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ABSTRACT 
 

Current research practice for optimizing bioink involves exhaustive experimentation with multi-

material composition for determining the printability, shape fidelity and biocompatibility. 

Predicting bioink properties can be beneficial to the research community but is a challenging task 

due to the non-Newtonian behavior in complex composition. Existing models such as Cross model 

become inadequate for predicting the viscosity for heterogeneous composition of bioinks. In this 

paper, we utilize a machine learning framework to accurately predict the viscosity of 

heterogeneous bioink compositions, aiming to enhance extrusion-based bioprinting techniques. 

Utilizing Bayesian optimization (BO), our strategy leverages a limited dataset to inform our model. 

This is a technique especially useful of the typically sparse data in this domain. Moreover, we have 

also developed a mask technique that can handle complex constraints, informed by domain 

expertise, to define the feasible parameter space for the components of the bioink and their 

interactions. Our proposed method is focused on predicting the intrinsic factor (e.g., viscosity) of 

the bioink precursor which is tied to the extrinsic property (e.g., cell viability) through the mask 

function. Through the optimization of the hyperparameter, we strike a balance between exploration 

of new possibilities and exploitation of known data, a balance crucial for refining our acquisition 

function. This function then guides the selection of subsequent sampling points within the defined 

viable space and the process continues until convergence is achieved, indicating that the model has 

sufficiently explored the parameter space and identified the optimal or near-optimal solutions. 

Employing this AI-guided BO framework, we have developed, tested, and validated a surrogate 

model for determining the viscosity of heterogeneous bioink compositions. This data-driven 

approach significantly reduces the experimental workload required to identify bioink compositions 

conducive to functional tissue growth. It not only streamlines the process of finding the optimal 

bioink compositions from a vast array of heterogeneous options but also offers a promising avenue 

for accelerating advancements in tissue engineering by minimizing the need for extensive 

experimental trials. 

 

Key words: 3D bioprinting, Bioink, rheology, Bayesian optimization. 

 

1. Introduction 
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The ability to precisely control the deposition of materials through the adjustment of fabrication 

parameters makes bio-fabrication or bioprinting a promising method for regenerative medicine 

research in various areas, including tissue engineering, transplantation, clinical medicine, drug 

development, high-throughput screening, and cancer research [1-6]. As per the ASTM standard 

[7], most prevalent bioprinting techniques are  extrusion-based techniques (e.g., microextrusion, 

direct writing) [8, 9], jetting-based techniques (e.g., inkjet, laser-assisted) [10, 11], and vat 

polymerization stereolithography (SLA) [12]. In these printing methods, cell-laden bioinks are 

spatially deposited and polymerized, contributing to scaffold-based bio-manufacturing. All 

bioprinting processes have three stages: (i) pre-processing (material preparation), (ii) processing 

(via deposition), and (iii) post-processing (providing transient support and facilitating cell-to-

tissue growth) [13]. Depending on the specific bioprinting process and technique employed, living 

cells undergo various challenges and stresses at each stage of bioprinting. For example, high shear 

stress can arise  at the nozzle tip during the extrusion process which can rupture the cell wall [14] 

[15].  Ink-jet bioprinting is limited to low viscosity bioink due to the smaller orifice and the 

dropelets can dry quickly, increasing the cell mortality rates [16]. With increases in the material 

viscosity, cell viability can be negatively affected due to the impact velocity, droplet volume [17]. 

Similarly, the absorbed energy (e.g., laser or heat) can alter the DNA or phenotype of living cells, 

undermining the purpose of bioprinting [18, 19]. The 3D bioprinted constructs may deviate from 

the desired design or shape because of their instability and tendency to collapse when subsequent 

layers are added.  Thus, the choice and content of ink material are critical in bioprinting process 

for creating biological structures including living tissue and organs  [20].  

 

Bioinks and biomaterials are integral to bioprinting, where bioink is defined as the cell laden 

biomaterial [13, 21]. Both bioink and the precursor have spawned their own burgeoning research 

field dedicated to containing, maintaining, protecting, and nurturing the growth of living cells 

across all three stages. However, several challenges must be addressed to fully realize the potential 

of bioprinting. Precision with high resolution and shape fidelity is essential to mimic the shape and 

architecture of a specific tissue or an organ during constructs printing [22]. Supporting and 

protecting cells during and after printing, maintaining structural integrity and physiological 

environment, and promoting cell growth and functional tissue formation at high densities require 

bio-active bioinks that respond to spatial and temporal stimuli. Thus, combining different 
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biomaterials is necessary to achieve multifunctionality including biocompatibility, bio-active 

microenvironment, shape fidelity, and printability for successful tissue engineering applications. 

 

Naturally derived sodium alginate is commonly used as the bioink in extrusion-based 3D 

bioprinting due to its biocompatibility and shear-thinning behavior, which is suitable for 

printability [23]. However, increasing the weight percentages and molecular weights of this 

material to enhance viscosity can lead to nozzle clogging, distorted prints, and reduced cell 

viability [3]. Achieving well-defined 3D shapes and maintaining dimensional accuracy after 

printing is challenging due to the low modulus of sodium alginate. The printed filament must have 

enough mechanical strength to support subsequent layers [1]. Creating large-scale constructs 

requires confirming shape accuracy, which involves minimizing dispersion and filament sagging 

after printing [2]. 

