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A novel non-parametric estimator of the correlation between grouped measurements of a quantity 
is proposed in the presence of noise. The main motivation is functional brain network construction 
from fMRI data, where brain regions correspond to groups of spatial units, and correlation 
between region pairs defines the network. The challenge resides in the fact that both noise 
and intra-regional correlation lead to inconsistent inter-regional correlation estimation using 
classical approaches. While some existing methods handle either one of these issues, no non-
parametric approaches tackle both simultaneously. To address this problem, a trade-off between 
two procedures is proposed: correlating regional averages, which is not robust to intra-regional 
correlation; and averaging pairwise inter-regional correlations, which is not robust to noise. To 
that end, the data is projected onto a space where Euclidean distance is used as a proxy for 
sample correlation. Hierarchical clustering is then leveraged to gather together highly correlated 
variables within each region prior to inter-regional correlation estimation. The convergence of 
the proposed estimator is analyzed, and the proposed approach is empirically shown to surpass 
several other popular methods in terms of quality. Illustrations on real-world datasets that further 
demonstrate its effectiveness are provided.

 Introduction

Correlation estimation is integral to a wide range of applications, and is often the starting point of further analyses. However, 
ta are often contaminated by noise. If data are additionally inherently divided into separate, and study-relevant groups, inter-
oup correlation estimation becomes all the more challenging. Such datasets are often encountered in spatio-temporal studies, 
ch as single-subject brain functional connectivity network estimation, where voxel-level signals acquired via functional Magnetic 
sonance Imaging (fMRI) are grouped into predefined spatial brain regions (De Vico Fallani et al., 2014). This work is relevant as 
ell to other fields, such as organizational studies, where individuals are grouped by organization (Ostroff, 1993). As such, the words 
oup, region, and parcellation will be used interchangeably. In these contexts, measurement replicates of each individual element, 
ost often collected across time, are available and used to compute the sample correlation between different regions. These elements 
e grouped according to a parcellation which is fixed and corresponds to a practical reality, such as anatomical brain regions in 
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RI studies. As a result, regions could themselves be inhomogeneous. This work hence aims to estimate inter-regional correlation, 
ter shortened to inter-correlation, no matter the quality of the parcellation.
However, both noise and arbitrary within-region correlation, later called intra-correlation, lead to inconsistent inter-correlation 
timation by Pearson’s correlation coefficient (Ostroff, 1993; Saccenti et al., 2020). Indeed, it has been established in various 
ntexts that correlation is underestimated in the presence of noise (Ostroff, 1993; Matzke et al., 2017; Saccenti et al., 2020). 
rthermore, data are often high dimensional, which presents a challenge of its own. Hence, in practice, including many fMRI studies, 
riables are commonly spatially averaged by region prior to inter-correlation estimation (Achard et al., 2006; De Vico Fallani et 
., 2014). Yet, intra-correlation may be weak, which would lead to overestimation of inter-correlations (Wigley et al., 1984). This 
enomenon may also be compounded by unequal region sizes (Achard et al., 2011). Thus, standard correlation estimators are 
t well-suited for the setting of grouped variables under noise contamination. Nonetheless, simultaneously tackling noise and 
tra-group dependence structures can be quite difficult, especially in a non-parametric setting. Failing to do so can be especially 
oblematic for downstream analyses. For instance, in functional connectivity network estimation, a threshold is often applied 
 sample inter-correlation coefficients in order to identify edges between brain regions. Under- or over-estimation of the inter-
rrelation would then lead to missing or falsely detecting edges.
To address these problems, a non-parametric, data-driven approach with an astute intermediate aggregation is proposed. First, 
ghly correlated variables within each region are identified and gathered. To this end, variables are projected onto a space where 
clidean distance can serve as a substitute for the sample correlation, with lower values of the former corresponding to higher 
rrelations. Hierarchical clustering with Ward’s linkage (Ward, 1963; Murtagh and Legendre, 2014) is then applied to the projected 
riables within each region, resulting in intra-regional clusters of highly correlated variables. Within each intra-regional cluster, 
ese variables are next spatially averaged. For each pair of regions, a sample correlation is then computed for each pair of cluster-
erages from different regions. Hence, the proposed approach provides a distribution of the sample inter-correlations between each 
ir of regions, containing as many sample correlations as there are pairs of clusters from the two regions. For a point estimate of the 
ter-regional correlation for a given pair of regions, the average of the sample inter-correlation coefficients can then be considered.
The main contributions may be summarized as follows. A novel non-parametric estimator of inter-regional correlation is proposed 
at offsets the combined effect of noise and arbitrary intra-correlation by leveraging hierarchical clustering. Based on the properties 
 hierarchical clustering with Ward’s linkage, the limiting behavior of the proposed estimator is derived for an appropriate choice 
 the cut-off height of the dendrograms thus obtained. These results about the impact of the cut-off height on the quality of 
e estimation are then corroborated empirically. The proposed inter-correlation estimator is also shown to outperform popular 
timators in terms of quality, and its effectiveness is illustrated on real brain imaging datasets.

