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ABSTRACT 
The performance of conventional image processing 

techniques is highly dependent on many parameters like image 

quality, light source, background surface texture, optimal 

threshold value and particle morphology. However, during 

intermediate stages of manufacturing processes (such as 

continuous deposition, coating, mixing, and transfer), complex 

backgrounds can arise from heterogeneous particle-substrate 

(HPS) systems. In such HPS environments, particles become 

integrated with substrates or suspended in liquid carriers or 

etching media, making them challenging to identify using 

traditional particle analysis tools and techniques. In response to 

this challenge, a deep learning object detection algorithm 

(YOLO) has been put into practical use. Initially, an HPS 

(heterogeneous particle-substrate) system was created using a 

wet-deposition particle transfer process that involved the 

immersion of poly-disperse particles on to a cylindrical 

substrate. By manipulating the capillary number in the wet-

deposition process, four distinct HPS morphologies were 

captured, each characterized by variations in image 

heterogeneity. These morphologies were subsequently subjected 

to detailed analysis with neural network-based AI algorithm. The 

proposed artificial intelligence tool has demonstrated an 

impressive ability to identify and analyze poly-dispersed 

particles within HPS morphologies, achieving an accuracy rate 

of over 97%. We can evaluate the quality of sorting by 

calculating the particle size distribution using the proposed 

method and find the ideal process parameters for the particle 

transfer process. The results of this study, outlined in this paper, 

underscore the potential of deep learning as a particle analysis 

tool for in-situ applications, even in environments with 

heterogeneous backgrounds. This developed tool holds promise 

for various manufacturing processes, including semiconductor 

industries, high-density powder-based 3D printing, powder 

metallurgy, refractory coatings in harsh environments, and 

particle sorting, among others. 

Keywords: Heterogeneous image, Particle metrology, 

Image Processing, YOLO.  

1. INTRODUCTION 
Powder particles or granular materials are important forms of 

material which are direct or indirect input in manufacturing 

processes including semiconductor manufacturing , additive 

manufacturing [1] and powder metallurgy [2]), transforming 

surface  (i.e., rust protection [3-5], controlling roughness and 

conductivity [6], meta surface [7, 8], self-cleaning hydrophilic 

[9] [10]), enhancing properties  (i.e., viscosity modifier [11]). As 

a result, their size and distribution analysis has become a crucial 

aspects of metrology research. The image analysis tools drive 

researchers to extract information from the microscopic and 

spectroscopic images of virgin powder. These tools are often user 

specific that involve semantic knowledge and produce 

qualitative results. A widely used, conventional image 

processing tool, applied for general purpose is ImageJ developed 

by National Institute of Health (NIH) [12]. Kumara et al. 

performed image analysis of gravels (2-19 mm) through ImageJ 

software [13]. They captured the 2D images of gravels in a 

transparent sheet as background using digital single-lens reflex 

(DSLR) camera. Berardi et al. studied the size expansion of 

tablets during disintegration for pharmaceutical applications 

[14]. They also captured images of tablets with DSLR camera 

and performed image analysis through ImageJ to determine 

projected area and aspect ratio. Lee et al. [15] analyzed the 

confocal laser scanning microscopy (CLSM) images of pellet 

coating using ImageJ and calculated the coating thickness from 

the irregular shape measurement of pellets. He et al. [16] studied 

the influence of process parameters including solution 

concentration, collection distance, voltage and collection speed 

on the diameter and orientation of nanofibers made of 

electrospinning process. They investigated the surface 

morphology of nanofibers using SEM images and analyzing it 

through ImageJ. Depending upon the sample and imaging 

conditions, this software sometimes omit particles and 
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incorrectly identify particle boundaries which requires labor 

intensive post-processing.  

