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Abstract

Estimation of the mean and covariance parameters for functional data is a critical task, with local linear smoothing
being a popular choice. In recent years, many scientific domains are producing multivariate functional data for which
p, the number of curves per subject, is often much larger than the sample size n. In this setting of high-dimensional
functional data, much of developed methodology relies on preliminary estimates of the unknown mean functions and
the auto- and cross-covariance functions. This paper investigates the convergence rates of local linear estimators in
terms of the maximal error across components and pairs of components for mean and covariance functions, respec-
tively, in both L? and uniform metrics. The local linear estimators utilize a generic weighting scheme that can adjust
for differing numbers of discrete observations NV;; across curves j and subjects i, where the N;; vary with n. Particular
attention is given to the equal weight per observation (OBS) and equal weight per subject (SUBJ) weighting schemes.
The theoretical results utilize novel applications of concentration inequalities for functional data and demonstrate
that, similar to univariate functional data, the order of the N;; relative to p and n divides high-dimensional functional
data into three regimes (sparse, dense, and ultra-dense), with the high-dimensional parametric convergence rate of
{log(p)/n}'* being attainable in the latter two.
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1. Introduction

Over the last three decades, the foundational statistical principles underlying modern functional data analysis
have been established [15, 20, 22, 25, 34]. The relevant literature in more recent years suggests that the field is
undergoing a transition, compelled by real data applications, in which the traditional univariate setting (one curve
per subject) is being replaced with settings of larger and more complex structure, as evidenced by several review
papers [1, 2, 10, 17, 37]. The authors of [37] described these new data sets as “next-generation" functional data,
including such cases as functions with non-linear constraints [6, 16, 21, 32] or functions that take values in non-
Euclidean spaces [12, 13]. Similarly, [26] used the term “second generation" to refer to large functional data sets with
complex dependencies, including longitudinal [5, 18, 31] and spatial [11, 19, 41] functional observations, as well as
multivariate functional data. Developments for multivariate functional data, in which observations across multiple
curves are available for each subject, extend back to early methodological work on dimension reduction [3, 7, 8],
clustering [24], and regression models in which functions can appear as responses [9, 45] or predictors [38]. In the
same way that classical multivariate data analysis led to modern developments in high-dimensional data analysis,
some recent work in multivariate functional data methodology can best be described as high-dimensional functional
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data analysis, in which p, the number of curves for which observations are available per subject, is on the order of,
or much larger than, the number of independent subjects n. Examples include interpretable dimension reduction [23]
and discriminant analysis [39] for electroencephalography (EEG) data, and functional graphical models for both EEG
[27, 33, 35, 36, 43, 46] and functional magnetic resonance imaging (fMRI) data [28, 40].

A common element of the existing work on high-dimensional functional data is the requirement of preliminary
estimates of the p mean functions and the p(p + 1)/2 distinct covariance functions. The theoretical properties of these
preliminary estimates determine those of the given method. In terms of theoretical justification of their methodologies,
previous works either assume that the curves are fully observed, or that they are observed on a regular, deterministic
grid, with the number of observations per curve growing polynomially with the sample size. The former scenario does
not reflect the practical realities of functional datasets, while the latter does not cover important cases of designs in
which observations can be random, irregular across the domain, heterogeneous across subjects, or any combination of
these; moreover, the number of observations per curve per subject may not diverge with n, or may do so at application-
specific rates. For instance, [14, 44] illustrate methodologies using biomedical data that are described therein as
“high-dimensional longitudinal data." As longitudinal data can be modeled as functional data with relatively few
temporal observations compared to the number of independent sampling units, such data constitute an example of
sparsely observed high-dimensional functional data for which crucial theory has not yet been developed. It should
be emphasized that, while a multivariate functional data set with a small number of curves p, but a large number of
observations per curve relative to the sample size n, may accurately be described as high-dimensional, this is not the
sense in which this term is used in this paper. Rather, dimensionality refers to the number of curves per subject, and
will always be assumed to be high, while the number of discrete observations per curve ranges from sparse to dense,
and determines the convergence rate of the estimators.

The contribution of this paper is to derive rates of convergence for nonparametric estimators of the mean and
covariance functions for high-dimensional functional data. Specifically, local linear estimators will be studied in
terms of their accuracy in both the I? (in probability) and uniform (almost surely) metrics. This choice was made due
to critical previous work in the setting of univariate or “first-generation" functional data [29, 42], corresponding to a
special case of the developments herein when p = 1. Both of these works studied local linear estimators of mean and
covariance functions in the manner described, the latter in a more general fashion. In particular, [29] applied a specific
weighting scheme to the observations in the estimation criterion, whereas [42] considered a general weighting scheme
and also demonstrated pointwise asymptotic normality of the estimators. Additionally, as the covariance estimates are
slightly different in these two papers, that of [42] will be used in this paper; for a detailed and intuitive justification of
this choice, the reader is referred to Section 6 of [42].

As the number of observations from a given curve can vary across subjects and across different components of the
multivariate functional data, and since these observations are inherently correlated, it is reasonable to assign different
weights for observations coming from distinct subjects or observational units in the data set. Two common choices
are the subject (SUBJ) scheme, in which the total weight of all observations from a given subject is the same across
subjects, and the observation (OBS) scheme, in which all observations share the same weight. The former choice was
used in [29], while [42] studied a generic weighting scheme with specific focus on the SUBJ and OBS schemes. The
following two critical insights were provided by [42]. First, if the number of observations for a given component curve
is highly heterogeneous across subjects, the OBS scheme can perform poorly due to higher weight being granted to a
group of potentially highly correlated observations; on the other hand, if they are homogeneous in an explicit sense,
the OBS scheme will yield a rate no worse than the SUBJ scheme. Second, depending on the behavior of the average
(for the OBS scheme) or hyperbolic average (for the SUBJ scheme) number of observations per subject relative to
n, prescriptive bandwidth choices divide functional data sets into three observational regimes: sparse (or non-dense),
dense, and ultra-dense. In the sparse scenario, the rate can be anywhere between the nonparametric (inclusive) rates
of n2/> and n~'/3 for mean and covariance estimation, respectively, and the parametric rate of n~'/? (exclusive). For
dense and ultra-dense data, the parametric rate is always attainable; the distinguishing feature of ultra-dense data is
that the bias decays at a faster rate than the stochastic error, whereas these two are matched for dense data.

The results derived in this paper generalize the above findings to the high-dimensional setting where p diverges
with n. Specifically, a comparable rate of convergence for the largest error across different mean or covariance
estimates is derived in the high-dimensional setting, with the only differences being an inflation of the stochastic
rate by {log(p)}'/? and an additional term arising from the involvement of higher-order moments in the newly derived
bounds; see Theorems 1-4. The OBS scheme is again found to be adversely affected by heterogeneous numbers of
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observations, where the quantification of homogeneity (see (5) and (8)) is again explicit but more strict than that of
[42]. On the other hand, if the homogeneity condition is satisfied, the OBS scheme is never worse than the SUBJ
scheme; see Corollaries 1, 4, 7, and 10. For these two schemes, optimal bandwidth decay rates are also prescribed,
yielding observational regime divisions analogous to those of [42] in the case of mean estimation. For covariance
estimation, while the parametric rate {log(p)/ n}l/ 2 is still attainable for dense and ultra-dense data, the results in this
paper do not distinguish between these in terms of bias decay; see Remark 11 for a more detailed explanation.

The remainder of the paper is organized as follows. Section 2 provides definitions of the functional targets and
estimators, as well as two particular classes of observational designs that will be considered. Sections 3 and 4 provide
all technical assumptions and theoretical results corresponding to the mean and covariance estimators, respectively.
The paper concludes with a brief discussion in Section 5, while all proofs are provided in Section 6. The supple-
mentary material includes simulations that illustrate the performance of the OBS and SUBJ schemes for different
observational designs in the high-dimensional regime p > n, including a discussion of computational aspects and
challenges of constructing a large number of smoothing estimators.

2. Methodology

For p e N,let 7, j € {1,..., p}, be compact intervals of the real line and 77 = szl 7 their Cartesian product. It
will be assumed throughout that p diverges with n such that log(p)/n — 0. Let {X(t) € R”; t = (#;,...,t,) € 77} be
a multivariate L? stochastic process, that is, X(t) = (X;(1)), ... , Xp(tp))T satisfies E(ij.(t)) < ocoforall t € 7 and all

j€f{l,..., p}. The primary population targets for which estimates are typically sought in functional data analysis are
the mean and covariance functions of X, which will be denoted in this paper by
uj(s) = E[Xj(s)],  vj(s, 1) = Cov[X;(s), Xx(D)], ey

for (s,1) € Tj X T, j,k €{1,...,p}. When j = k, y;; is referred to as the j-th auto-covariance function of X, reflecting
the intracurve dependence for a given component function, while yj for j # k are the cross-covariance functions
corresponding to dependence between two distinct functions or curves. Note that generic arguments s and ¢ are used
for all of these functions regardless of the domain; these arguments will be referred to as time points, although the
functional domains 7; need not correspond to time. The ultimate aim of this paper is to determine rates of convergence
for estimators of these targets constructed from a suitable sample in the high-dimensional regime.

Suppose Xi, ..., X, are independently and identically distributed as X, and write each of these independent mul-
tivariate processes as X;(t) = (X;1(t1),...,X;,(t,))7, i € {1,...,n}. A key challenge for functional data is that the
processes X; are never fully observed along the continua; rather, the collected data correspond to a finite number of
measurements over a grid of points for each curve. The scheme by which the grid points arise and how these are
modeled are referred to as the observational design. Two design settings, described in Section 2.1, will be considered
in this paper as extensions of the random design setting treated in previous papers on the topic for univariate functional
data [29, 42] in which p = 1. In both settings, data for each curve are collected at a random collection of points along
the domain, where the number of points per curve may be bounded or diverge with the sample size n.

Prior to considering the particular nuances of the two designs, consider a general model and corresponding mean
and covariance estimators. For each subject i and component j, the observed data are modeled as

Yiie = Xij(Tijo) + €je = pj(Tije) + Uij(Tije) + €je, € €{1,...,N;j}, 2)

where U;; = X;; — u; is the centered process, N;; are the number of observation points T;;, for this curve, and €, are
error variables with mean zero, independent of the processes U;;; interdependence of the errors will be left unspecified
for the moment as it depends on the observational design. Throughout, the N;; will be considered as deterministic,
though varying with n, and their behavior as n diverges will heavily impact the convergence rates.

