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ABSTRACT

The performance of conventional image processing
techniques is highly dependent on many parameters like image
quality, light source, background surface texture, optimal
threshold value and particle morphology. However, during
intermediate stages of manufacturing processes (such as
continuous deposition, coating, mixing, and transfer), complex
backgrounds can arise from heterogeneous particle-substrate
(HPS) systems. In such HPS environments, particles become
integrated with substrates or suspended in liquid carriers or
etching media, making them challenging to identify using
traditional particle analysis tools and techniques. In response to
this challenge, a deep learning object detection algorithm
(YOLO) has been put into practical use. Initially, an HPS
(heterogeneous particle-substrate) system was created using a
wet-deposition particle transfer process that involved the
immersion of poly-disperse particles on to a cylindrical
substrate. By manipulating the capillary number in the wet-
deposition process, four distinct HPS morphologies were
captured, each characterized by variations in image
heterogeneity. These morphologies were subsequently subjected
to detailed analysis with neural network-based Al algorithm. The
proposed artificial intelligence tool has demonstrated an
impressive ability to identify and analyze poly-dispersed
particles within HPS morphologies, achieving an accuracy rate
of over 97%. We can evaluate the quality of sorting by
calculating the particle size distribution using the proposed
method and find the ideal process parameters for the particle
transfer process. The results of this study, outlined in this paper,
underscore the potential of deep learning as a particle analysis
tool for in-situ applications, even in environments with
heterogeneous backgrounds. This developed tool holds promise
for various manufacturing processes, including semiconductor
industries, high-density powder-based 3D printing, powder
metallurgy, refractory coatings in harsh environments, and
particle sorting, among others.
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1. INTRODUCTION

Powder particles or granular materials are important forms of
material which are direct or indirect input in manufacturing
processes including semiconductor manufacturing , additive
manufacturing [1] and powder metallurgy [2]), transforming
surface (i.e., rust protection [3-5], controlling roughness and
conductivity [6], meta surface [7, 8], self-cleaning hydrophilic
[9][10]), enhancing properties (i.e., viscosity modifier [11]). As
a result, their size and distribution analysis has become a crucial
aspects of metrology research. The image analysis tools drive
researchers to extract information from the microscopic and
spectroscopic images of virgin powder. These tools are often user
specific that involve semantic knowledge and produce
qualitative results. A widely used, conventional image
processing tool, applied for general purpose is ImageJ developed
by National Institute of Health (NIH) [12]. Kumara et al.
performed image analysis of gravels (2-19 mm) through ImageJ
software [13]. They captured the 2D images of gravels in a
transparent sheet as background using digital single-lens reflex
(DSLR) camera. Berardi et al. studied the size expansion of
tablets during disintegration for pharmaceutical applications
[14]. They also captured images of tablets with DSLR camera
and performed image analysis through Image] to determine
projected area and aspect ratio. Lee et al. [15] analyzed the
confocal laser scanning microscopy (CLSM) images of pellet
coating using ImagelJ and calculated the coating thickness from
the irregular shape measurement of pellets. He et al. [16] studied
the influence of process parameters including solution
concentration, collection distance, voltage and collection speed
on the diameter and orientation of nanofibers made of
electrospinning process. They investigated the surface
morphology of nanofibers using SEM images and analyzing it
through Imagel]. Depending upon the sample and imaging
conditions, this software sometimes omit particles and
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incorrectly identify particle boundaries which requires labor
intensive post-processing.

Apart from the Image] software, some automatic and
semiautomatic software packages were also used to determine
particle size distribution. Mondini et al. [17] developed a custom
software named Pebbles to measure the surface morphology and
diameter of nanoparticles. Phromsuwan et al. [18] analyzed the
nanoparticles size distribution in transmission electron
microscopy (TEM) images using an automated image processing
technique called Otsu binarization. Laramy et al. [19] also
developed a particle analysis software with customized
algorithm and MATLAB image analysis toolbox for detecting
the structure of nanoparticles from SEM images. With the recent
development in machine vision and deep learning process,
researchers have reported automated image processing technique
to identify the surface morphology and segment regions of
optical or spectroscopy images. Xu et al. [20] identified
microstructure properties in SEM images using machine learning
(ML) techniques. The developed ML algorithms work efficiently
with extreme choreography, distinguishable background,
controlled illumination, and high-resolution images. Thus, the
background substrate that contains the particles are often chosen
to ensure the contrast which help those algorithms to extract a
clean particles outline. This is possible when particles are in bulk
state, meaning particles are analyzed as raw material before their
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applications. However, when particles are at the intermediate
state of a manufacturing process (work-in-process), the choice
for background substrate is limited. In such situation, a
heterogeneous particle-substrate (HPS) system will be created
rather than just particles. Analyzing particles within a HPS
system can be challenging due to lack of contrast high image
noises, low image contrasts, uneven illumination and hazy
backgrounds as shown in Figure 1.

