE. Recent

optimization-based methods have surpassed window-based

ones [14], [15]. The main idea of the optimization-based

methods is to determine an initial coarse estimation, usually

by dynamic programming (DP) [8], followed by minimizing

a regularized cost function to obtain the displacement map.

OVERWIND is a recent algorithm that combines the window-

and optimization-based methods [15]. OVERWIND employs

the L1 norm as the regularizer to preserve the sharpness of

the displacements on the boundaries.
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Fig. 1. Overview of the proposed semisupervised training method. The network is first trained using computer vision datasets by supervised methods
(the block on top). The network is fine-tuned by real US data using the proposed unsupervised training method (bottom block). The network structure
is altered to be able to estimate both forward and backward flows. The layers connected by the dashed lines share weights. The cost volume and
optical flow estimation blocks with shared weights are used to estimate both forward and backward flows.

Deep learning-based methods, which have been recently

proposed for USE, employ optical flow convolutional

neural networks (CNNs) to obtain the displacement map.

The first few works used the optical flow CNNs as black

boxes for USE [16], [17] or as the initial estimator for

optimization-based methods instead of DP [18], [19].

However, the computer vision images and US data are vastly

different and the CNN architectures used for the former

are not optimized for high-frequency RF data. Motivated to

address this issue, we modified the well-known PWC-Net

architecture [20] to be adapted to USE, considering the

physics of RF data [21]. We called the network modified

PWC-Net (MPWC-Net) and obtained substantially more

accurate displacement compared to PWC-Net. In another

work, we proposed MPWC-Net++ that was an improved

version of MPWC-Net with a higher search range and more

accurate output displacement [22]. These methods require

a GPU to run efficiently and can perform high-frame-rate

USE given the rapidly increasing computational power of

GPUs. However, their main drawback is that they have a

larger variance compared to conventional methods since

they are not regularized in contrast to conventional methods.

Consequently, their strain images have lower overall quality

compared to conventional methods [21]–[23].

Unsupervised training was another avenue that has been

followed by the researchers. Delaunay et al. [24], [25] trained

a U-Net using real US data and developed a recurrent network

to deal with a sequence of frames. In [26], we used a light

network, referred to as LiteFlowNet [27], and trained it in a

semisupervised fashion. We first used computer vision datasets

with known ground truths to train the network using supervised

techniques. In the next step, real US data were used to

fine-tune the network using an unsupervised method. We sub-

stantially improved the strain image quality by using this

technique without requiring a large amount of training data.

In this article, we follow the semisupervised training

approach. The overview of the method is shown in Fig. 1.

We first employ computer vision datasets to train the network

in a supervised fashion. We use MPWC-Net++, which

has shown high performance in USE. We then fine-tune the

network by real US data and extend our idea of semisupervised

method by proposing bi-directional unsupervised fine-tuning.

We change the structure of MPWC-Net++ to estimate

both forward and backward displacements, which is more

efficient than running the network two times to estimate

them. Consistency loss is also proposed, which is obtained

by comparing forward and backward strains. Furthermore,

we shed light on the choice of weights for regularization

by relating some of them to others. We demonstrate the

high-performance of the proposed methods using experimental

phantom and in vivo data.

II. MATERIAL AND METHOD

A. Deep Supervised CNNs

In this section, several CNNs used in USE displacement

estimation are explained.
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1) PWC-Net: Sun et al. [20] proposed using cost volume

and warping of the features for optical flow estimation. They

achieved the state-of-the-art performance in different computer

vision datasets. PWC-Net used a pyramidal structure, in which

the optical flow was estimated in different resolution levels.

At each pyramid level, the features of the second image were

warped by the estimated flow of the previous pyramid to

reduce the flow in the next pyramid level. In the next step,

cost volume was employed to compare the features of the

fixed and warped moved images. In the last step, the optical

flow was estimated and used in the next pyramid. Using

pyramid structure resulted in the reduction of the number of

learnable weights and improved the performance of optical

flow estimation [20]. Recently, a variant of PWC-Net called

iterative residual refinement PWC-Net (IRR-PWC-Net) was

proposed [28]. This network reduced the number of learnable

weights even further by using the optical flow estimation block

iteratively.