Apart from the ImageJ software, some automatic and 

semiautomatic software packages were also used to determine 

particle size distribution. Mondini et al. [17] developed a custom 

software named Pebbles to measure the surface morphology and 

diameter of nanoparticles. Phromsuwan et al. [18] analyzed the 

nanoparticles size distribution in transmission electron 

microscopy (TEM) images using an automated image processing 

technique called Otsu binarization. Laramy et al. [19] also 

developed a particle analysis software with customized 

algorithm and MATLAB image analysis toolbox for detecting 

the structure of nanoparticles from SEM images. With the recent 

development in machine vision and deep learning process, 

researchers have reported automated image processing technique 

to identify the surface morphology and segment regions of 

optical or spectroscopy images. Xu et al. [20] identified 

microstructure properties in SEM images using machine learning 

(ML) techniques. The developed ML algorithms work efficiently 

with extreme choreography, distinguishable background, 

controlled illumination, and high-resolution images. Thus, the 

background substrate that contains the particles are often chosen 

to ensure the contrast which help those algorithms to extract a 

clean particles outline. This is possible when particles are in bulk 

state, meaning particles are analyzed as raw material before their 

applications. However, when particles are at the intermediate 

state of a manufacturing process (work-in-process), the choice 

for background substrate is limited. In such situation, a 

heterogeneous particle-substrate (HPS) system will be created 

rather than just particles. Analyzing particles within a HPS 

system can be challenging due to lack of contrast high image 

noises, low image contrasts, uneven illumination and hazy 

backgrounds as shown in Figure 1. 

In response to this challenge, a deep learning object detection 

algorithm (YOLO) has been put into practical use. Initially, an 

HPS (heterogeneous particle-substrate) system was created 

using a wet-deposition particle transfer process that involved the 

immersion of poly-disperse particles on to a cylindrical 

substrate. By manipulating the capillary number in the wet-

deposition process, four distinct HPS morphologies were 

captured, each characterized by variations in image 

heterogeneity. These morphologies were subsequently subjected 

to detailed analysis. The images were acquired using a VHX 

7000 digital 4K microscope (KEYENCE Corporation Ltd., IL) 

with a magnification of 1000X, covering an area of 300×200 

microns. Randomly selected images were designated for both 

training and testing purposes. The deep learning model is then 

validated and applied for particle detection and characterization 

for HPS images with different morphology.

 

FIGURE 1: CONVENTIONAL IMAGE PROCESSING ALGORITHMS APPLIED TO A HETEROGENEOUS IMAGE TAKEN BY 

VHX 7000 DIGITAL 4K MICROSCOPE AFTER DIP COATING PROCESS. (a) SHOWS THE PARTICLE-SUBSTRATE SYSTEM 

WITH 80X ZOOM (b) WITH 1000X ZOOM, TWO INSETS SHOW TWO DIFFERENT REGIONS OF THE SAME IMAGE. (c) 

SHOWS THE EFFECT OF TRADITIONAL IMAGE PROCESSING METHODS APPLIED TO THE TWO INSET IMAGES, WHICH 

GENERATES COMPLETELY DIFFERENT OUTCOMES FOR SAME INPUT.

 

2. MATERIALS AND METHODS 
2.1 Heterogeneous Particle-Substrate (HPS) Image 
Generation 

We utilized an in-house wet deposition system to produce 

heterogeneous Particle-Substrate (HPS) system as shown in 

Figure 2. Initially, we formulated a polymer solution using 

Polymethyl Methacrylate (PMMA) and the solvent 1,3 

Dioxolane, both sourced from Sigma Aldrich. For this purpose, 

we utilized nickel-based spherical poly-disperse micro-particles 

(Nicrobraz LM; Wall Colomonoy Company, Ohio, Average 

Diameter 7.56 µm) and cylindrical AISI 1006 mild steel 

(diameter 1.06 mm; ZD Wire Products, Norridgewock, ME) as 

the substrate material. The metal rod used for the substrate was 

manufactured through deep drawing, resulting in a surface 

morphology that is notably rough and irregular. This inherent 

surface characteristic further contributes to the overall 

heterogeneity of the captured images. 