Following previous work [29, 42], local linear techniques will be used to estimate the functions in (1). Let K be a
univariate probability density function and, for a bandwidth b > 0, define K;(-) = b~'K(-/b). For each jef{l,....p},
let b, > 0 and consider positive weights w;; that satisfy i w;;N;; = 1. For t € T, define f1;(t) = Bo, where

n N;;

(Bo,B1) = arg?ﬁ}g?z Wij (Z:; Ky, (Tije = 1) {Yijé’ = o = B1(Tijc - f)}

i=1

2

3
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Covariance estimation then follows by defining the raw covariance terms Z;jxgm = {Y;je — @;(Tij) Y iom — (i)}

for any jk € {1,...,p}, £ € {1,...N;;}, and m € {1,..., Ny}. To avoid inducing bias in the covariance estimation,
raw covariances are typically removed from the estimation if they contain dependencies between the noise variables.
To maintain generality for the moment, let 7;3 < {1,...,N;;} x {1,..., Ny} denote a suitable subset of index pairs

(¢, m) for which the raw covariances will be included in the estimation; further specification of these will be given in
Section 2.1. Let by, by, > 0 and consider positive weights v, satisfying Yy ViiklLijel = 1. For (s,1) € T; X T, define

n

N A A , 2
(Bo, B1,52) = arg min Z Vijk Z Ky, (Tije = $)Kp, (Tikm = 1) {Zijklm = Bo = B1(Tije = 5) = Bo(Titm — f)} @

i=1 (Lm)el i

Then the estimate of yu(s,1) is ¥u(s, 1) = Bo. For simplicity, the same bandwidth b,, is used for estimating the
auto-covariance y,; and any cross-covariance 7 j. For the kernel K, the following assumptions are required.

Al K is a probability density function with support [—1, 1], is symmetric about zero, and is of bounded variation.
A2 K is Lipschitz continuous.

Assumption Al is ubiquitous in the kernel smoothing literature, while assumption A2 allows for simplification of
the proofs of results involving the uniform metric as it governs the smoothness of the estimators [42]. While not
strictly necessary, assumption A2 is not restrictive in practice, as it is satisfied for commonly used kernels, such as the
Epanichnikov and Gaussian kernels. However, it can be omitted at the cost of more cumbersome arguments [29].
The estimators defined by (3) and (4) will be assessed in terms of their convergence rates in the L? and uniform

1/2 1/2
norms, denoted by ||f]l; = { f(r/ f%)dr} AN = super, 1F@L gl = { f,]_jm g%(s, t)dsdt} ,and lgfl, =

SUP (g e T, lg(s, D). Speciﬁcally, rates of the convergence for the maximal of these norms across j or (j, k) will be
determined that will allow for their consistent estimation so long as log(p) grows more slowly than the sample size.
As in [42], rates will be determined for generic weighting schemes, and special attention will be given to the so-
called observation (OBS) and subject (SUBJ) weighting schemes. Define N ;=n"' Y N;; as the average number of
observations of the j-th curve across subjects. Then the OBS weights are w;; = 1/ (nN pand v = 1/(X, 1Zl). For
the SUBJ scheme, one has w;; = 1/(nN;;) and v;jx = 1/(n|Z;l). Write fiops j and Yops, jx for the mean and covariance
estimators under the OBS scheme, and fisp;,; and ¥sup; jx for those under the SUBJ scheme.

2.1. Observational Designs

The first design setting treats the general case in which the observational time points may be different in number
and location across curves. This will be referred to as the fully random design.

Definition 1. The observation times follow a fully random (FR) design if, for each j € {1,..., p}, Tije, € € {1,...,N;j}
and i € {1,...,n}, are independently distributed on 7; with probability density f; and are independent across j.

When the data come from an FR design, the errors ¢, will be assumed independent across i and ¢ and, for
covariance estimation, they will also be assumed independent across j. When estimating covariance functions, raw
covariances are thus only excluded from (4) when j = k and ¢ = m. Thus, when an FR design is assumed, one has

;o (Cm): Cefl,.. Nyhme{l,... .Nal}, j#k
T Aem s tmeql, Nytand £ ml,  j=k

While some multivariate functional data sets are most appropriately modelled with an FR design, many have a
specialized structure, especially when considering examples where the multivariate dimension p is large. In these
cases, all functions share the same domain and, for each subject, all p curves are observed simultaneously along a
common set of timepoints. This will be referred to as the simultaneous random design.

Definition 2. The observation times follow a simultaneous random (SR) design if, for each j € {1,...,p}, 7, = T
for a compact interval 7, N;; = N;, and T;; = Ty, where Ty, £ € {1,...,N;}, and i € {1,...,n}, are independently
distributed on 7~ with probability density f.



When the data are assumed to come from an SR design, error variables €;;, and €, that are measured at a common
timepoint T;; may be dependent. Thus, under this design, the index sets for raw covariances will take the form

IiijIiZ{(f,m)Z €,m€{1,...,N,-}andf¢m}.

The following notational simplifications will also be assumed under the SR design. The weights w;; and v;; will be
assumed independent of j and k, denoted as w; and v; when appropriate. In the OBS scheme, these take the form
w; = 1/(nN) and v; = 1/(SL, Ni(N; = 1)), with N = n~' 3, N;; in the SUBJ scheme, they are w; = 1/(nN;) and
v; = 1/(nN;(N;—1)). In addition, it will be assumed that a single bandwidth b,, is used to estimate all p mean functions,
and a common bandwidth b, is used for all p(p + 1)/2 covariance functions.

2.2. Technical Assumptions on Model Parameters

The following assumptions on model (2) apply to all relevant theoretical results in Sections 3 and 4.

B1 The collections of functional data {X; : i € {l,...,n}}, observation times {T;;; : € € {l,...,N;;},j €
{L,...,ph,ie{l,...,n}}, and errors {g;; : € € {1,...,N;;}, j € {l,...,p}, i €{l,...,n}} are independent of
each other. Furthermore, the X; are iid across i, and the data arise from either the FR design in Definition 1 or the

B2 Under an FR design, for each j € {1,..., p}, f; is a twice differentiable probability density function on 7.

7y j}’

,,,,,,,,,,

B3 The yu; are twice differentiable, and lim,,—,co max (i, p | uill < oo
B4 The vy are twice partially differentiable, and
lim max max Py Tk Ty < o0
=0 jke(l,....p} as* || .. |l asor || or | '
ik Ik Jk

Assumption B1 stipulates the independence of the different random components in the model and the nature of
the observation times; to simplify later conditions on bandwidths, it also asserts that the size of the domains for the
different functional data components are of the same order. Assumptions B2—B4 are regularly assumed in the case of
univariate functional data, and are strengthened here in order for bounds to be uniformly controlled as p diverges.

3. Mean Estimation

In this section, rates of convergence will be provided for mean estimation in the high-dimensional regime for
a generic weighting scheme under both FR and SR designs. These results demonstrate that the effects of high-
dimensionality are as expected, in that the effective sample size is reduced to n/log(p). Hence, in determining the
divisions between non-dense, dense, and ultra-dense functional data [42], the rate of {log(p)/ n}'/2 will be critical.

3.1. L? Convergence

.....

following assumptions on the distributional characteristics of the functional observations and the asymptotic behavior
of bandwidths are required. Let p V n denote the maximum of p and n.

Cl Foreach je{l,...,p}and t € 7}, U;(¢) is sub-Exponential with parameter 6;(¢) > 0, that is, E[exp{AU;;(t)}] <
exp{/lzei(t)/Z} for all |4] < {6,(r)}™". Furthermore, 8 = lim,,, MaX je(1,._ ) SUP;er, (1) < 0.

.....



C2 For each j, the errors ¢, are sub-Exponential random variables with parameter o, that is, E[exp{dg;;;}] <

------------

..........

and SR designs, respectively.

C4 There exists @ > 0 such that

.....

— 00,

,,,,,

Assumptions C1 and C2 are stronger tail conditions compared to previous work for the case p = 1, in which only
moment bounds are used to derive concentration inequalities. In ordinary (non-functional) high-dimensional data
analysis, two common classes of tail behavior for analyzing mean estimation are polynomial and sub-Exponential
tails. The latter lead to probability bounds with exponential decay, and thus faster rates of convergence when p
diverges. While acknowledging that rates and division of observational regimes for different classes of tail behavior are
certainly of interest, this paper focuses on sub-Exponential tails as in assumptions C1 and C2, leaving other cases for
future work. Assumptions C1 and C2, in conjunction with the stipulations on the bandwidths in assumption C3, thus
strengthen the second moment assumptions made in [42] in order to obtain L? convergence results in Section 3.1 below
that are comparable to previous work. In the case of uniform convergence, assumption Cl1 is not directly comparable
to its counterpart in [29, 42], which require that || X;; — ;]| ; have bounded r-th moment for some r > 2. This latter
condition can be viewed as a smoothness assumption on the sample paths of the X;;, and does not imply, neither is it
implied by, assumption C1 above. Nevertheless, as will be seen in Section 3.2, the same rates of convergence are also
obtained for the uniform metric under tail conditions of assumptions C1 and C2 and under the conditions specified by
assumptions C3 and C4 on the bandwidths. The proofs of all results in the section can be found in Section 6.2, with
auxiliary lemmas and their proofs given in Section 6.1.

Theorem 1. Under assumptions Al, BI-B3, and C1-C3,

Jetl,....p} Je(l,....p}

n 1/2
by, + {log(p) Z wiNj(b,! + Nij = 1)} +log(p)b, W, ,D :

i=1

max Hﬂj—,uj“j = OP[ max

Remark 1. The rate given in Theorem 1 applies to both FR and SR designs. Under the latter design, the maximum
over j in the rate is redundant, requiring less stringent requirements on the bandwidth; see Corollary 3.

Remark 2. The rate in Theorem 1 is obtained by establishing an exponential tail bound on deviation probabilities for
each mean estimate, followed by application of the union bound, which leads to the appearance of log(p) in last two
terms making up the stochastic part of the rate; the bias is not affected. In order to compare this result with the rate
given in [42], the arguments in the proof of Theorem 1 can be applied to a single mean estimate to yield

" 1/2
blzlj + {Z W?jNij(b;j] + N,'j - 1)} + b;/_lwnj:i ,

i=1

s =i, = o

while the rate of [42] omits the final term. Its appearance in the rate derived in this paper can be explained as follows.
The result relies on an exponential tail bound obtained by applying Theorem 2.5 of [4] and involves all pointwise
moments of the functional data as well as the error moments, as opposed to only the first two moments used by [42]
that were sufficient to obtain the L? convergence rate in the setting p = 1 using Chebyshev’s inequality. Specifically,
to leverage Theorem 2.5 of [4], for any v > 2, one must obtain a moment bound of the form

n
4
2 ik
i=1

Nij v

2 v-2
Z Kby,-(Tijf =D | St
=1
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’ . 2
As 1{}/::11 K,,“j (Tij¢ — 1) is almost surely bounded above by a multiple of b;j_l Njjand E [{ 12’:'71 K,,H/ (Tije - t)} ] is bounded
by a multiple of N,;,-(b;j1 + N;; — 1), for some C > 0,
Z w}'J-E
i=1

Nl’j v n
Z Ky, (Tije =D ¢ | < (Ch,)™? {c Z Wi (b + Nij = 1)}
=1 i=1

< {C D WENi(bL! + Ny~ 1)} (Cb, W)™
i=1

Hence, the final term in the rate cannot be eliminated under general bandwidth sequences. Nevertheless, when applied

to the OBS and SUBJ weighting schemes, Corollaries 2 and 3 demonstrate that equivalent rates to those of [42] are

obtained for proper bandwidth choices that force the extra term in Theorem 1 to be of smaller order than the others.