 

To address these challenges, researchers have explored combining sodium alginate with other 

materials to enhance its physical and mechanical properties. For example, carboxymethyl cellulose 

(CMC), a water-soluble polysaccharide and cellulose derivative, is used to adjust viscosity. CMC 

has a high molecular weight and can promote cell adhesion and movement through its interaction 

with matrix proteins [24]. Therefore, combining CMC with alginate enhances the hydrogel’s 

properties for bioprinting application [25]. Further improvements in mechanical properties and cell 

adhesion have been investigated using nano-scale reinforcements like polylactic acid (PLA) 

nanofibers and nano-fibrillated cellulose (NFC) [24-27]. However, acidic degradation of PLA can 

reduce biocompatibility, and NFC coagulation can cause nozzle clogging. To address these issues, 

NFC-based gels are often functionalized through oxidation using 2,2,6,6-tetramethyl-1-

piperidinyloxy (TEMPO) to add negatively charged carboxylate ions, known as TO-NFC [28]. 

 

Recent research has highlighted the use of composite or hybrid hydrogels as novel bioinks and 

precursors, leveraging their combined benefits to enhance both biological and mechanical 

functionality in the bioprinting process. A delicate balance between viscosity and density is 

suggested for composite hydrogels. Higher solid content increases density and viscosity, which 

can improve geometric fidelity but may restrict cell mobility, resulting in lower post-print cell 

growth. Additionally, extruding a highly viscous ink requires higher pressure, increasing shear 
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stress on the encapsulated cells, leading to reduced cell viability and higher cell death rates [29] 

[30-32]. Therefore, the interactions between polymeric components, such as polymerization, chain 

entanglement, and covalent versus hydrogen bonding, are complex but crucial factors in designing 

bioinks and precursors for 3D bioprinting applications. Different compositions with the same solid 

content can result in significantly varied biological and mechanical properties. Due to the inherent 

shear-thinning properties of most hydrogel materials, viscosity can vary substantially with 

different shear rates, reflecting bioprinting process parameters like applied pressure and nozzle 

diameter [33, 34]. Predicting the properties of composite hydrogel inks is complex due to the 

interplay between pre-processing and deposition stage during bioprinting. 

  

Current research practice for optimizing bioinks and precursors involve exhaustive 

experimentation with multi-material composition to determine the printability, shape fidelity and 

biocompatibility. However, such a process can be time consuming, resource intensive and may 

yield suboptimal results due to the complex solution space. Predicting the bioink properties is 

challenging due to the nature of polymers and the entanglement between inter- and intra-polymeric 

chains [35]. In the dilute regime, the Newtonian behavior is often observed which can be predicted 

by using Einstein’s linear prediction model [36]. For bioinks made of multiple materials, they may 

demonstrate non-Newtonian behavior, for which the Cross model may be used to predict the 

viscosity at different share rates [37]. However, the Cross model assumes a certain level of 

homogeneity and continuity in the material, which might not hold true for heterogeneous multi-

material systems. Besides, determining the parameters such as rheological factors n and k for the 

complex systems can be challenging and may require extensive empirical testing. For 

biomanufacturing process, the prediction at different composition is functionally more attractive 

and necessary than predicting the viscosity of a single composition at different share rates [38, 39]. 

Thus, these existing models become inadequate for predicting the viscosity of heterogeneous 

composition of bioinks. As a result, it is critical and beneficial to develop a viscosity predicting 

tool for the bio-manufacturing research community to expedite the complex process of bioink 

development.    

 

Machine learning (ML) algorithms are powerful tools that offers an exciting opportunity to be 

utilized in all three stages of bioprinting process for the development of new and innovative tissue 



6 

 

engineering applications, with the potential to revolutionize the field of regenerative medicine, and 

digital bioprinting [40, 41] [42] [43]. A machine learning methodology was employed in the pre-

procesing stage of bioprinting to identify the dominant rheological properties affecting printing 

quality of Type I collagen [41]. The authors utilized the relatively least general generalization 

algorithm, an inductive logic programming (ILP) suitable for classification. High storage modulus 

and low yield stress were found to be the dominant factors by their machine learning analysis. 

Multiple regression was used to generate a simplified linear relationship for the prediction of 

printability. A viscosity predictive model for polymer nano-composite (PNC) was developed by 

coupling ML algorithms with nonequilibrium molecular dynamics (NEMD) simulations [44]. In 

this pure computational framework, the viscosity was calculated using NEMD under different 

shear rates, nano particle loadings, and temperature conditions. The generated data was used to 

train the ML-based QSPR models to predict the viscosity and the results are compared with 

physics-based Cross, Careau and Herschel−Bulkley models.  

 

In addition, optimum printing parameters for extrusion based 3D bioprinting was determined by 

Hierarchical Machine Learning (HML) framework [45] and parameter optimization index (POI) 

[46] to achieve print fidelity of hydrogel during deposition stage. The dataset included the 

dimensional similarity defined as high- and low-fidelity between the original CAD designs and 

the resulting alginate prints by modifying print input parameters in a systematic manner. Print 

inputs such as ink concentration, nozzle velocity, flow rate, and nozzle diameter were 

parameterized by common physical variables such as viscosity, applied pressure, and shear rate. 

