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1 Introduction

Much work has been done recently investigating transverse momentum dependence in high
energy scattering processes (see ref. [1] for a recent comprehensive review of transverse
momentum dependent parton distribution functions and fragmentation functions). The small
transverse momentum dependent (TMD) fragmentation function (FF) to a hadron [2, 3] is
a crucial element in understanding the high energy mechanism of hadronization, providing
a three-dimensional picture of the fragmenting process. A detailed study of the TMDFF
can play a decisive role in extracting precise information on the TMD parton distribution
functions (PDFs) in collisions, for instance by a precise study of the semi-inclusive deep
inelastic scattering. For a detailed review on the TMDFF, we refer the reader to refs. [1, 4].

Recently, without many nonperturbative inputs, rather clean measurements for TMDFFs
have been obtained through jet observations, for example, by measuring the momentum
of a hadron within a jet with the reference to the jet axis [5–7] or the thrust axis [8–17].
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While these processes introduce nonglobal logarithms [18, 19], in the framework of QCD
factorization on the jet cross section, it is rather easy to pick up the TMD fragmentation
component, which can then be applied to other processes, like the semi-inclusive deep inelastic
scattering mentioned above. In addition, recent developments in the treatment of large
rapidity logarithms [20–24] make it easier to compare the TMD components of different
processes with disparate rapidity gaps [12, 25].

Given that an energetic heavy quark is often produced in high energy collisions, we
can also consider the heavy quark (HQ) TMDFF to a heavy hadron, like a B meson, as an
extension of the study for a light quark-initiated TMDFF [26–32]. An interesting feature
of the HQ TMDFF is that the heavy quark mass introduces a new scale other than the
transverse momentum q⊥, which complicates the factorization structure of the fragmentation
and provides a unique perspective that is distinguishable from the case of a light quark.

In order to consider various hierarchies between q⊥ and the heavy quark mass m,
we need to investigate different factorizations for each kinematic situation, which enable
us to systematically resum the large logarithms induced from the large scale separations
between q⊥, m, and Q, where Q is a typical hard scale comparable to an energy of the
boosted heavy quark. Furthermore, based on the factorization theorem, we can consider
the appropriate parameterization of nonperturbative inputs for the hadronization of the
heavy quark. In this paper, employing soft-collinear effective theory (SCET) [33–36], we
construct the factorization theorem of the heavy quark TMDFF, perform next-to-leading
order (NLO) calculations on each factorization ingredient, and consider resummation of the
large logarithms of Q, q⊥, and m.

The paper is organized as follows. In section 2, we calculate the HQ TMDFF at one
loop. In section 3, we investigate the HQ TMDFF in the region of parameter space where
q⊥ ≪ m, while in section 4.1, we look at the other limit, q⊥ ≫ m. In section 4.2, we
investigate the nonperturbative contributions to when q⊥ ≫ ΛQCD. In section 5 we apply the
previous results to the case where the initiating heavy quark fragments into a jet containing
a heavy meson, by introducing the heavy quark TMD jet fragmentation function. As another
application, in section 6 we study the heavy hadron’s TMD distribution with respect to the
thrust axis in e+e− annihilation. We conclude in section 7. We also include a few appendices
with some extra information about the calculations.

2 One loop calculation of the heavy quark TMD fragmentation function

In this section, for a boosted heavy quark, we consider the one loop contribution to the TMD
distribution in momentum space without specifying the hierarchy between the transverse
momentum q⊥ and the heavy quark mass m (i.e., q⊥ ∼ m). Through the calculation in
momentum space, which is more intuitive than the calculation in coordinate space, we separate
the ultraviolet (UV), the infrared (IR), and the rapidity divergences explicitly. Finally we will
show that the one loop result of the heavy quark TMD fragmentation function (TMDFF) is
IR-safe and shares the same renormalization behavior for the UV and the rapidity divergences
compared to the case of a light quark.
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In the hadron frame where the transverse momentum of the final observed hadron is set to
zero, the heavy quark TMD fragmentation function (TMDFF) is given in D dimensions by [2]

DH/Q(z,q⊥,µ,ν)=
∑
X

1
2Ncz

Tr⟨0|δ
(p+

z
−P+

)
δ(D−2)(q⊥−P⊥)

n/

2 Ψ
Q
n |H(p)X⟩⟨H(p)X|Ψ̄Q

n |0⟩.

(2.1)
Here the fragmenting process is described by n-collinear interactions, where nµ = (1, n̂) and
nµ = (1,−n̂) are the lightcone vectors normalized to n · n = 2. ΨQ

n = W †
nξ

Q
n is the gauge

invariant massive quark field accompanying the collinear Wilson line, and H is the hadron
containing the heavy quark. P+ ≡ n · P and P⊥ are the derivative operators that return the
large momentum component and the transverse momentum respectively. Nc is a number
of colors and µ (ν) is an ordinary (rapidity) renormalization scale.

In eq. (2.1), q⊥ is the transverse momentum of an initiating parton with respect to
the hadron momentum p. If we consider the fragmentation in the parton frame with the
transverse momentum of the initiating parton set to zero, the fragmentation can be described
as the distribution of the hadron’s transverse momentum p⊥ with reference to the initiating
parton’s momentum. The transverse momenta between the hadron and the parton frames
have the relation

q⊥ = −p⊥
z
, (2.2)

where z = p+/q+ is the energy fraction of the hadron over the initial parton. In this section
we will consider the fragmenting process over the whole range of z, but z will be treated as
neither much less than nor too close to 1. If the initiating heavy quark’s transverse momentum
with respect to the final hadron’s momentum is comparable with the heavy quark mass m,
i.e., q⊥ ≡ |q⊥| ∼ m, the n-collinear interactions scale as

pµ
n = (n · pn, n · pn,p⊥

n ) = (p+n , p−n ,p⊥
n ) ∼ Q(1,m2/Q2,m/Q), (2.3)

where Q is a typical hard scale taken to be much larger than m.
For the rest of this section, let us consider the one-loop calculation of the fragmentation

function at parton level, i.e., DQ/Q. From this calculation, we will be able to extract the
renormalization behavior of the fragmentation function with a heavy quark setting aside
nonperturbative effects. At leading order (LO) in αs, the fragmentation function at the
parton level is normalized as

D
(0)
Q/Q(z,q⊥) = δ(1− z)δ(2)(q⊥). (2.4)

At next-to-leading order (NLO) in αs, the one-loop diagrams are illustrated in figure 1. To
regularize the UV and the IR divergences in each diagram, we employ on-shell dimensional
regularization with D = 4−2ϵ. When we regularize the rapidity divergences in the heavy quark
collinear sector, we use the conventional method [22, 23] to modify the collinear Wilson line to1

Wn =
∑
perm

exp
[
− g

P+

(
ν

|Pg
+|

)η

n ·An

]
. (2.5)

1Then, following the prescription developed in ref. [37], we will regularize the corresponding rapidity
divergences in the soft sector.
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Wn W†
n

qp p q p

(a) (b) (c)

Figure 1. One-loop diagrams for calculation of the heavy quark TMDFF with q⊥ ∼ m. The vertical
dashed lines are the unitary cuts. The self-energy diagrams of the heavy quark are omitted here.
Diagrams (a) and (b) have mirror diagrams.

As discussed in ref. [37], the rapidity divergences originate from the fact that the soft
degrees of freedom cannot describe the large rapidity region. Hence, in the calculation of
the collinear heavy quark sector, naive collinear contributions do not yield the divergences.
Instead, the rapidity divergences occur in the zero-bin contribution [38], which needs to be
subtracted in order to avoid double counting the soft contributions.

The virtual contribution for figure 1(a) has been computed in ref. [37]. Including the
zero-bin subtraction, the result is

Ma = αsCF

4π

[
2
ϵUV

+ 2 ln µ2

m2 + 1
ϵ2IR

+ 1
ϵIR

ln µ2

m2 + 1
2 ln2 µ

2

m2 + 4 + π2

12

+
(2
η
+ 2 ln ν

p+

)( 1
ϵUV

− 1
ϵIR

)]
, (2.6)

where p+ ∼ 2E is the largest momentum component of the heavy quark in the final state.
The rapidity scale that minimizes the large logarithm with p+ is νc ∼ p+. Including the
mirror contribution of figure 1(a) and combining with the self-energy contributions,

Z
(1)
Q +R

(1)
Q = −αsCF

4π

(
1
ϵUV

+ 2
ϵIR

+ 3 ln µ2

m2 + 4
)
, (2.7)

the overall virtual contribution is

MV (z,q⊥) = [2Ma + Z
(1)
Q +R

(1)
Q ]δ(1− z)δ(2)(q⊥)

= αsCF

2π

[
3

2ϵUV
+ 1
ϵ2IR

+ 1
ϵIR

(
−1 + ln µ2

m2

)
+ 1

2 ln µ2

m2 ++1
2 ln2 µ

2

m2 + 2 + π2

12

+
(2
η
+ 2 ln ν

p+

)( 1
ϵUV

− 1
ϵIR

)]
δ(1− z)δ(2)(q⊥). (2.8)

The naive collinear contribution from the real emission in figure 1(b) is

M̃b(z,q⊥) =
αsCF

2π2
µ2eγE

Γ(1− ϵ)
z1−2ϵ

1− z
· (q2

⊥)−ϵ

q2
⊥ + (1−z)2

z2 m2
. (2.9)
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Here, using the plus distribution, we re-express z/(1 − z) as

z

1− z
= δ(1− z)

[∫ 1

0
dx

1− x

x

]
+
(

z

1− z

)
+
. (2.10)

Then eq. (2.9) can be rewritten as

M̃b(z,q⊥) = αsCF

2π2
(µ2eγE )ϵ

Γ(1− ϵ)

[
δ(1− z) ·

∫ 1

0
dx

1− x

x
· 1
(q2

⊥)1+ϵ
(2.11)

+
(

z

1− z

)
+
· z−2ϵ(q2

⊥)−ϵ

q2
⊥ + (1−z)2

z2 2m2

]
.

To complete calculation, we need to subtract the zero-bin contribution that comes from
the underlying soft interaction. Here the soft mode generally scales as

pµ
s = (p+s , p−s ,p⊥

s ) ∼
(1
κ
q⊥, κq⊥, q⊥

)
, q⊥ ∼ m (2.12)

where the scaling of the boosting parameter κ is given by
m

Q
≪ κ ≲ 1. (2.13)

When κ is in this range, the soft gluon radiations from the boosted n-collinear heavy quark
eikonalize satisfying the approximation, 2pn · ps ≈ p+n p

−
s , giving rise to the soft Wilson line,

Sn(x) = P exp
[
ig

∫ ∞

x
dsn ·As(sn)

]
. (2.14)

With the scaling behavior of eq. (2.12) assigned, the zero-bin contribution for M̃b(z,q⊥)
is given by

M∅
b (z,q⊥) =

αsCF

2π2
(µ2eγE )ϵ

Γ(1− ϵ)

(
ν

p+

)η (∫ ∞

0
dxx−1−η

) 1
(q2

⊥)1+ϵ
· δ(1− z), (2.15)

where the upper limit of the integral for the gluon momentum fraction x (= k+/p+) has been
set to infinity since the soft gluon momentum k+ in the zero-bin has no upper bound. The
rapidity regulator, using eq. (2.5), will regulate the rapidity divergence as k+ → ∞.

Subtracting eq. (2.15) from eq. (2.11), the soft divergence as x→ 0 cancel as follows:∫ 1

0
dx

1− x

x
−
(
ν

p+

)η ∫ ∞

0
dxx−1−η =

∫ 1

0
dx

[1− x

x
− 1
x

]
−
(
ν

p+

)η ∫ ∞

1
dxx−1−η

= −1−
(
ν

p+

)η 1
η
. (2.16)

Here η (→ +0) is a small positive number, hence its dependence can be suppressed in the
integral region x ∈ [0, 1]. So, after the subtraction, the complete contribution for figure 1(b)
is given as

Mb(z,q⊥) = M̃b(z,q⊥)−M∅
b (z,q⊥)

= αsCF

2π2
(µ2eγE )ϵ

Γ(1− ϵ)

[
−δ(1− z)

(1
η
+ ln ν

p+
+ 1

) 1
(q2

⊥)1+ϵ
(2.17)

+
(

z

1− z

)
+
· z−2ϵ(q2

⊥)−ϵ

q2
⊥ + (1−z)2

z2 m2

]
.
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Here the term 1/(q2
⊥)1+ϵ has a collinear IR divergence when q2

⊥ → 0. In order to isolate
the divergence we rewrite it as

1
(q2

⊥)1+ϵ
= δ(q2

⊥)
[∫ Λ2

0
dl2⊥(l2⊥)−1−ϵ

]
+
[

1
(q2

⊥)1+ϵ

]
Λ2

= δ(q2
⊥)
(
− 1
ϵIR

+ lnΛ2
)
+
[

1
q2
⊥

]
Λ2

+O(ϵ), (2.18)

where [· · · ]Λ2 is the so-called Λ2-distribution, which is the dimensionful plus distribution,
defined by

[g(q2
⊥)]Λ2 = g(q2

⊥)− δ(q2
⊥)
∫ Λ2

0
dl2⊥g(l2⊥). (2.19)

Here δ(q2
⊥) = πδ(2)(q⊥), and Λ2 is an arbitrary momentum squared scaling as ∼ q2

⊥. The
overall calculation does not depend on any particular choice of Λ2 as we will see.

