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Abstract
Data produced by resting-state functional Magnetic Resonance Imaging are widely used to infer brain functional connectivity
networks. Such networks correlate neural signals to connect brain regions, which consist in groups of dependent voxels.
Previous work has focused on aggregating data across voxels within predefined regions. However, the presence of within-
region correlations has noticeable impacts on inter-regional correlation detection, and thus edge identification. To alleviate
them, we propose to leverage techniques from the large-scale correlation screening literature, and derive simple and practical
characterizations of the mean number of correlation discoveries that flexibly incorporate intra-regional dependence structures.
A connectivity network inference framework is then presented. First, inter-regional correlation distributions are estimated.
Then, correlation thresholds that can be tailored to one’s application are constructed for each edge. Finally, the proposed
framework is implemented on synthetic and real-world datasets. This novel approach for handling arbitrary intra-regional
correlation is shown to limit false positives while improving true positive rates.

Keywords Brain functional connectivity · Correlation screening · Correlation threshold · Network inference · Rs-fMRI

1 Introduction

Large-scale network inference is a problem inherent to
numerous fields, including gene regulatory networks, spa-
tial data studies, and brain imaging. This work is motivated
by an application to resting-state brain functional connec-
tivity networks of single subjects. Such networks connect
together correlated brain regions, which consist in groups
of dependent voxels. These networks are key to providing
insights into the diseased or injured brain (Achard et al 2012;
Richiardi et al 2013; Malagurski et al 2019). In this paper,
the terms region and group will be used interchangeably, the
former being associated with the motivating application, and
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the second with other data sources of similar structure to
which the proposed methods also apply.

The goal of this work is to infer a binary network where
nodes correspond to regions and edges are present only
between nodes that are sufficiently highly correlated. The
challenge is two-fold: not only does dependence between
voxels within a region impact inter-regional correlation esti-
mation, but it also affects inter-regional correlation threshold
estimation, and thus edge detection.We propose a correlation
screening approach, and tackle the problem of reliable large-
scale correlation discovery between two groups of arbitrarily
dependent variables.

In the context of brain functional connectivity, networks
are often constructed from functional Magnetic Resonance
Imaging (fMRI) data by spatially aggregating blood-oxygen-
level-dependent (BOLD) time series within predefined brain
regions, e.g., Fallani et al (2014). However, this may lead
to overestimation of the inter-regional correlation, or inter-
correlation for brevity (e.g., Halliwell 1962), and hence
incorrect edge detection. We propose a novel network infer-
ence framework that leverages, for each pair of regions, inter-
correlation distributions instead of aggregation. To obtain the
associated binary network we then present a thresholding
step based on correlation screening. Existing approaches typ-
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ically assume variables are independent within their region.
Yet, as detailed in this work, any violation of this assump-
tion markedly impacts inter-correlation discovery, i.e., when
the sample inter-correlation coefficient is greater than a given
threshold.Aswill be showcased later, high intra-regional cor-
relation, or intra-correlation for brevity, which corresponds
to settings with homogeneous regions, leads to lowered true
positive rates (TPR).On the other hand, low intra-correlation,
a characteristic of inhomogeneous regions, leads to increased
false positive rates (FPR). In Hero and Rajaratnam (2011), a
theoretical framework that accounts for arbitrary dependence
is presented. Their approach is nevertheless very difficult to
implement in practice and their empirical evaluation only
covers the cases of independence or sparse dependence. We
hence introduce simple and practical expressions to char-
acterize the number of discoveries that flexibly incorporate
dependence structures. These can then be employed to find
a correlation threshold per pair of regions that improves true
discovery rates under dependence, while limiting the number
of false discoveries. The main steps of the proposed pipeline
are depicted in Fig. 1 and are presented in Sects. 3, 4 and
5. We illustrate our work on synthetic data throughout this
paper and demonstrate the effectiveness of our framework on
synthetic and real-world brain rat imaging datasets in Sect. 6.

2 Preliminaries

In this section, we define the data model and its parameters
that will be used in the rest of this paper.

2.1 Correlation coefficients

Let a and b be indices of two regions or groups consisting of
pa and pb random variables, respectively. Denote byRa the
set of variables in region a and Xa

i the i th random variable
in Ra . Assume n independent samples of Xa

i are available
and define the corresponding vectorXa

i = [Xa
i,1, . . . , X

a
i,n]T .

Rb, Xb
j and Xb

j are similarly defined. As an illustration, in
the context of brain functional connectivity, Xa

i corresponds
to voxel i of brain region a, which is associated with an fMRI
BOLD signal time series with n time points. We define intra-
correlation as the Pearson correlation between each pair of
random variables within a given region. Inter-correlation is
the Pearson correlation between pairs of random variables
from two different regions.

Let ρ
a,b
i j denote the true population inter-correlation

coefficient between Xa
i and Xb

j . For a �= b, define the corre-

sponding sample inter-correlation coefficient

Ra,b
i, j =

∑n
k=1(X

a
i,k − Xa

i )(X
b
j,k − Xb

j )
√∑n

k=1(X
a
i,k − Xa

i )
2
∑n

k=1(X
b
j,k − Xb

j )
2
, (1)

with Xa
i , X

b
j the sample means. Denote the probability den-

sity, cumulative distribution, and quantile functions of Ra,b
i, j

by fRa,b
i, j
, FRa,b

i, j
, and F−1

Ra,b
i, j

, respectively. Population and sam-

ple intra-correlation coefficients and their distributions can
analogously be defined by choosing b = a. Asymptotic
closed-form expressions of the density of correlation can be
obtained for Gaussian independently identically distributed
(i.i.d.) variables Xa

i , X
b
j (Muirhead 2005). Note however that

this work aims to tackle arbitrary dependence between vari-
ables, and in this context, to the best of our knowledge, such
explicit formulas have not been derived without defining a
parametric dependence structure.

In most of this paper, and for ease of calculation, we
assume the joint distribution of pairs of voxels i, j from a
fixed regionpaira, b are identically distributed. In such cases,
the sample inter-correlation coefficients Ra,b

i, j are identically
distributed, and the i, j subscriptswill be dropped, thoughwe
emphasize that independence within regions is not assumed.

2.2 Synthetic data examples

We illustrate the different concepts introduced in this paper
with data simulated as follows. We consider two regions a
and b, both containing p intra-correlated variables following
a multivariate normal distribution with a predefined Toeplitz
covariance structure. n independent samples of each of these
p variables are generated. We hence obtain data with a block
diagonal covariancematrix of size 2p×2p, where each block
corresponds to each region. The off-diagonal blocks corre-
spond to the inter-correlation coefficients, which are set to
be constant across all pairs of voxels. The diagonal blocks
correspond to the intra-correlation coefficients, which follow
a Toeplitz dependence structure.