 Related work

In the context of functional connectivity, the vast majority of papers that build correlation networks first average signals within 
ch brain region for each time point, before computing Pearson’s correlation across time, possibly after wavelet or other filtering, 
g., Achard et al. (2006); Bolt et al. (2017); Ogawa (2021); Zhang et al. (2016). Nevertheless, and as mentioned in the previous 
ction, the correlation of averages overestimates the true correlation when intra-regional correlations are weak, while high noise 
ay lead to underestimation. It was also empirically observed in fMRI data that the application of spatial smoothing, which is a 
mmon preprocessing step to reduce the effect of noise, causes the inter-regional correlations to be overestimated (Liu et al., 2017).
Several methods tackling the impact of intra-correlation on the estimation of inter-correlation have been proposed in familial 
ta literature, e.g., Elston (1975); Rosner et al. (1977); Srivastava and Keen (1988); Wilson (2010). These approaches nonetheless 
 not address the impact of noise. Moreover, they require normality assumptions on the samples, while the convergence guarantees 
ovided here for the proposed estimator do not require parametric assumptions on the signal distribution. Bayesian inference 
ethods have also been proposed to offset the effect of measurement errors (Matzke et al., 2017). However, they require a careful 
oice of priors, in addition to only handling pairs of variables, as opposed to groups of variables—which is a primary feature of 
terest in this work. Robust correlation estimation has also been extensively investigated but mostly for specific distributions, such 
 contaminated normal distributions (Shevlyakov and Smirnov, 2016) or distributions with heavy tails (Lindskog, 2000), whereas 
bustness to noise and weak intra-group dependence are the focus in this work. Furthermore, groups of variables are not considered 
 these previous robust approaches. Cluster-robust inference in the presence of both noise and within-group correlation has been 
died in the econometric literature (Cameron and Miller, 2015). However, inter-correlation, which is the targeted quantity in this 
ork, is assumed to be zero. To the best of the authors’ knowledge, the method proposed here is the first to simultaneously tackle 
e impact of noise and within-group inhomogeneity to estimate inter-correlation in a non-parametric fashion.

 Preliminaries

From this point forward, and without loss of generality, focus will be placed on spatio-temporal contexts. In particular, the moti-
ting setting is an application to brain fMRI data where individual observed variables correspond to blood-oxygen-level-dependent 
OLD) signals that are assigned to voxels, and are grouped by regions. Nonetheless, the following results can be applied to any 
taset of grouped measurements of a quantity. Throughout this paper, two regions will be considered, generically denoted 𝐴 and 
 In reality, datasets will involve a potentially large number of regions but, for the purpose of correlation network construction, the 
rrelations can be estimated in a pairwise fashion at the regional-level. Let 𝑋𝐴

1 , … , 𝑋𝐴
𝑖
, … , 𝑋𝐴

𝑁𝐴
denote 𝑁𝐴 spatially dependent latent 
2

nobserved) random variables in region 𝐴, each variable corresponding to an individual voxel in that region. Let 𝜖𝐴1 , … , 𝜖𝐴
𝑖
, … , 𝜖𝐴

𝑁𝐴
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present random noise variables. The latent process 𝑋𝐴
𝑖
at each voxel 𝑖 is assumed to be contaminated by noise 𝜖𝐴

𝑖
, so that the 

served variables 𝑌 𝐴
𝑖
in region 𝐴 are

𝑌 𝐴
𝑖 =𝑋𝐴

𝑖 + 𝜖𝐴𝑖 , 𝑖 = 1,… ,𝑁𝐴. (1)

ithin-region homoscedasticity of both signal and noise is assumed, i.e.,

𝜎2
𝐴
=Var

(
𝑋𝐴
𝑖

)
, 𝛾2

𝐴
=Var

(
𝜖𝐴𝑖

)
, 𝑖 = 1,… ,𝑁𝐴.

alogously, define 𝑁𝐵 , 𝑋𝐵
𝑗
, 𝜖𝐵

𝑗
, 𝑌 𝐵

𝑗
, 𝜎2

𝐵
and 𝛾2

𝐵
, for region 𝐵 and voxels 𝑗 = 1, … , 𝑁𝐵 . The noise variables are assumed to be spatially 

correlated both within and across regions, and that they are also uncorrelated to the latent state both within and between regions.
A critical reality of the observed data is the intra-correlation or Pearson’s correlation between any pair of random variables within
given region 𝐴. Denote by 𝜂𝐴

𝑖,𝑖′
the intra-correlation of the latent variables 𝑋𝐴

𝑖
, 𝑋𝐴

𝑖′
. No further constraints are placed on the intra-

rrelation structure. Similarly, define the inter-correlation as Pearson’s correlation between any pair of random variables from two 
stinct regions. For a given pair of distinct regions, 𝐴, 𝐵, the inter-correlation between any pair of latent random variables 𝑋𝐴

𝑖
, 𝑋𝐵

𝑗

assumed to be constant across voxels, and is denoted as 𝜌𝐴,𝐵 .
Consider now 𝑛 temporally independent and identically distributed (i.i.d.) samples of all observed signals. That is, for each region 
and voxel 𝑖 = 1, … , 𝑁𝐴, 𝑛 i.i.d. observations 𝑌 𝐴

𝑖
(𝑡), 𝑡 = 1, … , 𝑛, are available, each distributed as in (1) with the same intra- and 

ter-correlation properties as those outlined previously. In particular, for any time point 𝑡 = 1, … , 𝑛, and voxels 𝑖 and 𝑗 from distinct 
gions 𝐴 and 𝐵, respectively, 𝐶𝑜𝑣(𝑌 𝐴

𝑖
(𝑡), 𝑌 𝐵

𝑗
(𝑡)) = 𝜌𝐴,𝐵𝜎𝐴𝜎𝐵 . Denote by Y𝐴𝑖 = [𝑌 𝐴

𝑖
(1), … , 𝑌 𝐴

𝑖
(𝑡), … 𝑌 𝐴

𝑖
(𝑛)] the vector of observations for 

e 𝑖-th voxel of region 𝐴.

 Proposed inter-correlation estimator

After defining the sample correlation coefficient in Section 4.1, Section 4.2 highlights the impact of the combined presence of 
ise and intra-correlation, when using popular estimators of inter-correlation. In Section 4.3, a novel inter-correlation estimator is 
oposed that limits these effects. Convergence of this estimator is studied in Section 4.4.