For the second term in the square bracket of eq. (2.17), we also employ the Λ2-distribution
by rewriting

(z2q2
⊥/µ

2)−ϵ

q2
⊥ + (1−z)2

z2 m2
= f

(
z, λ; µ

2

Λ2
)
δ(q2

⊥) +
[

(z2q2
⊥/µ

2)−ϵ

q2
⊥ + (1−z)2

z2 m2

]
Λ2

, (2.20)

where f(z, λ;µ2/Λ2) is defined by the following integral

f
(
z, λ; µ

2

Λ2
)
= µ2ϵ

∫ Λ2

0
dl2⊥

(z2l2⊥)−ϵ

l2⊥ + (1−z)2
z2 m2

=
(
µ2

Λ2

)ϵ ∫ z2

0
dy

y−ϵ

y + (1− z)2λ , (2.21)

with λ ≡ m2/Λ2. f(z, λ) becomes divergent as z goes to 1. Thus, in order to extract the IR
divergences fully, we rewrite the combination of [z/(1− z)]+ and f(z, λ) in eq. (2.17) by(

z

1− z

)
+
f(z, λ) =

(
zf(z, λ)
1− z

)
+
+ δ(1− z)

∫ 1

0
dz′

(
z′

1− z′

) [
f(z′, λ)− f(1, λ)

]
. (2.22)

Here the first term in the right side is finite z → 1, and the integration in the second term is

eγE

Γ(1− ϵ)

∫ 1

0
dz

(
z

1− z

) [
f(z, λ)− f(1, λ)

]
= − 1

2ϵ2IR
− 1
ϵIR

(
1 + 1

2 ln µ2

m2

)
− ln µ2

m2 − 1
4 ln2 µ

2

m2 − π2

24 (2.23)

− 2√
λ
arctan

√
λ− ln(1 + λ)− 1

2Li2(−λ)− F (λ),

where F (λ) has the following integral form,

F (λ) =
∫ 1

0
dz

z

1− z

∫ 1

z2
dy

1
y + (1− z)2λ , (2.24)

and F (λ = 1) = − ln 2 + π2/6 and F (0) = −2 + π2/3.
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Finally, putting eqs. (2.18) and (2.20) into eq. (2.17) and using the results in eqs. (2.22)
and (2.23), we obtain the real contribution for figure 1(b),

Mb(z,q⊥) = αsCF

2π2

{
δ(1−z)

(1
η
+ln ν

p+
+1
)[

δ(q2
⊥)
(

1
ϵIR

+ln µ
2

Λ2

)
−
(

1
q2
⊥

)
Λ2

]
(2.25)

−δ(1−z)δ(q2
⊥)
[

1
2ϵ2IR

+ 1
ϵIR

(
1+1

2 ln
µ2

m2

)
+ln µ

2

m2+
1
4 ln

2 µ
2

m2+
π2

24

+ 2√
λ
arctan

√
λ+ln(1+λ)+ 1

2Li2(−λ)+F (λ)
]

+δ(q2
⊥)
(

z

1−z ln
z2+(1−z)2λ
(1−z)2λ

)
+
+
(

z

1−z

)
+

(
z2

z2q2
⊥+(1−z)2m2

)
Λ2

}
.

We have extracted all the possible IR divergences as q2
⊥ → 0 or z → 1 and assigned them to

the term with δ(1−z)δ(q2
⊥). The remaining terms with either the plus or the Λ2-distributions

are IR finite.
The contribution for the diagram in figure 1(c) is given by

Mc(z,q⊥) = αsCF

2π2
(µ2eγE )ϵ

Γ(1− ϵ) (1− z)z−2ϵ(q2
⊥)−ϵ (2.26)

×
[

1− ϵ

q2
⊥ + (1−z)2

z2 m2
− 2m2

z
(
q2
⊥ + (1−z)2

z2 m2
)2
]
≡Mc1(z,q⊥) +Mc2(z,q⊥),

where Mc1 (Mc2) corresponds to the contribution from the first (second) term in the square
bracket. These contributions do not need zero-bin subtractions since the corresponding
contribution from the soft mode is power-suppressed.

Due to the presence of (1− z) in the numerator, Mc1 has no IR divergence. So, ignoring
the ϵ dependence, we obtain

Mc1(z,q⊥) =
αsCF

2π2 (1− z)
[
ln z

2 + (1− z)2λ
(1− z)2λ · δ(q2

⊥) +
(

z2

z2q2
⊥ + (1− z)2m2

)
Λ2

]
. (2.27)

Mc2 has an IR divergence as z → 1 and q2
⊥ → 0 simultaneously. Using the plus and the

Λ2-distributions we can extract the IR divergence, leading to

Mc2(z,q⊥)=
αsCF

2π2

{
δ(q2

⊥)
[
δ(1−z)

(
1
ϵIR

+ln µ
2

m2+
2√
λ
arctan

√
λ+ln(1+λ)+G(λ)

)

−
( 2z3

(1−z)(z2+(1−z)2λ
)
+

]
−2z3(1−z)

(
m2

(z2q2
⊥+(1−z)2m2)2

)
Λ2

}
. (2.28)

Here G(λ) has a form of the integral,

G(λ) =
∫ 1

0
dz

∫ 1

z2
dy

2z(1− z)λ
(y + (1− z)2λ)2 , (2.29)

where G(0) = 0 and G(1) = 1 − ln 2.
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Finally, combining the results of eqs. (2.8), (2.25), (2.27), and (2.28), we obtain the bare
one-loop result for the heavy quark TMDFF,

D
(1)
Q/Q(z,q⊥)=MV (z,q⊥)+2Mb(z,q⊥)+Mc(z,q⊥)

= αsCF

2π2

{
δ(1−z)δ(q2

⊥)
[(2

η
+2ln ν

p+
+3
2

)( 1
ϵUV

+ln µ
2

Λ2

)
+2 (2.30)

−ln(1+λ)− 2√
λ
arctan

√
λ−Li2(−λ)−F (λ)+G(λ)

]
−δ(q2

⊥)
[
Pqq(z)
CF

lnλ

+
(

2z
1−z

(
ln z

2+(1−z)2λ
(1−z)2 − z2

z2+(1−z)2λ

))
+
+(1−z) ln z

2+(1−z)2λ
(1−z)2

]

−
(2
η
+2ln ν

p+
+3
2

)
δ(1−z)

(
1

q2
⊥

)
Λ2

+Pqq(z)
CF

(
z2

z2q2
⊥+(1−z)2m2

)
Λ2

−2z3(1−z)
(

m2

(z2q2
⊥+(1−z)2m2)2

)
Λ2

}
.

Here Pqq is quark-to-quark DokshitzerGribov-Lipatov-Altarelli-Parisi (DGLAP) kernel,

Pqq(z) = CF

(
1 + z2

1− z

)
+
. (2.31)

As shown in eq. (2.30), the heavy quark TMDFF is IR finite since the IR divergences
from the real emission contributions, 2Mb +Mc, are cancelled by the virtual contribution
MV . The contributions proportional to Pqq involve the logarithm of the heavy quark mass,
i.e., ln λ = lnm2/Λ2. If we consider the massless limit of the heavy quark, they become
collinear-divergent.

Note that UV divergence of the heavy quark TMDFF genuinely comes from the virtual
contribution, which makes sense since the real emission contributions with a finite q⊥ cannot
produce a UV divergence. Comparing to the light quark calculation, we expect the same
UV divergence since the inclusion of the quark mass cannot change the UV behavior. The
presence of the fermion mass does change the IR behavior and makes it possible to compute
the HQ TMDFF perturbatively. Finally, the rapidity divergence for the heavy quark TMDFF
is the same as the light-quark case, since the rapidity divergence comes from the zero-bin
contributions in the soft sector, which is common for both.

When we consider a generic N -jet process, it is useful to introduce multiple rapidity
scales νi (i = 1, · · · , N) corresponding to the separated N collinear directions [37]. In this
case, the anomalous dimensions for TMDFFs satisfy the following renormalization group
(RG) equations:

d

d lnµDf/f (z,q⊥, µ, νi) = γµ
f (µ, νi)Df/f (z,q⊥, µ, νi), (2.32)

d

d ln νi
Df/f (z,q⊥, µ, νi) =

∫
d2l⊥γν

f (l⊥;µ, νi)Df/f (z,q⊥ − l⊥, µ, νi),
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with

γµ
f (µ, νi) =

αs

π

(
T2

f · 2 ln νi

p+i
+ γ̂f

2

)
+O(α2

s), (2.33)

γν
f (q⊥, µ, νi) =

αs

π2
T2

f

[
ln µ

2

Λ2 · δ(q2
⊥)−

(
1

q2
⊥

)
Λ2

]
+O(α2

s). (2.34)

Here T2
f = Ta

f · Ta
f becomes CF for f = q (quark) and CA for f = g (gluon). γ̂q = 3CF and

γ̂g = β0, where β0 is the leading coefficient of QCD beta function. In eq. (2.34) we employed
Λ2-distribution introduced in eq. (2.19) and the net result should be independent of Λ2.

In the impact parameter (b) space, the heavy quark TMDFF can be expressed through
the Fourier transform,

D̃H/Q(z,b, µ, ν) =
∫
d2q⊥e

ib·q⊥DH/Q(z,q⊥, µ, ν). (2.35)

In b-space, the renormalized result at NLO is

D̃Q/Q(z,b, µ, ν) = 1 + αsCF

2π

{
δ(1− z)

[(
2 ln ν

p+
+ 3

2

)
ln b̄2µ2 + 1

2 ln b̄2m2
]

+
( 2z
1− z

)
+

[
2K0

(1− z

z
mb

)
+ 2 ln(1− z)− 1

]
(2.36)

+2(1− z)K0

(1− z

z
mb

)
−
( 4z
1− z

ln(1− z)
)
+

−2(1− z)
[
bm

1− z
K1

(1− z

z
mb

)
− z

(1− z)2
]}
,

where b2 = b2 and b̄ ≡ beγE/2. Kn=0,1 are the modified Bessel functions of the second kind.
As z goes to 1, the following combinations with the Bessel functions remain nonsingular:

K0

(1− z

z
mb

)
+ ln(1− z) = − lnmb̄+O(1− z), (2.37)

bm

1− z
K1

(1− z

z
mb

)
− z

(1− z)2 = m2b2

4
(
−1 + 2 ln(1− z)mb̄

)
+O(1− z). (2.38)

Finally, the leading anomalous dimension for D̃Q/Q satisfying the RG equation, d
d ln ν D̃Q/Q =

γ̃ν
Q · D̃Q/Q in b-space is given by

γ̃ν
Q(b;µ, ν) =

αsCF

π
ln b̄2µ2 . (2.39)

3 The heavy quark TMD fragmentation function for q⊥ ≪ m

In this section, we consider the region of parameter space where the transverse momentum
q⊥ is much smaller than the heavy quark mass m, so the fluctuations to describe q⊥ should
be much softer than the collinear interaction scaling shown in eq. (2.3). Therefore, the heavy
quark can be considered to be boosted, and we can integrate out the collinear interactions.
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In this boosted heavy quark system, with the collinear interaction being integrated out, the
remaining fluctuations are described by the residual interaction, where the momentum scales as

kµ = (k+, k−,k⊥) ∼ εQ(1,m2/Q2,m/Q). (3.1)

Here the small parameter ε has the size ε ∼ q⊥/m ≪ 1.
This residual interaction can be systematically analyzed in the boosted heavy quark

effective theory (bHQET), which can be directly obtained from the massive version of SCET
(SCETM) [39–41]. At leading power in the heavy quark limit, the bHQET Lagrangian is
given by [42–44]

L(0)
bHQET = h̄nv · iD

n/

2hn, (3.2)

where the boosted heavy quark spinor satisfies the same projection as the spinor in SCET,

n/hn = 0, n/n/

4 hn = hn. (3.3)

The velocity in eq. (3.2) scales as vµ = (v+, v−,v⊥) ∼ (Q/m,m/Q, 1) and is normalized
to v2 = 1.