3 Inter-correlation estimation

3.1 Related work

Previous works on the estimation of inter-correlations have
mostly focused on aggregating variables within predefined
regions (Fallani et al 2014; Dadi et al 2019). In the con-
text of brain functional connectivity network inference, some
prefer techniques based on independent component analysis
(ICA) (Calhoun et al 2012), while most focus on summa-
rizing all voxels within predefined brain regions by their
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Fig. 1 Main steps of our proposed network inference pipeline. Each circle corresponds to a group of variables (represented by crosses). The sample
inter-correlation estimation and thresholding steps are detailed for a pair of regions. Some edges were left out to improve readability

average, e.g., Achard et al (2012), Achard et al (2006);
Di Martino et al (2014) and Malagurski et al (2019). How-
ever, such approaches suffer from loss of relevant information
and can lead to statistical inconsistency and incorrect corre-
lation estimation (Ostroff 1993). In particular, the estimate
of the average of weakly correlated time series, which corre-
sponds to samples of a single variable in our data model, is
poor (Wigley et al 1984). Additionally, it has been observed
on small samples that the correlation of averages is differ-
ent than the average of correlations (Dunlap et al 1983).
This phenomenon can also be easily checked with arbitrary
large samples. Furthermore, correlation of averages were
empirically observed to overestimate the true correlation
(Halliwell 1962; Achard et al 2011). Therefore, when cor-
relating regional averages for binary network inference, one
will tend to identify spurious edges. Some previous works
attempted to improve false positive rate control utilizingmul-
tiple testing approaches (Drton and Perlman 2007). However,
in the context of arbitrary dependence structures, such meth-
ods cannot be straightforwardly applied. One alternative to
aggregation is to measure the similarity, such as the Wasser-
stein distance or covariance (Petersen and Müller 2019)
between intra-correlation densities. However, this approach
is not equivalent to that of the Pearson correlation. Indeed,
while the Wasserstein distance may provide a first intuition
about how regions are connected, it does not capture as much
information about the relationship between the two regions
as inter-correlations do.

3.2 On the impact of intra-correlation on
inter-correlation estimation and detection

We first illustrate how intra-correlation affects the sample
inter-correlation distribution in a simplified scenario, before
considering a more general case. It has been known for some
time in familial data studies that intra-correlations impact

inter-correlation estimation (Rosner et al 1977; Donner and
Eliasziw1991). In themultivariate normal case, andunder the
assumption of within-group homoscedasticity, the asymp-
totic variance of the maximum-likelihood estimator of the
inter-correlation, denoted as Ra,b

MLE, was derived by Elston
(1975). This estimator showcases similar behavior to the
voxel-to-voxel sample inter-correlation coefficients Ra,b

i, j and
will help provide us with a first intuition about the impact
of intra-correlation. We need to assume all variables Xa

i , X
b
j

have the same true inter-correlationρa,b and intra-correlation
ρa,a andρb,b. This amounts to saying sample intra- and inter-
correlation coefficients are identically distributedwithin their
corresponding group, or pair of groups, respectively. Under
these assumptions, and according to Elston (1975), the vari-
ance of the maximum-likelihood estimator is:

Var(Ra,b
MLE) = 1

n

[

(ρa,b)2 − 1

pa
[1 + (pa − 1)ρa,a]

]

×
[

(ρa,b)2 − 1

pb
[1 + (pb − 1)ρb,b]

]

+ (ρa,b)2

2n

[
pa − 1

pa
(1 − ρa,a)2

+ pb − 1

pb
(1 − ρb,b)2

]

(2)

The expression in (2) shows that the variance of the sam-
ple inter-correlation coefficient explicitly depends on the true
intra-correlation coefficientsρa,a andρb,b.When the number
of samples n is sufficiently large, the inter-correlation vari-
ance in the multivariate normal case hence increases when
intra-correlation decreases. This observation implies that for
a fixed threshold that does not depend on regional depen-
dency structures, more false positive correlations are likely
to be discovered.
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This intuition is illustrated in the left hand-side of Fig. 2
where the true inter-correlation is zero and no positive cor-
relations are expected to be discovered. Conversely, for
the same fixed threshold, when the true inter-correlation
is positive (cf. right hand-side of Fig. 2), increased intra-
correlations, which lead to lower inter-correlation variance,
may lead to decreased number of true positives. This phe-
nomenon is observed regardless of the number of time points
or variables (cf. supplementary materials).

In fact, the impact that intra-correlation distributions have
on the spatial average of sample inter-correlations can be
quantified even without any distributional assumptions. The
following result shows that, when the intra-correlation densi-
ties of two regions a and b are highly dissimilar, as quantified
by a largeWasserstein distance, the average inter-correlation
is upper-bounded. In particular, this phenomenon is by no
means limited to the Gaussian case. We recall here the def-
inition of the Wasserstein distance between two correlation
densities (Petersen and Müller 2019; Panaretos and Zemel
2019): d2W ( fRa,a , fRb,b ) = ∫ 1

0 [F−1
Ra,a (c) − F−1

Rb,b(c)]2dc. The
full proof is available in “Appendix A”.

Proposition 1 For any regions a, b with pa, pb voxels,
respectively, and Ra,Rb the corresponding voxel sets,
if there exists A ∈ R

+ such that d2W ( fRa,a , fRb,b ) ≥
min

c∈[0,1]

(
F−1
Ra,a (c) − F−1

Rb,b(c)
)2 ≥ A, then, Ra,b = 1

pa pb

∑

i∈Ra
∑

j∈Rb

Ra,b
i, j ≤ 1 −

√
A
2 .

3.3 Proposed approach: inter-correlation
distribution estimation

Aspreviously discussed, aggregatingvariableswithin regions
to estimate inter-correlation leads to loss of information and
incorrect edge detection during the binary network infer-
ence step. We have also brought to light the importance
of taking intra-correlation into account when manipulat-
ing inter-correlations. In addition, all the previously cited
approaches that aim to infer a binary networkwhere nodes are
groups of variables only provide a single correlation thresh-
old to be applied to all pairs of regions. In this paper, we
propose to derive a correlation threshold specific to each pair
of regions to better harness the particularities of the regional
dependence structures. Instead of averaging variables within
regions, we hence propose to estimate the distribution of cor-
relations measured between all pairs of variables from two
different regions. We then obtain an inter-correlation distri-
bution per pair of region, which then needs to be thresholded.
To that end, we propose to leverage correlation screening.
In that paradigm, an edge is said to be detected in the
associated binary graph if a sufficient number of sample inter-
correlation coefficients of the corresponding pair of regions

are large enough. In the following sections, we derive sim-
plified expressions of the number of discoveries to propose
a reliable method to threshold these inter-correlation distri-
butions.