1. Computing sample correlations

Denote by 𝐶𝑜𝑟(⋅, ⋅) the sample (Pearson’s) correlation between any two equal-length vectors of samples. This corresponds to the 
ro-lag empirical cross-correlation in spatio-temporal studies. To be specific, suppose 𝐚, 𝐛 ∈ℝ𝑛 are any vectors of the same length, 
d let 𝑎 = 𝑛−1

∑𝑛
𝑡=1 𝑎𝑡 and 𝑏 = 𝑛−1

∑𝑛
𝑡=1 𝑏𝑡 be the averages of their elements, respectively. Let 𝟏𝑛 be the 𝑛-vector of ones, 𝐚𝑐 = 𝐚 − 𝑎𝟏𝑛, 

d 𝐛𝑐 = 𝐛 − 𝑏𝟏𝑛 their centered versions. With ⟨⋅, ⋅⟩ and ‖⋅‖ being the Euclidean inner product and norm, respectively, define
𝐶𝑜𝑣(𝐚,𝐛) = 𝑛−1⟨𝐚𝑐 ,𝐛𝑐⟩, 𝑉 𝑎𝑟(𝐚) = 𝑛−1 ‖𝐚𝑐‖2 , 𝐶𝑜𝑟(𝐚,𝐛) = 𝐶𝑜𝑣(𝐚,𝐛)√

𝑉 𝑎𝑟(𝐚)𝑉 𝑎𝑟(𝐛)
. (2)

Using this notation, the sample correlation between any two voxels 𝑖 and 𝑗 in regions 𝐴 and 𝐵 is

𝑟𝐴,𝐵
𝑖,𝑗

= 𝐶𝑜𝑟(Y𝐴𝑖 ,Y
𝐵
𝑗 ). (3)

serve that this definition applies equally to sample inter-correlations (𝐴 ≠ 𝐵) as well as intra-correlations (𝐴 = 𝐵).

2. Impact of noise and intra-correlation

Previously, Matzke et al. (2017) showed that the presence of noise attenuates the observed correlation. Indeed, this phenomenon 
captured in the following result. Using (1) and Achard et al. (2023), 𝑟𝐴,𝐵

𝑖,𝑗
converges almost surely to

𝐶𝑜𝑣(𝑌 𝐴
𝑖
, 𝑌 𝐵

𝑗
)√

(𝜎2
𝐴
+ 𝛾2

𝐴
) ⋅ (𝜎2

𝐵
+ 𝛾2

𝐵
)
=

𝐶𝑜𝑣(𝑋𝐴
𝑖
,𝑋𝐵

𝑗
)√

(𝜎2
𝐴
+ 𝛾2

𝐴
) ⋅ (𝜎2

𝐵
+ 𝛾2

𝐵
)
. (4)

erefore, if latent signals of distinct regions 𝐴, 𝐵 are contaminated by noise, 𝑟𝐴,𝐵
𝑖,𝑗

is not a consistent estimator of true inter-
rrelation 𝜌𝐴,𝐵 due to the presence of the noise variances in the denominator of (4). Furthermore, in settings where a single point 
timate of the inter-correlation of the unobserved latent signal between two regions is needed, the corresponding pairwise sample 
ter-correlation coefficients can be averaged to provide an estimator. Denoted 𝑟𝐴𝐶

𝐴,𝐵
, it corresponds to the ensemble estimator in 

milial data literature (Rosner et al., 1977):

𝑟𝐴𝐶
𝐴,𝐵

= 1
𝑁𝐴 ⋅𝑁𝐵

𝑁𝐴∑
𝑖=1

𝑁𝐵∑
𝑗=1

𝑟𝐴,𝐵
𝑖,𝑗

. (5)
3

wever, the latter is similarly impacted by noise.
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As mentioned in Section 2, one of the most popular estimators in neuroimaging studies consists of spatially averaging the observa-
n random variables within each distinct region for each time 𝑡, before computing the sample correlation between these averages. 
ecifically, define regional (spatial) averages Y

𝐴
=𝑁−1

𝐴

∑𝑁𝐴

𝑖=1 Y
𝐴
𝑖 and Y

𝐵
=𝑁−1

𝐵

∑𝑁𝐵

𝑗=1 Y
𝐵
𝑗 . Then this estimator is

𝑟𝐶𝐴
𝐴,𝐵

= 𝐶𝑜𝑟(Y
𝐴
,Y

𝐵
). (6)

der model (1), and according to results from Achard et al. (2023), together with intra-regional uncorrelatedness between latent 
d noise random variables, as well as inter-regional uncorrelatedness of noise, 𝑟𝐶𝐴

𝐴,𝐵
converges almost surely to:

𝜌𝐴,𝐵√√√√[
1
𝑁2
𝐴

⋅
𝑁𝐴∑
𝑖,𝑖′=1

𝜂𝐴
𝑖,𝑖′

+
𝛾2
𝐴

𝑁𝐴⋅𝜎
2
𝐴

][
1
𝑁2
𝐵

⋅
𝑁𝐵∑

𝑗,𝑗′=1
𝜂𝐵
𝑗,𝑗′

+
𝛾2
𝐵

𝑁𝐵 ⋅𝜎
2
𝐵

] , (7)

here 𝑁−2
𝐴

⋅
∑𝑁𝐴

𝑖,𝑖′=1 𝜂
𝐴
𝑖,𝑖′
is the spatial average of the pairwise latent intra-correlation coefficients within region 𝐴.

It follows from (7) that intra-correlation and noise both contribute to inconsistency of the inter-correlation estimator (6). Indeed, 
th quantities appear in the denominator. It is then apparent that the smaller the regions (smaller 𝑁𝐴), the higher the impact of 
ise on the correlation estimation. Additionally, the weaker the spatial intra-regional dependence (lower 𝜂𝐴

𝑖,𝑖′
and 𝜂𝐵

𝑖,𝑖′
), the larger 

e overestimation of the true inter-correlation 𝜌𝐴,𝐵 . This effect may also be compounded when regions are large, as was observed 
 Achard et al. (2011). One would then need to have regions as large as possible, while having an average intra-correlation as close 
 1 as possible in order to offset these biases. However, large regions tend to be inhomogeneous in practical scenarios, and thus tend 
 have low intra-correlation.