Therefore, when q⊥ ≪ m, the HQ TMDFF in eq. (2.1) can be matched onto bHQET
and can be factorized as

DH/Q(z,q⊥ ≪ m;µ, ν) = CQ(m,µ)SH/Q(z,q⊥, µ, ν). (3.4)

Here CQ is the matching coefficient onto bHQET obtained from integrating out the virtual
collinear interaction, which at NLO is [45–47]

CQ(m,µ) = 1 + αsCF

4π

(
ln µ2

m2 + ln2 µ
2

m2 + 4 + π2

6

)
. (3.5)

SH/Q is the HQTMD shape function to be described within bHQET, which can be
obtained through the direct matching from eq. (2.1),

SH/Q(z,q⊥, µ, ν) =
∑
Xr

1
2Nc

Trv+2 ⟨0|δ
(
p+
z

−mv+ − i∂+

)
δ(2)(q⊥ − P⊥)Y r†

n hn|H(p)Xr⟩

× ⟨H(p)Xr|h̄nY
r

n

n/

2 |0⟩, (3.6)

where Xr denotes the final states of the residual modes, and Y r
n is the Wilson line of the

residual gluons, which has been matched from Wn with collinear gluons integrated out. Here
we set the momentum of the final hadron as pµ = mHv

µ with v⊥ = 0, where mH is the
hadron mass, and the momentum of the initial mother heavy quark is given by qµ = mvµ+kµ.
Correspondently, the scaling of the transverse momentum is given by q⊥ = k⊥ ∼ εm≪ m.
i∂+ in the argument of the delta function in eq. (3.6) takes the residual momentum of the
initial heavy parton, k+ and scales as k+ ∼ εQ≪ Q ∼ q+(= mv+). So the argument of the
delta function holds when z is close to 1, and it can be written as

p+
z

−mv+ − k+ = (1− z)mv+
z

+ Λ̄v+
z

− k+ ∼ (1− z)mv+ + Λ̄v+ − k+, (3.7)
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(a) (c)(b)

Yr
n̄ Yr†

n̄

Figure 2. One-loop diagrams for calculating of the heavy quark shape function in bHQET for the
Q → Q process. The mirror diagrams for diagrams (a,b) and the self-energy diagram for the heavy
quark field are not shown here. The momentum for the final state is pµ = mvµ with v⊥ = 0, while
the initial state heavy quark in the real emission diagrams (b, c) has momentum qµ = mvµ + kµ

with q⊥ = k⊥.

where Λ̄ = mH − m ∼ O(ΛQCD). Hence this shape function for q⊥ ≪ m in eq. (3.6)
has support in a large z region. At the parton level (H = Q), the argument of the delta
function in the shape function becomes (1 − z)mv+ − i∂+, and, at LO in αs, the shape
function is normalized to

S
(0)
Q/Q(z,q⊥) = δ(1− z)δ(2)(q⊥). (3.8)

In obtaining this, we used the following spin sum rule for the boosted heavy quark field [43],∑
s

hn|Qs⟩⟨Qs|h̄n = mn/. (3.9)

Let us consider the one-loop calculation of the shape function at the parton level. The
relevant Feynman diagrams are illustrated in figure 2. The virtual contribution corresponding
to figure 2(a) is [37]

M r
a = αsCF

2π

[
−1
2

(
1
ϵ2UV

− 1
ϵ2IR

)
− 1

2 ln µ2

m2

( 1
ϵUV

− 1
ϵIR

)

+
(1
η
+ ln ν

p+

)( 1
ϵUV

− 1
ϵIR

)]
. (3.10)

Like the collinear virtual contribution shown in eq. (2.6), the bHQET result has also a
rapidity divergence, which comes from the zero-bin contribution to be subtracted in the
bHQET calculation. Note that the residual interaction scaling as eq. (3.1) has almost the
same rapidity as the collinear interaction although the residual mode has smaller energy.
Hence, similar to the calculation of the collinear interaction, when we consider the bHQET
calculation for the large rapidity region, we need to subtract the contribution of the small
rapidity, i.e., the soft contribution. Here the soft interaction is supposed to scale as eq. (2.12),
but the offshellness is much smaller than m2 since q⊥ ≪ m.

For figure 2(b), the naive contribution before the zero-bin subtraction is

M̃ r
b (z,q⊥) =

αsCF

2π2
µ2eγE

Γ(1− ϵ)
1

1− z
· (q2

⊥)−ϵ

q2
⊥ + (1− z)2m2 . (3.11)
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When compared with eq. (2.9), eq. (3.11) can be understood to be in the large z region
since the residual gluon emission has small energy, k+ ∼ εQ. This means that (1 − z)m
and q⊥ can be power-counted as the same order, i.e., (1− z)m ∼ q⊥ ∼ εm. As in eq. (2.9),
eq. (3.11) becomes IR-divergent as z → 1. To isolate the divergence, we employ the plus
distribution for 1/(1 − z),

M̃ r
b (z,q⊥) =

αsCF

2π2
(µ2eγE )ϵ

Γ(1− ϵ)

[
δ(1− z)

(∫ 1

0

dx

x

) 1
(q2

⊥)1+ϵ
+ 1

(1− z)+
(q2

⊥)−ϵ

q2
⊥ + (1− z)2m2

]
.

(3.12)
The zero-bin contribution for figure 2(b) is given by

M r,∅
b (z,q⊥) =

αsCF

2π2
(µ2eγE )ϵ

Γ(1− ϵ)

(
ν

p+

)η ∫ ∞

0
dxx−1−η 1

(q2
⊥)1+ϵ

· δ(1− z), (3.13)

where the plus component of the soft gluon momentum is given by p+s = xp+ and is assumed
to be much smaller than the residual momentum, k+ ∼ εQ. Hence this zero-bin contribution
only contributes to the part proportional to δ(1− z). In the integral the momentum fraction
x can reach infinity, so this contribution will involve a rapidity divergence.

Subtracting eq. (3.13) from eq. (3.12), we remove the soft divergence as x→ 0 in a similar
way as was shown in eq. (2.16). Then the complete contribution for figure 2(b) becomes

M r
b (z,q⊥) = M̃ r

b −M r,∅
b

= αsCF

2π2

{
δ(1− z)

(1
η
+ ln ν

p+

)[
δ(q2

⊥)
(

1
ϵIR

+ ln µ
2

Λ2

)
−
(

1
q2
⊥

)
Λ2

]

+ (µ2eγE )ϵ

Γ(1− ϵ) · 1
(1− z)+

· (q2
⊥)−ϵ

q2
⊥ + (1− z)2m2

}
, (3.14)

where we applied eq. (2.18), using the Λ2-distribution to extract IR divergence as q2
⊥ → 0.

For the second term in the curly bracket, we can also use the Λ2-distribution in the form

(q2
⊥/µ

2)−ϵ

q2
⊥ + (1− z)2m2 = h

(
z, λ; µ

2

Λ2
)
δ(q2

⊥) +
[

(q2
⊥/µ

2)−ϵ

q2
⊥ + (1− z)2m2

]
Λ2

. (3.15)

Here h(z, λ;µ2/Λ2) is expressed as the following integral

h
(
z, λ; µ

2

Λ2
)
= µ2ϵ

∫ Λ2

0
dl2⊥

(l2⊥)−ϵ

l2⊥ + (1− z)2m2 =
(
µ2

Λ2

)ϵ ∫ 1

0
dy

y−ϵ

y + (1− z)2λ , (3.16)

where λ = m2/Λ2. Note that h(z, λ) becomes divergent as z goes to 1. Thus, in order to
extract the IR divergences, we rewrite the combination of 1/(1− z)+ and h(z, λ) as

1
(1− z)+

h(z, λ) =
(
h(z, λ)
1− z

)
+
+ δ(1− z)

∫ 1

0

dz′

1− z′

[
h(z′, λ)− h(1, λ)

]
. (3.17)

The integral in the second term produces IR divergences,
eγE

Γ(1− ϵ)

∫ 1

0

dz

1− z

[
h(z, λ)− h(1, λ)

]
(3.18)

= − 1
2ϵ2IR

− 1
2ϵIR

ln µ2

m2 − 1
4 ln2 µ

2

m2 − π2

24 − 1
2Li2(−λ).
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Finally, combining the above, M r
b can be written as

M r
b (z,q⊥) = αsCF

2π2

{
δ(1− z)

(1
η
+ ln ν

p+

)[
δ(q2

⊥)
(

1
ϵIR

+ ln µ
2

Λ2

)
−
(

1
q2
⊥

)
Λ2

]
(3.19)

−δ(1− z)δ(q2
⊥)
[

1
2ϵ2IR

+ 1
2ϵIR

ln µ2

m2 + 1
4 ln2 µ

2

m2 + π2

24 + 1
2Li2(−λ)

]

+δ(q2
⊥)
(

1
1− z

ln 1 + (1− z)2λ
(1− z)2λ

)
+
+
( 1
1− z

)
+

(
1

q2
⊥ + (1− z)2m2

)
Λ2

}
.

The contribution for figure 2(c) is given by

M r
c (z,q⊥) = −αsCF

π2
(µ2eγE )ϵ

Γ(1− ϵ)
(1− z)m2(q2

⊥)−ϵ

(q2
⊥ + (1− z)2m2)2

. (3.20)

The zero-bin contribution to this term is power-suppressed and can be ignored. Eq. (3.20)
becomes IR-divergent when z → 1 and q2

⊥ → 0 simultaneously. So employing the plus and
Λ2-distributions we extract IR divergence and obtain

M r
c (z,q⊥) = αsCF

2π2

{
δ(q2

⊥)
[
δ(1− z)

(
1
ϵIR

+ ln µ2

m2 + ln(1 + λ)
)

(3.21)

−
( 2
(1− z)(1 + (1− z)2λ

)
+

]
− 2(1− z)

(
m2

(q2
⊥ + (1− z)2m2)2

)
Λ2

}
.

Finally, together with the self-energy contribution of hn,

Z
(1)
h +R

(1)
h = αsCF

2π

( 1
ϵUV

− 1
ϵIR

)
, (3.22)

we obtain the complete one loop correction to SQ/Q,

S
(1)
Q/Q(z,q⊥)=

[
2M r

a+Z
(1)
h +R(1)

h

]
δ(1−z)δ(q2

⊥)+2M r
b (z,q⊥)+M r

c (z,q⊥)

= αsCF

2π2

{
δ(1−z)

(2
η
+2ln ν

p+

)[
δ(q2

⊥)
(

1
ϵUV

+ln µ
2

Λ2

)
−
(

1
q2
⊥

)
Λ2

]
(3.23)

+δ(1−z)δ(q2
⊥)
[
− 1
ϵ2UV

+ 1
ϵUV

(
1−ln µ

2

m2

)
+ln µ

2

m2−
1
2 ln

2 µ
2

m2−
π2

12

+ln(1+λ)−Li2(−λ)
]
+δ(q2

⊥)
[

2
1−z

(
ln 1+(1−z)2λ

(1−z)2λ − 1
1+(1−z)2λ

)]
+

+ 2
(1−z)+

(
1

q2
⊥+(1−z)2m2

)
Λ2

−2(1−z)
(

m2

(q2
⊥+(1−z)2m2)2

)
Λ2

}
.