2) MPWC-Net: PWC-Net was proposed for computer

vision images originally and was not well suited to

the high-frequency RF data. We modified the structure

of PWC-Net and proposed MPWC-Net for USE [21].

We removed the strides of the first feature extraction layer

to preserve high-frequency information in RF data. In order

to avoid failure of the network in low pyramid levels, where

RF data do not have enough information due to downsam-

pling, we used envelope and B-mode images as additional

input channels. We obtained competitive performance with

conventional optimization-based methods. The code and the

simulation dataset for fine-tuning are available online at

code.sonography.ai.

3) MPWC-Net++: MPWC-Net had a low displacement

range since strides of the first feature extraction layer were

removed. In addition, we showed that the real displacement

range is much lower than the theoretical one since only

a small quantity of training data has high displacement

ranges. Therefore, the network is not trained enough to deal

well with large displacements, and the predicted flows are

noisy in this condition. To address these problems, instead

of removing both strides, we only removed one of them

and kept the other one. Also, the search range of the cost

volume was increased from 4 to 5 in each pyramid level.

By doing these modifications, the network had a higher

search range and could work better for large displacements.

Furthermore, we used IRR-PWC-Net [28] since it has a more

efficient structure. Although we applied these modifications

to improve the performance in the USE application, they

also led to an improvement even for the computer vision

dataset [22].

However, the improvements came with costs. Due to modi-

fying the network structure, we had to train the network from

scratch (MPWC-Net did not require training from scratch).

The training itself was slower compared to the original

PWC-Net for two reasons: first, having larger feature maps

after removing strides; and second, increasing the cost volume

search range. The MPWC-Net++ was trained from scratch

using computer vision images, while LiteFlowNet used in [26]

was pretrained, and we only fine-tuned it using real US data.

Training from scratch takes 840 h using an NVIDIA Tesla

P6 GPU, substantially more time compared to the fine-tuning

since the network is randomly initialized and a large dataset

(for MPWC-Net++ 22 000 pairs) is employed to train the

network. The network weights are publicly available online at

code.sonography.ai.

B. Semisupervised Method

Simulation data do not model nonlinear or multiple scat-

tering effects present in real US data [24], [26]. Therefore,

we proposed to use real US data for fine-tuning. This method

was semisupervised since we first used a pretrained network

trained on computer vision images by supervised methods.

In the next step, real US data were used to fine-tune the

network.

The moved image was warped with the forward flow and

compared with the first image, which is called photomet-

ric loss. This loss alone resulted in noisy displacements;

therefore, inspired by the physics of RF data, we pro-

posed using the first second-order derivatives of displace-

ment in the axial and lateral directions as the regularization.

The detailed description of the loss function can be

found in [26].

In order to preserve the information of high-frequency RF

data, we were not allowed to downsample images and had to

use large image sizes during unsupervised fine-tuning, which

is challenging due to GPU memory limitations. We used a light

network (LiteFlowNet [27]) and gradient checkpointing [29]

to be able to train the network on our GPU (Nvidia TITAN V

with 12 GB of RAM). Furthermore, we limited the training to

only forward flow and the backward flow was used to detect

occluded regions.

C. Proposed Method

Let I1, I2 ∈ R
3×W×H denote the fixed and moved images

having three channels with width W and height H , and

W f ∈ R
2×W×H and W b ∈ R

2×W×H denote the forward flow

(I1 → I2) and backward flow (I2 → I1), respectively. The

data loss function for unsupervised fine-tuning can be defined

as [26]

lossd = �
(

I1 − Î2

)

w×w
(1)

where Î2 is the second image warped by the W f , and

unlike [26], a window of size (w × w) around the sample

of interest is selected to compute the loss to reduce the noise

caused by interpolation step of warping operation (here, we use

a 3 × 3 window). � is the Charbonnier loss that has been

widely used in unsupervised optical flow training [30] and

defined in the following [31]:

�(x) =
∣

∣

(

x2 + ε
)α∣

∣

1
(2)

where |.|1 denotes the L1 norm and α can be altered to give

different importance to x . We used α = 0.5 for the data

loss (would be L1 norm) and α = 0.2 for smoothness and

consistency loss to emphasize small values of x . It should be

mentioned that inspired by [23], RF data, the envelope and
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imaginary part of Hilbert transform of RF data, are utilized as

three separate channels of input images.