Since only alginate was considered as building block, the nonlinear complex relationship for 

hybrid hydrogel to define viscosity and related print inputs has yet to be elucidated. A Bayesian 

optimizer was developed to determine the optimal printer parameters for EnvisionTEC 3D 

Bioplotter with six predetermined ink compositions made of gelatin methacryloyl (GelMA) and 

hyaluronic acid methacrylate (HAMA) [47]. A scoring system was established via a visual 

assessment on filament morphology during extrusion from the needle tip and the pore architecture 

on layer stacking of the printed construct. The algorithm generates a probabilistic model that 

proposes the subsequent printing parameters. This process continues by determining the print score 

of the next experiment and producing a new set of print parameters until the ideal score of ‘0’ is 

attained, signifying that the printer has optimized the parameters of the constructs [47]. ML has 
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also been used during post-printing stage to maintain and analyze the quality of the printed 

structure by detecting the defects such as irregularities and discontinuous filament and potentially 

providing ways to correct the prints [48] 

Various machine learning techniques have been utilized in the pursuit of material inverse design, 

encompassing both structural and compositional aspects [41, 49] [50]. The conventional 

approaches include linear regression [51], support vector regression [52], and k-nearest neighbor 

regression [53]. However, these methods typically necessitate a substantial dataset for training 

purposes and fail to account for uncertainty in predictions, which can be a crucial factor to consider 

in experimental measurements and applications where errors and noise are inevitable. In this 

regard, the Bayesian optimization (BO) method can offer significant advantages by minimizing 

the size of the initial dataset, requiring fewer evaluations of the function than traditional 

optimization methods and balancing the exploration of uncertain regions with the exploitation of 

potentially optimal regions. In contrast to the experimental parameter sweeping technique, BO 

algorithms can efficiently explore the parameter space, focusing on the regions that are likely to 

result in good performance while avoiding areas that are unlikely to be successful. Besides, it 

includes an estimate of the uncertainty associated with each prediction, which can be used to reflect 

the potential experimental error. The BO-based bioink optimization proposed in the literature is 

primarily process-driven framework where both intrinsic and extrinsic factors are considered 

simultaneously to determine the quality (i.e., geometry) of the printed construct. Due to the 

combined effect and interactions between preprocessing and deposition parameters, the 

investigation can be trapped and biased towards a localized parameter space with limited 

experimental data. As a result, using such a framework makes it difficult to differentiate the process 

physics related to intrinsic and extrinsic factors.  
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Figure 1.  Schematic representation of the Bayesian optimization (BO) for developing bioink for 

3D bioprinting. 

In this paper, we utilize a machine learning framework to predict the viscosity of heterogeneous 

bioink precursor compositions, aiming to enhance extrusion-based bioprinting techniques. The 

bioink precursor composition under investigation builds upon our prior research [54] into hybrid 

hydrogels, comprising alginate, carboxymethyl cellulose (CMC), and TEMPO-oxidized 

nanofibrillated cellulose (TO-NFC). This composition has been empirically validated for its 

biocompatibility—demonstrating approximately 91% cell viability—alongside its structural 

integrity, capable of supporting a 3D bioprinted construct with 42 layers high and 1 cm tall, and 

high printability, evidenced by a printability factor greater than 0.88. These results have been 
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thoroughly documented in our preceding publications [54] . Our approach incorporates BO, 

leveraging a limited dataset to inform our model, a method especially useful given the sparse data 

typically available in this domain. We construct a mask function, informed by domain expertise, 

to define the feasible parameter space for the components of the bioink and their interactions. 

Through the optimization of the hyperparameter 𝜅, we strike a balance between exploration of new 

possibilities and exploitation of known data, a balance crucial for refining our acquisition function 

(Supplementary Figure S1). This function then guides the selection of subsequent sampling points 

within the defined viable space and the process continues until convergence is achieved, indicating 

that the model has sufficiently explored the parameter space and identified the optimal or near-

optimal solutions. The proposed optimization framework is schematically shown in Figure 1.  

Employing this AI-guided BO framework, we have developed, tested, and validated a predictive 

model for determining the viscosity of heterogeneous bioink compositions. The framework is able 

to differentiate the contributions of individual components of the heterogeneous ink material by 

predicting the viscosity of the same solid content with different compositions. This data-driven 

approach significantly reduces the experimental workload required to identify bioink composition 

conducive to functional tissue growth. It not only streamlines the process of finding the optimal 

bioink composition from a vast array of heterogeneous options but also provides a promising path 

to accelerate advancements in tissue engineering by reducing the necessity for extensive 

experimental trials. 

 

2. Materials and Methods 
 

2.1 Preparation of Heterogeneous Bioink Precursors  

Dry TEMPO nano-fibrillated cellulose (TO-NFC) [(C6H10O5)x(C6H9O4CO2Na)y] with a 

carboxylate content ranging from 0.2 to 2 mmol/g solids was sourced from the Process 

Development Center (PDC) at the University of Maine. Suspensions of TO-NFC at concentrations 

of 0.5% and 1.0% (w/v) were prepared by stirring at 600 rpm for 24 hours at ambient temperature 

using a magnetic stand-up stirrer. Various concentrations of medium-viscosity Alginate (1, 2, 3, 

and 4%, w/v) and Carboxymethyl Cellulose (CMC) (1, 2, 3, 4, 5, and 6%, w/v) were added to these 

suspensions. Both Alginate (viscosity ≥2000 cps of 2% in water) and CMC (pH: 6.80) were 

procured from Sigma-Aldrich in St. Louis, MO, USA. The additions were made using the magnetic 
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stand-up stirrer to ensure homogeneous mixing of the components. The addition of CMC and TO-

NFC increased the overall viscosity of the material, helping to achieve better printability and shape 

fidelity. A schematic diagram of preparation process of hydrogels is shown in Figure 2. The letters 

'A', 'C', and 'T' denote Sodium Alginate, Carboxymethyl Cellulose, and Tempo-Mediated Nano 

Fibrillated Cellulose, respectively. The numerical subscripts attached to these letters indicate the 

weight percentage of each respective component that is incorporated into water to create the 

homogeneous composition. 