3. A clustering-based inter-correlation estimator

Based on these findings, an inter-correlation estimator is developed, specifically designed to limit the combined effects of noise 
d intra-correlation. Instead of aggregating over entire regions, this estimator aggregates over small groups of highly intra-correlated 
riables (cf. Steps 1 and 2), before computing the correlation of the corresponding local averages (cf. Step 3).

3.1. Step 1: U-scores computation
To facilitate the grouping of the variables within each region, U-scores can be leveraged to project the sample vectors Y𝐴𝑖 onto a 
ace where the Euclidean distance can be used as a proxy for the sample correlations. Any standard clustering algorithm can then 
 applied in the U-score space. U-scores are an orthogonal projection of the Z-scores of random variables onto a unit (𝑛 − 2)-sphere 
ntered around 0. The U-score U𝐴

𝑖 of Y𝐴𝑖 is defined by U𝐴
𝑖 = H𝑇

2∶𝑛Z
𝐴
𝑖 , where H

𝑇
2∶𝑛 is a (𝑛 − 1) × (𝑛 − 1) matrix obtained by Gramm-

hmidt orthogonalization, and Z𝐴𝑖 the Z-score of Y
𝐴
𝑖 . See Hero and Rajaratnam (2011) for a full definition. Sample correlations can 

en be expressed as an inner product of U-scores: 𝑟𝐴,𝐵
𝑖,𝑗

= (U𝐴
𝑖 )

𝑇U𝐵
𝑗 = 1 − ‖U𝐴

𝑖 − U𝐵
𝑗 ‖2∕2, where U𝐴

𝑖 , U
𝐵
𝑗 are the U-scores of the 𝑖-th 

d 𝑗-th voxels in regions 𝐴 and 𝐵, respectively, and ‖ ⋅ ‖2 is the squared Euclidean distance.
3.2. Step 2: clustering
Once the U-scores are calculated, any standard clustering algorithm can be applied to obtain homogeneous groups of variables 

ithin each region. Agglomerative hierarchical clustering with Ward’s linkage (Ward, 1963; Murtagh and Legendre, 2014), which 
closely related to the k-means algorithm (Hartigan and Wong, 1979), aims to minimize the intra-cluster variance, which implies 
maximization of the intra-cluster correlation. More specifically, agglomerative hierarchical clustering starts by assigning each 
ement, e.g., a voxel in our setting, to its own cluster. Then, clusters are iteratively merged according to a predefined rule. Ward’s 
kage specifies that, at each step, the pair of clusters to be merged is chosen to minimize the increase in the combined error sum of 
uares. We used the hclust function from the stats R package, with the ward.D2 method and default parameters (Murtagh and 
gendre, 2014). A comparison of different clustering methods, which empirically validates the use of Ward’s linkage in this context, 
presented in Section 5.4. In practice, the number of clusters generally needs to be specified. However, such a strategy, while 
ten satisfactory in common clustering tasks, such as exploratory analyses, does not provide any obvious theoretical guarantees 
 the homogeneity of the clusters, which is the desired outcome of the clustering. Nevertheless, hierarchical clustering outputs a 
ndrogram, which indicates the between-cluster distance at which clusters are merged. It can then be cut off at a designated height 
 produce a clustering. Therefore, instead of setting a number of clusters, it is proposed that a cut-off height be specified, through 
hich cluster radii and, by proxy, intra-correlations, can be controlled to a certain extent (cf Theorem 1). The proof can be found in 
e appendix.

eorem 1. For a region 𝐴, a fixed cut-off height ℎ𝐴, and all clusters 𝜈𝐴 thus obtained, the spatial average of the sample intra-cluster 
rrelation satisfies the bounds

1 −
ℎ2
𝐴

2
≤

1|𝜈𝐴|2
∑

𝑖,𝑖′∈𝜈𝐴

𝑟𝐴,𝐴
𝑖,𝑖′

≤ 1, (8)
4

ere |𝜈𝐴| is the size of cluster 𝜈𝐴.
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. 1. Illustration of the inter-correlation estimation of a pair of regions for different cut-off heights. The top panel shows the dendrograms of the hierarchical 
stering applied to each region. The horizontal line over each dendrogram indicates the cut-off heights ℎ𝐴, ℎ𝐵 . The gray crosses in the middle panel correspond to 
 random variables inside each regions, and are grouped into the resulting clusters (orange ellipses). The arrows represent the sample inter-correlation between the 
erage of the variables inside each cluster (some arrows were left out to improve readability). The bottom panel displays the distribution of the pairwise sample 
er-correlation. The true inter-correlation 𝜌𝐴,𝐵 (solid line) is best approximated by the sample inter-correlation 𝑟𝐶𝐿𝐴𝐴,𝐵

(dotted line) when the cut-off heights are neither 
 small nor too large. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Theorem 1 shows that through careful choice of the cut-off heights, clusters of highly correlated variables can be selected within 
ch region. This choice can be guided by the ensuing observations about the maximum distance between U-scores within a given 
gion, denoted by ℎmax

𝐴
, which follow immediately from Theorem 1 and the fact that 1 − (ℎmax

𝐴
)2∕2 = min

𝑖,𝑖′=1,…,𝑁𝐴

𝑟𝐴,𝐴
𝑖,𝑖′
:

• if ℎ𝐴 ≥ ℎmax
𝐴

,

1 −
ℎ2
𝐴

2
≤ min

𝑖,𝑖′=1,…,𝑁𝐴

𝑟𝐴,𝐴
𝑖,𝑖′

≤
1|𝜈𝐴|2

∑
𝑖,𝑖′∈𝜈𝐴

𝑟𝐴,𝐴
𝑖,𝑖′

(9)