Here, as we expect, we see that IR divergences exactly cancel. The remaining UV divergences
arise entirely from the virtual contributions (2M r

a + Z
(1)
h ). Also note the rapidity divergence

is the same as the one for the TMDFF with q⊥ ∼ m as shown in eq. (2.30).
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In b-space, the renormalized HQTMD shape function at NLO is given by

S̃Q/Q(z,b;µ, ν) =
∫
d2q⊥e

ib·q⊥SQ/Q(z,q⊥;µ, ν)

= δ(1− z) + αsCF

2π

{
δ(1− z)

(
2 ln ν

p+
ln b̄2µ2 + ln µ2

m2 − 1
2 ln2 µ

2

m2 − π2

12

)

−
[ 2
1− z

(1 + 2 ln(1− z))
]
+
+ 4

(1− z)+

[
K0((1− z)mb) + ln(1− z)

]
− 2(1− z)

[
bm

1− z
K1((1− z)mb)− 1

(1− z)2
]}
. (3.24)

Here b is power-counted as b ∼ 1/q⊥ ∼ 1/(εm), hence the combination (1− z)mb is of O(1).
The leading anomalous dimensions from the RG equations,

d

d ln sS̃Q/Q(z,b; s) = γ̃s
r · S̃Q/Q(z,b; s), s = µ, ν, (3.25)

are given by

γ̃µ
r (µ, ν) =

αsCF

π

(
2 ln mν

p+µ
+ 1

)
, (3.26)

γ̃ν
r (b;µ, ν) =

αsCF

π
ln b̄2µ2. (3.27)

From eqs. (3.26) and (3.27), we can extract the characteristic scales to minimize the large
logarithms for the resummation of S̃Q/Q,

µr ∼ 1
b̄
, νr ∼ p+

mµr
∼ p+b̄

m
. (3.28)

Thus we see that νr has the same scaling as the large component of the residual momentum
shown in eq. (3.1).

As a consistency check between the SCETM and bHQET calculations, we take the limit
of D̃Q/Q(z,b) in eq. (2.36) as z goes to 1 with power counting mb ∼ (1− z)−1. This result
coincides with the combination of CQ and SQ/Q at NLO found above:

D̃
(1)
Q/Q(z → 1,b ∼ m−1(1− z)−1, µ, ν) = C

(1)
Q (m,µ) + S̃

(1)
Q/Q(z,b, µ, ν)

= αsCF

2π

{
δ(1− z)

[
2 ln ν

p+
· ln b̄2µ2 + 3

2 ln µ2

m2 + 2
]
−
[ 2
1− z

(1 + 2 ln(1− z))
]
+

(3.29)

+ 4
(1− z)+

[
K0((1− z)mb) + ln(1− z)

]
− 2(1− z)

[
bm

1− z
K1((1− z)mb)− 1

(1− z)2
]}

.

4 Full description on the heavy quark TMD fragmentation function

4.1 The TMD fragmentation function when q⊥ ≫ m

When q⊥ ≫ m, the HQ TMDFF in eq. (2.1) can be factorized due to this hierarchy of
scales. To accomplish this, we need to first integrate out the fluctuations of q2

⊥, then consider
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the fragmentation to the hadron at the lower scale µ ∼ m. Thus, the HQ TMDFF in
this case can be matched onto the standard heavy quark fragmentation function (HQ FF),
which only depends on the longitudinal momentum fraction of the hadron. In b-space,
the factorization reads

D̃H/Q(z,b;µ, ν) =
∑

k

∫ 1

z

dx

x
Kk/Q(x,b;µ, ν)DH/k

(
z

x
, µ

)
+O(mb), (4.1)

where DH/k(z/x) is the standard FF to the heavy hadron H, and k is the flavor of the
fragmenting parton. Except for the case k = Q, the contributions from other partons are
suppressed by at least α2

s and can be ignored to the order we are considering. Note that
since we are considering the limit q⊥ ≫ m, here mb ≪ 1.

From the NLO result of D̃Q/Q(z,b) in eq. (2.36), we can directly obtain the NLO result
of KQ/Q in eq. (4.1) by matching onto the FF, DQ/Q(z/x). The result of eq. (2.36) was
been obtained with treatment of mb ∼ O(1), hence it can be considered as the full result in
an expansion of mb. We must, therefore, extract the leading result from eq. (2.36) in the
limit mb→ 0. Accordingly, the following combinations of the Bessel functions in eq. (2.36)
can be expanded as

K0

(1− z

z
mb

)
+ ln(1− z) = − lnmb̄+ ln z +O(mb), (4.2)

bm

1− z
K1

(1− z

z
mb

)
− z

(1− z)2 = m2b2

4z
(
−1 + 2 ln(1− z)mb̄

)
+O(m3b3). (4.3)

The combination with K1 can be safely ignored in this limit, and using eq. (4.2) we obtain

D̃Q/Q
(
z,b≪ 1

m
;µ,ν

)
=1+αsCF

2π

{
δ(1−z)·

(
2ln ν

p+
+3
2

)
ln b̄2µ2 (4.4)

−
[
1+z2

1−z
(
lnm2b̄2(1−z)2+1

)]
+
+
( 4z
1−z

)
+
lnz+(1−z)(1+2lnz)

}
.

The NLO result for the standard HQ FF is well known, [48]

DQ/Q(z, µ) = δ(1− z) + αsCF

2π

[
1 + z2

1− z

(
ln µ2

m2(1− z) − 1
)]

. (4.5)

By subtracting this from the one-loop result of eq. (4.4) we obtain the one-loop result of KQ/Q,2

K
(1)
Q/Q(z,b;µ, ν) = D̃

(1)
Q/Q

(
z,b ≪ 1

m
;µ, ν

)
−D

(1)
Q/Q(z, µ) (4.6)

= αsCF

2π

[
δ(1− z)

(
2 ln ν

p+
+ 3

2

)
ln b̄2µ2 −

(
1 + z2

1− z

)
+
ln b̄

2

z2
µ2 + 1− z

]
.

As expected, the TMD kernel KQ/Q does not depend on the heavy quark mass m and its
characteristic scale is of order µ ∼ 1/b̄.

2This result is consistent with the result for the TMD beam function [49, 50], which describes an incoming
parton before a hard collision. The one-loop result for the TMD kernel of the beam function can be immediately
obtained from the result of eq. (4.6) by replacing b̄/z → b̄. Here the difference of z is due to the fact the
TMDFF describes the transverse momentum distribution of initiating parton before collinear splitting, while
the beam function measures transverse momentum of hard-colliding parton after the splitting.
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4.2 Nonperturbative contribution to the fragmentation function when
q⊥ ≫ ΛQCD

Thus far we have not considered the hadronization effects governed by nonperturbative
physics at scale ΛQCD. For a heavy-light hadron H involving a heavy quark, like a B meson,
the hadronization in the fragmenting process is through low energy interactions of the heavy
quark, adequately described by bHQET. Further, in bHQET the interactions are entirely
mediated by the residual gluon that carries only a small fraction of the energy. Hence the
fragmenting process for hadronization dominantly occurs in the large-z region where the
heavy quark in the final state carries most of the energy in the process.

To include the nonperturbative contribution, the standard HQ FF can be written
as [47, 51, 52]

DH/i(x, µ) =
∫ 1

x

dz

z
DQ/i

(
x

z
, µ

)
ϕH/Q(z), (4.7)

where DQ/i is the FF at the parton level to be computed perturbatively and ϕH/Q is the
nonpertubative piece describing the modification due to hadronization. The distribution
ϕH/Q is strongly peaked in the large-z region. When the x in DH/i(x) probes the region
far away from the endpoint, i.e., 1− x ∼ O(1), the nonperturbative contribution should be
negligible since m(1− x) ≫ ΛQCD, hence we guess that ϕH/Q acts like a delta function [47],

ϕH/Q(z) ≈ NHδ(1− z), (4.8)

where NH is the nonperturbative fractional parameter for the hadronization. In bHQET,
NH is defined by [47]

NH = 1
4NcmH

∑
Xr

Tr⟨0|Y r†
n hn|HvXr⟩⟨HvXr|h̄nY

r
n

n/

2 |0⟩, (4.9)

where |Hv⟩ = |H⟩/√mH . When we consider the sum over all the hadrons containing the
heavy quark, it should satisfy

∑
H NH = 1.

In eq. (4.7), the NLO perturbative result for DQ/Q was shown in eq. (4.5), while the
result for DQ/g reads [48]

DQ/g(z, µ) =
αs

2π
z2 + (1− z)2

2 ln µ2

m2 . (4.10)

As z approaches 1, DQ/Q dominates over DQ/g and, similarly to eq. (3.4), it factorizes

DQ/Q(z → 1, µ) = CQ(m,µ)SQ/Q(z, µ), (4.11)

where CQ was introduced in eq. (3.5), and SQ/Q(z) at NLO is given by [46, 47]

SQ/Q(z, µ) = δ(1− z) + αsCF

2π

{
δ(1− z)

(
ln µ2

m2 − 1
2 ln2 µ

2

m2 − π2

12

)
(4.12)

+
[

2
1− z

(
ln µ2

m2(1− z)2 − 1
)]

+

}
.
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When we consider nonperturbative implications for the HQ TMDFF with q⊥ ≫ ΛQCD,
we can basically apply the same approach as eq. (4.7), hence we will employ the same
nonperturbative function. As a result, when q⊥ ≫ ΛQCD, the HQ TMDFF can be written as

DH/i(x,q⊥, µ, ν) =
∫ 1

x

dz

z
DQ/i(z,q⊥, µ, ν)ϕH/Q(z). (4.13)

Here the NLO result of DQ/i=Q was obtained in eq. (2.30), and the one loop result of DQ/g is

DQ/g(z,q⊥, µ) =
αsTF

2π
1

q2
⊥ +m2/z2

[
1− 2z(1− z) q2

⊥
q2
⊥ +m2/z2

]
, (4.14)

where TF = 1/2.
When q⊥ is much smaller than the heavy quark mass m, DQ/Q dominates over DQ/g

and, as shown in eq. (3.4), DQ/Q can be additionally factorized as3

DQ/Q(z,q⊥ ≪ m,µ, ν) = CQ(m,µ)SQ/Q(z,q⊥, µ, ν). (4.15)

We have also discussed the HQ TMDFF for q⊥ ≫ m in subsection 4.1. As shown there,
the TMDFF can be matched onto the standard FF with the fluctuations of q2

⊥ integrated
out. Therefore, the nonperturbative piece can be genuinely included in the standard FF
as in eq. (4.7).

For the parameterization of the nonperturbative FF, ϕH/Q, we adopt the model introduced
in refs. [46, 47],

ϕH/Q(z) = NH
m

λH

(p+ 1)p+1

Γ(p+ 1)

(
m

λH
(1− z)

)p

e−(p+1)(1−z)m/λH . (4.16)

This was originally introduced in momentum space in ω̂ = (1 − z)mv+, where ϕH/Q(ω̂) =
ϕH/Q(z) · |dz/dω̂|. The integral over the full range of ω̂ is normalized to unity,4∫ ∞

0
dω̂ ϕH/Q(ω̂) = 1. (4.17)

λH in eq. (4.16) is a quantity of order ΛQCD and is related to the first moment of ϕH/Q(ω̂),∫ ∞

0
dω̂ ω̂ϕH/Q(ω̂) =

λH

v+
. (4.18)

One advantage of using eq. (4.16) is that, in the limit m/λH → ∞, the nonperturbative
FF becomes ϕH/Q ≈ NHδ(1− z). So, as long as m/λH is a large value much greater than
1, the nonperturbative effects predominantly make an impact on the endpoint region with
1 − z ∼ O(Λ/m). Away from the endpoint, the nonperturbative effects are small.

3Through comparison of eq. (3.4) with eq. (4.13) and eq. (4.15), we can relate

SH/Q(x, q⊥ ≫ ΛQCD, µ, ν) =
∫ 1

x

dz

z
SQ/Q(z, q⊥, µ, ν)ϕH/Q(x/z).