 

Figure 2: Schematic representation of the preparation of composition. 

2.2 Determination of rheological properties 

The rheological tests were conducted using a rotational rheometer (MCR 102, Anton Paar, Graz, 

Austria) with a parallel plate geometry (25.0 mm flat plate). The plate-to-plate gap was maintained 

at 1.0 mm, and all data were recorded at room temperature (25°C).  The flow behavior of the 

compositions was considered during the rheological tests. For the proposed ML framework, a 

steady rate sweep test was conducted to determine the viscosities for all compositions at a shear 

rate of 1 s⁻¹, which can be assumed to represent the material at rest (preprocessing stage). The 

typical shear rate experienced by the ink at the nozzle tip during the extrusion-based bioprinting 

process ranges from 100 to 1,000 s⁻¹, which resemble the processing or deposition stage of 

bioprinting. This range depends on both the material properties (e.g., solid content, degree of 

polymerization, polymer chain morphology) and printing parameters (e.g., applied pressure, 

nozzle size, and geometry). Although the proposed data-driven BO framework is not restricted to 

the specific shear rate, to reduce uncertainty and variability, it has been decided to consider the 

intrinsic properties of the compositions at rest by isolating the effects of print parameters. Graphs 
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were generated using OriginPro 2022b (Originlab, Northampton, MA, USA), unless otherwise 

stated.  

2.3 Cell culture and cytotoxicity 

The bioinks were formulated, and their bioactivities were assessed using passage four Porc1 

airway smooth muscle cells. The Porc1 cells were cultured in high glucose DMEM/F12 medium 

supplemented with 10% fetal bovine serum (FBS), 100 μg/ml of penicillin and 100 μg/ml of 

streptomycin (Sigma-Aldrich), in a 5% CO2 incubator at 37°C. The growth medium was changed 

twice a week. Following culturing in a T-75 flask (Fisher Scientific), the cells were trypsinized and 

subsequently centrifuged. Then, 12 × 106 cells were re-suspended in 200 μl of culture medium and 

combined with a 1.0 ml sterile hydrogel solution. The cells were uniformly mixed with a magnetic 

stirrer at a very low speed, resulting in a final cell concentration of 10 × 106 cells/ml in our bioink. 

The viability assessment of 2D cultured cells and bioink before printing was conducted through a 

live/dead assay employing Calcein Green AM and Propidium Iodide (Thermofisher, Waltham, 

MA). 

2.4 3D bioprinting and incubation 

An in-house extrusion based 3D bioprinter was used to fabricate the constructs in a BSL-2 lab 

environment to resemble bioprinting process and avoid contamination. Ball screw-based linear 

stages are used to construct the 3-axis platform, with motion control provided by a 5-axis CNC 

control box (Flushcut CNC, IL). G-code is generated from the vectorized tool-path using a Visual 

Basic-based scripting language. The prepared bioink precursor was stored in a disposal barrel 

reservoir (EFD, Nordson) and extruded pneumatically through a dosing nozzle (EFD, Nordson) 

on a stationary build plane. Constructs were printed using 250 µm nozzle diameter (ND), 4mm/s 

print speed (PS), 10 psi applied pressure (P), and 0.7 mm print distance (PD). Bioprinted  

constructs were cross-linked with 4% (w/v) CaCl2, washed three times with Hanks’ balanced salt 

solution (HBSS), and finally incubated in fresh medium with 37°C, 5% CO2, and more than 90% 

humidity. The growth medium for incubated constructs was also changed twice a week. The cell 

viability assessment of the 3D printed constructs was conducted through a live/dead assay 

employing Calcein Green AM and Propidium Iodide (Thermofisher, Waltham, MA). Percentage 

of cell viability (number of living cells vs total cells) was determined after 10 incubation days by 
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the percentage of living cells with respect to the total cells observed in any specific area under the 

microscope. Filament and construct images were captured using the CK Olympus bright field 

microscope (Tokyo, Japan) and analyzed using ImageJ software. The filament with the cells was 

imaged using Lionheart FX automated live cell imager (Biotek, Winooski, VT, USA). The protocol 

is designed to capture z-stack images with a layer thickness of 50 µm. Five beacons are randomly 

chosen for imaging. Throughout the process of imaging various beacons, the laser power and other 

detector settings remain unchanged to ensure consistency. The printability (Pr) of the constructs 

are measured using Equation 1 and following the technique described in our earlier work [55].  

𝑃𝑟 =
𝐿2

 6𝐴
                                                                                  (1) 

Here 𝐿 and 𝐴 are the perimeter and actual area of the printed pore. 

2.5 Bayesian optimization workflow  

Once the data were collected, they were used as the initial dataset to implement the BO algorithm, 

a machine learning tool for global optimization of black-box functions where explicit functional 

forms are unknown or difficult to model. It is based on the principles of Bayesian statistics and 

Gaussian processes. The basic idea behind BO is to use a probabilistic model to represent the 

relationship between the inputs and outputs of the function being optimized. The workflow of BO 

includes initializing the process by selecting a small number of initial points to evaluate the 

function and the probabilistic model is then fit to these initial observations. Next, an acquisition 

function is used to decide where the next observation should be made, balancing the trade-off 

between exploration (detect an uncertain area in the parameter space) and exploitation (detect a 

potential optimal area in the parameter space). The function is evaluated at the selected point and 

the model is updated with the new observation. BO has demonstrated remarkable effectiveness in 

the optimization of materials, including but not limited to shape memory alloys [56], piezoelectrics 

[57], and so on. 