• and if ℎ𝐴 ≤ ℎmax
𝐴

,

min
𝑖,𝑖′=1,…,𝑁𝐴

𝑟𝐴,𝐴
𝑖,𝑖′

≤ 1 −
ℎ2
𝐴

2
≤

1|𝜈𝐴|2
∑

𝑖,𝑖′∈𝜈𝐴

𝑟𝐴,𝐴
𝑖,𝑖′

. (10)

erefore, to ensure all clusters contain more than one voxel, the maximum distance between any two clusters of the region (i.e., 
e cut-off height) would need to be larger than the maximum distance between any two voxels within the region (i.e., ℎmax

𝐴
). 

us, setting the cut-off height to ℎmax
𝐴

would ensure to obtain the smallest possible clusters guaranteed to contain at least two 
riables. Moreover, computing ℎmax

𝐴
is computationally inexpensive. It also does not depend on any ground-truth, which remains 

known in practice. Empirical comparisons of this data-driven choice with the optimal cut-off heights are made on simulated 
ta in Section 5.3. As the optimal cut-off heights are not known in practice and cannot be computed from the data, these results 
monstrate the practical effectiveness of setting the cut-off height to ℎmax

𝐴
.

3.3. Step 3: clustered correlation estimation
Once clusters are obtained within each region, the inter-correlation is estimated as follows. For two distinct regions 𝐴 and 𝐵, 
r fixed cut-off heights ℎ𝐴, ℎ𝐵 , and any two pairs of clusters 𝜈𝐴, 𝜈𝐵 within each of these regions, define the following cluster-level 
ter-correlation estimator:

𝑟𝐶𝐿𝐴𝜈𝐴,𝜈𝐵
= 𝐶𝑜𝑟( Y

𝜈𝐴
, Y

𝜈𝐵 ), (11)

here Y
𝜈𝐴 = |𝜈𝐴|−1∑𝑖∈𝜈𝐴 Y

𝐴
𝑖 , and Y

𝜈𝐵
is defined similarly. A distribution of sample inter-correlation coefficients is hence obtained for 

is pair of regions, as seen in Fig. 1. As mentioned earlier, if a point estimate is needed, one can then simply average the cluster-level 
timates to derive the following regional-level estimator:

𝑟𝐶𝐿𝐴
𝐴,𝐵

= 1
𝑐𝑙𝑢𝑠𝑡 𝑐𝑙𝑢𝑠𝑡

∑
𝑟𝐶𝐿𝐴𝜈𝐴,𝜈𝐵

, (12)
5

𝑁
𝐴

⋅𝑁
𝐵 𝜈𝐴,𝜈𝐵
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here 𝑁𝑐𝑙𝑢𝑠𝑡
𝐴

is the number of clusters within region 𝐴. Algorithm 1 provides a detailed description of the proposed clustering-based 
rrelation estimation procedure for 𝐽 regions.

lgorithm 1: Clustering-Based Correlation Estimation.
input : 𝑁 variables grouped in 𝐽 regions with 𝑛 samples each
output : Cluster-level and regional-level inter-correlation estimates

⊳ Clustering

for each region 𝐴 do

Apply hierarchical clustering to 𝐴;
Choose the cut-off height ℎ𝐴 ;
Cut the dendrogram at height ℎ𝐴 ;
for each cluster 𝜈𝐴 in 𝐴 do

Y
𝜈𝐴

←
∑

𝑖∈𝜈𝐴
Y𝐴
𝑖
∕|𝜈𝐴|;

⊳ Correlation of local averages estimation
for each pair of regions 𝐴, 𝐵 do

for each pair of clusters 𝜈𝐴, 𝜈𝐵 do
𝑟𝐶𝐿𝐴
𝜈𝐴,𝜈𝐵

← 𝐶𝑜𝑟(Y
𝜈𝐴
, Y𝜈𝐵 )

𝑟𝐶𝐿𝐴
𝐴,𝐵

←
∑

𝜈𝐴 ,𝜈𝐵
𝑟𝐶𝐿𝐴
𝜈𝐴,𝜈𝐵

∕𝑁𝑐𝑙𝑢𝑠𝑡
𝐴

⋅𝑁𝑐𝑙𝑢𝑠𝑡
𝐵

4. Convergence of the proposed estimator

The clusters derived in Algorithm 1 are data-driven, and thus random from a probabilistic perspective. To simplify analysis and 
cilitate a demonstration of the expected behavior of the proposed estimator as the number of time points 𝑛 grows, assume that 
usters 𝜈𝐴 and 𝜈𝐵 are fixed. Then define the following quantity, which will be used in several of the subsequent results:

𝜌𝐶𝐿𝐴𝜈𝐴,𝜈𝐵
= 𝜌𝐴,𝐵√√√√[

1|𝜈𝐴|2 ⋅
∑

𝑖,𝑖′∈𝜈𝐴
𝜂𝐴
𝑖,𝑖′

+
𝛾2
𝐴|𝜈𝐴|⋅𝜎2𝐴

]
⋅

[
1|𝜈𝐵 |2 ⋅

∑
𝑗,𝑗′∈𝜈𝐵

𝜂𝐵
𝑗,𝑗′

+
𝛾2
𝐵|𝜈𝐵 |⋅𝜎2𝐵

] . (13)

eorem 2. Under the assumptions of model (1), for a fixed pair of clusters 𝜈𝐴, 𝜈𝐵 , as 𝑛 tends towards infinity,

𝑟𝐶𝐿𝐴𝜈𝐴,𝜈𝐵

𝑎.𝑠.
→ 𝜌𝐶𝐿𝐴𝜈𝐴,𝜈𝐵

. (14)