4Throughout this paper, we do not specify the heavy hadron but include all the possible heavy-light hadrons.
Hence NH is given by one.
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4.3 Summary: the HQ TMDFF with q⊥ ≫ ΛQCD

In this subsection, we summarize our results of the HQ TMDFF with the different hierarchies
between q⊥ and m. With the assumption that q⊥ ≫ ΛQCD, we can describe the transverse-
momentum dependent part purturbatively and can put the nonperturbative effects fully into
ϕH/Q. Here we show the TMDFFs in the b-space comparing the sizes of b and 1/m:

i) b≪ 1/m (q⊥ ≫ m)

D̃H/i(z,b, µ, ν) =
∑

j

∫ 1

z

dx

x
Kj/i(x,b, µ, ν)DH/j

(
z

x
, µ

)
+O(mb), (4.19)

where, from eq. (4.7),

DH/j

(
z

x
, µ

)
=
∫ 1

z/x

dy

y
DQ/j(y, µ)ϕH/Q

(
z

xy

)
. (4.20)

Here the one loop result of the TMD kernel KQ/Q was presented in eq. (4.6). We also
computed the one-loop results for the kernels with other flavors, which are

K
(1)
g/q(z,b, µ) =

αsCF

2π

[
−1 + (1− z)2

z
ln b̄

2µ2

z2
+ z

]
, (4.21)

K
(1)
q/g(z,b, µ) =

αsTF

2π

[
−
(
z2 + (1− z)2) ln b̄

2µ2

z2
− 2z(1− z)

]
, (4.22)

K
(1)
g/g(z,b, µ, ν) =

αsCA

2π
{
δ(1− z) · 2 ln ν

p+
ln b̄2µ2 (4.23)

− 2
[

z

(1− z)+
+ 1− z

z
+ z(1− z)

]
ln b̄

2µ2

z2

}
.

ii) b ∼ 1/m (q⊥ ∼ m)

D̃H/i(z,b, µ, ν) =
∫ 1

z

dx

x
D̃Q/i(x,b, µ, ν)ϕH/Q

(
z

x

)
. (4.24)

Here the NLO result of D̃Q/Q(z,b) was obtained in eq. (2.36), and the Fourier transform
of eq. (4.14), D̃Q/g, is given by

D̃Q/g(z,b, µ) =
αsTF

π

[
(z2 + (1− z)2)K0

(
mb

z

)
− (1− z)mbK1

(
mb

z

)]
. (4.25)

iii) 1/ΛQCD ≫ b≫ 1/m (m≫ q⊥ ≫ ΛQCD)

In this case, D̃H/i(z,b) is approximated by D̃H/Q(z,b), and D̃Q/Q(z,b) can be refac-
torized to CQ(m) · S̃Q/Q(z,b), which is the Fourier transform of eq. (4.15). Therefore,

D̃H/i(z,b, µ, ν) = CQ(m,µ)
∫ 1

z

dx

x
S̃Q/Q(x,b, µ, ν)ϕH/Q

(
z

x

)
+O

( 1
mb

)
, (4.26)

where the NLO results of CQ and S̃Q/Q were presented in eqs. (3.5) and (3.24),
respectively.
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p⊥H
pJ (p⊥J = 0)

pH

R

p′￼H (p′￼⊥H = 0)

p′￼J (p′￼⊥J = − p⊥H
zH

)

(a) (b)

Figure 3. (a): description of fragmentation to the hadron inside a jet with radius R in the jet frame,
where the transverse momentum of the jet is set to zero. (b): description of the fragmentation in the
hadron frame. Here the momentum fraction, zH = p+

H/p
+
J , is the same in both frames.

5 The heavy quark TMD jet fragmentation function

In this section, as an application of the HQ TMDFF, we will analyze heavy quark fragmentation
inside a given observed jet constructing the factorization theorem for the HQ TMD jet
fragmentation function (JFF). By considering the TMD fragmenting process within a jet, we
can closely delineate the substructure of a jet involving the heavy quark and acquire direct
or useful information on the hadronization of the heavy quark.

As illustrated in figure 3(a), we consider the transverse momentum distribution of the
hadron with respect to the standard jet axis, which lies along the total momentum of the jet.
For a jet with small radius R, the typical jet size is EJR for e+e− annihilation or pT

JR for
hadronic collisions, where pT

J is the large transverse momentum relative to the beam axis.
Since we are considering the small transverse momentum distribution of the hadron relative to
the jet axis, p⊥

H , we will assign the limit p⊥
H ≪ EJR, p

T
JR. Then the transverse motion of the

hadron is described by collinear and collinear-soft (csoft) interactions, whose momenta scale as

pµ
c = (p+c , p−c ,p⊥

c ) ∼ (EJ , p
⊥2
H /EJ , p

⊥
H), (5.1)

pµ
cs = (p+cs, p

−
cs,p⊥

cs) ∼ (p⊥H/R, p⊥HR, p⊥H), (5.2)

where p⊥H ≡ |p⊥
H |. Note that csoft interactions can discern the jet boundary, while collinear

interactions cannot.
In building up the factorization theorem, as illustrated in figure 3(b), it is convenient to

consider this fragmentation process in the hadron frame because the factorization usually
describes TMD behaviors of the (collinear/csoft) overall initiating partons. In the hadron
frame the total transverse momentum inside the jet is nonzero, and is related to the transverse
momentum of the hadron in the jet frame that is an observable in the experiment by

q⊥ ≡ p′⊥
J =

∑
i∈J

p′⊥
c,i +

∑
j∈J

p′⊥
cs,j = −p⊥

H

zH
. (5.3)

Here p⊥
H is the momentum in the jet frame and we denoted the momenta in the hadron

frame with primes.5

5Since we do not consider the limit zH ≪ 1, throughout this paper both the transverse momenta q⊥ and
p⊥

H are power counted as having the same scaling.
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5.1 The TMD JFF module

In this subsection, focusing on the inclusive jet production for e+e− annihilation we consider
the following differential jet cross section to observe a hadron inside the jet:

dσ(e+e− → J(H)X)
dEJdzHd2p⊥

H

, (5.4)

where J(H) denotes the jet that includes a hadron H , zH = p+H/p
+
J is the hadron momentum

fraction over the jet, and p⊥
H is the hadron transverse momentum with respect to a jet axis.

If we divide eq. (5.4) by dσ/dEJ , we obtain a probability finding a hadron with zH and p⊥
H

inside a jet with EJ (TMD JFF). In hadron collisions, we can similarly define the differential
cross section with respect to pJ

T (as well as rapidity) rather than EJ . For clustering a jet,
we consider the anti-kT algorithm [53, 54]. If the jet radius R is small, the cross sections in
eq. (5.4) are factorized into the hard and jet parts. For the jet containing H we have

dσ(e+e−→ J(H)X)
dEJdzHd2p⊥

H

= dσ(e+e−→ J(H)X)
z2HdEJdzHd2q⊥

=
∑

k

∫ 1

xJ

dx

x

dσ̂

dEk

(
xJ

x
,µ

)
· 1
z2H

GJ(H)/k(x,zH ,q⊥,EJ ,R,µ) (5.5)

where σ̂ is the partonic cross section and GJ(H)/k is the semi-inclusive TMD fragmenting jet
function from parton k to hadron H inside the jet J . This formalism has been applied to
jet production with massless partons [7]. As denoted in eq. (5.3), q⊥ is the jet transverse
momentum in the hadron frame and the longitudinal momentum variables in eq. (5.5) are

xJ = 2ptot · pJ

p2tot
= 2EJ

Q
∼ p+J

Q
, x = p+J

p+k
, zH = p+H

p+J
, (5.6)

where ptot is the total momentum of the incoming electron and positron, and p2tot = Q2. Here
the parton k, the jet J , and the hadron H are all described to be collinear in the n-direction.

Since we are taking the limit EJR≫ q⊥, the jet function GJ(H)/k can be further factorized.
In this case it is useful to express the factorization using the fragmentation function to a
jet (FFJ) [55, 56]. To NLO in αs, we can refactorize GJ(H)/k as [56, 57]

GJ(H)/k(x, zH ,q⊥, EJ , R, µ) =
∑

l

DJl/k(x,EJR,µ)ΦH/Jl
(zH ,q⊥;EJ , R). (5.7)

Here DJl/k is the FFJ from parton k to Jl, where Jl indicates the jet initiated by parton l.
Beginning at NNLO in αs, eq. (5.7) does not hold due to the presence of 1 → 3 splitting
processes. However, this refactorization is advantageous to understanding the jet substructure
and the fragmentation process within the jet. Note that the combination of DJl/k and dσ̂/dEk

together is scale-invariant. Hence the remaining function ΦH/Jl
must be also scale-invariant.

Moreover, ΦH/Jl
can be normalized to∑

H

∫
dzHzH

∫
J
d2q⊥ ΦH/Jl

(zH ,q⊥) = 1, (5.8)

where the integration region for q⊥ is limited to be inside the jet. From now we will call ΦH/Jl

“the JFF module”, which is responsible for the hadron fragmentation and its jet substructure.
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5.2 Factorization of the heavy quark TMD JFF module

Since we are interested in HQ TMD fragmentation, in this section we consider the factorization
of the HQ TMD JFF module, ΦH/JQ(zH ,q⊥;EJ , R,m), where we take the heavy quark mass
to be m ≪ EJR. With the hierarchy EJR ≫ q⊥,m, the JFF module ΦH/JQ can fully
include the HQ TMDFF DH/Q. Furthermore, as introduced in eq. (5.2), the csoft interaction
enters to describe the transverse motion of the hadron within a jet. Finally, from eq. (5.8),
the JFF module has the normalization factor, which is obtained by integrating over the
full phase space inside a jet.

As a result, we present the factorization theorem for ΦH/JQ ,

ΦH/JQ(zH ,q⊥;EJ , R,m) (5.9)

= HJ(EJR,µ)
∫
dk2

⊥dl2⊥SR(l⊥, µ, ν)DH/Q(zH ,k⊥,m, µ, ν)δ(2)(k⊥ + l⊥ − q⊥).

Here HJ is the hard-collinear function governed by the typical jet scale EJR, SR is the TMD
csoft function, and DH/Q is the HQ TMDFF introduced in eq. (2.1).

Since HJ is the normalization factor for integrating over the full phase space within a
jet, it is given by the inverse of the heavy quark integrated jet function [57],

HJ(EJR,m, µ) = J −1
Q (EJR,m, µ). (5.10)

In the limit we are considering, EJR≫ m, the heavy quark mass m can be safely ignored.
We can therefore use the result of the integrated jet function for massless quarks [54, 58–60],
and so HJ at NLO in αs is

HJ(EJR≫ m,µ) ≈ J −1
q (EJR,µ)

= 1− αsCF

2π

(
3
2 ln µ2

E2
JR

2 + 1
2 ln2 µ2

E2
JR

2 + 13
2 − 3π2

4

)
. (5.11)

The csoft function SR consists of the decoupled csoft Wilson lines from collinear sectors,
given by

SR(l⊥, µ, ν) =
1
Nc

Tr ⟨0|Ỹn,csY
†

n,csδ
(2)(l⊥ +Θin · P⊥)Yn,csỸ

†
n,cs|0⟩, (5.12)

where Nc is the number of colors, and Θin · P⊥ is the derivative operator taking transverse
momentum only when a gluon radiates inside a jet. Ỹn,cs and Yn,cs are csoft Wilson lines.
The tilded Wilson line [61] has a different path compared with the standard Wilson line,

Ỹ †
n,cs(x) = P exp

[
ig

∫ ∞

x
dsn ·Acs(ns)

]
, (5.13)

where ‘P’ represents path ordering.
The one-loop result for the TMD csoft function was obtained in refs. [5, 7, 62]. We also

illustrate the calculation in appendix B. To NLO in αs, the renormalized csoft function is

SR(l⊥, µ, ν) = 1
π
δ(l2⊥) +

αsCF

2π2

{
δ(l2⊥)

(
−2 ln µ

2

Λ2 ln
νR

2Λ + 1
2 ln2 µ

2

Λ2 − π2

12

)
(5.14)

+
[
1
l2⊥

ln ν
2R2

4l2⊥

]
Λ2

}
.
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In b-space, it is given by

S̃R(b, µ, ν) =
∫
d2l⊥eib·l⊥SR(l⊥, µ, ν)

= 1 + αsCF

2π

(
− ln b̄2µ2 ln ν

2R2

4µ2 − 1
2 ln2 b̄2µ2 − π2

12

)
. (5.15)

From this result we understand that the characteristic csoft scales are

µcs ∼ 1/b̄ ∼ k⊥, νcs ∼ µ

R/2 ∼ k⊥
R/2 ∼ p+cs . (5.16)

Note that the characteristic rapidity scale for the csoft function corresponds to the largest
momentum component of the csoft momentum. Hence, as we will see later, when combined
with DH/Q in eq. (5.9), the evolution of the rapidity scale between νc and νcs will resum
the large logarithm

ln νc

νcs
∼ ln p

+
c

p+cs
∼ ln EJR

q⊥
. (5.17)

For convenience for the eventual running, we express the factorization theorem for ΦH/JQ

in eq. (5.9) in b-space,

Φ̃H/JQ(zH ,b;EJ , R,m) =
∫
d2q⊥e

ib·q⊥ΦH/JQ(zH ,q⊥;EJ , R,m)

= HJ(EJR,µ)S̃R(b, µ, ν)D̃H/Q(zH ,b,m, µ, ν), (5.18)

where, for D̃H/Q, the NLO result at the parton level (i.e., D̃Q/Q) is shown in eq. (2.36).
Combining the one-loop results for all the factorized functions in eq. (5.18), we can easily check
that Φ̃H/JQ is independent of the factorization scales, µ and ν, with the parton-level result

Φ̃Q/JQ(z,b;EJ , R,m) = 1 + αsCF

2π

(
−2 ln2(b̄EJR) + 3 ln(b̄EJR) + ln(b̄m) + · · ·

)
, (5.19)

where we have suppressed the non-logarithmic terms at NLO.
As investigated in section 3, when q⊥ ≪ m, the HQ TMDFF can be additionally factorized

as shown in eq. (3.4). We have, for Φ̃H/JQ(zH ,b ≫ 1/m),

Φ̃H/JQ(zH → 1,b ∼ (m(1− zH))−1;EJ , R,m)
= HJ(EJR,µ)CQ(m,µ)S̃R(b, µ, ν)S̃H/Q(zH ,b,m, µ, ν). (5.20)

In this case the contributions are dominated by the large zH region. If b ≪ 1/ΛQCD, S̃H/Q
can be given by the convolution of S̃Q/Q and ϕH/Q as shown in eq. (4.26). For NLO result
of S̃Q/Q at parton level is shown in eq. (3.24).