Remark 3. Assumption C3 stipulates that the errors €;, are iid and sub-Exponential across i and £ for each fixed j, but
dependence across j is arbitrary. In fact, the same rate obtained in Theorem 1 will hold under the weaker assumption
and all |A| < (¢®)~!. The reason that this does not affect the rate is that the error dependence does not dominate than
the intracurve dependence present in the latent functional data X;.

Explicit rates will now be presented when a common weighting scheme, OBS or SUBJ, is used for all curves,
although Theorem 1 can still be applied if different weighting schemes are applied to different indices j. [42] demon-
strated that the relative performance of OBS and SUBJ depends on the values of the N;;, which may have different
behaviors for different indices j. However, in practice, it can be difficult to determine which weighting scheme is best
for a given curve, except for an extreme case where some indices j have much larger number of observations per curve
compared to others. Thus, for clarity, the weights w;; are hereafter assumed to be constructed according to either OBS

].

Corollary 1. Suppose the assumptions of Theorem 1 hold.

(i) OBS:

— 1/2
(e L T ) wpe
n ijll/ (Nj)Z anb.“i

].

Remark 4. The rates of Corollary 1 allow one to distinguish between settings in which each weighting scheme is
expected to outperform the other, in line with the findings of [42]. Specifically, if the ;; are sufficiently homogeneous
across i for each j, in the sense that

(i) SUBJ:

max Hlasub',' _/J” = OP
jetl,.py R E

1/2
1 1 1
max |b2 + 0e(p) +1 + log(p)
Jelloep) | 1 n \Nfp,, nby,

Jj THj

Np N;r
limsup max max —. = <, 5)
n—oo JE(L,....p} Nj j

then the OBS scheme is never worse than the SUBJ scheme due to the fact that N =N f . Indeed, it is possible that

..........

which case the OBS scheme is strictly better than SUBJ. However, if such homogeneity fails, the OBS scheme rate
can suffer considerably, as it can place too much weight on a small proportion of curves. An interesting suggestion of
[42] (see Remark 6 therein) for an alternative weighting scheme was to choose an optimal convex combination of the
OBS and SUBJ weighting schemes, leading to an asymptotic rate that is better than either, although this theoretical
appeal did not always lead to finite sample improvements in their numerical experiments.
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In the case of diverging p, Corollary 1 suggests slightly inflated optimal bandwidth choices compared to the fixed
p case. When the the curves for different indices j are a mixture of non-dense, dense, and ultra-dense, the rate
is driven by the worst rate of any individual mean curve estimate. Under an FR design, an additional complication
associated with the maximum rate over j for diverging p is that constants cannot be always ignored in the specification
of optimal bandwidths. Thus, for clarity, the following results provide optimal bandwidth choices in accordance with
the behavior of the most sparsely and most densely observed functrons represented by Nyin = min Je(l,p) N j and
Numax = maxei._p N, for the OBS scheme or NE = minje NE = maxje,., NH for the SUBJ
scheme. Remarkably, regardless of the type of functional data avallable consistent estimation is possible whenever
log(p)/n — 0, so that exponential growth of p is feasible for non-dense observations, including truly sparse ones in

.....

u
which the N;; are bounded. For positive sequences a, and bju, denote by aj, < bj, and a;, = bj, the conditions

limsup,,_,, a jnbj‘.nl < oo and lim sup,,_,, maxe(i,.. p) @ j,,b < oo, respectively. If aj, < b;, and b;, < aj, (respectively,

ajn % bj, and b, % aj,), write aj, < bj, (resp., aj, < bjn).
Corollary 2. Assume an FR design and that assumptions Al, BI-B3, Cl, and C2 hold.
(i) OBS: Assume that (5) holds.

— 1/4 u (1 1/5 | 2/5
@ 1N {222} = 0 and by, < {22 then maxeq,..p s — 1], = O {222}

(b) If0 < liminf,_c Nypin { gty )}1/4 < limsup,_,., Ny { gty )}1/4 < oo and by, = {logn(p )}1/4, then
,,,,, p} ”,uobSJ /Jj” - 0 [{@}1/2] .

_ " 1/4 2
(©) Imem{log(p)} — 00, by, < by, where b, = o {@} / ] byNopin — 0, and b, {log(p)} R oo, then

n

maxe(i,..., p}”ﬂ()b?} ,U]” =Op [{@}”2]'

(i) SUBJ: Replacing N s Nmm, and Nm,,x with NH
corresponding results for fig,; ;.

and N2

mzn’ max’

respectively, in parts (a)—(c) of (i) leads to the

Remark 5. Compared to the optimal bandwidth choices outlined in [42] for univariate functional data in the non-
dense, dense, and ultra-dense regimes, those of Corollary 2 are nearly identical except that the division sample size n
is replaced by n/ log(p) in the above result. One minor exception is in the ultra-dense case (c); since the extra term
log(p)/(nb,,,) in Corollary 1 is not affected by N_,-, under the FR design it is necessary to add an additional constraint
to ensure that the smallest bandwidth does not decay more rapidly than {log(p)/n}'/>. In doing so, this tail term is
always of a smaller order than the others, so does not affect the final rate. In the non-dense case (a), it is the bias and
first stochastic term that dominate since N jbu;, — 0, and the rate can be anywhere between {log(p)/ n}z/ > (inclusive)

and {log(p)/ n}]/ 2 (exclusive). In the dense case, the bias and stochastic terms are all balanced; only in the ultra-dense
case do the terms involving the bandwidth become inconsequential, all converging at a rate faster than {log(p)/n}'/?.

Lastly, under an SR design, similar rates are obtained under simpler assumptions. Let N, N, N(z), and N* be the
common values of N, Nf ,Np,and N;T, respectively, across j.

Corollary 3. Assume an SR design and that assumptions Al, BI-B3, Cl, and C2 hold.
(i) OBS: Assume that (5) holds.

@) Ifﬁ{log,#}m 0, b, = {logz(vp)} , then maxjeq1,... “llobsj ,UJH = Op [{log(p)}Z/S].

) N2} s € e 0,00) and by = {22} then maxeq...p o = wi], = Or {22} ).

© Ifﬁ{@}w — 00, by, = 0[{10%!&}1/4] and b,N — oo, then max e(1,...p} ||ftobs,j — 'u]” — 0y [{log(ﬁ)}l/z].

(i) SUBJ: Replacing N with N¥ in parts (a)—(c) of (i) leads to the corresponding results for figu, ;.
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3.2. Uniform Convergence

Next, consider rates in the uniform norms |||l ;. Following [29] and [42], these rates will be given in the almost
sure sense in order to allow for an easy comparison. Remarks 1-3 also apply to the following result, which provides
the rate of convergence for a general weighting scheme.

Theorem 2. Under assumptions Al, A2, BI-B3, and C1-C4, almost surely,

Jjeil,...p Jjeil,...p

n 172
by, + {log(p V) D WENi(b! + Ny~ 1)} +log(p v n)b;jlwn_iﬂ :

mwwm—mm=o[mu,
i=1

Remark 6. As mentioned briefly at the beginning of this section, Theorem 2 does not require any moment bounds on
|||X, ;= ﬂjl”y an assumption employed in [29, 42]; indeed, X;; need not even have bounded sample paths in order for
the above result to hold. In the proof, one approximates the supremum by a maximum over a grid, with the error in
this approximation being bounded by the grid mesh size times a multiple of )i, w;; Z?i’l |U;j(Tije)l. Under the sub-
Exponential condition in assumption C1, this can be controlled directly without using the bound |U;;(T;;0)l < || U; |||j ,
regardless of the strength of intracurve dependence present in the latent functional data.

Remark 7. The rates derived in [29] and [42] for p = 1 are nearly the same rates as those for weak consistency
in the L? norm, with the only difference being a slight inflation by {log(n)}'/?>. Theorem 2 demonstrates a similar
phenomenon in the high-dimensional setting, where the rates in Section 3.1 are augmented by {log(p V n)}. Typically,
the results derived in this paper will be of greatest interest when p is much larger than #, in which case the almost sure
uniform rates matches exactly the weak consistency rates in the L? norm. However, in case n/ p — oo, the new result
demonstrates that the uniform rates are strictly worse than the L? rates, as should be expected.

The corresponding rates for OBS and SUBJ weighting schemes and the corresponding divisions into non-dense,
dense, and ultra-dense data are immediate. Again, Remarks 4 and 5 also apply to the following corollaries.

Corollary 4. Suppose the assumptions of Theorem 2 hold.

(i) OBS: Almost surely,

log(an){ 1 N, }]1/2+ Nj*log(pvn))
5 .

”ijﬂ.f

N _ 2
s W=l = 0], (1<

(i) SUBJ: Almost surely,

/2
b2_+{log<pvm[ 1 H]}‘  logp v )

Hj H
n Nj bﬂj nb,u,-

jer{rll,e.l.i(pl “llasubj,j THj "lJ - O[jeI{Illﬁi(p}

Corollary 5. Assume an FR design and that assumptions Al, A2, BI-B3, Cl, and C2 hold.
(i) OBS: Assume that (5) holds.

— 4 14 . 15 ) 1 2/5
(a) Imeax{w} — 0and b, = {%} , then max je(1,.._p) || fobs.j —lljmj =0 {M}

nN; J Et 1N in

almost surely.