After stirring for 8 hours, a clear and uniform liquid carrier 

solution (LCS) is obtained. We then introduced particles into the 
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LCS to formulate the dipping mixture, ensuring the ratio of the 

polymer solvent to particles maintains the mixture within the 

Newtonian regime. We chose cylindrical rods as substrates, and 

these are dipped through the mixture for particle entrainment, as 

illustrated in Figure 2. To prevent particle sedimentation during 

the dipping process, we agitate the mixture to disperse the 

particles uniformly, forming a 'pseudo-suspension'. 

 

FIGURE 2. SCHEMATIC OF THE WET DEPOSITION 

SYSTEM. 

 

The rods are dipped into the ‘pseudo suspension' at a certain 

speed at room temperature and atmospheric pressure. A 

dimensionless capillary number represents the dipping 

characteristics and resultant particle transfer, which has been 

discussed in our earlier work [21]. The capillary number of the 

process depends upon the binder morphology and concentration, 

particle morphology, solid loading and other dipping parameters. 

The balance between the viscous drag, and the capillary action 

during withdrawal facilitate the particle entertainment on the rod 

substrate. The entrained particles will adhere on the substrate 

with the dry binder as the solvent evaporates quickly. The 

particle transfer process is often defined with a dimensionless 

capillary number. The details of material properties and dipping 

procedure is discussed in our previous article [22]. The images 

are taken using VHX 7000 digital 4K microscope (KEYENCE 

Corporation Ltd., IL) with 1000X magnification (area 300×200 

micron) and coaxial full ring lighting. 

 

2.2 Application of AI technique  
The YOLO (You only look once) is a popular and widely 

used neural network-based AI algorithm for multiple object 

detection from an image. It is quick and can successfully detect 

object from noisy image. Thus, YOLO algorithm is selected in 

this study for identifying particles. For completeness, we 

describe the YOLO algorithm in brief here. Details on YOLO 

algorithm can be found in the literature [23-26]. YOLO is 

constructed with single neural network, which can predict the 

class probabilities and bounding boxes after an image is passed 

through and resized with grid. These grid cells are responsible 

for finding the position of the objects. Each grid cell containing 

the center of the object is accountable for the detection with 

bounding box. Each predicted bounding box has five parameters: 

confidence score, coordinate of the center of the bounding box 

(x,y), and the width and the height of the bounding box (w, h). A 

bigger bounding box is created with the overlapped bounding 

boxes which has higher confidence score than the threshold and 

an Intersection Over Union (IOU) is generated. Other overlapped 

bounding boxes are removed by Non-Maximum Suppression 

[23]. 

 

Data Set: Five images are selected and cut into 416×416-pixel 

size creating a total of 258 images are generated. A total 222 

images are used as the training set and are annotated and 

augmented using a web-based annotation software ‘roboflow’ 

[27]. 24 images are used for validation and 12 images are utilized 

for testing purpose. The images are then exported through 

roboflow to be trainable in YOLOv5 as a custom dataset. We 

have used google colab for training the model which has two 

processor cores of 2250 MHz, 12.68 GB of RAM and 1.8 GB of 

GPU. 

 

3. RESULTS AND DISCUSSION 
When the substrate is dipped inside the heterogeneous mixture, 

a thin polymer layer is adsorbed at the solid-liquid interface. The 

thickness of this thin polymeric layer depends upon the polymer 

content, type, and dipping speed, which is often defined by a 

dimensionless capillary number. During the retraction of the 

substrate, the mixture velocity is directed downward, and the 

intermolecular forces between mixture and substrate surface help 

the particles adhere to the substrate. Increased polymer layer 

thickness facilitates larger particle adhesion while increasing 

particle volume fraction increase the surface coverage by the 

particles [21, 22, 28]. As the substrate in our experiment remains 

the same, the heterogeneity will depend upon the number of 

adhered particles and their distribution. Based on the various 

process parameters (e.g., volume fraction of polymer and 

particles, dipping speed etc.), the heterogeneous particle-

substrate (HPS) image morphology can be classified into four 

distinct categories: (a) Monodisperse- clustered, (b) 

Monodisperse- Non-clustered, (c) Polydisperse- clustered and 

(d) Polydisperse- non-clustered, as shown in Figure 3.
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FIGURE 3: FOUR TYPES OF PARTICLE DISTRIBUTION: (a) MONODISPERSE NON-CLUSTERED, (b) MONODISPERSE 

CLUSTERED, (c) POLYDISPERSE NON-CLUSTERED, (d) POLYDISPERSE CLUSTERED.