5.3 Resummation of the heavy quark TMD JFF module: purturbative results

In this subsection, we investigate resummation of the large logarithms (except nonglobal
logarithms) in the HQ TMD JFF module in the perturbative limit to next-to-leading
logarithmic (NLL) accuracy. For this we consider the TMD JFF module at parton level,
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i.e, ΦQ/JQ . In resumming, it is convenient to use the factorized result in b-space shown in
eq. (5.18). Then, after Fourier transforming, the TMD module in momentum space is

ΦQ/JQ(zH ,q⊥;EJ ,R,m)=
∫

d2b
(2π)2 e

−iq⊥·bΦ̃Q/JQ(zH ,b;EJ ,R,m)

=HJ(EJR,µf )
∫
db

2π bJ0(b|q⊥|)·S̃R(b,µf ,νf )D̃Q/Q(zH ,b,m,µf ,νf ),

(5.21)

where J0 is the Bessel function of the first kind. µf and νf are the factorization scales. These
factorization scales can be set arbitrarily since their overall dependences cancel in the TMD
module. In eq. (5.21), large logarithms in each factorized function can be automatically
resummmed through renomalization group (RG) evolutions from the characteristic scales
to the factorization scales, (µf , νf ).

For the complete resummation to NLL accuracy, we have to include contributions from
large nonglobal logarithms, which in our case arise from the factorization between HJ and
S̃R in which the relevant modes can recognize the jet boundary. In the limit EJR ≫ m

we consider, the heavy quark mass effects can be safely ignored in HJ and S̃R, hence the
contribution is the same as the case of a light quark. The same discussion holds for TMD
distribution with respect to the thrust axis that is analyzed in section 6. In this paper, we
only consider resummation of large global logarithms based on the factorization theorem in
eq. (5.21). For the resummation of nonglobal logarithms, we refer to ref. [12], of which the
result for a light quark can be also applied to our case as long as EJR ≫ m.

The anomalous dimension for the evolution of HJ is given by

γH = 1
HJ

dHJ

d lnµ = −ΓC(αs) ln
µ2

E2
JR

2 + γ̂H(αs), (5.22)

where ΓC(αs) is the cusp anomalous dimension [63, 64]. When expanded as
∑

k=0 Γk(αs/4π)k+1,
the first two coefficients are given by

Γ0 = 4CF , Γ1 = 4CF

[(
67
9 − π2

3

)
CA − 10

9 nf

]
. (5.23)

The non-cusp part of γH in eq. (5.22) is γ̂H = −3αsCF /(2π) + O(α2
s).

The anomalous dimensions for µ- and ν-evolutions of S̃R are respectively given by

γ̃µ

S̃
= 1
S̃

dS̃

d lnµ = ΓC(αs) ln
4µ2

ν2R2 + γ̂S̃ , (5.24)

γ̃ν
S̃
= 1
S̃

dS̃

d ln ν = −2aΓ(µ, 1/b̄), (5.25)

where γ̂S̃ = O(α2
s), and the function aΓ is

aΓ(µ1, µ2) =
∫ µ1

µ2

dµ

µ
ΓC(αs(µ)). (5.26)

Equations (5.24) and (5.25) should satisfy the relation,

d

d ln ν γ
µ

S̃
= d

d lnµγ
ν
S̃
. (5.27)
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The anomalous dimensions for D̃Q/Q at leading order in αs have been introduced in eqs. (2.33)
and (2.39). To NLL accuracy, they read

γ̃µ
Q = ΓC(αs) ln

ν2

(2EJ)2
+ γ̂Q, (5.28)

γ̃ν
Q = 2aΓ(µ, 1/b̄), (5.29)

where γ̂Q = 3αsCF /(2π) + O(α2
s).

Solving RG equations for the anomalous dimensions, we can systematically resum and
exponentiate the large logarithms in eq. (5.21). If we consider the evolution over µ with
the rapidity scale fixed, the exponentiation factor is

lnU(µf , µh, µc, µcs; ν, ν ′) = lnUH(µf , µh) + lnUS(µf , µcs; ν) + lnUD(µf , µc; ν ′)

= 2SΓ(µh, µcs) + ln µ2h
E2

JR
2 · aΓ(µh, µcs)− ln (ν ′/2)2

E2
J

· aΓ(µc, µcs)

+ ln ν
′2

ν2
· aΓ(µf , µcs)−

3CF

β0
ln αs(µh)
αs(µc)

, (5.30)

where UH,S,D are the evolution results from the factorization scale to the characteristic scales
for HJ , S̃R, and D̃Q/Q, respectively. SΓ is the Sudakov factor which contains the double
logarithmic contributions,

SΓ(µ1, µ2) =
∫ µ1

µ2

dµ

µ
ΓC(αs) ln

µ

µ1
. (5.31)

With the ordinary renormalization scales fixed, the evolution over ν is given by

ln V (νf , νc, νcs;µ, µ′) = ln VS(νf , νs;µ) + ln VD(νf , νc;µ′)

= 2 ln νs

νc
· aΓ(µ′, 1/b̄) + 2 ln νf

νs
· aΓ(µ′, µ) . (5.32)

Using the results of µ- and ν-evolutions in eqs. (5.30) and (5.32), we finally obtain the
resummed result of ΦQ/JQ ,

ΦQ/JQ(zH ,q⊥=−p⊥
H/zH ;EJ ,R,m)=HJ(EJR,µh)

∫
db

2πbJ0(b|q⊥|) (5.33)

×exp[M(µh,µc,µcs,νc,νcs;EJ ,R,m,b)]S̃R(b;µcs,νcs)D̃Q/Q(zH ,b;m,µc,νc),

where µh,c,cs and νc,cs are the characteristic scales for the factorized functions, which, to
minimize the large logarithms in the functions, are of the scale

µh ∼ EJR, µc ∼ µcs ∼ q⊥ ∼ 1/b̄, (5.34)
νc ∼ 2EJ , νcs ∼ 2q⊥/R. (5.35)

Note that the resummed result in eq. (5.33) is independent of the factorization scales µf and νf .
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The exponentiation factor in eq. (5.33) is obtained from the suitable combination of
eqs. (5.30) and (5.32),

MR = ln[U(µf , µh, µc, µcs; νcs, νc) · V (νf , νc, νcs;µf , µf )]

= ln[V (νf , νc, νcs;µcs, µc) · U(µf , µh, µc, µcs; νf , νf )]

= 2SΓ(µh, µcs) + ln µ2h
E2

JR
2 · aΓ(µh, µcs) + ln ν2c

ν2cs

· aΓ(1/b̄, µcs) (5.36)

− 3CF

β0
ln αs(µh)
αs(µc)

− ln ν2c
4E2

J

· aΓ(µc, µcs).

Here we have considered two different evolution paths over (µ, ν)-plane. In the first line, we
first consider the evolution over ν at µ = µf and then do the evolution over µ. In the second
line of eq. (5.36), after evolution over µ with ν = νf , we have performed ν-evolution. Both
the evolution results should be the same due to the independence of µ and ν scales. When
we denote a large logarithm as L and power counting it as O(1/αs), the first term in the final
result of eq. (5.36) is dominant and is counted as αsL

2 ∼ O(1/αs). The next three terms
have a size αsL ∼ O(1). The last term in eq. (5.36) is power-counted as O(αs), hence it can
be ignored at NLL accuracy keeping the large logarithms to O(1).

As studied in subsection 5.2, for q⊥ ≪ m the TMD module has support in the large zH

region and its factorization is given by eq. (5.20). Accordingly, the resummed result of ΦQ/JQ is

ΦQ/JQ(zH → 1,q⊥≪m;EJ ,R,m) (5.37)

=HJ(EJR,µh)CQ(m,µc)
∫
db

2πbJ0(b|q⊥|)

×exp[M′(µh,µc,µr,µcs,νr,νcs;EJ ,R,m,b)]S̃R(b,µcs,νcs)S̃Q/Q(zH ,b,m,µr,νr),

where µc ∼ m, and the characteristic scales for S̃R and S̃Q/Q are given by

µr ∼ µcs ∼ q⊥ ∼ 1/b̄≪ m, (5.38)

νr ∼ 2EJ(1− zH) ∼ 2EJ
q⊥
m
, νcs ∼ 2q⊥/R. (5.39)

Here νr ≫ νcs since we have the hierarchy EJR ≫ m. It is therefore necessary to resum
the large logarithms for these very different rapidity scales.

In eq. (5.37), as a result of the resummation of all the large logarithms to NLL accuracy,
the exponentiation factor M′ is

M′
R = 2SΓ(µh, µcs)− 2SΓ(µc, µr) + ln µ2h

E2
JR

2 · aΓ(µh, µcs)− ln µ2c
m2 · aΓ(µc, µr)

− ln ν2r
4E2

J

· aΓ(µr, µcs) + ln ν2r
ν2cs

· aΓ(1/b̄, µcs)−
CF

β0

(
ln αs(µh)
αs(µc)

+ 2 ln αs(µh)
αs(µr)

)
.

(5.40)

Here, the two SΓ’s are leading terms counted as αsL
2 ∼ O(1/αs), while the remaining terms

are power-counted as αsL ∼ O(1).
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6 Heavy hadron’s TMD distribution with the thrust axis in
e+e−-annihilation

Another interesting application is the heavy hadron’s TMD distribution against the thrust
axis in e+e−-annihilation. The TMD distribution for a light hadron has been studied several
times in the literature. So it will be interesting to compare those results with the analysis
here when including the heavy quark mass.

6.1 Resummed results for the heavy hadron’s small TMD distribution against
the thrust axis

We will consider the small TMD distribution of the heavy hadron that moves into the right
hemisphere. The situation is very similar to the JFF module in section 5, with the difference
here that we consider the hemisphere jet instead of a jet with small radius R. Thus, changing
the jet size, we can obtain a similar factorization as with the case of the TMD JFF module.
For simplicity, we consider the production of the heavy quark pair in the dijet limit excluding
three jet events in e+e−-annihilation.

As a result, the double differential cross section for the heavy hadron production with
the thrust axis can be factorized as

1
σ0

dσ

dzHd2pH
⊥

= 1
σ0

dσ

z2HdzHd2q⊥

= 2Hrt(Q,µ)
z2H

∫
d2k⊥d

2l⊥Srt(l⊥, µ, ν)DH/Q(zH ,k⊥, µ, ν)δ(2)(k⊥ + l⊥ − q⊥)

= 2Hrt(Q,µ)
z2H

∫
db

2πbJ0

(
bpH

⊥
zH

)
S̃rt(b, µ, ν)D̃H/Q(zH ,b, µ, ν), (6.1)

where Q = p0tot is the center of mass energy for the electron and positron, the heavy hadron’s
energy fraction zH = 2pH · ptot/Q2 ∼ p+H/Q, and pH

⊥ is the hadron’s transverse momentum
relative to the thrust axis. We do not distinguish whether the observed hadron from the
heavy quark pair production involves the quark or the antiquark, thus the factor of two
above. q⊥ is the transverse momentum of the right hemisphere jet (for which the full jet
momentum is parallel with the thrust axis) in the hadron frame.