.. — 1/4 . — 1/4 1/4
(b) 1O < liminf, o Nypin XL} < limsup, o, Nne {EL2} " < 00 and b, = {220}

.....

~~~
(e]
N’
=
=|
g
s
—_—
53
02
= ‘Q
s
=
=
=
t@‘
)
S
3
=
Iyl
Q
N
S
S
1]
&)
—
pu—
53
03
= ‘Q
<
2
—_
=
=
S
B
=|
g
8
Q
S
QU

.....
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(i) SUBJ: Replacing N; s Noin, and Nar with NH
corresponding results for figp; ;.

and N2

max’

respectively, in parts (a)—(c) of (i) leads to the

mm’

Corollary 6. Assume an SR design and that assumptions Al, A2, BI-B3, Cl, and C2 hold.
(i) OBS: Assume that (5) holds.

— 1/4 . -1/5
(a) UN{@} — Oand b, < {lo’i%”)} , then max je(;

almost surely.
— 1/4 1/4
(b) I]‘N{M} / — C €(0,00) and b, = {m} / , then, almost surely,

1/2
mMax je(1.....p) “|:“0bw #/||| = 0[{@} ]

— 4 1/4 —
(c) IfN{W} g — 00, b, =0 [{log(nﬂ} / ] and byN — oo, then, almost surely,

172
maxje(1,...p) [[Aobs.j = :“Jm = 0[{@} ]

2/5
..... ot~ ] = o[z

(i) SUBJ: Replacing N with N7 in parts (a)—(c) of () leads to the corresponding results for iz, ;.

4. Covariance Estimation

Next, rates of convergence for the covariance estimators will be provided. In order to separate the effects of mean
estimation from covariance estimation, the mean is assumed to be known so that the raw covariances Z; j;, used in (4)
are replaced by Z;jkem = (Yije — 1j(Tije))Yikm — i(Titm)). The ensuing estimates will still be denoted ¥ . The rates
for the true empirical estimator are obtained by adding the uniform mean convergence rates, since raw covariances
involve pointwise evaluations of the mean estimates.

4.1. L? Convergence

Under an FR design, define v, jx = maXe(1,...n) Vijldijx| and

.....

S VENGNi(by ! + Nij = 1D(by) + N = 1), J#k,
G jn ={ ! . ! g (6)

Yy Vi Nij(Nij = 1) {byjz + Zb;fl(Nij =2) + (N;j = 2)(N;; - 3)}, j=k

llzj/ ij

.....

In addition, define
5 {max(z, | VENEN, S VENGND), # K, @

w5, =
J i=1 ijj lj(Nlj ) > j:k,
and let w denote the common value of w;; under an SR design. The following assumptions will be used.

D1 Foreach j € {1,...,p}and t € T}, U;;(¢) is sub-Gaussian with parameter 6;(t) > 0, that is, E[exp{AU;;(H)}] <
exp{/lzeﬁ(t)/Z} for all A € R. Furthermore, 6 = lim,,_,co max je(1,._ ) SUpyer, 0;(1) < co.

D2 For each j, the errors €, are sub-Gaussian random variables with parameter o ;, that is, E[exp{d€;jc}] <
exp{A? 2/2} for all A € R. Furthermore, oo = lim,_,.o MaxXje(1,. p 0; < oo. In addition, under an FR de-
sign, the €;j¢ are independent across all indices; under an SR design, €;;, and €, are independent whenever

@6 # (@, 0).

D3 The bandwidths satisfy max je(;
addition, log(p) max k(1

,,,,, ,b — 0 and log(p) maxe(1,...p} gjkn — 0, With gy, defined in (6). In

o b,/ byklw — 0 under an FR design; under an SR design, b‘2w2 - 0.

.....

.....
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D4 There exists a > 0 such that, with g, as defined in (6),

1/2
n® Max jkeqi,....p) [{log(p \Y n)qjkn} + log(p v n)by e vnjk

— 00,

.....

Assumptions D1-D4 correspond to assumptions C1-C4, but adapted for covariance estimation. Critically, as-
sumptions D1 and D2 impose sub-Gaussian rather than sub-Exponential tails, due to the fact that covariance estimates
involve averages of products, and products of sub-Gaussian random variables have sub-Exponential tails. Proofs of
all results in this section can be found in Section 6.4, with auxiliary lemmas and their proofs given in Section 6.3.

Theorem 3. Under assumptions Al, B, B2, B4, and DI1-D3,

o 172 “lp-1<
maxp l|7jk_7jk||j,k =0p( max b2 + max {log(p)qjkn} +10g(p)byj bn ank])~

jellopy 7 jkefl,..

Remark 8. As in Theorem 1, the rates in Theorem 3 are stated in the context of an FR design, but also hold under
an SR design using the common values of the relevant quantities across j, k, including a common bandwidth b,,, that
have been defined previously. Assumption D3 and comparison of Corollaries 8 and 9 below illustrate the weaker
bandwidth requirements under an SR design.

Remark 9. Similar to Remark 2, the rate in Theorem 3 can be compared with that of [42]. As the latter did not
consider cross-covariance estimation, consider j = k. Once again, the arguments in the proof of Theorem 3, when
applied to a single auto-covariance estimate ¥;;, lead to the rate b?j + q;IZ + b;/zin jj» the first two terms matching the
rate of [42]. As for mean estimation, the additional term in the derived rate arises from the involvement of higher
order moments needed for the exponential tail bound. This extra term has more impact on optimal bandwidth choice

in covariance estimation than mean estimation, but still does not affect the overall rates.

The following corollaries translate the rate of Theorem 3 to the OBS and SUBJ weighting schemes under FR
and SR designs, respec‘uvely For r, s € {1, 2}, define Nj e =0 2 NEND N]k = N, N = max;e(1,...n) NijNik,

ij ik’
,kS = (Z, NS ’N’) andeHk lekl

.....

Under an SR design, let Ng) denote the common value of NH across j, k.

Corollary 7. Suppose the assumptions of Theorem 3 hold.

(i) OBS:
_ _ 12
Io ( ) 1 N'kz N-zkz
H%bwk 7/"“ ;= Op| m *2/ + . m =2\ = +—2J + —jz
Jke{ ,,,,, I jellupy 7 jkefl,...,p) n Njkby/_byk N b, N,
J J J
N log(p) ]
nﬁjkb}’jb)’k
(i1) SUBJ:
log(p) (1 1 " logp)
og(p og(p
max obs = O0p| max b2 + max + +1 + .
jke(l, s =l P{je{l ..... PV kel ) [{ . [Njkb)’,byk Niiby, ]} nby,by, ]

Remark 10. Corollary 7 allows one to compare the two specific weighting schemes. By strengthening the homo-
geneity condition on the observation numbers N;; in (5) to the condition

. NijkZ szkz N]k
limsup max maxq——, ——, =
Jjkell,p) N N

n—oo RS,y Njk Njk jk

< o0, ®)

then the OBS scheme is never worse than the SUBJ scheme due to the fact that ﬁ,- > Nf and N_,-k > Nﬁ. If (8) fails,
however, the estimators may not be consistent under the OBS scheme.
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Corollary 8. Assume an FR design and that assumptions Al, Bl, B2, B4, D1, and D2 hold.

= 1 1/4 u | o 1
@) If Ny {22} 0, by, x{—f’gN(f)} , then max e,...p) |[Fobs,jx = Vil = Op [{—"gif”} ]

n. J nNmin
b iminf. . N.. [lem)\/ u [log(p) _ log(p) | 1/2
( ) Ifhm mnl, e Nmin{ n } > 0and by_/- { } then max;ke(i,..., “70[7? Jjk — ‘)/jk” ik 0 { } .
(ii) SUBJ: Assume that limsup, _,, maxjze(1,...p }(N;’N,(H)/NH < o0. Replacing Nj, Noins and N gy With N” mm,
and N2, respectively, in parts (a) and (b) of (i) leads to the corresponding results for ¥ Vsubj, jk-

Corollary 9. Assume an SR design and that assumptions Al, Bl, B2, B4, D1, and D2 hold.

(1) OBS: Assume that (8) holds.

— st 1/4 | 1/6 ) ] 1/3
(@) IfN{#} -0, b, < {%(f)} . then max jueq1...p || Fobs.jk — J’ijM =0p {%(f)} :

.....

(ii) SUBJ: Assume that limsup,_,. (N")* /N1 ) < o Replacing N with N" in parts (a) and (b) of (i) leads to the
corresponding results for ¥gp; k.

Remark 11. Unlike Corollaries 2 and 3, Corollaries 8 and 9 contain only two cases for each of the OBS and SUBJ
weighting schemes, with the dense and ultra-dense regimes being combined. This is due to the extra term in Corol-
lary 7 discussed previously in Remark 9. For mean estimation, in the ultra-dense regime, the bandwidths b, are all
allowed to decay more quickly than {log(p)/n}'/*. However, allowing the same behavior for covariance bandwidths
by, would cause the last term in the rate to be slower than {log(p)/ n}'/2. Hence, for high-dimensional functional data,
while this result does not distinguish between dense and ultra-dense observation designs in terms of covariance esti-
mation, in both regimes one is still able to obtain the appropriate rate. In the sparse regime, the rate can be anywhere
between {log(p)/n}l/ 3 (inclusive) and {log(p) /n}l/ 2 (exclusive).

4.2. Uniform Convergence

For brevity, the strong uniform rates of convergence for covariance estimation will be stated without further dis-
cussion; the reader is referred to Remarks 6, 7, and 9-11 for relevant comments on these results.

Theorem 4. Under assumptions Al, A2, Bl, B2, B4, and D1-D4, almost surely,

1/2 1, 1=
x5 =yl = 0( max B3+ max [{log(p Vgl +log(p v mb; b5, jk]).

Corollary 10. Suppose the assumptions of Theorem 3 hold.

(i) OBS:
— — 1/2
e W=l = g 7+ s 0 s T T
KDyibye  Nyby, Ny
Nilos(p v )
nN jiby,; by,

12



(i) SUBJ:

ket p) Wobs.ji = viell 1 = O

1/2
1 \Y 1 1
max by + max oglp v m) 7 +— +1