In order to have a smooth displacement field, the first-order

derivatives of the displacements in the axial and lateral direc-

tions are used for regularization

loss1
s = λ11�

(

∂W
f

a

∂a
−

〈

∂

∂a
W f

a

〉

)

+ λ12�

(

∂W
f

a

∂l

)

+ λ21�

(

∂W
f

l

∂a

)

+ λ22�

(

∂W
f

l

∂l

)

(3)

where W
f

a , W
f

l , (1/∂a), (1/∂l), and λ denote axial, lateral

displacements, the derivative in axial and lateral directions, and

their corresponding weights, respectively. The axial derivative

of the axial displacement is subtracted by its mean (〈.〉 denotes

the mean value) to reduce the bias of the regularization similar

to [15].

The second-order derivatives of the displacements have been

found useful for USE [24], [26], [32]. Hence, they can be used

to regularize the displacements

loss2
s = λ31�

(

∂2W
f

a

∂2a

)

+ λ32�

(

∂2W
f

a

∂a∂l

)

+ λ41�

(

∂2W
f

l

∂l∂a

)

+ λ42�

(

∂2W
f

l

∂2l

)

. (4)

Unlike [25] that used the first- and second-order derivatives of

only axial displacement, we used the first- and second-order

derivatives of both axial and lateral displacement in both

directions. The second-order derivatives do not introduce bias,

but they require higher weights to be as effective as the first-

order derivatives.

1) Hyperparameter Tuning: It can be seen that there are

eight hyperparameters that we need to set before training the

network. In our recent work [26], we set them empirically,

while in this article, we tried to reduce the number of

hyperparameters by relating some of them to others using US

principles.

The distance between two adjacent samples in the axial and

lateral directions is also vastly different since the sampling

frequencies and the number of samples are widely dissimilar.

The distance between two adjacent samples in the axial

direction can be obtained by c/(2 fs), where c denotes the

sound speed and fs is the sampling frequency. A rough

approximation of the lateral distance between two samples

would be the distance between two adjacent A-lines, which

is much larger than the axial distance in a typical US image.

Therefore, λ12 and λ22 must be several times smaller than λ11

and λ21.

As noted in [32], the second-order derivatives are much

smaller than the first-order ones. Therefore, to be as effective

as the first-order derivatives, their weight should be several

times larger than the first-order derivatives. We set this weight

to be λ31 = 5λ11. We also set the lateral derivative weights

similar to the first-order derivatives (λ41 = βλ31). Finally, the

smoothness regularizer can be written as

losss = �

(

∂W
f

a

∂a
−

〈

∂

∂a
W f

a

〉

)

+ β�

(

∂W
f

a

∂l

)

+ 0.5�

(

∂W
f

l

∂a

)

+ 0.5β�

(

∂W
f

l

∂l

)

+ 5

{

�

(

∂2W
f

a

∂2a

)

+ β�

(

∂2W
f

a

∂a∂l

)

+ 0.5�

(

∂2W
f

l

∂l∂a

)

+ 0.5β�

(

∂2W
f

l

∂2l

)}

(5)

where β depends on the ratio of the sampling frequency

in the axial and lateral directions. Setting the weights does

not require an exact calculation of the sampling frequencies

and should be less than 1; we set this hyperparameter to

0.1. Finally, for incompressible materials, Poisson’s ratio is

approximately 0.5 [33], which means that the strain in the

lateral direction is half of the axial one. Therefore, λ21 can

be substituted by 0.5λ11. It should be noted that the explained

method to tune the weights of the regularizers is only a rough

estimate of the optimal values; therefore, the training is not too

sensitive to the variations of these weights and even changing

the weights by as much as 100% yields similar results.

2) Bi-directional Strain Consistency: In this article, inspired

by recent unsupervised methods in optical flow estima-

tion [34], we proposed to utilize forward and backward

consistency in addition to the data and smoothness losses.

In unsupervised optical flow methods, the difference between

forward and backward displacements was used for consistency

loss [34].