The proof is detailed in the appendix. Similar results are obtained for the regional-level point estimate 𝑟𝐶𝐿𝐴
𝐴,𝐵

, as a direct conse-
ence of Theorem 2

rollary 1. Under the same assumptions as Theorem 2, for two regions 𝐴, 𝐵, as 𝑛 tends towards infinity,

𝑟𝐶𝐿𝐴
𝐴,𝐵

𝑎.𝑠.
→

1
𝑁𝐴

𝑐𝑙𝑢𝑠𝑡
𝑁𝐵

𝑐𝑙𝑢𝑠𝑡

∑
𝜈𝐴,𝜈𝐵

𝜌𝐶𝐿𝐴𝜈𝐴,𝜈𝐵
. (15)

Theorem 2 and Corollary 1 emphasize the fact that controlling the denominator of 𝜌𝐶𝐿𝐴𝜈𝐴,𝜈𝐵
is key to obtaining an improved 

timator of 𝜌𝐴,𝐵 . This brings to light the influence of the cut-off height, and thereby the cluster size and intra-cluster correlation, on 
e accuracy of the inter-correlation estimate, both at the cluster- and regional-level.
For a pair of regions 𝐴, 𝐵, as the cut-off heights ℎ𝐴, ℎ𝐵 become larger, the impact of noise diminishes. Moreover, the clusters 
crease in size until there is only a single cluster left that corresponds to the entire region. Thus, for ℎ𝐴, ℎ𝐵 sufficiently large, the 
oposed estimator 𝑟𝐶𝐿𝐴𝜈𝐴,𝜈𝐵

, and the corresponding point estimate 𝑟𝐶𝐿𝐴
𝐴,𝐵

are equal to the correlation of averages 𝑟𝐶𝐴
𝐴,𝐵

mentioned earlier. 
nversely, as ℎ𝐴, ℎ𝐵 become smaller the maximum distance between U-scores within a cluster decreases, hence the minimal intra-
uster correlation increases (cf. Theorem 1). There are also gradually less variables within each cluster, until they eventually contain 
ly a single variable. It follows that when ℎ𝐴, ℎ𝐵 = 0, 𝑟𝐶𝐿𝐴

𝐴,𝐵
corresponds to a correlation estimate with no aggregation 𝑟𝐴𝐶

𝐴,𝐵
. This can 

 visualized in Fig. 1, where sample correlation distributions are depicted for different cut-off heights.
Therefore, to simultaneously lessen the impact of noise and intra-correlation a trade-off is necessary between a sufficiently high 
t-off height (to decrease the impact of noise), and a low enough height (to decrease the impact of intra-cluster correlation). Thus, 
r suitable cut-off heights, we expect the limits of both 𝑟𝐶𝐿𝐴𝜈𝐴,𝜈𝐵

and 𝑟𝐶𝐿𝐴
𝐴,𝐵

to be closer to the population inter-correlation 𝜌𝐴,𝐵 than 
at of 𝑟𝐶𝐴

𝐴,𝐵
and 𝑟𝐴𝐶

𝐴,𝐵
. These three estimators are compared empirically in Section 5.4, where the results suggest that the data-driven 
6

t-off height does indeed lead to improvement.
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. 2. Sample pairwise correlation matrices (from the 1D Toeplitz model) for different minimum intra-correlation values, with an inter-correlation 𝜌𝐴,𝐵 = 0.3 and 
ise variance 𝛾2

𝐴
= 𝛾2

𝐵
= 0.5. The diagonal blocks correspond to the intra-correlation of the two regions.

 Experimental results

The proposed inter-correlation estimator will be evaluated on synthetic data, including the empirical determination of an optimal 
t-off height. The proposed approach will also be illustrated on real-world data. The different datasets used are as follows.

1. Real-world datasets

1.1. Rat brain fMRI dataset
The proposed estimator was applied to fMRI data acquired on both dead and anesthetized rats (Becq et al., 2020a,b). The 
llowing anesthetics were considered: Etomidate (EtoL), Isoflurane (IsoW) and Urethane (UreL). The dataset is freely available at 
tps://dx .doi .org /10 .5281 /zenodo .7254133. The scanning duration is 30 min with a time repetition of 0.5 s. After preprocessing 
ecq et al., 2020b), 25 groups of voxels, each associated with its BOLD signal with a number of time points in the order of thousands, 
ere extracted for each rat. They correspond to rat brain regions defined by an anatomical atlas obtained from a fusion of the Tohoku 
d Waxholm atlases (Becq et al., 2020b). Region sizes vary from about 40 up to approximately 200 voxels.

1.2. Human connectome project
A dataset consisting in 35 subjects from the Human Connectome Project, WU-Minn Consortium (HCP) was also considered 
lasser et al., 2013). Subjects were pseudonymized. Two fMRI acquisitions on different days are available for each subject. The 
anning duration is 14 min and 24 s with a time repetition of 720 ms. A modified AAL template was used to parcellate the brain into 
regions. The details of the pre-processing are available in Termenon et al. (2016). Region sizes are in the order of thousands of 
xels, and number of time points are in the order of thousands.

2. Synthetic datasets

Several synthetic datasets were generated to evaluate the proposed estimator. For each simulation, 800 independent samples 
 a pair of inter-correlated regions were simultaneously generated, each containing 60 intra-correlated variables that follow a 
ultivariate normal distribution with a predefined covariance structure contaminated by Gaussian noise. The inter-correlation was 
nstant across all pairs of voxels. The different parameters were chosen to ensure the population covariance matrix of the two 
gions is positive semidefinite. For instance, one cannot generate a covariance matrix where both intra- and inter-correlation values 
e low.