4 Characterization of the number of
discoveries under dependence

Correlation screening (Hero and Rajaratnam 2011), or inde-
pendence screening (Fan and Lv 2008), is often used in
variable or feature selection problems. In such approaches,
the goal is to discover sufficiently highly correlated variables.
A practical method consists in defining a correlation thresh-
old, abovewhich correlation coefficients, and their associated
variables, are said to be detected or discovered. Nonetheless,
in high dimension, such approaches may suffer from a high
number of false discoveries. In Hero and Rajaratnam (2011),
the authors aim to mitigate this issue in the following way.
They first propose the following maximum-based definition
of the number of discoveries, pertaining to inter-correlation
coefficients, with φab

i j (ρ) = 1(|Ra,b
i, j | > ρ) for all voxels i, j

in regions a, b and correlation threshold ρ ∈ [0, 1]:

Nab(ρ) =
pa∑

i=1

max
j=1,...,pb

φab
i j (ρ). (3)

The authors provide aswell an approximation of the expected
number of discoveries E[Nab] that depends on the number
of variables p, the number of samples n and a function of the
joint distribution of a transformation of the variables. Then
they employ the derived formula to compute critical threshold
values based on a phase transition approach. Furthermore, the
expected number of discoveries is used to control the num-
ber of false discoveries. It is then all the more essential to
have an expression of the number of discoveries that is both
interpretable and can easily be theoretically and empirically
utilized. However, the expression for E[Nab] derived inHero
andRajaratnam (2011), which depends on joint distributions,
is difficult to compute, especially for single subject analysis
where we have access to only a single sample of each sig-
nal. We hence provide simplified explicit expressions of the
mean number of discoveries that still harness information
contained in the intra-correlation distributions.

4.1 Maximum-based expression: Nab

Empirically, intra-correlation has an impact on Nab and its
average (cf. Fig. 3, left). Indeed, for a given inter-correlation
threshold, the smaller the intra-correlations, the larger the
number of discoveries. This is in accordance with the obser-
vations from Fig. 2. Additionally, we can remark that in this
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Fig. 2 Effect of intra-correlation on sample inter-correlation distribu-
tion, for different population inter-correlation values. The correlation
samples were computed between all pairs of variables from two groups.
Each group contains n = 150 samples of p = 500 intra-correlated

random variables following a multivariate normal distribution with
Toeplitz intra-correlation (cf. Sect. 2.2). We can note the higher the
intra-correlation, the lower the variance of the inter-correlation distri-
bution

example the true inter-correlation is zero. Thus any discovery
is a false positive. As the intra-correlation increases, a lower
correlation threshold is then sufficient to maintain similar
levels of false discoveries.

From (3), we can also conclude that for any ρ ∈ [0, 1],

E[Nab(ρ)] =
pa∑

i=1

(

1 − F|Ra,b
i,1 |,...,|Ra,b

i,pb
|(ρ, . . . , ρ)

)

, (4)

with F|Ra,b
i,1 |,...,|Ra,b

i,pb
| the joint distribution of the absolute val-

ues of the corresponding correlation coefficients, which will
inherently take into account dependence structures between
the inter-correlation coefficients. However, joint distribu-
tions are complicated to estimate and manipulate. Let ν̃ab =
E[Nab]/pa . We then propose an approximate expression
of ν̃ab, denoted by νab, that depends on the distribution of
inter-correlations, and that is exact under some particular
assumptions (cf. “Appendix C”):

νab(ρ) = 1 − F|Ra,b|(ρ)pb , ρ ∈ [0, 1]. (5)

We can also derive the following inequality.

Proposition 2 Consider two regions a and b and a correla-
tion threshold ρ ∈ [0, 1]. If all variables Xa

i and Xb
j in both

regions follow a normal distribution and their sample inter-
correlation coefficients are identically distributed, then for
sufficiently large n,

νab(ρ) ≥ ν̃ab(ρ) (6)

Proof As defined in Lehmann (1966), the random variables
T1, T2, . . . , Tp are Positively Quadrant Dependent (PQD) if
for any positive number t1, t2, . . . , tp,

P

( p⋂

k=1

Tk ≤ tk

)

≥
p∏

k=1

P (Tk ≤ tk) . (7)

Under the assumption Xa
i , X

b
j are normal for all i, j ,

the distribution of their sample correlation coefficients Ra,b
i, j

is asymptotically normal, e.g., Ruben (1966); Hotelling
(1953). Hence, according to Theorem 1 in Šidák (1967),
when n is large enough, |Ra,b

i, j | are PQD. We can then note

that equation (7) is equivalent to E
[∏p

k=1 1(|Tk | ≤ tk)
] ≥

∏p
k=1 E[1(|Tk | ≤ tk)]. Under the assumption the sample

correlation coefficients are identically distributed, and set-
ting tk = ρ and Tk = Ra,b for all variables, we can thus
write:

pa · νab(ρ) =
pa∑

i=1

⎛

⎝1 −
pb∏

j=1

E[1(|Ra,b| ≤ ρ)]
⎞

⎠

≥
pa∑

i=1

⎛

⎝1 − E

⎡

⎣
pb∏

j=1

1(|Ra,b| ≤ ρ)

⎤

⎦

⎞

⎠

= E[Nab(ρ)] = pa · ν̃ab(ρ).