Strain images are often showed in USE as a surrogate

of the elastic modulus. Therefore, it would be useful to

utilize the derivatives of the displacements for the consistency

loss. Assuming a uniform tissue, the estimated forward and

backward axial strains can be written as

ε f = εgt +N
(

μ, σ 2
)

εb = −εgt +N
(

−μ, σ 2
)

(6)

where we assumed that the strain true value is εgt and the

error is modeled by a normal distribution with the bias and

variance of μ and σ 2, respectively. The forward and backward

consistency losses can be defined as

lossc = �
(

ε f + εb
)

. (7)

Substituting (6) into (7) yields

lossc = �
(

N
(

0, σ 2/2
))

. (8)

This equation indicates that minimizing lossc results in reduc-

ing the variance in estimation of forward and backward strains.

Similar to the smoothness loss (losss), the strain in both axial

and lateral directions were employed, which can be written as

lossc =�

(

∂W
f

a

∂a
+

∂W b
a

∂a

)

+0.5β�

(

∂W
f

l

∂l
+

∂W b
l

∂l

)

(9)

where we used the same weights of the smoothness loss.
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By using the loss functions defined in (1), (5), and (9), the

total loss function can be written as

loss = lossd + λlosss + γ lossc. (10)

Because of reducing the number of hyperparameters, only

λ and γ should be tuned for the training, which can be done

based on the training data. Too large values of λ and γ lead

to a blurry strain image, while too small values result in noisy

strain images. We set these hyperparameters (λ = 0.03 and

γ = 0.05) by visually inspecting the strain images of the

validation set after training with different values of λ and γ .

It is worth mentioning that similar data and smoothness loss

can be used for the backward flow. However, the consistency

loss that we added has a similar behavior since it tries to make

the backward strain close to the inverse of the forward one.

Adding the consistency loss demands high memory since

both forward and backward flows are used for backpropa-

gation. We utilized an NVIDIA A100 GPU with 40 GB of

RAM to be able to train using the proposed loss function and

simultaneously avoid downsampling to preserve RF data high-

frequency information. Since training this network might be

infeasible for some researchers, we have made the networks’

weights available online at code.sonography.ai.

D. Data Collection

1) Experimental Phantom: We used a tissue-mimicking

breast phantom made from Zerdine (Model 059, CIRS: Tissue

Simulation and Phantom Technology, Norfolk, VA, USA) for

data collection. The phantom contained a number of hard

inclusions. The background has an elastic modulus of 20 kPa

and the inclusions have at least twice elastic modulus of the

background. This phantom was utilized to obtain training and

test data. We made sure that different parts of the phantom

were imaged for training and testing to avoid data leakage.

We employed Alpinion E-Cube R12 research US machine

(Bothell, WA, USA) for training and test. The L3-12H linear

array probe with the center frequency of 10 MHz and the sam-

pling frequency of 40 MHz was utilized for image acquisition.

2) In Vivo Data: In vivo data were collected at Johns Hopkins

Hospital using a research Antares Siemens system by a VF

10-5 linear array. The sampling frequency was 40 MHz and

the center frequency was 6.67 MHz. Data were collected from

patients with liver cancer during open-surgical RF thermal

ablation. For more information, please see [8]. The institu-

tional review board approved the study with the consent of

the patients.

E. Training Schedule

We first collected data using the Alpinion machine from

the breast phantom. We then selected image pairs having

maximum axial displacement larger than three pixels. In total,

2200 image pairs were used for training. The networks were

trained for 40 epochs and the learning rate was set to 30e−6

that is reduced by 1/2 every ten epochs. For in vivo data results,

we also fine-tuned the network trained by the bi-directional

method using in vivo data. This network was fine-tuned using

500 in vivo image pairs for 20 epochs and the learning rate

was 20e−6 and reduced by a factor of 2 every five epochs.

In our experiments, we named this network as bi-directional

unsupervised+ft.

F. Compared Methods

The compared methods are listed as follows.

1) OVERWIND is an optimization-based method that esti-

mates subpixel displacement. This method requires the

initial displacement, which is obtained by DP [8].

OVERWIND considers a window around each sample

and uses total variation for the regularization. This

method obtains high-quality strain images [15].

2) The recently proposed network MPWC-Net++ that is

the modified version of MPWC-Net. This network is

only trained on computer vision images and no training

on US data is done [22].

3) We fine-tune MPWC-Net++ using the unsupervised

technique without the consistency loss. Also, similar

to [26], it has the second-order derivatives only in the

direction of the displacement (λ32, λ41 = 0). In this

case, the unsupervised fine-tuning would be similar

to the semisupervised method [26] with some minor

improvements. The difference is that a better net-

work (MPWC-Net++) with more suitable regularization

weights is employed.