We use the scikit-optimize (skopt) package, an open-source tool, to perform the BO on the Python 

platform. In each iteration, the model first builds a probabilistic model of the objective function 

(the viscosity) using the available data. Then, the acquisition function, 𝑢(𝑥), is calculated over the 

entire parameter space. Here we have used the expected improvement (𝐸𝐼)  as the acquisition 

function, which is defined as 
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𝑢(𝑥) = 𝐸𝐼(𝑥) = 𝔼[max(𝑓(𝑥) − 𝑓(𝑥∗)) , 0]                                          (2) 

where 𝑓(𝑥) is the objective function to be maximized, and 𝑥∗ is the current best point found so far.  

A pseudocode representation of the proposed algorithm is shown in Figure 3. Our goal is to obtain 

a surrogate model that can predict and optimize the viscosity of a bioink by adjusting three 

parameters: A, C, and T, which represent the composition of three materials. The parameter space 

can be visualized as a 3D box, with 𝐴 ∈ [0,5], 𝐶 ∈ [0,7], and 𝑇 ∈ [0,1].  

 

Figure 3.  Pseudocode representation of the proposed optimization algorithm. 

2.6 Curve fitting 

To evaluate the performance of the surrogate model for viscosity prediction the of bioink 

precursors, a comparison was made with a conventional 4th-order polynomial curve-fitting 

technique. Both models were trained using varying quantities of initial data to assess their 

performance dependency on dataset size. The performance was determined based on mean 

absolute error (MAE), defined as the average of the absolute differences between the predicted 

values and the actual/true values in a dataset. For any fixed number of initial data points, the model 

yielding a lower MAE between the predicted and true viscosity values is considered superior in 

terms of viscosity prediction accuracy. 
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3 Results and discussion 

3.1 Bayesian Optimization 

The initial dataset comprises 47 records of heterogeneous bioink composition and corresponding 

viscosity data as shown in Table S1 in the Supplementary Information. Each composition was 

stirred for 12h-24h to ensure homogeneity. For statistical significance, a sample size of at least 3 

was used for rheology data. Each record includes the composition of A, C, T (Alginate, CMC, and 

TO-NFC) and the viscosity value (Pa.s.). During the BO process, the three composition variables 

serve as inputs and the viscosity value serves as the output. The objective is to predict the material 

composition for the next experimental measurement, which can potentially enhance the viscosity, 

and establish a surrogate model to estimate the actual viscosity of any previously unseen 

composition, along with its error range. Overall, using BO in bioink optimization can improve 

efficiency and accuracy, quickly identifying optimal solutions with fewer experimental dataset. It 

also enables fast performance evaluation and error estimation for a given bioink composition. 

The acquisition function is simpler to evaluate than the objective function, allowing us to find the 

next experimental point in the parameter space that maximizes the acquisition function. This 

process requires balancing exploration, where the model explores areas of the parameter space 

with higher uncertainty, against exploitation, where the model exploits areas expected to have 

optimized viscosity. This balance is controlled by the hyperparameter 𝜅 in skopt. A small value of 

𝜅 leads the model to choose the parameter with the highest observed reward (exploitation), while 

a high value leads the model to choose the region with the highest variance (exploration). The 

effect of 𝜅 can be found in the Supplementary information, and here we set 𝜅 to 1.96 by default in 

the skopt model. 

In our heterogeneous bioink prediction model, the parameter space consists of a 3D box without 

additional constraints. By adding the mask function in the proposed algorithm, complex constraints 

from domain experts are incorporated. As depicted in the pseudocode, in each iteration, BO is 

performed on the existing dataset, utilizing the calculated acquisition function. Subsequently, the 

parameter combination yielding the highest acquisition function value is identified. This particular 

combination is then utilized to create a bioink sample, which will undergo either experimental or 

numerical validation to determine its viscosity. Schematic representation of the proposed BO 

workflow is shown in Figure 4(a). 
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To demonstrate the effectiveness of the proposed framework, we also implemented a polynomial 

curve fitting function that can estimate the viscosity of a new bioink for cross-validation, since we 

cannot directly use the same model to verify the viscosity value of the new bioink. This function 

is fitted using the existing dataset and can be employed during the optimization process as a 

substitute for the numerical or experimental validation step. However, it is important to note that 

in a real optimization process, the optimization should be validated with new data points from an 

external source. Otherwise, there would be limited information beyond the original dataset to 

enhance the optimization performance. Once the viscosity value of the new bioink is obtained, this 

information is added as a new data point to the dataset, including the materials compositions and 

their corresponding viscosity value. The iterative process is then repeated until the viscosity value 

is optimized, achieving the desired performance for the bioink.  
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Figure 4.  (a) Schematic representation of the workflow of BO. Numerical analysis of BO for 

viscosity prediction and optimization: (b) Predicted viscosity, (c) uncertainty of the viscosity 

prediction and (d) acquisition function within a slice of the parameter space after the first iteration, 

(e) Predicted viscosity from the polynomial fitting vs. true viscosity in the dataset, the fourth order 

fitting shows a R-square value to be 0.983. (f) The convergence plot of the BO after 50 iterations. 