This concludes the proof. ��
This result ensures νab will provide thresholds that

are at least as conservative as that of ν̃ab. Moreover, the
assumptions needed in Proposition 2 are often reasonable in
practice—and notably in functional brain connectivity appli-
cations where the signals associated with each voxel can
appropriately be transformed (Whitcher et al 2000). In addi-
tion, νab can be estimated by ν̂ab(ρ) = 1 − F̂|Ra,b|(ρ)pb ,

where F̂|Ra,b|(ρ) = 1
pb pa

∑pa
i=1

∑pb
j=1 1(|Ra,b

i, j | ≤ ρ) is the

empirical cumulative distribution function (ecdf) of |Ra,b|.
The result stated above can then be empirically observed in
Fig. 4. The curve of ν̂ab as a function of thresholds is also
particularly close to that of the empirical values of ν̃ab as
long as both the inter-correlation and the intra-correlation of
region b are not too high. ν̂ab provides hence an approxi-
mation for the normalized expected number of discoveries
that is easier to compute, while still accounting for the inter-
correlation distribution.Moreover, in practice, the ecdf of the
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Fig. 3 Normalized number of discoveries, Nab/pa (Left) and
Nab
e /pa pb (Right) as a function of the inter-correlation threshold for

data simulated as described in Sect. 2.2, with pa = pb = 500, n = 150,
true inter-correlation ρab = 0 and Toeplitz intra-correlation with vary-
ing minimal intra-correlations. For each of the four intra-correlation

values, 50 datasets were simulated and used to compute the number
of discoveries (the colored curves), and their average (the black dot-
ted curves). Nab/pa decreases as the intra-correlation increases, while
Nab
e /pa pb does not seem to bemuch impacted on average, even though

its variability seems to increase with the intra-correlation value

inter-correlation coefficients can be shown to depend on the
intra-correlation structure (Azriel and Schwartzman 2014)
and hence allows us to account for it.

4.2 Sum-based expression: Nab
e

We now present another, and more intuitive, way to charac-
terize the number of discoveries Nab

e (Hero and Rajaratnam
2011). It represents the total number of discoveries and will
enable us to propose less conservative thresholds:

Nab
e (ρ) =

pa∑

i=1

pb∑

j=1

φab
i j (ρ), ρ ∈ [0, 1]. (8)

However, it is not straightforward to derive a critical
correlation threshold from this expression. We propose the
simplified expression below:

ν̂abe (ρ) = 1 − F̂|Ra,b|(ρ), ρ ∈ [0, 1]. (9)

We can also remark in Fig. 4 that ν̂abe and Nab
e /pa pb look

indistinguishable.

4.3 Link between Nab
e and Nab

Wehave presented so far twoways to characterize the number
of discoveries. We will now discuss how they relate to one
another. We can remark the following inequality.

Proposition 3 For all ρ ∈ [0, 1],

ν̂abe (ρ) ≤ ν̂ab(ρ). (10)

The proof is straightforward and can be found in “Appendix
B”. This result can notably be observed in Fig. 4. Thus ν̂ab

is more conservative than ν̂abe , which in some circumstances
may be desirable. Nonetheless, when the inter-correlation is

zero we expect no discoveries. In this case, a critical cor-
relation threshold can hence be defined as the minimum
correlation such that the number of discoveries is zero. In
such cases, using ν̂abe then seems to be preferable, since it
provides a lower correlation threshold for a similar number
of false discoveries.

5 Correlation threshold definition

Now we have better characterized the number of discover-
ies, we can use it to construct correlation thresholds tailored
to one’s data and that ensure, to a certain extent, a restricted
number of false discoveries and improved number of true dis-
coveries. We present in this section two possible correlation
threshold definition approaches. The idea behind correla-
tion threshold definition is to ensure that it is very unlikely
for any discovery to correspond to a correlation value that
could have happened at random. This amounts to a setting
where the true inter-correlation is zero, whichmay not be true
in practice. Surrogate data defined such that the population
inter-correlation is zero can hence be utilized to estimate the
correlation thresholds.We denote F̂−1

0,|Ra,b| the corresponding
quantile function.

5.1 FWER-based threshold

Correlation thresholds with family-wise error rate (FWER)
theoretical control can be derived for specific dependence
structures. These approaches control the probability of mak-
ing at least one false discovery. Analogously to Proposition
2 in Hero and Rajaratnam (2011), it can be shown, under a
weak dependence condition, that Nab

e converges to a Poisson
random variable when pa, pb → ∞ and P(Nab

e > 0) →
1 − exp

(−E[Nab
e ]). Our proposed expression ν̂abe can then

be used to compute correlation thresholds ρab
α that guaran-
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tee a FWER at level α. Nevertheless, the weak dependence
assumption upon which this approach hinges is often not
reasonable in practice.

5.2 Quantile-based threshold

The correlation threshold can also be defined such that the
False Positive Rate (FPR) is guaranteed to be less than a
given level α. The FPR is the ratio between the number of
false positives (FP) and the total number of ground truth neg-
atives, that is pa · pb in the ρab = 0 case. Controlling the
FPR at level α is thus equivalent to ensuring the number of
discoveries is less than FP = α · pa · pb. Since in our set-
ting (ρab = 0) any discovery is a false positive, we can set
ν̂abe · pa · pb = α · pa · pb, which leads to the threshold
ρab
q,α = F̂−1

0,|Ra,b|(1−α). We can remark that when α = 0, the
chosen threshold is larger than any of the observed absolute
correlations, ensuring there will be no discoveries. Addition-
ally, this threshold will depend on the intra-correlation, as
does the ecdf (Azriel and Schwartzman 2014). We can also
remark this threshold guarantees a FWER at level α = 0
under the previous weak dependence assumption. ν̂ab can
also be used to similarly derive a critical threshold, although
stringent conditions on the region sizes would then need to
be verified when α �= 0.

5.3 Numerical results

We compare in Fig. 5 the two correlation thresholds defined
above with two other approaches: the critical thresholds
ρhero obtained in Hero and Rajaratnam (2011), and a sim-
ple method where the threshold is set to ρab

poli = μ̂ab
0 + σ̂ ab

0

where μ̂ab
0 and σ̂ ab

0 are the sample mean and standard devi-
ation of the sample inter-correlation of the surrogate data
(Poli et al 2015). We observe that, when intra-correlation is
lower than 0.5, both our proposed approaches provide similar
thresholds to Hero and Rajaratnam (2011). Nonetheless, our
FWER- and quantile-based methods provide less conserva-
tive thresholds when the intra-correlation is high. The lower
thresholds imply an increase in the true positive rate. We can
note as well that ρab

poli is lower than all three other thresholds
for all intra-correlation values, which could lead to a large
number of false discoveries, as will be shown in the next sec-
tion. It is also decreasing when intra-correlation increases in
accordance with the observations about the effect of intra-
correlation on the distribution of sample inter-correlation in
Sect. 3.

6 Network inference results

In this sectionwe provide an illustration of our network infer-
ence approach on synthetic and real-world data and compare
it to several methods.