2.1. Toeplitz covariance structure
First, data were generated with spatial dimension equal to one, using a Toeplitz intra-regional covariance structure (later denoted 
 Toeplitz). For each region, intra-correlation is defined such that it decreases as the distance between two spatial indices increases: 
r any voxel 𝑖, 𝑖′ in region 𝐴, 𝐶𝑜𝑟(𝑋𝐴

𝑖
, 𝑋𝐴

𝑖′
) = max(1 − |𝑖′ − 𝑖|∕30, 𝜂−

𝐴
), where |𝑖′ − 𝑖| is the uniform norm between voxels 𝑖 and 𝑖′, and 

the minimal population intra-correlation of a region 𝐴. Several experimental settings were created by varying the population 
tra-correlation, inter-correlation and the variance of the noise. The sample pairwise correlation matrices of the observed signals 
e represented in Fig. 2 for a low intra-correlation and a high intra-correlation setting with high noise.

2.2. Anisotropic matérn covariance structure
Similarly, data in two spatial dimensions were generated using an anisotropic intra-regional covariance structure that is based on a 
atérn structure (later denoted Anisotropic Matérn) (Ribeiro and Diggle, 2001). The smoothness parameter was set to 𝜅𝐴 = 𝜅𝐵 = 2.5. 
e range parameters 𝜙𝐴, 𝜙𝐵 and the variance of the noise were also varied. The lower the range parameter, the lower the mean 
7

tra-correlation.

https://dx.doi.org/10.5281/zenodo.7254133
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. 3. Error as a function of the cut-off heights ℎ𝐴, ℎ𝐵 for a pair of simulated regions for four simulation scenarios, with a true inter-correlation 𝜌𝐴,𝐵 = 0.3. The yellow 
mond represents the error for cut-off heights equal to the maximum distance between U-scores within each region. The orange point corresponds to the minimal 
or.

2.3. Spherical covariance structure
Data in three spatial dimensions were then generated with a spherical intra-regional covariance structure that also depends on 
e Euclidean distance between voxels (later denoted 3D Spherical) (Ribeiro and Diggle, 2001). The range parameters 𝜙𝐴, 𝜙𝐵 and 
e variance of the noise are again varied. The lower the range parameter, the lower the mean intra-correlation.

3. Choice of the cut-off heights

The 1D-Toeplitz dataset was used to empirically evaluate the impact of the cut-off heights ℎ𝐴, ℎ𝐵 on the proposed clustering-based 
rrelation estimator. The heuristic to choose optimal cut-off heights that was proposed in Section 4.3.2 was also evaluated.
Different scenarios were considered, including one that loosely matches live rat data settings, where the noise is high and the 
tra-correlation low. For each simulated pair of regions, and for various cut-off heights ℎ𝐴, ℎ𝐵 , the squared error of the cluster-level 
timators were computed and then averaged across the different clusters:

ERROR = 1
𝑁𝐴

𝑐𝑙𝑢𝑠𝑡
𝑁𝐵

𝑐𝑙𝑢𝑠𝑡

∑
𝜈𝐴,𝜈𝐵

(𝑟𝐶𝐿𝐴𝜈𝐴,𝜈𝐵
− 𝜌𝐴,𝐵)2. (16)

The resulting surfaces are displayed in Fig. 3. The lower the error, the better the quality of the estimator. As expected from 
eorems 1 and 2, the error is lowest (refer to the orange points in Fig. 3) for cut-off heights that are neither too small nor too large. 
oreover, when both the intra-correlation and the variance of the noise are low, the error is low, even for low cut-off heights, as there 
no need to aggregate the data to obtain a consistent estimator. However, the error is high for large cut-off heights regardless of the 
enario. Indeed, even in the high noise settings, intra-correlation still influences the inter-correlation, and this effect is compounded 
 that of the cluster size.
In Section 4.3.2, a computationally cheap heuristic was proposed to determine a suitable cut-off height. Empirically, it seems the 
aximum distance between U-scores within a given region 𝐴, ℎmax

𝐴
, could indeed be a near optimal cut-off height. It is represented 

 a yellow diamond in Fig. 3. In fact, it seems to be located at the bottom of a valley and quite close to the minimal error for all 
ttings.

The proposed optimal cut-off height was then compared, in terms of Mean Squared Error (MSE), to that obtained using a more 
ndard criterion from the clustering literature: the maximum silhouette score. The Squared Error (SE) of a simulation-specific 
rrelation estimate 𝑟𝐶𝐿𝐴

𝐴,𝐵
can be defined as
8

SE = (𝑟𝐶𝐿𝐴
𝐴,𝐵

− 𝜌𝐴,𝐵)2. (17)
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. 4. MSE (×10), averaged over 50 replicates, for varying intra-correlation values for regions 𝐴 and 𝐵. The true inter-correlation 𝜌𝐴,𝐵 is 0.3 and the noise variance 
= 𝛾2

𝐵
= 0.5.

. 5. MSE (×100), averaged over 50 replicates, for varying intra-correlation values for regions 𝐴 and 𝐵. The true inter-correlation 𝜌𝐴,𝐵 is 0.1 and the noise variance 
= 𝛾2

𝐵
= 0.5.

 this section, the MSE is computed by averaging the SEs across 50 replicates. The MSE for varying intra- and inter-correlation 
lues and a fixed high noise variance are depicted in Figs. 4 and 5. The MSE is lower when using the proposed cut-off heights in all 
e considered scenarios. From now on, and unless stated otherwise, the inter-correlation will be estimated using this optimal cut-off 
ight.