3.2 Achieving convergence 

Figure 4 (b-d) presents the viscosity value, uncertainty, and acquisition function within a slice of 

the parameter space (A ϵ [0,5], C ϵ [0,7], and T=0.6) after the first iteration. This plot clearly 

demonstrates the capabilities of BO in predicting viscosity values across the entire parameter space, 
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along with the associated uncertainty. From the plot, it is evident that the uncertainty increases as 

the parameters approach the boundaries of the parameter space. This behavior is consistent with 

most machine learning algorithms, as they tend to perform better in interpolation rather than 

extrapolation tasks. To identify the next data point that has the potential for optimized viscosity, it 

is advantageous to select compositions where either the predicted viscosity is high, or the 

uncertainty is high. This concept is embodied in the acquisition function. Analyzing the plots, we 

observe that the viscosity increases with increasing values of A and C, and the uncertainty also 

becomes prominent as A and C approach their maximum values. Consequently, a peak in the 

acquisition function can be clearly observed at (A,C,T)=(5,7,0.6), indicating that this point should 

be evaluated next. To simulate a real experiment, we utilize a polynomial fitting approach with a 

4th order polynomial, which achieves a high R-square value of 0.983, as depicted in Figure 4(e). 

This allows us to calculate the viscosity of the composition at (A,C,T) = (5,7,0.6). The obtained 

viscosity value is then added to the dataset for the next iteration. It is worth emphasizing that 

predicting the next data point and assessing it through experimentation can be instrumental in 

enhancing the overall performance of the surrogate model. This is attributed to the fact that the 

upcoming data point may either be in proximity to a local optimum, where the values exhibit abrupt 

changes, or situated in an uncertain region where the accuracy of prediction may be compromised. 

Continuing the optimization process for 50 iterations, as illustrated in Figure 4(e), the viscosity 

increases from 2.2 to 3.3×106 mPa⋅s. It indicates that the viscosity has been successfully optimized 

to 3,300 Pa.s, highlighting the effectiveness of the BO process. The results from Figure 5 provide 

clear evidence of the capabilities and success of the BO process in achieving the desired viscosity 

optimization for the bioink. 

3.3 Mask-based technique to shrink the parameter space 

In many optimization space domain, the parameter space is often non-linear and unbounded. It is 

common for users to impose additional constraints that directly couple all parameters or define 

constraints on other physical metrics involving the parameters, and such constrained scenarios are 

also incorporated in our model. Practical optimization tasks frequently necessitate further 

constraints to narrow down the parameter space. For instance, without constraints, a very high 

solid content would likely result in excessive viscosity, which is not feasible in experiments. In 

such cases, constraints (e.g., A+C+T<=8%) can be valuable for restricting the parameter space to 
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a valid composition. Such a constraint restricts the solid content of the bioink to 8%(w/v), which 

has been reported as amenable for cell growth [58, 59] . Moreover, we may encounter constraints 

from other metrics, such as maintaining high cell viability to ensure the effectiveness of the bioink. 

These types of constraints may not directly impact the parameter space, making them challenging 

to apply directly within the optimization loop. 

To address the aforementioned two types of constraints and thus increase the flexibility and 

generality of our optimization process, we propose a mask-based technique to apply constraints in 

the parameter space of the bioink optimization task. Figure 5 illustrates this approach. For the first 

type constraints, we can create a binary image as a mask that identifies the valid region in the 

parameter space. The dimensions of the mask must match the dimension of parameters, and the 

boundaries must match exactly. A valid composition region is indicated by a value of '1' (bright 

area), and an invalid composition region is indicated by a value of '0' (dark area) in the mask. The 

given constraints can involve single or multiple parameters, such as A+C+T<8%, 

0.2<A/(C+T)<1.0, and A,C<4%, which are derived from the domain knowledge. 

 

Figure 5.  (a-c) Mask-based technique to shrink the parameter space into reasonable and (d-f) 

user-defined sub-space. 
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To handle the second type of constraints, we need to use a slightly different approach for creating 

the mask. For demonstration purposes, we assume a constraint that the cell viability should be 

greater than a threshold of 90%, the first step is to extract the cell viability values over the entire 

parameter space, which can be obtained through experimentation or interpolation from existing 

data. As a proof-of-concept demonstration, we use the partially available cell viability data for the 

composition in supplementary Table S2 and perform a polynomial fitting for the remaining 

composition. This experimental and simulated cell viability data is considered as the ground-truth 

value for demonstration (as provided in supplementary information). Figure 5b shows the cell 

viability values plotted for T=0. We then set the region with a value of >=90% as '1' and <90% as 

'0', resulting in the mask shown in Figure 5c. The boundary of the mask can be more complex, 

appearing as a smooth curve, which helps to address complicated constraints (Figure (d-f)). It is 

important to note that we can use the two kinds of masks separately or combine them to generate 

a mask with both types of constraints. In any case, we multiply the predicted viscosity value, 

standard deviation value, and acquisition function with the mask, resulting in the corresponding 

value in the parameter regions that meet all the constraints. Finally, we select the next point based 

on the parameter with the maximum acquisition function in the shrunken parameter space. 

Subsequent iterations are similar to the unconstrained case. 

Combining the mask function with the Bayesian Optimization (BO) model offers a promising 

pathway for experiential machine learning, which can significantly impact the bioprinting domain 

in predicting the performance of bioink and precursors. In contrast to the prior literature [47] [48], 

our proposed method is focused on predicting the intrinsic factor (e.g., viscosity) of the bioink 

precursor which is tied with the extrinsic property (e.g., cell viability) through the mask function. 

This integration can facilitate adaptive experimentation and optimization by avoiding less relevant 

parameter spaces, crucial for advancing bioprinting technologies. Although, the proposed 

framework has been implemented on bioink precursor, the methodology can be adapted for bioink 

(cell-laden biomaterial) materials. The presence of cell has been reported to alter the viscosity  by 

masking the active sites and hence the gelation mechanism [60]. However, by considering the cell 

as immiscible microparticles, the resultant viscosity of cell suspension can be inferred with 

Einstein’s formula [61].  