4) Our proposed bi-directional unsupervised fine-tuning

method. In this method, the consistency loss is added to

the unsupervised loss function and all the second-order

derivatives are employed in the smoothness loss.

5) For in vivo data section, we also fine-tune the

bi-directional network using in vivo data.

We compare our bi-directional semisupervised method with

recent methods in USE: OVERWIND is a high-performance

and nondeep learning method. MPWC-Net++ is one of

the best networks used for USE without training on US

data. The unsupervised variant of MPWC-Net++ com-

bines this high-performance network with the unsupervised

fine-tuning [26].

III. RESULTS

A. Quantitative Metrics

Contrast-to-noise ratio (CNR) and strain ratio (SR) are two

popular metrics that have been used to assess the performance

of the elastography methods. These metrics are suitable for

experimental phantom and in vivo data where the ground-truth

strain is unknown. Windows around the target and background

are chosen to compute these metrics. CNR and SR can be

obtained by [5]

SR =
s t

sb

, CNR =

√

2(sb − st )
2

σb
2 + σt

2
(11)

where st and sb are the mean of the strain in the selected target

and background regions, respectively, and σt and σb are the

standard deviations of the target and the background regions,

respectively. Assuming that the target strain is to be lower than

the background region, lower SR represents a higher difference
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Fig. 2. Phantom result 1 with the maximum strain value of 3�. Green
boxes indicate windows for computing CNR and SR.

between the mean strain value of the target and the background

region and is therefore desired. CNR provides some notion of

detectability, which combines the difference in mean between

two samples is detectable and their background noise.

Instead of selecting the target and background windows

and calculating a single value for SR and CNR, thousands

of SR and CNR values are calculated as follows. First, two

large background and target windows are selected. We then

select small patches within these windows and calculate SR

and CNR for different combinations of target and background

windows. The number of these small patches should be

large enough to produce statistically reliable estimates of SR

and CNR. It should be mentioned that we selected large

windows in regions with uniform strains (as marked in the

figures) and small overlapping patches inside these windows

to compute the CNR and SR. We then reported the mean

and standard deviation of these values similar to our previous

works [21], [22], [26].

B. Experimental Phantom Results

The results of different parts and compression levels of the

experimental phantom are shown in Figs. 2–5. In Fig. 2, the

inclusions are not visible in the B-mode images, while they

can be detected by USE methods. Comparing deep learning

methods, unsupervised training substantially improves the

strain quality of MPWC-Net++. Our proposed bi-directional

method obtains similar or higher quality strain images com-

pared to the unsupervised method and substantially better

results in all experiments compared to MPWC-Net++, espe-

cially when the compression is low (e.g., Figs. 4 and 5).

It can be seen that for those images, MPWC-Net++ does

not provide a clear image of the inclusion, while the pro-

posed method obtains the highest quality strain images among

the compared deep learning methods. OVERWIND obtains

high-quality strain images and the proposed method performs

comparably to OVERWIND in terms of strain quality.

The quantitative results are listed in

Tables I (for CNR) and II (for SR). In terms of CNR,

Fig. 3. Phantom result 2 with the maximum strain value of 0.4�. Green
boxes indicate windows for computing CNR and SR.

Fig. 4. Phantom result 3 with the maximum strain value of 0.3�. Green
boxes indicate windows for computing CNR and SR.

our proposed method substantially increases the CNR of

MPWC-Net++ and outperforms the unsupervised method

in most cases. To be more specific, the bi-directional

unsupervised method increases the CNR of MPWC-Net++

from 12.02, 8.74, 5.12, 3.73, and 10.25 to 27.71, 17.19,

13.84, 12.82, and 21.40. It also obtains CNR values close to

OVERWIND or even better (in Fig. 4).

The SR results agree with [21] where we showed that

MPWC-Net has better SR compared to another optimization-

based method. In most cases (except Fig. 3), a bi-directional

unsupervised method has the better SR and is close to the

lowest ones in that case.

The visual and quantitative results of the experimental

phantoms confirm that our proposed method improves the

overall quality of the strain images.