To compute the performance of our proposed automated 

particle analysis tool, all four HPS categories are considered for 

training, testing and validation purpose. The hyper parameters 

such as model depth multiple and layer channel multiple are used 

as 0.33 and 0.50 following some trial-and-error experiment. 

Also, 100 epochs are used to train the model which seems to 

converge fairly quickly with our datasets. It took less than 6 

minutes to train the model and detection of a single image takes 

about 10 secs. Once the model is trained, tested, and validated 

with the 258 datasets, the model is used to further implement 

with completely new sets of images which were never seen 

before by the algorithm.  

During the implementation stage, four categories of images (as 

discussed in Figure 3) are collected from our experiment 

discussed earlier. Using the trained model, the particle number is 

analyzed (over or under-counting) for all four categories and the 

results are compared with respect to the ground truth shown in 

Table 1. The ground truth is determined by a domain expert 

counting individual particle manually. Table 2 shows the total 

number of actual particles that are present in the respective image 

counted manually and compared with the total number of 

particles counted by our trained tool. In most circumstances, the 

automated computational tool identified a little-bit more 

particles (>12%) than the actual count of particles (over-

counting). This is because of the heterogeneity on the image 

discussed earlier and the trained model considers any small 

dots/noise in the image as a particle. In some instances, the 

model predicted more particles than actually exist, by taking 

multiple particles as one and creating a bounding box around 

them (Figure 4). (Each rectangle is representative of detected 

bounding box for each particle. In Figure 4(b) and 4(c) a 

rectangle is generated for two particles combined where each 

particle already has a bounding box. In Figure 4(d) one particle 

is covered by a small and a big bounding box.)  Additionally, we 

also cross-checked the number of particles that the model is 

unable to identify as presented in the Table 1 (under-counting). 

It can be observed that the trained model is able to detect most 

particles (accuracy >97%) in such heterogeneous background. 

This performance off course justifies using automated 

computational tool based on deep learning approach to analyze 

particles in a more realistic and in-situ environment. 
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FIGURE 4: (a) PARTICLE RECOGNITION BY THE PROPOSED MODEL, INSETS (b), (c), (d) SHOW THE EXAMPLE OF 

OVERCOUNTING. 

Table 1: Comparison between proposed method and ground truth (hand counted) in particle counting operation. 

Image Type 
Sample 

Name 

Particle 

count 

(YOLOv5) 

Actual 

particle 

count (hand-

counted) 

Particles 

could not be 

identified 

Accuracy (%) 

Non-

particle 

counted as 

particle 

Percentage of 

particles 

overcounted 

(%) 

Monodisperse layer 

cluster 

Sample 1 1663 1597 6 99.62 72 4.85 

Sample 2 553 526 4 99.24 31 

Monodisperse Non-

Cluster 

Sample 3 161 148 1 99.32 14 12.01 

Sample 4 461 411 3 99.27 53 

Polydisperse layer 

cluster 

Sample 5 216 192 2 98.96 26 11.70 

Sample 6 183 168 1 99.40 16 

Polydisperse layer 

non-cluster 

Sample 7 130 124 1 99.19 7 9.69 

Sample 8 86 76 2 97.37 12 

Particle covering the substrate is often an important 

measuring matrix, which is also measured and compared using 

our trained model. The area coverage is calculated using the 

following equation: 

𝐴𝑟𝑒𝑎 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 =  ∑
𝜋

4

𝑁
𝑖=1 (

𝑤𝑖+ℎ𝑖

2
)2                                            (1) 