3.4 Reduction of MAE in viscosity prediction using BO technique 
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By implementing the BO optimization process, we obtain a surrogate model capable of predicting 

the viscosity of bioink without the need for experimental trials. To demonastrate the performance 

of the surrogate model, a comparison between BO and a 4th-order polynomial curve-fitting 

technique is show in Figure 6. Both models undergo training/fitting with varying quantities of 

initial data ranging from 10 to 58, which also assists in verifying the performance dependency on 

the dataset size. The plots clearly demonstrate that BO outperforms curve fitting with lower MAE 

of predicted data. These predictions are then compared with experimental results. It is worth noting 

that BO not only predicts viscosity but also provides an estimate of uncertainty. Consequently, 

predictions from BO are visualized as a range [μ−2σ, μ+2σ]. The superiority of BO in terms of 

prediction accuracy becomes evident, as the experimental values predominantly fall within the 

range predicted by BO, while curve fitting often yields predictions that deviate significantly from 

the experimental data. This difference is further highlighted when considering the MAE between 

experimental viscosity and predicted viscosityas shown in Figure 6(b). For instance, the MAE of 

curve fitting is nearly eight times higher than that of BO when considering a sample size of 10.  

Furthermore, we observe that the prediction uncertainty and MAE, when using BO, experience a 

significant reduction as the size of the original dataset increases, as depicted in Figure 6(b). For 

instance, as the sample size increases from 10 to 30 and 50, the mean absolute prediction error 

(MAE) obtained through the BO technique decreases by approximately 6.7 and 8.7 times, 

respectively. Moreover, when comparing a sample size of 57 to 10, MAE is reduced by nearly 100 

times using the BO technique. Remarkably, even with a modest set of 25 initial data points, BO 

consistently achieves accurate predictions well below 0.1 × 106  globally. This underscores the 

superior effectiveness of our proposed BO-based framework for predicting the viscosity of 

compositions prepared with composite hydrogels. Additionally, this technique provides users with 

the flexibility to initiate predictions with a predefined number of samples while accommodating a 

certain margin of MAE based on available resources. As illustrated in Figure 6(b), we observe 

fluctuations in the performance of viscosity prediction from the BO model, when the sample size 

is small (10-20), followed by a consistent improvement over the curve fitting model. This indicates 

that a modest sample size, approximately 20 in our composite hydrogel, is adequate for the BO 

method to surpass conventional techniques such as curve fitting. 



21 

 

 

Figure 6. (a) Comparison of how well the BO and curve fitting were predicting the actual 

experimental viscosity data, and (b) MAE of BO and curve fitting prediction with respect to the 

number of available experimental data.  

We start with 47 initial data points presented in Supplementary Information to train our model. 

This model suggested the next composition having various weight percent of A, C, and T to 

improve the prediction of viscosity.  Once we determined the viscosity of the suggested 

composition, the data set was updated including the latest viscosity and the model was run again 

to get the next composition. We continued our tests ten times to determine the experimental and 

modeled viscosity data.  Experimental data confirmed that our model was closely predicting the 

viscosity for next composition as shown in Table 1.    

Table 1: Comparison between measured and predicted viscosity to validate our proposed 

framework.  

Iteration Composition Predicted viscosity 

(×103), Pa.s. 

Measured viscosity 

(×103), Pa.s. 

% error 

1 A3.6C6T0.4 1.760 1.830±0.065 4.0 

2 A4C5.4T0.6 1.815 1.700±0.03 6.3 

3 A0.4C0.6T1 0.118 0.106±0.047 10.1 

4 A2.5C6T1 0.966 1.040±0.03 7.6 

5 A3.6C5.4T1 1.361 1.540±0.042 13.15 

6 A3.8C5.7T0.4 1.819 1.790±0.035 1.6 

7 A4C4.4T1 0.948 1.040±0.123 9.7 

8 A2.9C4.7T1 0.736 0.812±0.037 10.32 
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9 A3.2C6T0.8 1.447 1.480±0.133 2.2 

10 A1.3C0.3T1 0.142 0.136±0.004 4.2 

 

A set of four bioink precursors, A0.4C0.6T1, A3.5C2T0.4 , A3.5C3.5T1 , and A3.8C5.7T0.4 are randomly 

selected for the validation of the surrogate model. The predicted viscosities of A0.4C0.6T1, 

A3.5C2T0.4, A3.5C3.5T1, and A3.8C5.7T0.4 at a shear rate of 1 s⁻¹ (preprocessing stage) are 118, 132, 

433, and 1818 Pa.s, respectively, and they cover a wide range of viscosities, e.g., [118-1818 Pa.s]. 

To correlate this information with the processing or deposition stage of bioprinting, a 38 mm 

diameter bi-layer construct with a 2 mm×2 mm raster width was fabricated as shown in Figure 7. 

During the deposition stage, the material undergoes deformation, and the degree of transformation 

depends upon process parameters such as nozzle diameter, applied pressure, print speed, and print 

distance. Four different sets of process parameters (presented in Supplemental Table 3) are used to 

print the construct, and their printability is measured using the technique described in our earlier 

work [55]. Although the printability index increases with an increase in predicted resting viscosity, 

the process parameter significantly contribute to the printability of the construct. For example, 

lower resting viscosity requires lower extrusion pressure and can be printed at a faster speed. With 

an increase in viscosity, the extrusion pressure increases significantly. For medium resting 

viscosity, the print speed can still remain fast, producing the construct with reasonable printability. 