1) Smoothing Window Effect on Strain Image: After dis-

placement estimation, a smoothing window along with the

derivative kernel is used to reduce the error and compute

the derivative of the displacement. Larger windows smooth

the displacement more but sacrifice the resolution of the
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TABLE I

CNR RESULTS (HIGHER IS BETTER). THE BOLD FONT HIGHLIGHTS THE BEST, AND THE UNDERLINE INDICATES THE BEST DEEP LEARNING

RESULTS. NUMBERS MARKED WITH ASTERISKS INDICATE RESULTS THAT ARE NOT STATISTICALLY SIGNIFICANT (p-VALUE > �.��), E.G.,

OVERWIND AND THE PROPOSED METHOD IN FIG. 2

TABLE II

SR(�) RESULTS (LOWER IS BETTER). THE BOLD FONT HIGHLIGHTS THE BEST, AND THE UNDERLINE INDICATES THE BEST DEEP LEARNING

RESULTS. NUMBERS MARKED WITH ASTERISKS AND STAR INDICATE RESULTS THAT ARE NOT STATISTICALLY SIGNIFICANT (p-VALUE> �.��)

Fig. 5. Phantom result 4 with two inclusions having different elasticities
with the maximum strain value of 0.5�. Green boxes indicate windows
for computing CNR and SR.

strain image. Therefore, displacement estimation methods

that require smaller windows are preferred. When a USE

displacement estimation method does not require a large

smoothing window, it shows that the method produces a

displacement map with a low variance error. To compare the

methods, we compute the strain image of two image pairs

with smoothing windows of sizes 5, 15, 30, and 40. The

CNR values of different smoothing window lengths are shown

in Fig. 6. It can be seen that OVERWIND has high CNR

values even when the smallest smoothing window is employed.

Unsupervised and bi-directional unsupervised methods have

good CNR values close to that of OVERWIND. It should be

mentioned that the difference between the unsupervised and

bi-directional methods in Fig. 6 was not statistically significant

(p-value = 0.112). MPWC-Net++ has very low CNR when

Fig. 6. CNR values of the compared method using different smoothing
window lengths. The strain images are shown in Fig. 7.

the smoothing window is small. It indicates that this method

is highly sensitive to the length of smoothing window and

requires larger ones to produce acceptable strain images,

whereas OVERWIND and the two unsupervised methods

do not need a large smoothing window to produce reliable

strain images and have low variance errors. The strain images

are shown in Fig. 7 for smoothing windows of 5 (top),

15 (middle), and 30 (bottom), and the target and background

windows for computation of CNR are highlighted. We can

see that MPWC-Net++ generates noisy strain images for

small smoothing windows, where the inclusion is not visually

detectable. However, both unsupervised fine-tuning methods

provide a better performance, close to OVERWIND, and

generate less variations compared to MPWC-Net++.

C. Lateral Strain

The lateral strain ( ∂Wl

∂l
) has much lower quality than the

axial strain since the main movement is in the axial direction,

and the lateral sampling frequency and resolution are low. The
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Fig. 7. Strain images of the compared methods. Smoothing window size
is 5 (top), 15 (middle), and 30 (bottom).

Fig. 8. Lateral strain results. The proposed bi-directional method
provides a smooth strain image close to OVERWIND, while MPWC-
Net++ and the unsupervised method generate noisy strain images and
the inclusion is barely visible.

lateral strain can be utilized in inverse problem methods to

find the elastic modulus [35]. Fig. 8 shows the lateral strain

obtained by the compared methods (refer to the Supplementary

Materials for the axial strain). It can be seen that MPWC-

Net++ and the unsupervised method obtain very noisy strain

images and the inclusion is hardly visible. However, the pro-

posed bi-directional method and OVERWIND obtain accept-

able strain images and the inclusion can be detected.

D. In Vivo Results

Compared methods are evaluated with two in vivo data

belonging to two patients. We also fine-tuned the bi-directional

network using in vivo data to find out whether further

improvements can be achieved. The strain images of the

compared methods are given in Fig. 9 and 10. OVER-

WIND produces high-quality strain images with low noise,

while the strain images obtained by MPWC-Net++ have

some oversmoothing, especially in the lateral direction.

Both unsupervised methods substantially improve the strain

image qualities of MPWC-Net++. The bi-directional+ft also

Fig. 9. Strain images of in vivo data 1. The tumor has a lower absolute
strain value but looks brighter since the strain is negative.