In response to this challenge, a deep learning object detection
algorithm (YOLO) has been put into practical use. Initially, an
HPS (heterogeneous particle-substrate) system was created
using a wet-deposition particle transfer process that involved the
immersion of poly-disperse particles on to a cylindrical
substrate. By manipulating the capillary number in the wet-
deposition process, four distinct HPS morphologies were
captured, each characterized by variations in image
heterogeneity. These morphologies were subsequently subjected
to detailed analysis. The images were acquired using a VHX
7000 digital 4K microscope (KEYENCE Corporation Ltd., IL)
with a magnification of 1000X, covering an area of 300x200
microns. Randomly selected images were designated for both
training and testing purposes. The deep learning model is then
validated and applied for particle detection and characterization
for HPS images with different morphology.

Before applying traditional image
Processing:

After applying traditional image
Processing:

(€) Inset 1

Inset 2

FIGURE 1: CONVENTIONAL IMAGE PROCESSING ALGORITHMS APPLIED TO A HETEROGENEOUS IMAGE TAKEN BY
VHX 7000 DIGITAL 4K MICROSCOPE AFTER DIP COATING PROCESS. (a) SHOWS THE PARTICLE-SUBSTRATE SYSTEM
WITH 80X ZOOM (b) WITH 1000X ZOOM, TWO INSETS SHOW TWO DIFFERENT REGIONS OF THE SAME IMAGE. (c)
SHOWS THE EFFECT OF TRADITIONAL IMAGE PROCESSING METHODS APPLIED TO THE TWO INSET IMAGES, WHICH
GENERATES COMPLETELY DIFFERENT OUTCOMES FOR SAME INPUT.

2. MATERIALS AND METHODS
2.1 Heterogeneous Particle-Substrate (HPS) Image
Generation

We utilized an in-house wet deposition system to produce
heterogeneous Particle-Substrate (HPS) system as shown in
Figure 2. Initially, we formulated a polymer solution using
Polymethyl Methacrylate (PMMA) and the solvent 1,3
Dioxolane, both sourced from Sigma Aldrich. For this purpose,
we utilized nickel-based spherical poly-disperse micro-particles

(Nicrobraz LM; Wall Colomonoy Company, Ohio, Average
Diameter 7.56 pm) and cylindrical AISI 1006 mild steel
(diameter 1.06 mm; ZD Wire Products, Norridgewock, ME) as
the substrate material. The metal rod used for the substrate was
manufactured through deep drawing, resulting in a surface
morphology that is notably rough and irregular. This inherent
surface characteristic further contributes to the overall
heterogeneity of the captured images.

After stirring for 8 hours, a clear and uniform liquid carrier
solution (LCS) is obtained. We then introduced particles into the
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LCS to formulate the dipping mixture, ensuring the ratio of the
polymer solvent to particles maintains the mixture within the
Newtonian regime. We chose cylindrical rods as substrates, and
these are dipped through the mixture for particle entrainment, as
illustrated in Figure 2. To prevent particle sedimentation during
the dipping process, we agitate the mixture to disperse the
particles uniformly, forming a 'pseudo-suspension'.

Stage of dip-coater " P
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FIGURE 2. SCHEMATIC OF THE WET DEPOSITION
SYSTEM.

The rods are dipped into the ‘pseudo suspension' at a certain
speed at room temperature and atmospheric pressure. A
dimensionless capillary number represents the dipping
characteristics and resultant particle transfer, which has been
discussed in our earlier work [21]. The capillary number of the
process depends upon the binder morphology and concentration,
particle morphology, solid loading and other dipping parameters.
The balance between the viscous drag, and the capillary action
during withdrawal facilitate the particle entertainment on the rod
substrate. The entrained particles will adhere on the substrate
with the dry binder as the solvent evaporates quickly. The
particle transfer process is often defined with a dimensionless
capillary number. The details of material properties and dipping
procedure is discussed in our previous article [22]. The images
are taken using VHX 7000 digital 4K microscope (KEYENCE
Corporation Ltd., IL) with 1000X magnification (area 300x200
micron) and coaxial full ring lighting.

2.2 Application of Al technique

The YOLO (You only look once) is a popular and widely
used neural network-based Al algorithm for multiple object
detection from an image. It is quick and can successfully detect
object from noisy image. Thus, YOLO algorithm is selected in
this study for identifying particles. For completeness, we

describe the YOLO algorithm in brief here. Details on YOLO
algorithm can be found in the literature [23-26]. YOLO is
constructed with single neural network, which can predict the
class probabilities and bounding boxes after an image is passed
through and resized with grid. These grid cells are responsible
for finding the position of the objects. Each grid cell containing
the center of the object is accountable for the detection with
bounding box. Each predicted bounding box has five parameters:
confidence score, coordinate of the center of the bounding box
(x,y), and the width and the height of the bounding box (w, h). A
bigger bounding box is created with the overlapped bounding
boxes which has higher confidence score than the threshold and
an Intersection Over Union (IOU) is generated. Other overlapped
bounding boxes are removed by Non-Maximum Suppression
[23].