For high resting viscosity, we observed high extrusion pressure and much slower speed, which 

may not be conducive to cell survivability. Therefore, the surrogate model resulting from our BO 

framework can be used in a meaningful way to achieve a well-defined architecture, reducing the 

experimental burden and subsequent required resources. 
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Figure 7: Bi-layer construct fabrication using compositions (a) A0.4C0.6T1, (b) A3.5C2T0.4 , (c) 

A3.5C3.5T1 , and (d) A3.8C5.7T0.4, (e) the calculate value of printability with respect to the predicted 

viscosity of those compositions (2 cm scale bar).   

4 Conclusion 

We utilize a machine learning framework to predict the viscosity of heterogeneous bioink 

precursor compositions, aiming to enhance extrusion-based bioprinting techniques. Our approach 

incorporates Bayesian Optimization (BO), leveraging a limited dataset to inform our model, a 

method especially useful given the sparse data typically available in the bioprinting domain. 

Informed by domain expertise, a mask function is constructed to define the feasible parameter 

space suitable for the extrinsic characteristics (e.g., cell viability) for the bioink components and 

their interactions. The framework is able to differentiate the contribution of individual components 

of the heterogeneous ink material by predicting the viscosity of the same solid content with 

different compositions. The outcome from the surrogate model is used to predict the viscosity of 

random compositions, which are tested for printability. The results show good agreement with the 

empirical knowledge in the field. With added physics-based model of particulate rheology, the 

proposed framework can be adopted for bioink (cell-laden biomaterial) materials. 

The proposed BO-based machine learning framework presents a highly promising route for 

advancing the scalability of 3D bioprinting. This is achieved by enhancing the bioink composition 

selection process through the utilization of intrinsic properties acquired by small-scale 

experimentation. These bioink property data are fine-tuned to such an extent that the requirement 
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for repetitive trial and error testing is significantly diminished. Additionally, by tying the intrinsic 

factor with extrinsic property (e.g., cell viability) of the post processing stage through the mask 

function, a more managable and functional parameter space is investigated.  As a result, our 

approach holds the potential to streamline and expedite the 3D bioprinting process, making it more 

efficient and reliable. Nevertheless, its potential for optimizing bioink composition for both 

mechanical and biological functionality has not been fully validated, primarily due to the complex 

relationship between the three stages of the bioprinting process. The current compartmentalization 

of these stages generates constraints from the limited and incomplete dataset for the optimization 

problem. To address these challenges in future endeavors, we intend to bolster our efforts by 

generating a more extensive dataset of intrinsic material properties (i.e., modulus, degradation rate, 

degree of gelation etc.) tied them with multiple extrinsic factors (i.e., shape fidelity, printability, 

cell proliferation, and differentiation). Such future framework will  require adapting the machine 

learning models with physics-based data augmentation and incorporating additional experimental 

data for these properties at various stages. The surrogate model for viscosity prediction generated 

in this research considered the viscosity data at a constant shear rate of 1 s⁻¹. The material 

undergoes transformation during the deposition stage, and the viscosity at deposition can be 

significantly different. Additionally, performing this study with bioink (cell-laden biomaterial) can 

provide more insight into bioprinting living material, which is the limitation of this work and can 

be considered as future research.  
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Supplementary Information 

 
Figure S1.  Effect of 𝜅 at a various value. 
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Table S1: Initial dataset comprises material composition and corresponding viscosity data. 

A (%) C (%) T(%) Viscosity (Pa.s.)  A (%) C (%) T(%) Viscosity 

(Pa.s.) 

4 6 0 2256 1 3 1 131 

4 5 0 1511 2 3 0.5 131 

3 6 0 1103 4 2 0.5 124 

2 6 0 965 3 2 0 110 

3 5 0 676 1 5 0 104 

4 4 0 534 3 2 0.5 94 

3 4 0 434 1 3 0.5 94 

4 1 1 424 3 1 1 91 

1 6 0 410 3 1 0.5 71 

2 5 0 313 1 4 0 69 

4 3 0 280 3 1 0 68 

2 4 0 275 2 3 0 64 

1 4 1 248 1 2 1 58 

1 4 0.5 247 1 3 0 55 

4 2 0 229 2 2 0 55 

2 4 0.5 204 2 2 0.5 45 

4 1 0.5 194 2 1 1 36 

3 2 1 184 2 1 0.5 31 

4 1 0 167 1 2 0 28 

2 3 1 167 2 1 0 16 

3 3 0.5 156 1 2 0.5 11.5 

3 3 0 149 1 1 0.5 2.5 

2 2 1 148 1 1 0 2.3 

1 1 1 144     
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Table S2: Initial dataset comprises material composition and corresponding cell viability data. 

 A  

(%) 
C 

(%) 

T 

(%) 

Cell 

viability 

(%) 

4 4 0 86 

4 3 0 84 

4 2 0 83 

4 1 0 81 

2 2 1 91 

1 1 1 88 

1 3 1 92 

3 2 0 87 

3 1 1 89 

1 4 0 89 

2 3 0 88 

2 2 0.5 90 
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Table S3: Predicted viscosity and measure printability. 

Compositions Predicted 

Viscosity 

(Pa.s) 

Process parameters Image printability 

Nozzle dia 

(µm) 

Pressure 

(psi) 

Print speed 

(mm/s) 

A0.4C0.6T1 118 310 5 8.33 

 

0.55 

A3.5C2T0.4 132 310 12 12 

 

0.68 

 

 

A3.5C3.5T1 433 310 30 12 

 

0.85 

A3.8C5.7T0.4 1818 310 40 0.83 

 

0.98 

 

 