6.1 Comparison to other methods

As mentioned in Sect. 3.1, most single-subject fMRI stud-
ies that use anatomical parcellations estimate the inter-
correlation by computing the correlation coefficient between
spatial regional averages of the signals. We will refer to
the correlation of averages approach by CA and our pro-
posed correlation screening method by CS. Various methods
can then be employed to define the correlation thresholds.
They usually belong to either of these two paradigms: (i)
relative thresholding, that is, estimation of the binary net-
work by extracting a fixed proportion of edges, e.g., van den
Heuvel et al (2017), and (ii) absolute thresholdingwhere one
chooses, more or less arbitrarily, a fixed threshold that will
be applied to all edges—as opposed to our proposed edge-
specific thresholds. These two approaches are implemented
in several popular packages, such as the Brain Connectivity
toolbox (Rubinov and Sporns 2010) and CONN (Whitfield-
Gabrieli and Nieto-Castanon 2012), with little guidance on
the choice of threshold.Relative thresholdswill always detect
the same proportion of edges regardless of the true inter-
correlation value, and as such can be disregarded in thiswork.
Both the thresholds proposed byHero andRajaratnam (2011)
and Poli et al (2015) are absolute thresholds. The latter was
used in Boschi et al (2021) to threshold CA-based functional
connectivity. In Becq et al (2020b), the authors apply to all
edges of a CA-based functional connectivity network a fixed
threshold ρbecq determined according to a multiple testing
approach (see “Appendix G” of their work for more details).
In practice, the values of ρbecq are close to that of ρhero.
The thresholds ρab

poli , ρ
ab
α and ρab

q,α are estimated using sur-
rogate data where the true inter-correlation is zero and the
intra-correlation is constant and equal to the average sample
intra-correlation.

6.2 Synthetic data results

We generated synthetic datasets with ten inter-connected
regions. For each dataset, 10 regions are simultaneously sim-
ulated, each region containing p = 150 intra-correlated
variables following a multivariate normal distribution. 100
independent samples of each of these variables are obtained.
For each region, a Toeplitz intra-correlation is used with the
same minimal intra-correlation value across all ten regions.
There are 41 true positive (constant true inter-correlation
ρab = 0.2) and 4 true negative edges (constant inter-
correlation ρab = 0) in the ground-truth network. The
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Fig. 5 Comparison of different
critical thresholds for 50
replicates of data simulated as
described in Sect. 2.2 with
p = 150, n = 100, ρa,b = 0
and varying constant
intra-correlation values. The
FWER- and quantile-based
thresholds ρab

α were computed
for α = 0

different simulation parameters are chosen to ensure the
population covariance matrix of the ten regions is positive
semidefinite. To identify the edges of the binary network, the
pairwise thresholds are applied to the corresponding distri-
butions of the absolute value of the sample inter-correlation.
In particular, pairs of regions where the inter-correlation is
larger than the threshold with a probability at most 0.05 are
not identified as edges.

Table 1 displays the false positive and true positive rates
(FPR and TPR, respectively) of the different methods, for
varying minimal intra-correlation values. The FPR and TPR
are defined as follows: FPR = FP/(FP+TN) and TPR =
TP/(TP+FN). FN stands for false negatives (i.e., an edge is
undetected when it actually exists). FPR is expected to be
close to 0 and TPR to 1. Results in Table 1 showcase that, as
expected from the previous section, using ρab

poli leads to high
FPRs,whileρhero andρbecq lead to decreasing TPRs as intra-
correlation increases. Additionally, while the FPR is slightly
increased, correlation screening methods with FWER- or
quantile-based thresholds markedly improve the TPR when
the intra-correlation is high, and should be preferred in that
case. Indeed, when intra-correlation is 0.9 all other meth-
ods (except CS + ρab

poli ) have a TPR close to zero, while the
FWER- and quantile-based thresholds have a TPR close to
0.7. The CS+ρab

poli method displays a FPR of 1 for all intra-
correlation values and should thus to be avoided. Since the
FWER- and quantile-based thresholds are empirically equiv-
alent, from now on we will be using ρab

q,α=0, which, unlike

ρab
α=0, has a theoretical control over false positives that is

valid for any dependence structure.

6.3 Real-world data results

We applied our framework on functional Magnetic Reso-
nance Imaging (fMRI) data acquired on both dead and live
rats, anesthetized using Isoflurane (Becq et al 2020a, b). The

datasets are freely available at https://dx.doi.org/10.5281/
zenodo.7254133. The scanning duration was 30 min with
a time repetition of 0.5 s so that 3600 time points were
acquired. After preprocessing as explained in Becq et al
(2020b), based on an anatomical atlas, 51 groups of time
series, corresponding to the rat brain regions, were extracted
for each rat. Due to insufficient signal, four regions were
excluded. Each time series captures the functioning of a
given voxel. The dead rats provide experimental data where
the ground-truth network is empty. Indeed, no legitimate
functional activity should be detected, whereas for the live
rat under anesthetic, we expect non-empty graphs as brain
activity keeps on during anesthesia. We can note that no
ground-truth is available for the live rat networks. Sample
inter-correlation distributions of a pair of regions from a dead
and a live rat are available in the supplementarymaterials (cf.
Figure S3). The thresholding pipeline corresponding to our
proposed CS + ρab

q,α=0 approach on a pair of regions of a live
rat is illustrated in Fig. 6.

As expected, the networks of the dead rats estimated using
our proposed correlation screening method are empty, i.e. it
does not detect any false positive edges, with the exception
of one edge in one rat. However, the CA + ρab

poli approach
(Boschi et al 2021; Poli et al 2015) detects over 300 false
positive edges, and Becq et al (2020b) (later denoted B2020)
detect between one and four false positive edges (cf. Table
2). While our approach is more conservative than the other
two, important edges are still detected in the live rats, mainly
in motor regions (M1 and M2) and somatosensory regions
(S1 and S2), as shown for instance in Fig. 7.

7 Discussion

Wehave presented a novel approach to infer connectivity net-
works when nodes represent groups of correlated variables.
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Fig. 6 Proposed correlation-screening-based thresholding (CS +
ρab
q,α=0) pipeline for a pair of motor regions M1_r, M1_l of the anes-

thetized rat 20160615_121820. First, voxel-to-voxel sample correlation
is computed.Using the sample intra-correlation, surrogate datawith true

inter-correlation ρa,b = 0 is generated to compute the quantile-based
inter-correlation threshold. The latter is applied to the sample voxel-to-
voxel inter-correlation distribution
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Fig. 7 Brain functional connectivity network of a dead and two live rats (anesthetized with Isofluorane) inferred using our proposed correlation
screening framework with the quantile-based threshold (CS + ρ

a,b
q,α=0)

We have formally established the importance of leveraging
dependence structures to reliably discover inter-correlations.
Our method consists in estimating, for each pair of groups,
an inter-correlation distribution before deriving a tailored
threshold based on a correlation screening approach. In par-
ticular, we proposed simplified expressions for the mean
number of discoveries that allow for easier theoretical and
empiricalmanipulation, andflexibly take into account depen-
dence within groups. Motivated by a real-world application,
we have demonstrated the feasibility of our approach on a
real dataset of rat brain images.