Jetlep) 77 jkell.p) n Nibyby, — Niby,

)

Corollary 11. Assume an FR design and that assumptions Al, Bl, B2, B4, D1, and D2 hold.

. log(p Vv n)
nby/.byk

,,,,,

1/6 1/3
VL 1/4 u )l 1
(@) Imeax {W} -0, byj - {%} , then max jke(1,..., |||70b€/k yjkmlk =0 [{MZ\M)} ]

ni; nN,

min

almost surely.
— 1
(b) Ifliminf,_c Npin {M} " > 0andb,, N {log(an)} , then, almost surely,
1 12
max je1....p) [|Fobs.in = Viell 11 = 0[ %Vn)} ]

(i1) SUBJ: Assume that lim sup,_, ., max e(i
and N2

max’

p}(NJHN,fI)/Nij < oo. Replacing Nj, N i, and Nmax with NH NH

min’

.....

respectively, in parts (a) and (b) of () leads to the corresponding results for ;i k-
Corollary 12. Assume an SR design and that assumptions Al, Bl, B2, B4, DI, and D2 hold.
(1) OBS: Assume that (8) holds.

— (1 1/4 . 1/6 1 "
(a) U‘N{w} — 0, and b, < {%} , then max (1. “)’obuk kaH,k 0 { Ogn(ll\;vn)}

almost surely.
(b) Ifliminf, ., N {M} e > 0and b, =< {M} , then, almost surely,

max jke(l....p) “701% e y]k”jk = 0[{%}1/2].

(ii) SUBJ: Assume that limsup,_,  (N)? /N(I’ZI) < 0. Replacing N with N in parts (a) and (b) of (i) leads to the
corresponding results for ¥up;, jk.

5. Discussion

The results derived in this paper provide an important foundation for high-dimensional functional data analysis
by establishing sufficient conditions under which uniform consistency of a diverging number of mean and covariance
estimates will hold. Importantly, the practical reality of discrete and noisy functional observations does not preclude
consistent estimation in high dimensions; indeed, the results lead to a natural division of high-dimensional functional
data into three regimes (sparse, dense, and ultra-dense) based on the behavior of the average number of observations
available per component curve relative to {log(p)/n}'/*, providing the expected generalization of the regime divisions
discovered in [42] for univariate functional data. By properly choosing the smoothing bandwidths, the worst case
scenario for sparsely observed functions is the optimal nonparametric high-dimensional convergence rate for both
mean and covariance estimation; for densely or ultra-densely observed curves, the parametric rate is always attainable.

The results utilize concentration inequalities in Hilbert spaces [4] that require stricter tail assumptions on the point-
wise behavior of the functional data compared to previous results for the case p = 1. In this paper, sub-Exponential
and sub-Gaussian tails were used for mean and covariance estimation, respectively. With these tail assumptions,
the results were able to successfully distinguish between dense and ultra-dense functional data for both the OBS or
SUBJ weighting scheme in mean estimation, but not so for covariance estimation, due to an additional term in the
rate that was not present in previous work [29, 42] in the case p = 1; see Remarks 9 and 11. Thus, it is possible
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that stronger concentration inequalities or alternative modes of analysis may lead to such a distinction in future work.
For example, under the assumption of tails with only polynomial decay, similar arguments to those of [42] could be
used to derive rates that, while slower than those obtained here, have the potential to effectively distinguish between
dense and ultra-dense data. Besides different tail assumptions, there are many other choices that may lead to different
divisions, including different learning tasks such as regression or classification, modes of convergence (e.g., pointwise
asymptotic normality), or quantification of estimation error besides the L? and uniform metrics. Moreover, while the
theorems and corrollaries present asymptotic properties, the lemmas in Sections 6.1 and 6.3 are non-asymptotic in
nature, and may be useful for finite sample inference.

The use of local linear methodology in the analysis of high-dimensional functional data analysis will undoubtedly
have many limitations, some of which are theoretical and others that are practical. This paper has addressed the former
via asymptotic analyses as well as via simulations in the supplementary material. Important practical questions, such
as bandwidth selection or approximations for computational speedup, will require adaptation of the usual tools for
univariate functional data if they are to remain scalable. For a brief discussion of some of these issues, see Section 1.2
in the supplementary material.

Although the terms sparse and dense appear frequently in this paper, there has been no application of regularization
or shrinkage in the estimation procedure. It is well-known that, for multivariate non-functional data of high dimen-
sion, such approaches can lead to improved rates of convergence and enhanced interpretability. For high-dimensional
functional data, such regularization has been successfully applied in regression models and graphical model esti-
mation, although theoretical guarantees have mostly been established in the oracle case of fully observed functions.
The results in this paper will provide a path for theoretical investigation of these and other novel methodologies for
high-dimensional functional data that are applicable under any observational design, requiring only initial mean and
covariance plug-in estimates.

6. Technical Details

This section provides technical arguments for the theoretical results stated in Sections 3 and 4.

6.1. Auxiliary Lemmas for Mean Estimation
Forr € {0,1,2},and j €{1,..., p}, define
n Nij

1 i Tiie—t g Tijé’_t "
S = Z Wij Z Ky, (Tijf - f)( ;7 ) , Ry = Z wij ) K, (Tiﬂ - f)( b ) Yije.
=1 Hj U

=1 i=1 =1 i

Then the error in mean estimation can be expressed as

{Rio(0) = 508 o(0) = bty jO}S p@ (R (0) = 08 110) = bty ®S pO} S 510

A =10 = S (S (1)~ $2,(0) S (1S (1)~ $2,(0) )
With U;j = U;j(T;je) + €j¢, the numerator in the first term on the right-hand side of (9) can be expressed as
n Nij
Rjo(t) — (DS jo(t) = by, p(DS j1 (1) = Z wij Z Ky, (Tije = Uije
i=1 =1 (10)

n Nij 1
+ > Wi Y Ky, (Tije = 0(Tyje = f KA+ (Tije = D)1 = v)dv,
i=1 =1 0
which follows from a Taylor expansion. Similarly,

n Nij

Tiip —
Rji (1) = (DS ji(t) = by p (DS jo (1) = Z wij Z Ky, (Tije — t)( i t) Uije
=1

by,

Hj

i=1

N::
n ij Ti‘g—l 1 .
+Zl]wfj;Kbﬂ_,.(T,ﬂ—r>( ™ )(T,-,-f—r)2 [ ez =pa v
an
14



6.1.1. Uniform Convergence of S j,, r € {0, 1,2}

The results of this section allows for the derivation of lower bounds for the denominator of (9) that hold uniformly
in ¢ and across j with high probability. In this result and those that follow, constants that are uniform over all data
generating mechanisms satisfying the mentioned assumptions will be denoted by C,, a € N, and may take different
values across different inequalities. Finally, these results do not depend on whether the observation times follow a
fully or simultaneous random design.

Lemma 1. Suppose that assumptions Al and Bl hold. There exist Cy,Cy > 0 such that, for any € > 0,
—Czbi/_ez

Pr(|ls () = E1S sl > €) < Crexp {z‘:;l_w%,-zv—,-j

}, ref0,1,2), jell,....ph

Proof: Define the weighted empirical distribution function £ (D =2 wij Z?’;’l 1(Tijc < 1). Take Vi, to be the total
variation of the kernel K(u)u" over [-1,1] for r € {0, 1,2}, an set Vx = max,e(o,1,2} V. Then standard arguments

show that ||S ;-(-) — E[S j,()] |||j < VKb;jl mﬁ] - ijj . Next, Lemma 1.1 of [30] implies that, for any 7 > 0,

w1l (S 2 o

Since, for any polynomial p(u), sup,.. p(u)e’“2 <a e~ for some constants ai, ap > 0, it follows that, for any € > 0,
there are constants Cy, C, > 0 such that, as claimed,

Pl 515,011, ) < ([~ = i ) s o 22

i Wi
O
Lemma 2. Suppose assumptions Al, Bl, B2, and C3 hold. Then there exist C1,C,,n, N > 0 such that, for anyn > N,

2.2
<C Czbﬂjn .
<Ciexpy———», Jjell,...,ph

inf (S (DS (1) — S2
Pr[tlerl(]% {$008 p(0 -S40} <7 TN,

Proof: Define g(a,b,c) = ac—b?. By assumptions Al and B2, Taylor expansions of each E[S (1)1, r € {0, 1,2}, yield
the bound

glE[S 0] E[S )], E[S n0]} = 702 {60(), ¢11(1), $o(1)} = 4Mby, (1 = by,),

where ¢,(1) = fw W K(uydu, Uy = [-1,11N {b;/,' (v—1);v € T;}, and M is defined in assumption B2. Furthermore,

-1
suppose U and U* are random variables with densities K and K*, respectively, where K*(u) = K(u) fol K(u)du