Data Set: Five images are selected and cut into 416x416-pixel
size creating a total of 258 images are generated. A total 222
images are used as the training set and are annotated and
augmented using a web-based annotation software ‘roboflow’
[27]. 24 images are used for validation and 12 images are utilized
for testing purpose. The images are then exported through
roboflow to be trainable in YOLOVS as a custom dataset. We
have used google colab for training the model which has two
processor cores of 2250 MHz, 12.68 GB of RAM and 1.8 GB of
GPU.

3. RESULTS AND DISCUSSION

When the substrate is dipped inside the heterogeneous mixture,
a thin polymer layer is adsorbed at the solid-liquid interface. The
thickness of this thin polymeric layer depends upon the polymer
content, type, and dipping speed, which is often defined by a
dimensionless capillary number. During the retraction of the
substrate, the mixture velocity is directed downward, and the
intermolecular forces between mixture and substrate surface help
the particles adhere to the substrate. Increased polymer layer
thickness facilitates larger particle adhesion while increasing
particle volume fraction increase the surface coverage by the
particles [21, 22, 28]. As the substrate in our experiment remains
the same, the heterogeneity will depend upon the number of
adhered particles and their distribution. Based on the various
process parameters (e.g., volume fraction of polymer and
particles, dipping speed etc.), the heterogeneous particle-
substrate (HPS) image morphology can be classified into four
distinct categories: (a) Monodisperse- clustered, (b)
Monodisperse- Non-clustered, (¢) Polydisperse- clustered and
(d) Polydisperse- non-clustered, as shown in Figure 3.
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FIGURE 3: FOUR TYPES OF PARTICLE DISTRIBUTION: (a) MONODISPERSE NON-CLUSTERED, (b) MONODISPERSE
CLUSTERED, (c) POLYDISPERSE NON-CLUSTERED, (d) POLYDISPERSE CLUSTERED.

To compute the performance of our proposed automated
particle analysis tool, all four HPS categories are considered for
training, testing and validation purpose. The hyper parameters
such as model depth multiple and layer channel multiple are used
as 0.33 and 0.50 following some trial-and-error experiment.
Also, 100 epochs are used to train the model which seems to
converge fairly quickly with our datasets. It took less than 6
minutes to train the model and detection of a single image takes
about 10 secs. Once the model is trained, tested, and validated
with the 258 datasets, the model is used to further implement
with completely new sets of images which were never seen
before by the algorithm.

During the implementation stage, four categories of images (as
discussed in Figure 3) are collected from our experiment
discussed earlier. Using the trained model, the particle number is
analyzed (over or under-counting) for all four categories and the
results are compared with respect to the ground truth shown in
Table 1. The ground truth is determined by a domain expert
counting individual particle manually. Table 2 shows the total
number of actual particles that are present in the respective image
counted manually and compared with the total number of

particles counted by our trained tool. In most circumstances, the
automated computational tool identified a little-bit more
particles (>12%) than the actual count of particles (over-
counting). This is because of the heterogeneity on the image
discussed earlier and the trained model considers any small
dots/noise in the image as a particle. In some instances, the
model predicted more particles than actually exist, by taking
multiple particles as one and creating a bounding box around
them (Figure 4). (Each rectangle is representative of detected
bounding box for each particle. In Figure 4(b) and 4(c) a
rectangle is generated for two particles combined where each
particle already has a bounding box. In Figure 4(d) one particle
is covered by a small and a big bounding box.) Additionally, we
also cross-checked the number of particles that the model is
unable to identify as presented in the Table 1 (under-counting).
It can be observed that the trained model is able to detect most
particles (accuracy >97%) in such heterogeneous background.
This performance off course justifies using automated
computational tool based on deep learning approach to analyze
particles in a more realistic and in-situ environment.
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FIGURE 4: (a) PARTICLE RECOGNITION BY THE PROPOSED MODEL, INSETS (b), (c), (d) SHOW THE EXAMPLE OF