The synthetic data results of this work were obtained
using Toeplitz intra-correlation. As the proposed thresh-
olding approach is designed to automatically adapt to the
data’s correlation structure, its overall behavior is expected
to remain similar regardless of the intra-correlation struc-

ture, in the sense that the higher the average intra-correlation,
the more the TPR should improve compared to popular
existing methods. Nevertheless, in practice, we expect that,
for a fixed average intra-correlation, differences in intra-
correlation variability will slightly affect the performance
of the thresholding. Using the full sample intra-correlation
structure, instead of just the average intra-correlation, may
help further improve performance. However, it would be dif-
ficult to fulfill the positive semi-definite constraint on the
surrogate data’s covariance matrix, which has constant zero
inter-correlation.

This work has also several possible theoretical extensions.
First, while we provide a method with theoretical FPR con-
trol for any setting, we provide theoretical FWER control
guarantees only under a weak dependence assumption. Nev-
ertheless, this assumption is often unrealistic and relaxing it
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Table 2 Comparison of the number of edges in the networks obtained
via our proposed network inference approach and two methods from
the literature (B2020 and CA + ρab

poli ) for dead (Top) and live (Bottom)
rat brain fMRI data

Dead rats ID Number of edges

CS + ρab
q,α=0 B2020 CA + ρab

poli

20160524_153000 1 4 316

20160609_161917 0 4 317

20160610_121044 0 1 325

Live rats ID Number of edges

CS + ρab
q,α=0 B2020 CA + ρab

poli

20160615_103000 25 647 820

20160614_095825 411 847 910

20160615_121820 116 477 692

20160421_133725 83 591 910

In the dead rat brain networks, any detected edge is a false positive

is difficult and would be an interesting direction to explore.
Additionally, FWER approaches may sometimes be too con-
servative. On the other hand, the false discovery rate (FDR)
enables to control the average number of FPs, which is often
sufficient. A procedure to define correlation thresholds was
proposed in Cai and Liu (2016) that leverages a quantity
linked to the sum-basedmean number of discoveries E[Nab

e ].
While they provide FDR control, it is only valid under some
particular dependence conditions. It would nonetheless be
interesting to extend their work to arbitrary dependence.

In this paper, the aim was to reliably detect one edge at a
time. It would then be interesting to build upon the proposed
edge-centric correlation thresholds to develop amultiple test-
ing framework so as to provide theoretical control over the
estimation of the connectivity of all pairs of region, perhaps
by leveraging existing bootstrapping techniques (Cai and Liu
2016).

Finally, itwould be valuable to provide practitionerswith a
way to quantify edge detection uncertainty. For instance, con-
fidence intervals for each edge of the whole inferred network
could be defined. Some work has been done to determine
confidence intervals for correlation coefficients in the bivari-
ate case, both for underlying normality, e.g., Ruben (1966)
and Muirhead (2005), and unknown distributions (Hu et al
2020). It would be worth exploring how these methods could
build upon our approach to extend them to a more general
case in order to account for dependence.

Supplementary information

Proofs of the propositions are available in the appendix.
Additional discussions and details can be found in the sup-

plementary materials. Source code, including a notebook
detailing how to reproduce the figures of this paper, is also
available at: https://gitlab.inria.fr/q-func/csinference.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s11222-024-10411-
x.
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Appendix A: Proof of Proposition 1

A.1 U-scores

Before proving Proposition 1, we need to introduceU-scores.
U-scores are an orthogonal projection of the Z-scores of
random variables. They are confined to an (n − 2)-sphere
centered around 0 and with radius 1, denoted Sn−2, with
n the number of samples. We refer to Hero and Rajarat-
nam (2011) for a full definition. U-scores namely provide a
practical expression of the correlation coefficient as an inner
product of U-scores: Rab

i, j = Ua
i
TUb

j = 1− ‖Ua
i −Ub

j ‖2/2,
where Ua

i , U
b
j are the random variables of the U-scores of

voxels i and j in regions a and b, respectively, and ‖.‖2
is the squared Euclidean distance. Consequently, when U-
scores are close to one another on Sn−2, they are associated
with a high correlation.

A.2 Intuition behind Proposition 1

Roughly speaking, Proposition 1 means that if the Wasser-
stein distancebetween thedensities of sample intra-correlation
coefficients is sufficiently large, which means that the two
distributions are highly different, then the average Euclidean
distance between U-scores from the two regions is large too.
Hence the average of inter-correlations is quite low. This
phenomenon is illustrated in Fig. 8 where two regions with
different intra-correlation densities are depicted when n = 3.

A.3 Proof of Proposition 1

Let us first remark:

inf
c∈[0,1]

(
F−1
Ra,a (c) − F−1

Rb,b(c)
)2 ≤ d2W ( fRa,a , fRb,b )

≤ sup
c∈[0,1]

(
F−1
Ra,a (c) − F−1

Rb,b(c)
)2

(A1)

and as
(
F−1
Ra,a − F−1

Rb,b

)2
is continuous on [0, 1], it attains its

supremum and infimum.
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Fig. 8 Sn−2 with n = 3 and U-scores from two regions (red diamonds
and orange discs) that have a high intra-correlation density Wasserstein
distance. Recalling that a high Euclidean distance between U-scores
implies a low correlation, we can intuitively observe that the average
inter-correlation is upper-bounded

Additionally, we can notice that for each c ∈ [0, 1], there
exist two pointsU , V ∈ Sn−2 such that F

−1
Ra,a (c) = 1−‖U −

V ‖2/2, and similarly for region b. Moreover, for all x, y ∈
Ra , there exists c ∈ [0, 1] such that, with their corresponding
U-scores denoted Ux ,Uy (which are in Sn−2), R

a,a
x,y = 1 −

‖Ux −Uy‖2/2 = F−1
Ra,a (c), and analogously for region b.