for u € [0, 1]. Then it is straightforward to show that, for any r € 7, j € {1,..., p}, if b,; < |7;|/2 for all j, then
2
8(pjo(D),d;1(1),9p2(t)) = T > 0, where 7 is the minimum of Var(U) and { fol K(u)du} Var(U™"). By assumptions B1

..........

Next, by continuity of g’, if max(|al,|bl,|c|]) < L and max(la — d’|,|b — b'|,|c — ¢’|) < € < L, then |g(a,b,c) —
gl ,b',c")| < 8Le. From assumption B2, |||E[Sjr(-)]“|j < M, uniformly in n, j € {1,..., p}, and r € {0, 1,2}. Hence,

take n = m2t/4, L = max(n, M), and € = n/8L. The results then follows from Lemma 1 since, forn > N,

Pr [lien(]fj {$ 008 p(0 - 5% ()} <

Ui
< Pr {rg(l),al),(z} |||Sjr - E[Sjr()]“lj > g} .
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6.1.2. L? and Uniform Convergence of Numerator Terms
The next two results provide exponential tail bounds related to each of the terms in (10) and (11) in the L? and

N,

uniform metrics, respectively. Define w/ ;= MaXie(1,...n) Wij» Tij = {Tije} 5:""1 , and

.....

N;j

ije 1Y
‘/Vzrl(t) = Wij Z Kb (thé’ - t)( A ) Uije, 1€ {0, 1}. (12)
.“/

Lemma 3. Suppose that assumptions Al, BI-B3, and C1-C3 hold. Then there exist constants Cy, C,, and C3 such
that, forany € > 0, je{l,...,p}, and r € {0, 1},

n . —C2€
Pr{ Wil > 6] =€ eXp{z'f WAN; (b= + N;i = 1) + b>'w, f}’
i=1 j i=1 it N\ 2] w; Vnj

—C262
Pr(||Sj0||j—C3>e)§Clexp b 12"1“’ N,,+b 172 *' :

13)

Proof: Conditional on T;;, Wi’j(t) is, for each ¢ € 77, a sub-Exponential random variable with parameter at most

Wi $0y Ky, (Tije= 06", where 6° = 6+ 0. Thus, for any v > 2, E “Wi’j(t)r | Tyj| < 2010 wip” {0, Ka, (T~ 1) -

Letting Ko = supy,<; K(u), K = fol K?*(u)du, and M as in assumption B2, it follows that

E[|Wi['] < 2Mv120°wi)" (Kb, !Ny~ {KaNyb, ! + MNyi(Nij = D} (14)

By Jensen’s inequality, Z:‘IE[”W.’. ]<vL§WL; 2/2, where L2, = 16M6°{T | max(Ky, M) $1-, w2 N;j(b' +N;j=1)

and Ly,j = 2K0"|7|'?b}, 1w,, ;- Hence, Theroem 2.5 of [4] 1mphes the first line of (13).
Finally, direct calculatlons show that [|E[S 00|, < M and [[Var[S 00|, < MKab,! i, wiNij, whence

[“SJ‘OHZ] |‘7“'| Ksz‘1 P 2N,-j + Mz) < C2 for some fixed constant C; 1ndependent of j, p and n. Now,

1/2b 1/2

the functions w; jK;, (T;j¢ — -) are independent across both i and £. Moreover, Hw, JK;, (Tyje - )“ <K, j for

any i and ¢, and ), Zz;ﬁ (”w,«ij“‘(T,ﬂ - )“ ) < K2M|’7’,~|bﬂ, pI Wile‘j follow from assumptions Al and B2.
J h J ! J g
Thus, the second line in (13) follows by applying Theorem 2.6 of [4]. O

Lemma 4. Suppose that assumptions Al, Bl, B2, and CI1-C3 hold. Then there exist constants Ci,C,,C3 > 0 such

that, forany € > 0and je{l,...,p},
—Cé?
>e|<Crexpy o3 226 = )
i WiND + Wy e

PI‘[ZW”Z |U,,g| |Ul/f|]}
ij lij

C2 b2 2
Pr(|[Sofl,—C3s>€)<Ciexpy ———
(Isnll €3> ) < Crenp| -
Proof: Conditional on T;;, U;j, are sub-Exponential random variables with parameter at most " = 0 + 0. Hence, for
any v > 2, by applying Jensen’s inequality,

n N;
ZE [WijZ/|Uijf| ZWU 1]( ZE |Utjf| ) %(20*wnjv (169*2ZWU lj]
i=1 =1 i

Then, by Theorem 2.5 of [4], the first line of (15) is established. Finally, as previously observed, E [S j()(t)] <M, so
one may take C3 = M. The third line of (15) then follows by applying the result of Lemma 1. O
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6.2. Proofs of Results in Section 3

Proof of Theorem 1: The proof will be given for an FR design. For an SR design, the proof is simplified by the
fact that § j, does not depend on j, thus necessitating less stringent requirements on the bandwidth as outlined in
assumption C3. From (9),

-1
e = il < [};},fl NN ORI (’)}} (\"Sﬂ I 1Ri0 = S o = Byt nll + S sl 1R = 158 11 = bu/ﬂ}sznj)-

Let Cy, C,, C3, N, and 7 satisfy the results of Lemmas 2 and 3 simultaneously. Then Lemma 2 implies

Jellp)aer; U000 B T e p)

2 .2 1

C2b _ l—Czﬂz{lﬂg(ﬂ)maX/eu ,,,,, ) by? iy w ?,Ni,}

n—N =Cip
Zl 1le i

Pr[ min mf{ 0(DS p(t) - jl(t)}<17]< p max Pr(mf{ o®S jz(t)—sﬁl(t)}q)

< Cip max exp
Jjell,....p}

b}

which converges to 0 as n — oo by assumption C3. Similarly, since max je(; |||E S )]m < oo for r € {0, 1,2},

Lemma 1 ensures the existence of some R > 0 such that

.....

.....

which again converges to 0 as n — oo by (C3). Hence, max e, [inf;eTj {S oS p(H) = § ?1 (0}]71 = Op(1) and

maxje(i, ... p) ”|Sjr|” =0p(1),r€{0,1,2}.
Next, let R > 0 again be arbitrary and define

1/2
ay = max HZWUNU(b +N,,—1)} +{1og(p)}‘/2b;}w,,j],

,,,,,

1/2
R {( " ZWUN’J] * {log (I8, }

Then the union bound and Lemma 3 imply that

max
JeiL,...,

.....

> Ranl{log(m}”z]

A

2 2 ’ (16)
R°a, 1o 3
< Clp max exp — - nl g(p)l_ — (< Cp' T,
je(l,....p} . W]N[j(b;j + N,‘j -D+ b/:/ anRanl{IOg(p)} /
By similar reasoning,
C2R2
Pr( x [ISall, - €5 > Ranz{log@)}”z) <Cpl .
Jjell,...,
In addition, using assumptions A1l and B3, there is a constant C4 such that
n Nij 1
D wii K, (Tyje = 0(Tyje = 1 f 1] (t(Tije = D)(1 = v)dv| < Caby. S jo(0).
i=1 =1 0
Thus, by the definition of WlO and (16),
e Rjo = 18 jo - bﬂf/‘zSﬂ” jenax ” “ + X ]bu, ”SJ'OHj
(17)

= Op ({log<p>}”2an] +[C3+ l1og(p) Pans | max }b,%,.).

17



,,,,,
..........

.....

— R — —\2
Proof of Corollary 1: For the OBS scheme, X/, w2 Nij(b;! + Nij = 1) = (aN;b, )™ + (Np = Njn™" (N;) ~ and
— -1
b 'Waj = N*(nN jb,, ). For the SUBJ scheme, X7, w2 Nij(by! + Nij — 1) = (aN*b, )" +n”! (1 — {1 ) and

b;jlw,,j = (nbﬂl,)". Hence, the rates given in the corollary statement follow immediately from the general rate of
Theorem 1. ]
Proof of Corollary 2: The result is given for part (a) of (i) The remaining rates can be derived in a similar man-
— 25
]b,%/. < {log(p)(1Nmin) ™"}

,,,,,

..........

the COIldlthIl on Nmax. O
Proof of Corollary 3: The proof follows the same logic as the proof of Corollary 1 and the details are omitted. [

Proof of Theorem 2: Again, the proof is only given for the case of an FR design for the same reason stated at the
beginning of the proof of Theorem 1. From (9),

g%“maﬁﬂﬁynﬁﬂﬂyxmsﬂmmRﬂ‘#ﬁm‘bm%SﬂW

lleej = 250l <
Sl & 108 5 - bﬂ/#}szt\!j)-

The same arguments used in the proof of Theorem 1 imply that max ;e .., [inf,efr { jo(DS (1) - 52 (t)}]_] = Op(1)
and maxje(; |||S],H| = 0p(1), r € {0, 1, 2}. Thus, the uniform rates of the terms in (10) and (11) are sufficient.

For any (5 >0 and for each j, let y;(0) be a discrete uniform grid for 7; with spacing at most 6, and let L be
a constant, guaranteed by assumption B1, so that max e, ) [y j(0)] < < L&', with [y j(6)| denoting the number of
elements in the grid. Given the decomposition in (10), consider the uniform convergence of the each term on the
right-hand side of this equation. Beginning with the first term,

Z 0

i=1

n

> Wi - wio)|.

i=1

< sup
1ex(6)

+ sup
|s—1]<6

(18)

where W’ is defined in (12) for r € {0,1}. By (14), forany v > 2, j e {l,...,p}and t € T}, 2.1, E[|Wl.’j(t)|"] <
"'L%MLEWZ where L2 Tnj = = 16M6*> max(K,, M) I w?jNij(b;/_l + N;jj— 1) and Ly,; = 2Km9*b;j1v_vnj. Thus, there exist
constants C| and C; such that, for any €,6 > 0,

C 2
{max Z W,-rj(t) > 6} < L57'Crexp {— . 2€ — } (19)
tex (0 Wy

N o —135 .
w”.N,j(bﬂj +N;jj— 1)+ bﬂj W€

1/2 a2 = o
+ {log(p(S )} b#/ wnj] , for any R > 0, (19) implies

Z Wi (0| > Ray ©)log(po™ ‘)}‘/2] <cinfps) T (20)

Jell,...,p} t€x ()

Pr[ max max

18



With 6 = ¢, = n™%, the Borel-Cantelli lemma and (20), imply that, almost surely,

Z W] =

max max
..... P} Ex j(6n)

172
—]1—
{ r‘rllax Hlog(p vV n) Z wUN,j(b + Njj— l)} +log(p v n)bﬂj Wy

""" i=1

]. 1)

N;
< Lyob}? Z wis Z |Uise| < Liob;? {64 + Z wij Z |Uiie - E |Ul,e|])}
=1

follows that

n

IR LACEHO)

i=1

sup
|s—1|<6

Set a,y = maXxje1,... p) [( wUlej) {log(p)}l/2 wnj] Then Lemma 4 implies that there are constants C;,C, > 0

n Nij
Pr{ o wij ) (Wi = E[|Uisl )| > Reo flog(p)} " <CipFr
..... 2" L,

By the Borel-Cantelli Lemma, assumption C4, and again taking 6 = 8, = n~?, it follows that, almost surely,

:0(n_a max b;z)
jell,..py ™/

n

Z{W,»’,(s) - W)

i=

‘max  sup
Jelleop} 5—1|<6,,

172
— _1_
=0 [jer{rllax I{log(p V n) E WUN,j(b + Njj — 1)} + log(p v n)bﬂ}_ wnj” .

..... g

(22)
Then (18), (21) and (22) together imply the result since, almost surely,
172
jEmfl.i( 2 nllax {{log(p V n) ,21: wUN,j(b + Nij — 1)} + log(p v n)b;j_lwnj]].
Proofs of Corollaries 4-6: The proofs are similar to those of Corollaries 1-3, and are omitted.
6.3. Auxiliary Lemmas For Covariance Estimation
For g,r €{0,1,2},and j,k € {1,..., p}, define