In eq. (6.1), Hrt is the hard function that contains the hard virtual contributions and
radiations in the left hemisphere in the dijet limit. To NLO, it is

Hrt(Q,µ) = 1 + αsCF

2π

(
−3
2 ln µ

2

Q2 − 1
2 ln2 µ

2

Q2 − 9
2 + 3π2

4

)
. (6.2)

Srt and its Fourier transform S̃rt are the soft functions responsible for the soft gluon radiations
in the right hemisphere, with the NLO result of S̃rt being

S̃rt(b, µ, ν) = 1 + αsCF

2π

(
− ln b̄2µ2 ln ν

2

µ2
− 1

2 ln2 b̄2µ2 − π2

12

)
. (6.3)

Interestingly, this result can be directly acquired from the result of S̃R in eq. (5.15) by
putting R→ 2. In calculating SR or S̃R, taking the small R limit, we made the small angle
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approximation, sinR/2 ≈ R/2. In the case of the hemisphere soft function, this term becomes
1 (= sinR/2) since R is equal to π for this case. Thus, with replacement of R→ 2, we easily
reproduce the result of eq. (6.3). Similarly, we can infer the logarithmic terms in Hrt from
the result of HJ in eq. (5.11). With R→ 2, the jet size changes as EJR→ 2EJ ∼ Q, hence
the logarithm lnµ/(EJR) in HJ becomes lnµ/Q in Hrt.

This observation also enables us to resum large logarithms in eq. (6.1) in a remarkably
simple way using the result of the TMD JFF module in section 5. The resummed result
of eq. (6.1) is

1
σ0

dσ

dzHd2pH
⊥

= 2Hrt(Q,µh)
z2H

∫
db

2πbJ0

(
bpH

⊥
zH

)
exp[M(µh, µc, µs, νc, νs;Q, b̄)]

× S̃rt(b, µs, νs)D̃H/Q(zH ,b, µc, νc), (6.4)

where the exponentiation factor M can be directly obtained from the result of eq. (5.36)
setting R → 2. It reads

MT (µh, µc, µs, νc, νs;Q, b̄) = 2SΓ(µh, µs) + ln µ
2
h

Q2 · aΓ(µh, µs) + ln ν
2
c

ν2s
· aΓ(1/b̄, µs)

− 3CF

β0
ln αs(µh)
αs(µc)

− ln ν2c
Q2 · aΓ(µc, µs). (6.5)

Here the characteristic scales are given by

µh ∼ νc ∼ Q, µc ∼ µs ∼ q⊥ ∼ 1/b̄. (6.6)

If b≫ 1/m, similar to the heavy quark TMDFF, we can use the refactorization results
in eq. (3.4), hence the resummed result is

1
σ0

dσ

dzHd2pH
⊥

= 2Hrt(Q,µh)
z2H

∫
db

2πbJ0

(
bpH

⊥
zH

)
exp[M′(µh, µc, µr, µs, νr, νs;Q, b̄)]

× CQ(m,µc)S̃rt(b, µs, νs)S̃H/Q(zH ,b, µr, νr). (6.7)

From the result of eq. (5.40) with R → 2, we obtain

M′
T (µh,µc,µr,µs,νr,νs;Q, b̄)= 2SΓ(µh,µs)−2SΓ(µc,µr)+ln µ

2
h

Q2 ·aΓ(µh,µs)

−ln µ
2
c

m2 ·aΓ(µc,µr)−ln ν
2
r

Q2 ·aΓ(µr,µs)+ln ν
2
r

ν2s
·aΓ(1/b̄,µs)

−CF

β0

(
ln αs(µh)
αs(µc)

+2ln αs(µh)
αs(µr)

)
, (6.8)

where the characteristic scales are estimated to be

µh ∼ Q, µc ∼ m, µr ∼ µs ∼ 1/b̄, (6.9)

νr ∼ Q(1− zH) ∼ Q

mb̄
, νs ∼ 1/b̄. (6.10)
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6.2 Numerical analysis for the resummed result

In this subsection, we show numerical results for the TMD distribution with respect to the
thrust axis combining the resummed results of eqs. (6.4) and (6.7) in the subsection 6.1. Here
we focus on the region where pH

T is small, but mostly perturbative, i.e, ΛQCD ≲ pH
T ≲ m,

hence the perturbative TMDFF can be matched onto the nonperturbative FF, ϕH/Q(z), as
illustrated in eq. (4.13) (also eq. (4.24) or eq. (4.26) in b-space).

As a result, we provide the formalism for the numerical implementation of the re-
summed results,

1
σ0

dσ

dzHdpH
⊥

= 2pH
⊥Hrt(Q,µh)

z2H

∫
dbbJ0

(
bpH

⊥
zH

)
exp[MNP] · S̃rt(b∗, µs, νs)

×
∫ 1

zH

dz

z
ϕH/Q

(
zH

z

)[
exp[ML

P] · CQ(m,µc)S̃Q/Q(z, b∗, µr, νr) (6.11)

+ exp[MF
P ] ·∆(z, b∗, µc)

]
.

Here pH
⊥ = |pH

⊥ |, and in order to avoid the Landau pole as b becomes large we have expressed
the cross section in b-space using b∗ rather than b. Following the prescription introduced
in ref. [65], b∗ has been given by

b∗ = b√
1 + b2/b2max

. (6.12)

So, in the perturbative region where b is small (b ≪ bmax), b∗ is given to be b∗ ≈ b. But,
when b becomes large, b∗ becomes frozen at bmax. Here our default choice of bmax will be
bmax = 2 GeV−1 in order for checking perturbative effects maximally. With the choice, the
freezing scale for αs is given by µfr ∼ 1/(bmaxe

γE/2) ∼ 0.56 GeV.
In eq. (6.11), the perturbative exponential factors ML

P and MF
P respectively represent

M′
T in eq. (6.8) and MT in eq. (6.5) with replacement of b→ b∗. We define ∆(z, b∗, µc) as

the difference between the perturbative TMDFFs for b ∼ 1/m and b ≫ 1/m, given by

∆(z, b∗, µc) = D̃Q/Q(z, b∗, µc, ν)− CQ(m,µc)S̃Q/Q(z, b∗, µc, ν). (6.13)

∆(z, b∗, µc) does not include large logarithms of 1 − z and b, and is independent of the
rapidity scale ν. At order αs, it is

∆(z, b, µ) = αs(µ)CF

2π
{ 4
1− z

[
zK0

(1− z

z
mb

)
−K0

(
(1− z)mb

)]
+ 2(1− z)K0

(1− z

z
mb

)
− 2bm

[
K1

(1− z

z
mb

)
−K1

(
(1− z)mb

)]}
. (6.14)

For the full description to the entire large b (or small pH
T ) region, we have also introduced

the nonperturbative factor MNP in eq. (6.11). Basically, it is introduced to parameterize
hadronization effects and in principle could be obtained from the fit to experiment data as
done in case of TMDFF to a light meson [7, 12, 66, 67]. Due to a lack of experimental data on
the TMD distribution of the heavy meson, we do not try to extract a specific parameterization
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Figure 4. TMD distribution for a possible b-flavored heavy-light hadron inside a hemisphere jet in
e+e− collisions. For simplicity, we have short-written zH and pH

T as z and pT respectively. The center
of mass energy of the collision Q = 100 GeV and bmax = 2 GeV−1.

of MNP nor try to do a more sophisticated approach, e.g., like a recent analysis that separates
short and long distance contributions to TMD distribution for a light quark [68]. These are
beyond the scope of this paper. Instead we introduce a simple model:

MNP = (−1)1+p
(
1− b

b∗

)p

, (6.15)

where p is a positive integer, and our default choice will be p = 2. The role of MNP here is
to monotonously connect the perturbative result to the nonperturbative pT region.

In figure 4 we show TMD distributions of single b-flavored heavy-light hadron inside a
hemisphere jet in e+e− collisions (and not specified the b-hadron so NH in eq. (4.16) is set
to 1), with energy fraction zH carried by the heavy hadron fixed. The error bands come
from varying each characteristic scale µi(νi) that appears in eq. (6.11) up to 2µi(2νi) and
down to µi/2(νi/2), and summing the errors from all the scale variations by quadrature.
As pH

T approaches 0, the error bands get narrower. This is because small pT lies in the
non-perturbative region, and we simply freeze out the scale variations in those regions. That
is, we only estimate the error from our perturbative computations, since we do not have
control of the error of non-perturbative origin. We put more details on how we treat the
scale variations involving non-perturbative regions in appendix D.

To have a better view of the joint (zH , p
H
T ) distributions as displayed in eq. (6.11),

we made a two-dimensional contour plot shown in figure 5, where all the parameters are
the same as those used in figure 4, using the central value of the scales. As shown in the
contour plot, the dominant contributions come from the range roughly zH ∈ [0.8, 0.9] and
pH

T ∈ [0.3, 0.7] GeV. Even though the peak region is close to the nonperturbative domain,
hence we need more sophisticated parameterization and study of the hadronization, we suspect
that the shape of the distribution in figure 5 show some characteristics for a heavy-light
hadron with a b quark. Note that in figure 5, some negative values appear near the right
edge of the plot, which needs more clarified studies on hadronization effects because they
too close to the non-perturbative region. For instance, z = 0.95 means that the residual
scale for a B meson (1 − z)mB is around 0.25GeV.
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Figure 5. Two dimensional contour plot of (z, pT ) distribution for a b-flavored heavy-light hadron in
a hemisphere jet in e+e− collisions, according to the cross section eq. (6.11) for numerical evaluations.

7 Conclusions

In this paper, we study the heavy quark (HQ) mass effects to the transverse momentum
dependent fragmentation function (TMDFF) using SCET. We start by calculating the
one-loop contribution to the TMDFF that is initiated by a heavy quark. The resulting
function is IR finite. While the IR dependence of the HQ TMDFF is different than the light
quark case, the UV divergence comes from the virtual contribution, and thus is the same as
found in the light TMDFF. The rapidity divergence comes from the zero-bin subtraction,
and thus is also the same as the light TMDFF.

Given the possible hierarchy of scales between q⊥ and m, where q⊥ is the transverse
momentum of the initiating parton with respect to hadron and m is the heavy quark mass,
we investigate the HQ TMDFF in the limit q⊥ ≪ m. This is done by matching onto boosted
heavy quark effective theory. This allows us to factorize the HQ TMDFF further into a shape
function and a matching coefficient, which is done at one-loop order. We next study the
opposite limit, q⊥ ≫ m. In this case, we integrate out the fluctuations of q⊥ and match onto
the standard heavy quark fragmentation function. This is again done at one-loop. Finally,
since the nonperturbative effects are always important when describing the hadronization of
the final state hadron, we also include the nonperturbative fragmentation function, using
a model previously introduced in the literature.
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Using the above results, we study two different applications. First we study the heavy
quark TMD jet fragmentation function (JFF), which describes a heavy quark fragmenting to
a jet, where inside the jet is an observed heavy hadron. By studying this process, we may gain
useful information of the hadronization of the heavy quark. When q⊥ is much smaller than the
jet scale, we can further factorize the HQ TMD JFF into the standard FF and what we define
as the JFF module, containing the transverse momentum dependence. The JFF module can
be factored into a hard function, a soft function, and the HQ TMDFF. We resum leading
large logarithms (not including nonglobal logarithms) in the JFF module to NNL order.

As a second application, we investigate the heavy hadron TMD distribution with respect
to the thrust axis in e+e− annihilation. The results can be resummed using the HQ TMD
JFF we obtained and numerical results are shown. In order to produce sensible results, we
have a better handle on the nonperturbative region, but a more in depth study is beyond
the scope of this paper.
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A NLO result of the heavy quark TMDFF at parton frame

In the parton frame where the initiating parton is taken to have zero transverse momentum,
the heavy quark TMDFF in D dimension is given by

DH/Q(z,p⊥, µ, ν) =
∑
X

1
2Ncz

Tr⟨0|δ
(
p+
z

− P+

)
δ(D−2)(P⊥)

n/

2Ψ
Q
n |H(p)X⟩⟨H(p)X|Ψ̄Q

n |0⟩.