Therefore, under the assumption min
c∈[0,1]

(
F−1
Ra,a (c)

−F−1
Rb,b (c)

)2 ≥ A, there exist Uxa ,Uya ,Uxb ,Uyb ∈ Sn−2

such that

min
c∈[0,1]

(
F−1
Ra,a (c) − F−1

Rb,b(c)
)2

= 1

4

(
‖Uxb −Uyb‖2 − ‖Uxa −Uya‖2

)2
,

and it follows for all va, wa ∈ Ra , vb, wb ∈ Rb,

A ≤ 1

4

(
‖Uxb −Uyb‖2 − ‖Uxa −Uya‖2

)2

≤ 1

4

(
‖Uvb −Uwb‖2 − ‖Uva −Uwa‖2

)2
.

Thus, expanding the term on the right and applying the
triangle inequality, followed by the reverse triangle inequal-
ity,

2
√
A ≤ (‖Uvb −Uwb‖ + ‖Uva −Uwa‖

)

·
∣
∣
∣‖Uvb −Uwb‖ − ‖Uva −Uwa‖

∣
∣
∣

≤ (‖Uvb −Uva‖ + ‖Uva −Uwb‖ + ‖Uva −Uwb‖
+‖Uwb −Uwa‖

) · ‖Uvb −Uwb − (Uva −Uwa )‖
≤ (‖Uvb −Uva‖ + ‖Uva −Uwb‖ + ‖Uva −Uwb‖
+‖Uwb −Uwa‖

) ·
(‖Uvb −Uva‖ + ‖Uwb −Uwa‖

)

≤ (‖Uvb −Uva‖2 + ‖Uvb −Uva‖ · ‖Uwb −Uva‖

+ ‖Uwb −Uva‖ · ‖Uwb −Uwa‖
+ ‖Uvb −Uva‖ · ‖Uwb −Uwa‖)
+ (‖Uwb −Uwa‖2 + ‖Uwb −Uva‖ · ‖Uvb −Uva‖
+ ‖Uwb −Uwa‖ · ‖Uwb −Uva‖
+ ‖Uvb −Uva‖ · ‖Uwb −Uwa‖).

We can then notice

‖Ub −Ua‖2 =
⎛

⎝ 1

pa pb

∑

va∈Ra

∑

vb∈Rb

‖Uvb −Uva‖
⎞

⎠

2

= 1

(pa pb)2
∑

ha∈Ra

∑

hb∈Rb

‖Uhb −Uha‖2+

1

(pa pb)2
∑

ha∈Ra

∑

hb∈Rb

∑

kb∈Rb−{hb}
‖Uhb

−Uha‖ · ‖Ukb −Uha‖+
1

(pa pb)2
∑

ha∈Ra

∑

hb∈Rb

∑

ka∈Ra−{ha}
‖Uhb

−Uha‖ · ‖Uhb −Uka‖+
1

(pa pb)2
∑

ha∈Ra

∑

hb∈Rb

∑

ka∈Ra−{ha}

∑

kb∈Rb−{hb}
‖Uhb −Uha‖ · ‖Ukb −Uka‖.

Thus ‖Ub −Ua‖2 ≥ 1
(pa pb)2

· (pa pb)2

2 · 2√A = √
A. From

the Cauchy-Schwarz inequality,

Ra,b ≤ 1 − ‖Ub −Ua‖2
2

,

which completes the proof.

Appendix B: Proof of Proposition 3

Let us recall Proposition 3.

Proposition 3 For all ρ ∈ [0, 1],

ν̂abe (ρ) ≤ ν̂ab(ρ). (B2)

Proof Since for all ρ ∈ [0, 1], 0 ≤ F̂|Ra,b|(ρ) ≤ 1,
then F̂|Ra,b|(ρ)pb ≤ F̂|Ra,b|(ρ). Thus, ν̂ab(ρ) = 1 −
F̂|Ra,b|(ρ)pb ≥ 1 − F̂|Ra,b|(ρ) = ν̂abe ��

Appendix C: Additional insights on �ab

We can derive the following proposition.
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Proposition 4 If, for a fixed i = 1, . . . , pa, all sample inter-
correlation coefficients Ra,b

i, j are i.i.d., νab = ν̃ab.

Proof We can first remark max
j∈Rb

φab
i j = 1 −

pb∏

j=1
(1 − φab

i j ).

Thus,

E[Nab] =
pa∑

i=1

E[1 −
pb∏

j=1

(1 − φab
i j )]

=
pa∑

i=1

(1 −
pb∏

j=1

E[(1 − φab
i j )])

under the assumption of independence.

For a fixed i = 1, . . . , pa , under the assumption all |Ra,b
i, j |

are identically distributed, then, for all j, l = 1, . . . , pb,
F|Ra,b

i, j | = F|Ra,b
i,l |. Denote, F|Ra,b| the distribution function

such that F|Ra,b
i, j | = F|Ra,b| for all i = 1, . . . , pa , j =

1, . . . , pb. Thus, pa · ν̃ab = E[Nab] = pa ·
[
1 − F pb

|Ra,b|
]

=
pa · νab. ��

Appendix D: Further information about our
implementation

Our implementation is based on R 4.2.3. All experiments
were performed on a laptop running on Ubuntu 18.04 with
eight 1.8GHz 64-bits Intel Core i7-10610U CPUs, 32 GB of
memory and a 1 TB hard drive.

References

Achard, S., Salvador, R.,Whitcher, B., et al.: A resilient, low-frequency,
small-world human brain functional network with highly con-
nected association cortical hubs. J. Neurosci. 26(1), 63–72. 00831
(2006)

Achard, S., Coeurjolly, J., Marcillaud, R., et al.: fMRI functional con-
nectivity estimators robust to region size bias. In: Proceedings of
the IEEE Workshop on Statistical Signal Processing (SSP), Nice,
France, pp. 813–816 (2011)

Achard, S., Delon-Martin, C., Vértes, P., et al.: Hubs of brain func-
tional networks are radically reorganized in comatose patients.
Proc. Natl. Acad. Sci. 109(50), 20608–20613 (2012)

Azriel, D., Schwartzman, A.: The empirical distribution of a large num-
ber of correlated normal variables. J. Am. Stat. Assoc. 110 (2014)

Becq, G.G.J.P.C., Barbier, E., Achard, S.: Brain networks of rats under
anesthesia using resting-state fMRI: comparison with dead rats,
random noise and generative models of networks. J. Neural Eng.
17, 045012 (2020)

Becq, G.J.P., Habet, T., Collomb, N., et al.: Functional connectivity is
preserved but reorganized across several anesthetic regimes. Neu-
roimage 219, 116945 (2020)