z Tije = s\" (T — 1\
Sitar(s:0)= D vie Y, Ko, (Tie = 5) Koy, (T = r)( - ) )
i=1 (Lm)ed;ji 7
n , (23)
_ Tijf -5\ Tikm -1
Rjigr(s, 1) = Z Vijk Z Ky, (Tijé’ - S) Ky, (Tijn — 1) b, b, Zijkem-
i=1 (Lm)ed ;j J
Additionally, dropping the functional arguments s and ¢ for the component elements defined above in (23), set
Qo = S jx20S jroz — S?;(“, Qi1 = S j10S jko2 = S jxo1S jkit, Qjkz = S jx10S jki1 — S jro1S jk20- 24)
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As mentioned in Section 4, the mean is assumed to be known; that is, ¥(s, ) = Bo, where By is computed as in
(4) with Z;jem = {Yije — uj(Tije)H{Yim — ur(Tizn)} instead of the true empirical version in which the Y;;, and Yy, are
centered with respect to their estimated means. Then the error in covariance estimation can be expressed as

-
Yix(s, 1) = yils, 1) = (ijOSjkOO = Q1S jr1o + ijZSjkOI)

dv; dv;j
X [Qjro {RjkOO = ¥ik(8, 08 jroo — by, —— s (S DS jr10 — by, ” (S [)Sjkol}
0vy;j (25)
= Qi {Rjklo =¥ ik(s, DS jk10 — by, s (S DS jio0 — by, 8 (S t)S,kn}

0y dv;
+ OQji2 {RjkOI =¥ ik(s, DS jxo1 — by, s (S DS ju11 — by, i (S t)Sjk()Z}]

The terms in square brackets in the last three lines of (25) can be broken down further as follows. Define
Uijkem = Uij(Tij)) Ui(Tikm) — ¥ ju(8, 1) + Ui j(Tij0)€ikm + Ui (Tikm)€ije + €ije€ikm
and define Kj,(u) = K,(u)(u/b). Furthermore, set

Iy jk

Oy ji
Birem(ss ) = ¥ u(Tijes Tim) = ¥ ju (s, 1) — by (Tije — S)a—;(S, 1) = by, (Tije - l)w(& D).

Then

Y ji Y jk .
Rijro0 — ¥k (8, DS jroo — bngsjklo - bykwsjkm = Z Vijk Z Ky, (Tije = $)Kp, (Tigm = DUijktm

i=1 (Em)ed ;j

n
+ Z Vijk Z Ky, (Tije = $)Kp,, (Tikm = DB jkem(s, 1),
i=1 (f,m)EI,'jk
(26)

_Sjkll = Z Vijk Z Kbyj (Tij{’ - S)Khn( (Titm — t)Uijkfm
i=1 (Lm)el

Rijr10 = vju(s, DS jr1o — by, ——

+ > vig D, Ko, (Tije = 9)Ks, (Tim = DBjen(s, 1),
i=1 (&m)eTij
27)

FY i A jk - .
Vja_;Sjkll — by, a—tjsjkoz = Z Viji Z Ky, (Tije = $)Kb, (Tim = DUijktm

i=1 (Lmel

Rjkor — vjr(s, DS jror — b

+ Vi D, Ko, (Tije = Ky, (Tim = DBjon(s, ).
i=1 (6m)e ij
(28)

6.3.1. Uniform Convergence of S jigr, ¢, 7 €{0,1,2} and 0 < g +r <2

To begin, a result similar to Lemma 1 will be established, however the proof is much more involved. Specifically,
an analog of Lemma 1.1 of [30] is proved that is suitable for the quantities S i, in (23) that are not simply weighted
kernel density estimators.

Lemma 5. Let G| and G, be arbitrary cumulative distribution functions. Foranyn € N, let N;j e N,i € {1,...,n}, j€
{1,2}, be arbitrary and consider independent arrays of random variables T ; = { e €efl, ... Nl iedl,... ,n}} s
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where the elements of T are independent and identically distributed according to Gj, j € {1,2}. Furthermore, let v;,
iel{l,...,n}, be arbitrary constants and define wl =y 1V,N Np, w2 =yr,v IN le, and W = maxje(1 2) w;. Set

An(s,0) = X vi X3 S0 (Tie < )T < 1) = Gi(5)Ga(1)} . Then, for any € > 0,

=1
V2 2re? )
Pr{sup [A,(s, 1) > ea} < (3 + 3 27re N i]ee /288

s,teR 9
Proof: First, note that A, (s, 1) = A,o(s, 1) + A, (s, 1) + Ap(s, 1), where
n 11 12

Auo(s,0 = D i D D 1Tg < ) = G (W(Tam < 5) = Go(0),

i=1 (=1 m=1

n N
Ay (s, 1) = Ga(1) Z ViNp Z {1(Ti1e £ 5) = G1(9)},

i=1 =1
Aun(s,0) = Gi(s) Z viNi Z W(Top <0 = Ga0)).
m=1
As sup, |G ;(s)| = 1 for j € {1,2}, it follows immediately from Lemma 1.1 of [30] that, for any € > 0,
Pr{sup |5, 0| > ew,} (1+2V2re) e @8, je(1,2). (29)
To uniformly bound A, it will be established that, for any 4 > 0 and w = min je(1 2 W},

expAdsup A o(s, )| <1+ mAw + mdw (1 + mAw) Y (30)
E Asup|A,(s, 1) 1 + 64 V21w + 16 V27w (1 + 32 V2riw)
s,

Once established, (30) implies that, for any € > 0 and 1 = €(64w)~",

€19}

4 2

5v2 2
Pr {sup |A,0(s, 1)| > eg} < e [exp {/l sup A,o(s, t)}] < (1 + 4 + E]efz/lzg.
s,t 5,0

Together, (29) and (31) imply that

Pr{sup 1A, (s, 1) > ea} < Pr{sup |A0(s, 1) > —} ZPr{sup | A5, )] > —}
s,teR

2 2
(14 52re N 2re o288 o] 4 V2re T I P 3V2re N 2re €128
6 9 3 2 9
Thus, it remains only to prove (30).

Let (T}, T?) represent an independent copy of (T, T»), leading to A’ (s, ) in analogy to A (s, ?). Let e;1, and e,
iefl,...,n},€e{l,....,Ny},me{l,..., Np} denote independent and identically distributed Radamacher variables,
that is, Pr(e;; = 1) = Pr(ejiy = —1) = 1/2. By symmetry, simple calculations show that A,o(s,?) — A’ (s,1) 2
Yi(s,t) + Ya(s, 1), where equality of distribution holds at the process level and

n Np
Yi(s,0)= Y vi ), > {1Tue < )= 1T}, < OHUTin <0 = Ga(0) ene

i=1 (=1 m=1
n rl 12

Ya(s,0) = D\ vi ) D 1 Tag < ) = GiH 1Ty < 1) = UTh, < D) €.
i=1 =1 m=1
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Then, for A > 0, by applying Jensen’s inequality, the triangle inequality, and Cauchy-Schwarz,

E [eXp {ﬂ sup |[Ao(s, t)l}] <E (eXp {sup [Ano(s, 1) — A7 (s, t)I}) <E (GXp{/l sup [Y1(s, )|} exp{d sup Y2 (s, t)l})

12
< (E [exp {2/1 sup Y (s, t)I}] E [exp {2/1 sup |Y» (s, t)I}]) .

Next, define v;,(t) = v; Z {I(T,Zm < 1) — Gy(t)}, let NS " Ni1 and suppose that {Tm} , is a non-decreasing
ordering of T. If £/, i and ¢ are such that T, = Tj¢, set Vg/([) = vie(?) and ey = e;1¢. Then apphcatlons of Cauchy-

H

(32)

Schwarz and the triangle inequality, along with the fact that T} 2 T}, yield

I

Ni

Z Z viel@1(Ti1e < $)eire

p
[exp {2/1 sup | Y (s, t)I}] <E Z ve(Derr

st '€l NS}y o

exp {4/1 sup E |exp {4/1 max  sup

i=1 (=1 o=1
. S log(y)
=1+ Pr| max su ve(Deye| > dy.
fl‘ [["E{l ..... NS} zp ; e e 44 ] 7
(33)
Let 7 > 0. Then, by Levy’s inequality, applied conditionally on T,
[5 Nii Nip
Pr{ max sup ve(Derp| >np < 2Pr sup V; e (1 (Tppm < 1) — Ga(0)}| > 1] (34)
{ s o[ Sy e

To bound this probability, the moment generating function will again be bounded by symmetrization. Specifically, for
any 6 > 0, apply Jensen’s (conditionally on the e;;,) to obtain
H . (35)

5

Let NS 2ty Nip and let {T5,, }” _, be a non-decreasing ordering of T». Define v;,, = v; Z o2y eine and, if Topr = Tigm,
set v,’n = Vi, and e,y = ey Then, for any 7 > 0, another application of Levy’s inequality combined with Hoeffding’s
inequality yields

n

Nii Ni
Z Z Z L(Tiom < Deirceinm
i=1

=1 m=1

Nii Ni

szzzezw (LT < 1) = Go(0)

i=1 =1 m=

Elexp {6 sup E|exp {26 sup

n Ny Np m’
Pr{ sup 1(Tpm < Dejieenm| > ¢ = Pr|  max V€| >T
M) )
(36)
Nii Ni T2
< 2Pr[ ; Vi ;mz; ei1¢Ciom| > T] <4exp {—@}
Combining (35) and (36), it can be concluded that
n Ni Na o0 n Nii N log(y)
E exp 6sup Z Vi Z Z e (1T, <) —Go(b)} =1+ f Pr Sup Vl Z Z 1(Tpy < Dejreeiom| > d’y
! i=1 =1 m=1 1 i= =1 m=1

<l+ 85&[ P At < 1 + 86w V21X
0

where the change of variables log(y) = 26wt and the integral bound fow e e 2dx < V2me” 2 for r > 0 have been
used. Hence, for any > 0, setting ¢ = /4w yields the bound

Zvlzze,w W(Tom < 1) = Ga())
(37)

Nii Np

Z vi )0 et [M(Tom < 1) = Ga()]

i=1 =1 m=1

<l (1 +2n Vare /8) <(+2n V2m)e 18,

Pr sup

> nw] < e OUIE [exp {&u sup
=1 =1 m=1
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Returning to a bound for the first expectation in (33), (34) and (37) imply

E[exp {2/1 sup |Y; (s, t)IH <1+ 2f Pr{sup
st 1

<1+ 16w f (1+4V2mn)e* e 2dy < 1+ 164w [4 V2r + V2rr (1 + 3240 V2r) 21 |
1
<1+ 64 V21w + 16 V2mdw (1 + 32 V2rdw) 24,

where the change of variable log(y) = 84wt and the integral bound fooo xe™ e 2dx < 1+ r\2me”/? for r > 0 have
been used. By symmetry, the same bound applies to the term involving Y, in (32), so (30) follows. O

log(y) ] dy

Zv, Z Ze,w (T2 < 1) = Ga(0)]| > =

i=1 (=1 m=1

Lemma 6. Let G be an arbitrary cumulative distribution function. For any n € N, let N; € N, i € {1,...,n} be
arbitrary and consider an independent array of random variables T = {Tyy: € € {1,...,N;}, i € {1,...,n}}, whose
elements are independent and identically distributed according to G. Furthermore, let v;, i € {1,...,n}, be arbitrary
constants and define w* = o lN(N —1)%. Set B, (s, 1) = 2y Vi Z?’;l Somze 1 (Tie < )W(Tyy < t) G(s)G(1)} Then,
forany e > 0,

Pr(supIIB% (s, t)|>eu)) <1+2\/_e)

s,teR

Proof: The proof is similar to that of Lemma 5 and the details are omitted. O

Lemma 7. Suppose that assumptions Al and BI hold, and recall the definition of wjx in (7). Then, there exist
C1, Cy > 0 such that, for any € > 0, integers q,r € {0, 1,2} such that 0 < g+r <2and jk €{l,...,p},

Cob e }

Pr{|IS jegr(-+ ) = ELS jrgr G0l > €f < € exp{ W2
Jk