(A.1)
Here the derivative operator returns the transverse momentum of the initial parton expressed
as P⊥ = p⊥ + p⊥

X = 0. In this case the fragmentation function is the distribution of the
transverse momentum for the observed hadron, p⊥, which, as introduced in eq. (2.2), is
related to the transverse momentum of the initial parton in the hadron frame by q⊥ = −p⊥/z.
So we have the following explicit relation between the fragmentation functions in the parton
and at the hadron frames:6

DH/f (z,p⊥, µ, ν) = DH/f (z,−p⊥/z, µ, ν). (A.2)

This relation holds for any flavor of parton f .
Similar to how we obtained the NLO result of the fragmentation function at hadron

frame, we can compute the NLO correction to the fragmentation function in the parton

6Note that eq. (A.2) is no more than the probability density for finding a hadron with a large momentum
fraction z and a small transverse momentum p⊥ [2].
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frame. The bare one-loop result in momentum space is

D(1)
Q/Q(z,p⊥,µ,ν)=

αsCF

2π2

{
δ(1−z)δ(p2

⊥)
[(2

η
+2ln ν

p+
+3
2

)( 1
ϵUV

+ln µ
2

Λ2

)
+2 (A.3)

−ln(1+λ)− 2√
λ
arctan

√
λ−Li2(−λ)

]
−δ(p2

⊥)
[
Pqq(z)
CF

lnλ

+
(

2z
1−z

(
ln 1+(1−z)2λ

(1−z)2 − 1
1+(1−z)2λ

))
+
+(1−z) ln 1+(1−z)2λ

(1−z)2

]

−
(2
η
+2ln ν

p+
+3
2

)
δ(1−z)

(
1

p2
⊥

)
Λ2

+Pqq(z)
CF

(
1

p2
⊥+(1−z)2m2

)
Λ2

−2z(1−z)
(

m2

(p2
⊥+(1−z)2m2)2

)
Λ2

}
.

Here the rapidity and UV divergences are the same as for the fragmentation function at
hadron frame.

In impact-parameter space, the renormalized one-loop result is

D̃Q/Q(z,b;µ, ν) =
∫
d2p⊥e

ib·p⊥DQ/Q(z,p⊥;µ, ν)

= 1 + αsCF

2π

{
δ(1− z)

[(
2 ln ν

p+
+ 3

2

)
ln b̄2µ2 + 1

2 ln b̄2m2
]

+
( 2z
1− z

)
+

[
2K0((1− z)mb) + 2 ln(1− z)− 1

]
(A.4)

+ 2(1− z)K0((1− z)mb)−
( 4z
1− z

ln(1− z)
)
+

− 2z(1− z)
[
bm

1− z
K1((1− z)mb)− 1

(1− z)2
]}

.

Here b ∼ 1/p⊥. This result in the parton frame can be easily compared with the hadron frame
result, eq. (2.36), where b ∼ 1/q⊥ = z/p⊥. From the result of eq. (2.36) with replacement
b → zb, we immediately obtain the result eq. (A.4).

We can also consider the heavy quark fragmentation in the parton frame in the limit
p⊥ ≪ m. In this case, the same factorization as eq. (3.4) holds and the fragmentation
function is given by

DH/Q(z,p⊥ ≪ m,µ, ν) = CQ(m,µ)SH(z,p⊥, µ, ν). (A.5)

Note that the heavy quark shape function SH is the same as for the hadron frame, with
the one-loop result at the parton level given in eq. (3.23). As explained in section 3, the
fragmentation for the small p⊥ region is actually described by the residual mode in bHQET,
which contributes to only for the large z region. Thus, at leading power of 1−z, the transverse
momenta for the parton and hadron frames can be identified,

|q⊥| =
|p⊥|
z

∼ |p⊥|. (A.6)
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x = k+
p+J

k⊥

l⊥

k⊥ = EJRx

Figure 6. The phase space for real gluon emission for the calculation of the TMD csoft function SR.
The red line denotes the jet boundary, and the blue solid line in the region ‘B’ shows the contribution
to the distribution with a nonzero l⊥ (| ≡ l⊥|).

B One loop calculation of the TMD csoft function

In this section we perform the one-loop calculation the TMD csoft function SR defined in
eq. (5.12), reproduced here for convenience

SR(l⊥;µ, ν) =
1
Nc

Tr ⟨0|Ỹn,csY
†

n,csδ
(2)(l⊥ +Θin · P⊥)Yn,csỸ

†
n,cs|0⟩. (B.1)

As expressed in the argument of the delta function in eq. (B.1), the csoft function returns a
nonzero value of l⊥ only when at least one gluon is radiated inside of the jet, while the delta
function becomes δ(2)(l⊥) for gluons that are all radiated outside of the jet.

In figure 6 we have illustrated the phase space for a real gluon emission for the one
loop calculation. Here the csoft gluon momentum kµ is power counted as shown in eq. (5.2)
and we consider the limit, k⊥ (≡ |k⊥|) ≪ EJR. Hence the largest momentum component
k+ should be much smaller than p+J (∼ 2EJ) in the power counting, and the jet boundary
can be approximated to be k⊥ = EJRx, where x = k+/p

+
J . However, when integrating over

k, the limit for k+ can be set to be infinity, r since the momentum p+J is to be considered
infinitely larger than the csoft momentum.

When we consider the real gluon emission inside the jet, the transverse momentum is
l⊥ (≡ |l⊥|), and the amplitude is given by

MR
in(l2⊥) =

αsCF

π2
(µ2eγE )ϵ

Γ(1− ϵ)

(
ν

p+J

)η ( 1
l2⊥

)1+ϵ ∫ ∞

l⊥/EJ R
dxx−1−η , (B.2)

where we employed the rapidity regulator in order to handle the divergence as x→ ∞. MR
in
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has an IR divergence as l2⊥ → 0, hence in order to regulate we use the Λ2-distribution,

MR
in(l2⊥) =

[∫ Λ2

0
dk2

⊥M
R
in(k2

⊥)
]
δ(l2⊥) +

[
MR

in(l2⊥)
]
Λ2
. (B.3)

The integration region of the first term with the delta function covers the region ‘B’ in
the phase space shown in figure 6.

The out-jet region for real emission, where the amplitude is proportional to δ(l2⊥),
coincides with the region ‘A’ in figure 6. Therefore, if we combine the virtual contribution
and the contributions from the integration of the regions ‘A’ and ‘B’, the net contribution
becomes the result of the integration of the region ‘C’ with an overall negative sign since
the virtual contribution covers the full phase space of figure 6 with the opposite sign. Thus,
the net contribution proportional to δ(l2⊥) is

Mδ = −αsCF

π2
(µ2eγE )ϵ

Γ(1− ϵ)

(
ν

p+J

)η ∫ ∞

Λ/EJ R
dxx−1+η

∫ x2E2
J R2

Λ2
dk2

⊥(k2
⊥)−1−ϵ

= αsCF

2π2

[
1
ϵ2

+ 1
ϵ
ln µ

2

Λ2 + 1
2 ln2 µ

2

Λ2 − π2

12 − 2
(
1
ϵ
+ ln µ

2

Λ2

)(1
η
+ ln νR2Λ

)]
, (B.4)

where the 1/ϵ poles are due to the UV divergences.
The remaining contribution for the one-loop calculation of SR is the second term in

eq. (B.3), i.e., the Λ2 distribution of MR
in with nonzero l2⊥, for which the integration region

is denoted as the blue solid line in region ‘B’ of figure 6. Since l2⊥ ̸= 0, MR
in is free from

the IR divergence and is computed as

MR
in(l2⊥ ̸= 0) = αsCF

π2

(
ν

p+J

)η 1
l2⊥

∫ ∞

l⊥/EJ R
dxx−1+η

= αsCF

π2
1
l2⊥

(
1
η
+ 1

2 ln ν
2R2

4l2⊥

)
. (B.5)

Combining the results of eqs. (B.4) and (B.5), we obtain the one-loop result of the
csoft function SR as

S
(1)
R (l⊥,µ,ν)=

αsCF

2π2

{
δ(l2⊥)

[
1
ϵ2

+1
ϵ
ln µ

2

Λ2+
1
2 ln

2 µ
2

Λ2−
π2

12−2
(
1
ϵ
+ln µ

2

Λ2

)(1
η
+ln νR2Λ

)]

+
[
1
l2⊥

(
2
η
+ln ν

2R2

4l2⊥

)]
Λ2

}
. (B.6)

The renomalized result and the result in b-space are presented in eqs. (5.14) and (5.15),
respectively. Furthermore, as discussed in section 6, we can obtain the one-loop result of
the TMD soft function with thrust axis by setting R → 2.

C Implication of nonperturbative contributions for q⊥ ∼ ΛQCD

When q⊥ ∼ ΛQCD, the transverse momentum distribution becomes entirely nonperturbative.
Since the heavy quark mass is taken to be much larger than q⊥, we can integrate out the
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degrees of freedom of the scale p2 ∼ m2 and obtain the heavy quark function CQ(m,µ)
before we consider the nonperturbative TMD function. Therefore the heavy quark TMD
FF for q⊥ ∼ ΛQCD can be written as

DH/Q(z,q⊥ ∼ ΛQCD;µ, ν) = CQ(m,µ)SH/Q(z,q⊥ ∼ ΛQCD, µ, ν), (C.1)

where SH/Q has been introduced in eq. (3.6) and in this case is totally nonperturbative.
The rapidity scale dependence in SH/Q complicates any nonperturbative parameterization

and its modeling. However, when we consider the whole scattering process, there will be
another nonperturbative TMD soft function also with rapidity scale dependence. When
combined with SH/Q, as seen in eq. (5.20), the rapidity scale dependence can be removed.
Therefore, for example, when we consider the nonperturbative TMD distribution of the
HQTMD JFF studied in section 5, it is useful to introduce a new function combining with
SR in eq. (5.12):

S̃R
H/Q(z,b;µ) = S̃R(b;µ, ν)S̃H/Q(z,b;m,µ, ν). (C.2)

Although S̃R
H/Q is not dependent of the rapidity scale, it involves a large logarithm that

comes from the rapidity gap between S̃R and S̃H/Q,

ln νcs

νr
≈ ln 2q⊥/R

2EJq⊥/m
= ln m

EJR
, (C.3)

where νs and νr are the characteristic rapidity scales of S̃R and S̃H/Q, respectively, shown in
eq. (5.39). In the perturbative limit, resumming the large rapidity logarithms gives

S̃R
H/Q(z,b;µ) =

(
νcs

νr

)2aΓ(µ,1/b̄)
S̃R(b;µ, νs)S̃H/Q(z,b;m,µ, νr). (C.4)

The µ-evolution result for the combined function, S̃R
H/Q, is given by

S̃R
H/Q(z,b;µ) = UR

S (µ, µ0)S̃R
H/Q(z,b;µ0), (C.5)

where the evolution kernel at NLL is

lnUR
S (µ, µ0) = ln m2

E2
JR

2aΓ(µ, µ0)−
2CF

β0
ln αs(µ)
αs(µ0)

. (C.6)

Here, in order to guarantee a perturbative expansion, the lower scale µ0 must be chosen
as some scale above ΛQCD, e.g., µ0 ∼ 1 GeV. Then we can parameterize S̃R

H/Q(z,b;µ0) as
a genuine nonperturbative function.

When we consider heavy hadron fragmentation with respect to the thrust axis, studied
in section 6, following discussions in refs. [12, 20, 25], the nonpertubative TMD function
can be defined as

S̃rt
H/Q(z,b, µ) = S̃rt(b, µ, ν)S̃H/Q(z,b, µ, ν). (C.7)

Here the large rapidity logarithms are induced from the large gap between the characteristic
scales νr and νs, given by

ln νs

νr
≈ ln q⊥

Qq⊥/m
= ln m

Q
. (C.8)
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Figure 7. scale variations for characteristic scales involving 1/b̄. bmax = 2 in the plot (and also in
figure 4). The read line denotes the number 1/(bmax exp(γE/2)), and it is the non-perturbative scale
which 1/b̄ is frozen into (for bmax = 2, it is approximately equal to 0.56GeV).

Similar to eq. (C.4), the logarithms can be resummed as

S̃rt
H/Q(z,b, µ) =

(
νcs

νr

)2aΓ(µ,1/b̄)
S̃rt(b, µ, νs)S̃H/Q(z,b, µ, νr). (C.9)

Finally, the µ-evolution kernel between µ and µ0 (µ ≫ µ0) to NLL is given by

lnU rt
S (µ, µ0) = ln m

2

Q2 aΓ(µ, µ0)−
2CF

β0
ln αs(µ)
αs(µ0)

. (C.10)

D Scale variations for scales involving 1/b̄

For each characteristic scale involving 1/b̄, e.g. µc or µcs in eq. (5.34), we vary it according
to what shows in figure 7 where we do what follows. First, 1/b̄ in the scale is replace with
1/(b∗ exp(γE/2)), where b∗ is given in eq. (6.12) and γE the Euler-Mascheroni constant. We
then introduce a simple scaling function

s(b) =

2− b
bmax

if b < bmax,

1 if b ≥ bmax
(D.1)

where bmax is the same as that appearing in defining b∗. Finally, the scale variation is
carried out in the interval( 1

s(b)b∗ exp(γE/2)
,

s(b)
b∗ exp(γE/2)

)
. (D.2)
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