Fig. 10. Strain images of in vivo data 2. The tumor has a lower absolute
strain value and looks darker since the strain is positive.

obtains high-quality strain images, but the difference with the

bi-directional method is not discernible.

The quantitative results are given in Table III. OVER-

WIND achieves the highest CNR for in vivo data 1, while

bi-directional unsupervised+ft has the best CNR for in vivo

data 2. It can also be seen that fine-tuning on in vivo data

does not result in considerable CNR improvement (it has

slightly better CNR than bi-directional for in vivo data 2 and

worse CNR for in vivo data 1). In terms of SR, bi-directional

and bi-directional+ft have the best SR values. MPWC-Net++

and OVERWIND have the highest SR among the compared

methods.

IV. DISCUSSION

In this article, we employed semisupervised training to

improve the performance of an optical flow network for USE.

Although we used MPWC-Net++, which outperformed other

networks for USE, the training method can be applied to other

networks as well. It should be mentioned that the optical

flow networks usually have a pyramidal structure, meaning

that the displacements are estimated in different resolutions.
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TABLE III

QUANTITATIVE RESULTS OF in vivo DATA. THE PAIRS MARKED BY ASTERISK OR STAR ARE NOT STATISTICALLY SIGNIFICANT (p-VALUE > �.��)

TABLE IV

SSIM (�) OF STRAIN IMAGES OF OVERWIND VERSUS

DEEP LEARNING METHODS

Similar to previous works [21], [26] and unsupervised optical

flow works [30], we only used the last output resolution for

fine-tuning.

The optical flow CNNs trained on computer vision images

do not employ regularizations due to abrupt changes in scenes

such as a moving car in front of a fixed background. However,

the displacement in USE is usually smooth without any sudden

changes. The effect of the absence of the regularization can

be seen in Fig. 7 (top), where the smoothing window is

very small. The strain estimated by MPWC-Net++ has a

high variance, whereas the bi-directional unsupervised method

provides smooth and high-quality strain images by incorporat-

ing smoothness and consistency constraints in the estimated

displacement.

The values reported in Tables I–III are the mean and stan-

dard deviation of CNR and SR values. We have conducted a

statistical analysis to find out whether the difference between

obtained values is statistically significant. We employ the

Friedman test [36], and the p-values are given in the Sup-

plementary Materials.

Regarding the choice of weights, the explained method of

tuning the weights only gives a rough estimate of the optimum

weights. However, the output strain image is not considerably

sensitive to these weights and similar performance can be

obtained by different weights.

To consider texture (which is not captured by SR or CNR),

structural similarity index (SSIM) [37] has been used to

evaluate the texture similarity between OVERWIND and the

deep learning methods. The results are provided in Table IV.

It is clear that the proposed bi-directional method achieves

a higher SSIM score compared to the other methods, which

indicates that it produces strain images closer to OVERWIND

than the other compared methods.

Running time is another important aspect that needs to

be investigated. The deep learning methods shine in this

aspect, and our proposed method can provide high-quality

strain images close to OVERWIND for real-time appli-

cations. To give a general view about the computation

time, OVERWIND takes 26 s for an image pair of

size 1920 × 384 on CPU (eighth generation, core i7).

It should be noted that this is a MATLAB implementa-

tion, and an optimized implementation in C will be much

faster. MPWC-Net++ and bi-directional MPWC-Net++ take

0.166 and 0.174 s on NVIDIA A100 GPU, respectively. The

bi-directional variant of MPWC-Net++ takes slightly more

time than MPWC-Net++ since it estimates both forward and

backward displacements; however, it still takes much less time

than running the network two times and computing forward

and backward displacements separately.

V. CONCLUSION

In this article, we proposed a bi-directional semisupervised

deep learning method. We used strain consistency along with

data and smoothness loss. We also employed the second-order

derivatives regularization of axial and lateral displacements

in both directions. Furthermore, we reduced the number of

hyperparameters by relating some of them to others by con-

sidering the underlying principles of the US. We showed that

our proposed method substantially improved current optical

flow networks used for USE. We validated our method using

different experimental phantom and in vivo data. Our proposed

method obtained strain images close to OVERWIND.
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