OVERCOUNTING.
Table 1: Comparison between proposed method and ground truth (hand counted) in particle counting operation.
Particle Actual Particles Non- Percentage of
Sample particle particle particles
Image Type count could not be | Accuracy (%)
Name count (hand- . . counted as overcounted
(YOLOVS) identified . o
counted) particle (%)
Monodisperse layer Sample 1 1663 1597 6 99.62 72 4.85
cluster Sample 2 553 526 4 99.24 31
Monodisperse Non- Sample 3 161 148 1 99.32 14 12.01
Cluster Sample 4 461 411 3 99.27 53
Polydisperse layer Sample 5 216 192 2 98.96 26 11.70
cluster Sample 6 183 168 1 99.40 16
Polydisperse layer Sample 7 130 124 1 99.19 7 9.69
non-cluster Sample 8 86 76 2 97.37 12

Particle covering the substrate is often an important
measuring matrix, which is also measured and compared using
our trained model. The area coverage is calculated using the
following equation:

Area coverage = Z?Ll%(%hi)z M

Here, w and h are the width and height of the bounding box
defined in YOLO respectively. These values are directly
obtained by applying the particle recognition model to the

images. Since the particle are spherical, the average of the width
and height is assumed to be the diameter of the particle. To
determine the accuracy of this process, we have taken four
smaller pictures cropped from the bigger picture of the size
416%416 pixels and applied the model on them. The evaluated
surface coverage from the model is then compared to the ground
truth, which is manually measured by a domain expert with the
help of a free-form computer-aided-design (CAD) tool,
Rhinoceros (Rhino LLC, USA). The non-deformed images are
important in the CAD API and the diameter, and the outer
perimeter of the particles or particle groups are traced using
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Spline contour. Figure 5(a-c) shows the process of calculating
the diameter and outer perimeter of the particles using Rhino as
ground truth. Figure 5(d) shows the identified particles with our
trained model. The percentage of surface converges found from
our trained model and manual method are presented in the Table

2. The manual method is considered as the ground truth and the
accuracy is calculated accordingly. We have found a reasonable
accuracy of the surface coverage calculation ranges from 80.61%
to 95.90%.

Table 2: Comparison of proposed method and ground truth (hand counted) in surface area coverage calculation.

Sample number Surface Coverage (%) by | Surface Coverage (%) by Accuracy (%)
proposed Method Ground Truth
1 8.24 9.41 87.61
2 8.76 7.34 80.61
3 20.77 21.65 95.90
4 31.21 26.58 82.59

FIGURE 5: (a) INPUT IMAGE WITH SIZE 416X416, (b) MANUALLY CALCULATING THE DIAMETER, (¢) MANUALLY
CALCULATING THE AREA COVERAGE WITH RHINO, (d) PARTICLE DETECTION USING PROPOSED METHOD.

Inaccuracies in surface covering measurement may have
occurred due to the assumption that all particles are perfectly
circular. However, oblate and prolate particles are not
uncommon. For a cluster of particles, the geometry of the
enclosing bounding box can slightly change due to the position
of the neighboring particles. This changes the shape of the

bounding box from square to rectangular and as a result
introduces variation in the surface coverage calculation. The
accuracy of the surface coverage can be further improved if the
perimeter of the particle can be identified efficiently with other
machine learning techniques i.e., semantic segmentation [29, 30]
which has not been considered in this paper.
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FIGURE 6: PARTICLE SIZE DISTRIBUTION OF (a) BULK PARTICLES, AND COMPARED WITH (b) MONODISPERSE-
CLUSTERED, (c) MONODISPERSE NON-CLUSTERED, (d) POLYDISPERSE CLUSTERED, (¢) POLYDISPERSE NON-

CLUSTERED MEASURED WITH THE PROPOSED METHOD.

The image of the bulk particles are captured using SEM after
sieving using the Gilson Performer III shaker through Stainless
Steel 635 Mesh (20pm) in our lab. The size distribution of bulk
particles is shown in Figure 6(a). The size distribution of coated
rod after dip-coating with particle is analyzed using the proposed
method as an automatic tool. It can be clearly observed that our
algorithm generated distribution matches the anticipated
distribution. For example, the size distribution of two mono-
disperse samples (Figure 6 (b), and 6(c)) have narrower
distribution than the poly-disperse samples. The poly-dispersed
non-clustered sample (Figure 6 (d)) closely matches the bulk
distribution with wider size distribution range as expected.

4. CONCLUSION

In this paper we have presented a way of particle size analysis
using a deep learning object detection algorithm for
heterogeneous particle-substrate (HPS) system. The proposed
method detects and counts particles with a very high accuracy
even with complex background with different morphology. We
can evaluate the quality of sorting by calculating the particle size
distribution using the proposed method and find the ideal process
parameters for the particle transfer process. The proposed
method can be adapted for in-situ measurement of particle size,
distribution, and coverage. This in-situ process can be applied to
correct the process parameters as this process shows the coated
particle distribution immediately after the particle transfer
process. Additionally, this algorithm has the potential to reverse

engineer the characteristics of the liquid carrier system, which
can be beneficial for industrial applications including diagnosis
of blood, wastewater treatment etc.
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