Here, w and h are the width and height of the bounding box 

defined in YOLO respectively.  These values are directly 

obtained by applying the particle recognition model to the 

images.  Since the particle are spherical, the average of the width 

and height is assumed to be the diameter of the particle. To 

determine the accuracy of this process, we have taken four 

smaller pictures cropped from the bigger picture of the size 

416×416 pixels and applied the model on them. The evaluated 

surface coverage from the model is then compared to the ground 

truth, which is manually measured by a domain expert with the 

help of a free-form computer-aided-design (CAD) tool, 

Rhinoceros (Rhino LLC, USA). The non-deformed images are 

important in the CAD API and the diameter, and the outer 

perimeter of the particles or particle groups are traced using 
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Spline contour. Figure 5(a-c) shows the process of calculating 

the diameter and outer perimeter of the particles using Rhino as 

ground truth. Figure 5(d) shows the identified particles with our 

trained model. The percentage of surface converges found from 

our trained model and manual method are presented in the Table 

2. The manual method is considered as the ground truth and the 

accuracy is calculated accordingly. We have found a reasonable 

accuracy of the surface coverage calculation ranges from 80.61% 

to 95.90%.

Table 2: Comparison of proposed method and ground truth (hand counted) in surface area coverage calculation. 

Sample number Surface Coverage (%) by 

proposed Method 

Surface Coverage (%) by 

Ground Truth 

Accuracy (%) 

1 8.24 9.41 87.61 

2 8.76 7.34 80.61 

3 20.77 21.65 95.90 

4 31.21 26.58 82.59 

 

 

FIGURE 5: (a) INPUT IMAGE WITH SIZE 416X416, (b) MANUALLY CALCULATING THE DIAMETER, (c) MANUALLY 

CALCULATING THE AREA COVERAGE WITH RHINO, (d) PARTICLE DETECTION USING PROPOSED METHOD.

Inaccuracies in surface covering measurement may have 

occurred due to the assumption that all particles are perfectly 

circular. However, oblate and prolate particles are not 

uncommon. For a cluster of particles, the geometry of the 

enclosing bounding box can slightly change due to the position 

of the neighboring particles. This changes the shape of the 

bounding box from square to rectangular and as a result 

introduces variation in the surface coverage calculation. The 

accuracy of the surface coverage can be further improved if the 

perimeter of the particle can be identified efficiently with other 

machine learning techniques i.e., semantic segmentation [29, 30] 

which has not been considered in this paper.
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FIGURE 6: PARTICLE SIZE DISTRIBUTION OF (a) BULK PARTICLES, AND COMPARED WITH   (b) MONODISPERSE- 

CLUSTERED, (c) MONODISPERSE  NON-CLUSTERED, (d) POLYDISPERSE  CLUSTERED, (e) POLYDISPERSE  NON-

CLUSTERED MEASURED WITH THE PROPOSED METHOD.

The image of the bulk particles are captured using SEM after 

sieving using the Gilson Performer III shaker through Stainless 

Steel 635 Mesh (20μm) in our lab. The size distribution of bulk 

particles is shown in Figure 6(a). The size distribution of coated 

rod after dip-coating with particle is analyzed using the proposed 

method as an automatic tool. It can be clearly observed that our 

algorithm generated distribution matches the anticipated 

distribution. For example, the size distribution of two mono-

disperse samples (Figure 6 (b), and 6(c)) have narrower 

distribution than the poly-disperse samples. The poly-dispersed 

non-clustered sample (Figure 6 (d)) closely matches the bulk 

distribution with wider size distribution range as expected. 

4. CONCLUSION 
In this paper we have presented a way of particle size analysis 

using a deep learning object detection algorithm for 

heterogeneous particle-substrate (HPS) system. The proposed 

method detects and counts particles with a very high accuracy 

even with complex background with different morphology. We 

can evaluate the quality of sorting by calculating the particle size 

distribution using the proposed method and find the ideal process 

parameters for the particle transfer process. The proposed 

method can be adapted for in-situ measurement of particle size, 

distribution, and coverage. This in-situ process can be applied to 

correct the process parameters as this process shows the coated 

particle distribution immediately after the particle transfer 

process. Additionally, this algorithm has the potential to reverse 

engineer the characteristics of the liquid carrier system, which 

can be beneficial for industrial applications including diagnosis 

of blood, wastewater treatment etc. 
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