Boschi,A., Brofiga,M.,Massobrio, P.: Thresholding functional connec-
tivity matrices to recover the topological properties of large-scale
neuronal networks. Front. Neurosci. 15, 705103 (2021)

Cai, T.T., Liu, W.: Large-scale multiple testing of correlations. J. Am.
Stat. Assoc. 111(513), 229–240 (2016). (PMID: 27284211)

Calhoun, V.D., Sui, J., Kiehl, K., et al.: Exploring the psychosis func-
tional connectome: aberrant intrinsic networks in schizophrenia
and bipolar disorder. Front. Psych. 2, 75 (2012)

Dadi, K., Rahim, M., Abraham, A., et al.: Benchmarking functional
connectome-based predictive models for resting-state fMRI. Neu-
roimage 192, 115–134 (2019)

Di Martino, A., Yan, C.G., Li, Q., et al.: The autism brain imaging data
exchange: towards a large-scale evaluation of the intrinsic brain
architecture in autism. Mol. Psychiatry 19(6), 659 (2014)

Donner, A., Eliasziw, M.: Methodology for inferences concerning
familial correlations: a review. J. Clin. Epidemiol. 44(4/5), 449–
455 (1991)

Drton,M., Perlman,M.D.:Multiple testing and error control in gaussian
graphical model selection. Stat. Sci. 22(3), 430–449 (2007)

Dunlap, W., Jones, M., Bittner, A.: Average correlations vs. correlated
averages. Bull. Psychon. Soc. 21, 213–216 (1983)

Elston,R.C.:On the correlation between correlations.Biometrika 62(1),
133–140 (1975)

Fallani, F.D.V., Richiardi, J., Chavez, M., et al.: Graph analysis of
functional brain networks: practical issues in translational neuro-
science. Philos. Trans. R. Soc. B Biol. Sci. 369(1653), 20130521
(2014)

Fan, J., Lv, J.: Sure independence screening for ultrahigh dimensional
feature space. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 70(5), 849–
911 (2008)

Halliwell, J.W.: Dangers inherent in correlating averages. J. Educ. Res.
55(7), 327–329 (1962)

Hero, A., Rajaratnam, B.: Large scale correlation screening. J. Am. Stat.
Assoc. 106, 1540–1552 (2011)

Hotelling,H.:New light on the correlation coefficient and its transforms.
J. R. Stat. Soc. Ser. B (Methodol.) 15(2), 193–232 (1953)

Hu, X., Jung, A., Qin, G.: Interval estimation for the correlation coef-
ficient. Am. Stat. 74(1), 29–36 (2020)

Lehmann, E.L.: Some concepts of dependence. Ann. Math. Stat. 37(5),
1137–1153 (1966)

Malagurski, B., Péran, P., Sarton, B., et al.: Topological disintegration
of resting state functional connectomes in coma. Neuroimage 195,
354–361 (2019)

Muirhead,R.J.:Aspects ofMultivariate Statistical Theory.Wiley (2005)
Ostroff, C.: Comparing correlations based on individual-level and

aggregated data. J. Appl. Psychol. 78, 569–582 (1993)
Panaretos, V.M., Zemel, Y.: Statistical aspects ofWasserstein distances.

Annu. Rev. Stat. Its Appl. 6(1), 405–431 (2019)
Petersen, A., Müller, H.G.:Wasserstein covariance for multiple random

densities. Biometrika 106(2), 339–351 (2019)
Poli, D., Pastore, V.P., Massobrio, P.: Functional connectivity in in vitro

neuronal assemblies. Front. Neural Circuits 9, 57 (2015)
Richiardi, J., Achard, S., Bunke, H., et al.: Machine learning with brain

graphs: Predictive modeling approaches for functional imaging in
systems neuroscience. IEEE Signal Process. Mag. 30(3), 58–70
(2013)

Rosner, B., Donner, A., Hennekens, C.: Estimation of interclass corre-
lation from familial data. Appl. Stat. 26, 179–187 (1977)

Ruben, H.: Some new results on the distribution of the sample correla-
tion coefficient. J. R. Stat. Soc. Ser. B (Methodol.) 28(3), 513–525
(1966)

Rubinov, M., Sporns, O.: Complex network measures of brain connec-
tivity: Uses and interpretations. NeuroImage 52(3), 1059–1069.
Computational Models of the Brain (2010)

van den Heuvel, M.P., de Lange, S.C., Zalesky, A., et al.: Proportional
thresholding in resting-state fMRI functional connectivity net-
works and consequences for patient-control connectome studies:
Issues and recommendations. Neuroimage 152, 437–449 (2017)

123



Statistics and Computing (2024) 34 :90 Page 15 of 15 90

Whitcher, B., Guttorp, P., Percival, D.B.: Wavelet analysis of covari-
ance with application to atmospheric time series. J. Geophys. Res.
105(14(D11)), 941–962 (2000)

Whitfield-Gabrieli, S., Nieto-Castanon, A.: Conn: a functional connec-
tivity toolbox for correlated and anticorrelated brain networks.
Brain Connect. 2(3), 125–141 (2012). (PMID: 22642651)

Wigley, T.M.L., Briffa, K.R., Jones, P.D.: On the average value of cor-
related time series, with applications in dendroclimatology and
hydrometeorology. J. Appl. Meteorol. Climatol. 23(2), 201–213
(1984)

Šidák, Z.: Rectangular confidence regions for the means of multivariate
normal distributions. J. Am. Stat. Assoc. 62(318), 626–633 (1967)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123


	Large-scale correlation screening under dependence for brain functional connectivity network inference
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Correlation coefficients
	2.2 Synthetic data examples

	3 Inter-correlation estimation
	3.1 Related work
	3.2 On the impact of intra-correlation on inter-correlation estimation and detection
	3.3 Proposed approach: inter-correlation distribution estimation

	4 Characterization of the number of discoveries under dependence
	4.1 Maximum-based expression: Nab
	4.2 Sum-based expression: Neab
	4.3 Link between Neab and Nab

	5 Correlation threshold definition
	5.1 FWER-based threshold
	5.2 Quantile-based threshold
	5.3 Numerical results

	6 Network inference results
	6.1 Comparison to other methods
	6.2 Synthetic data results
	6.3 Real-world data results

	7 Discussion
	Supplementary information
	Acknowledgements
	Appendix A: Proof of Proposition 1
	A.1 U-scores
	A.2 Intuition behind Proposition 1
	A.3 Proof of Proposition 1

	Appendix B: Proof of Proposition 3
	Appendix C: Additional insights on νab
	Appendix D: Further information about our implementation
	References