under an FR design and, under an SR design,

—Czb?,Ez
Pr{[I jugr (. #) = ELS juar(- N > e} < Crexp W

Proof: The proof under both designs will be shown for j # k; the case j = k follows similar, but simpler arguments.
Begin with the FR design. Standard derivations arising from application of Riemann-Stiltjes integration by parts

yield |8 jigr(, %) = E[S jugr (- #)

Ap(s, D) = X0 v S S {1(T,ﬂ < )W(Tij < 1) — Fi(s)F(t)} . and F is the cdf corresponding to f;. Thus, the
first inequality of the lemma follows from an application of Lemma 5.

In the case of an SR design, write S, and v; for the common values of S j,- and v; ;. Then
1S 4, ) = E(S oo || < Vb2 IBII, where B(s, 1) = X1y vi 23| st [1(Tie = )1(Ti — 1) — F($)F(1)] . The re-
sult then follows by applying Lemma 6. O

H < Vb, by || Al » where Vi is a constant depending only on the kernel K,

Lemma 8. Suppose assumptions Al, Bl, B2, and D3 hold. Define

S8, 1) = QoS jkoo — QjkrS jkro + QjiaS jrot»
and define wj and w as in (7). Then there exist Cy,Cy,n, N > 0 such that, foranyn > N and j,k € {1,...,p},
—Caob by, €
Pr inf  S§%(s,0) <np < Crexpy —5——
(s)ET Ty 7 a)?k

under an FR design and, under an SR design,

—Czbiez
inf S%(s,0) <np < Crexpd ———.
(s.eT? / w?
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Proof: The proof follows the same lines as the proof of Lemma 2, so only a sketch will be provided. Define
Suls1) = (E [$ o] B[S o] - E[$ jk”]z)E [ 00 = (B[S suo] £[S o] = E[S seor | E[S jear|) E [S 0]
+(E[S o] E[S jeur | = E[S juor | E[S jiao]) E[S o] -
First, one establishes that S (s, ) > 7/2(s)£3(f)~o(1) uniformly in j,k, s, and r, where T depends only on K. Then, by

.....

of the argument follows from uniform continuity and Lemma 7. O

Lemma 9. Suppose assumptions Al, Bl, B2, and D3 hold. Let Q jx, be as defined in (24), r € {0, 1,2}, and let w jx be
as in (7). Then there exist C1,Cy,C3 > 0 such that, for any € > 0, j,k e {1,...,p},andr € {0, 1,2},

—~Cyb2 b2 €
Pr(|||ij,|||j’k -C3 > e) <C exp{%
jk
under an FR design and, under an SR design,

—C2b462
Pr(|||ij,H|j’k -Cs > e) <C exp{w—;}.

Proof: Assumptions B2 and D3 imply that there is C3 such that || E(Q i) || ix < Cs. Apply Lemma 7. O
6.3.2. L? and Uniform Convergence of Numerator Terms

To derive the L? convergence rates in Section 4, preliminary concentration inequalities will be provided for the L2
norms of the quantities in (26)—(28). For (g, 7) € {(0,0), (1, 0), (0, 1)}, define T;; = {(Tijg, Tim) : (€,m) € Z',-jk} and

Tiie—s d Titm — t g
Wi (s, =vig Kb,,.(Ti,-f—@Kbyk(Tikm—t>( - ) ( | Uijeem (38)
(emyel Yi Yk

constant C by assumption B4, the term on the last line of each of (26)—(28) are bounded by a multjiple of S jkoo-

Lemma 10. Suppose that assumptions Al, Bl, B2, B4, and D1-D3 hold. Then there exist constants C and C, such
that, for any € > 0, (g, r) € {(0,0), (0, 1),(1,0)}, and j,k € {1,..., p},

n 2
—Czé
Pr E W&l >e gClexp{ }
k 17 _1—
[ e ik ] Gjkn + b3 bV e

Proof: As the proof follows the same logic as that of Lemma 3, the arguments will be sketched for the case g = r = 0.
For simplicity, write W;j for W?j(])(. First, under assumptions D1 and D2, it can be deduced that, conditionally on
Tij, the random variables Uj i, are sub-Exponential random variables with parameters bounded by some universal
constant p?> < oo depending only on 6 and ¢ in assumptions D1 and D2, respectively. Hence, using moment bounds
for sub-Exponential random variables, it can be concluded that, for any j, k, (s,1) € 7; X Ty, and v > 2,

v
E [|Wijk(5, l)|v |Tijk] < 2V!(2p2Vijk)V{ Z Ky, (Tije = $)Kp,, (Titm — t)} .
(&m)eT ;ji

2
Then assumptions Al, B1, and B2 imply that E [{Z({,m)e o Kbyj (Tije - s)Kbm (T — t)} ] < Cayjy, for some C, with

NijNi(by! + Nij = Db, + Ny = 1), J#k,
a;ix = j
KNG W = DBy 05! + Nij = 2) + Ny = 20! + Ny =3)}. j=k,
24



under an FR design, and a;x = a; under an SR design, where a; is the common value of a;;; across j in the above
display. Hence, applying Jensen’s inequality, there are universal constants B; and B, such that

S ElIwl] < 5 (Bz N7 ] B0
i=1 i=1

lemma is established for g = r = 0 For the other values, apply the same arguments to the kernel K@) =uK@w). O

Lemma 11. Suppose that assumptions Al, Bl, B2, and D1-D3 hold. Then there exist constants Cy,Cp,C3 > 0 such
that, for any € > 0, and j k€ {1,...,p},

Zvuk Z |Uljk(’m| - [lUuk{’ml]) >eb < Cy exp{ —C262 }

i=1 (Lm)eT jji Zzl ,Jku-ljkl +vl‘tjk6

Proof. The proof follows the same lines as the proof of Lemma 4, using the fact that each of Ujjis, are, conditionally
on T;j, sub-Exponential random variables due to assumptions D1 and D2. The details are omitted. O

6.4. Proofs of Results in Section 4

Proof of Theorem 3: The proof applies the same logic as the proof of Theorem 1, but using Lemmas 7-10 that are
relevant for covariance estimation rather than the corresponding Lemmas 1-3 that are for mean estimation. Due to the
similarities, step-by-step derivations of the bounds obtained below will not be provided. As for mean estimation, the
proof will be given for an FR design, noting that the same arguments can be followed under an SR design with weaker
conditions on the bandwidth as in assumption D3 since S j, do not depend on j, k. Let C;, C,, C3 be sufficiently large
so that lim sup,,_,., Max jke(i,... p) H|E [S jxoo0] “l xS C3 and Lemmas 8-10 hold simultaneously. Let w j be as defined in
(7), and S ]k(s 1), n be as in Lemma 8. Recalhng the expression of (s, 1) — yi(s, ?) in (25), first apply Lemma 8 to
conclude that, forn > N,

2—Cor*{log(p) max jkep1....p) by by w
Pr {]k;?l{'r_}! Sh(s, D) < n} <Cip { , ”}
1
,,,,, p{infnerr, S 5 (s, n}" = 0p(1). Similarly, Lemma 9 implies that, with Qj,
as in (24), max e(1.... p) |||ij,|||];k = Op(1), r € {0,1,2}. Hence, the rate is determined by that of the terms in (26)—(28).
Applying Lemma 10, for any nonnegative integers ¢ and r such that 0 < g +r < 1, and any R > 0,

so that, by assumption D3, max ;¢

CyR?

Pr (j kg{llax }HWZ;H,/( > R{log(p)}'/2 ]kn{llé,l,)f, [C]jkn + {log(l’)}l/zbylbw ank]) <C\pr TR,

Lemma 7 along with the bound ||S jkoo“j,k <B |”S J'k00“|j,k for a universal constant B implies that, for any R > 0,

(||S,koo||,k (T34 2C5) > Rilog(p)}'/? max by b, w,k] < Cp R,

Since |||B ikem |||j ¢ < Cby by, for a universal constant C, the proof is complete upon observing that

Tije =\ ( Titm — *\’
i *)+Zv,,k >, Kby,(m—‘>Kbyk(Tikm—*>( 3 )( " )Bjkzmc,*)

=1 (&m)el ijx Yi Yk

Jk

172
= b2 1 ” 1 ik |-
Op (,J{I?ffp} T [{ Og(p)q,m} +log(p)b, ' bV, ,k])
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Proofs of Corollary 7-9: The proofs are similar to those of Corollaries 1-3 and are omitted. O

Proof of Theorem 4: The proof is similar to that of Theorem 2, so only the details will be sketched. First, as in
the proof of Theorem 3, it can be established that, with S*k as defined in Lemma 8 and Q j, as defined in (24) for

r € {0,1,2), almost surely, max jxe(1....p) {inf(snerr S % (s, z)} = O(1) and max jeqt....p) [| Qi = O(1). Tt then
follows from (25)—(28) that, almost surely,
Z Wi ) . (39)

Next, letting x j(6) represent an equally spaced grid of 7; with spacing no larger than ¢ > 0, set y x(6) = x;(6) X
X(6) such that |y 4 ()| < L&7? for some universal constant L. Then, for any nonnegative integers ¢, r with g + r < 1,

Woo
GkelLnn jellompy VT kel ijk ”k

max Hb’,k )’ka]k—O max b2 + maxp}[
Jik

n

z W
ijk
Jik

n

Z W (s.1)| +
i=1

Then, with a,(6) = maxe(1,....p) [qjkn {log(po~ Y 2bﬂylbw1 YV, Jk] using the arguments of Lemma 10, it can be shown

that, for any R > 0, there exist universal constants C| and C, such that

n

D Wi, = Wi’ )

i=1

< max

su
(s,0€x jx(9) P

|s—5'|,|t—t'|<S

i=1

n

TG

2
> R{log(po)]” an(é)} < Cy(ps) R

whence
n

D Wi (s 0| =
i=1

almost surely by Borel-Cantelli, where « satisfies assumption D4. In addition, using assumption A2 and Lemma 11,
it follows that

max max
Jokell,....p} (s,H€x jk(n™®)

1/2
0| floztp v mazen)"” + 0o v mb 155, (40)

n

PR ACHEN CACRANE
i=1

almost surely. Applying 6 = n™%, @ satisfying assumption D4, to (39)—(41) proves the result.

max max
JkelL,....p} Is=s"Llt=t'|<6

(5 max_b;’ ) (1)

JetL,....p}

Proofs of Corollaries 10-12: The proofs are similar to those of Corollaries 7-9, and are omitted.
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