4. Comparison with other methods

Next, the choice of clustering method was evaluated and the proposed approach is compared with other estimators in terms of 
SE. First, the performance of hierarchical clustering with Ward’s linkage (the proposed choice and later denoted WardMaxU) was 
mpared with that of k-means (Hartigan and Wong, 1979) and ClustOfVar (CoV) (Chavent et al., 2012). ClustofVar is a hierarchical 
ustering method which is based on a principal component analysis approach, and closely related to works from Dhillon et al. (2003)
d Vigneau et al. (2015). DBSCAN (Ester et al., 1996), which allows for a direct control of the cluster radii, was also considered. 
wever, it failed to produce any clustering on the high-dimensional data considered here. These clustering methods were also 
mpared with a random assignment of the voxels into clusters (Random). The cut-off heights required by Ward’s method were 
osen according to the heuristic validated in the previous section, that is, the maximum distance between U-scores. ClustOfVar, 
means and Random all require a choice of the number of clusters, and not of the cut-off heights. The former was chosen as that 
tained with the proposed method. ClustOfVar was also evaluated with the number of clusters chosen according to the maximum 
nd index (randCoV), which is the proposed criterion in (Chavent et al., 2012). Results are presented in Table 1. All methods with 
e same number of clusters are similar, with the exception of the random assignment. As expected, the latter displays MSEs an order 
 magnitude higher than that of the other clustering techniques, except when both minimal intra-correlations are high. Indeed, in 
ch cases, the intra-correlation is high enough that the intra-cluster correlation will be high regardless of the choice of clusters. This 
monstrates the importance of constructing clusters with high intra-cluster correlation to correctly estimate the inter-correlation. 
e method randCoV showcases the second highest MSE in all scenarios, except when both intra-correlation and noise are high, in 
hich case its MSE is similar to that of the k-means and CoV. Moreover, the computation of the rand index requires a bootstrapping 
p and is thus very computationally expensive. Indeed, the average CPU time of clustering two regions using the method randCov 
in the order of 10 min, while average CPU time is approximately 5 s when using CoV, 300 ms using kmeans, and 30 ms using 
9

ardMaxU. Additionally, neither k-means nor CoV provide any obvious theoretical guarantees on the intra-correlation values within 
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Table 1

Mean (×10−3) and standard deviation in parentheses (×10−3) of the squared errors over 50 
replicates for different clustering methods and different simulation scenarios from the 1D 
Toeplitz model. The inter-correlation is 𝜌𝐴,𝐵 = 0.3.

Scenarios Clustering Methods

𝜂−
𝐴

𝜂−
𝐵

𝛾2
𝐴
= 𝛾2

𝐵
K-means CoV randCoV Random WardMaxU

0.2 0.2 0.5 2.0 (1.4) 2.0 (1.4) 4.8 (7.8) 15 (5.2) 2.0 (1.4)
0.8 0.8 0.5 1.2 (1.5) 1.2 (1.5) 1.1 (1.3) 1.0 (1.0) 1.2 (1.5)
0.2 0.8 0.5 1.1 (1.2) 1.1 (1.2) 2.9 (4.2) 5.0 (3.1) 1.1 (1.2)
0.2 0.2 0.1 1.0 (0.9) 1.0 (0.9) 4.6 (10) 26 (8.1) 1.0 (0.9)
0.8 0.8 0.1 0.6 (1.0) 0.6 (1.1) 1.0 (1.4) 1.4 (1.6) 0.6 (1.1)
0.2 0.8 0.1 0.4 (0.6) 0.4 (0.5) 2.7 (4.4) 10 (4.5) 0.4 (0.5)

ch cluster. Furthermore, they require one to compute the U-scores, unlike the proposed method. Indeed, the proposed approach 
ly depends on the distance between U-scores, which can be obtained directly from the sample voxel-to-voxel inter-correlation 
efficients, without transforming the signals into U-scores. This step has a CPU time of about 15 s per region. These methods are 
us much more computationally heavy. This justifies the choice of hierarchical clustering with Ward’s linkage, which will be used 
 all subsequent results.
The proposed estimator was then compared with the standard correlation of averages estimator 𝑟𝐶𝐴

𝐴,𝐵
, and the average of cor-

lations 𝑟𝐴𝐶
𝐴,𝐵

(Rosner et al., 1977). Comparisons were also made with another inter-correlation estimator from the familial data 
erature, which is specifically designed for groups of dependent variables but fails to take into account noise (Elston, 1975). Its 
ality is similar to that of 𝑟𝐴𝐶

𝐴,𝐵
, and these results are hence included in the supplementary materials. Comparison with other cor-

lation estimators from the literature would not be fair as they either only consider pairs of variables or do not handle arbitrary 
ter-correlation. To proceed, the regional-level point estimator 𝑟𝐶𝐿𝐴

𝐴,𝐵
was computed, and the MSE was calculated across 50 simula-

ns. The results obtained for several simulation scenarios are recorded in Table 2. As expected from Theorem 2 and its corollary, 
e proposed estimator 𝑟𝐶𝐿𝐴

𝐴,𝐵
outperforms the other estimators for all settings, except the low noise scenarios with 3D Spherical 

tra-correlation, where the MSE for 𝑟𝐴𝐶
𝐴,𝐵

is slightly lower. Even in this case, the MSE for 𝑟𝐴𝐶
𝐴,𝐵

and 𝑟𝐶𝐿𝐴
𝐴,𝐵

are in the same order of 
agnitude. More generally, in all scenarios where the intra-correlation is quite high and the noise variance is low, the MSE for these 
o estimators are also in the same order of magnitude. Indeed, according to equation (4), Theorem 1, and Corollary 1 𝑟𝐴𝐶

𝐴,𝐵
and 

𝐿𝐴
,𝐵

would be very similar. Therefore, not only is the quality of the estimation greatly improved in the presence of noise and low 
tra-correlation, but it is also not deteriorated when intra-correlation is high and the noise is low. Furthermore, in practice, data are 
pected to be quite noisy with a low intra-correlation.
Note that Table 2 does not include scenarios where the intra-correlation is close to zero. Indeed, in such cases no clusters of highly 
rrelated variables can be found. In practical situations, this could be due to either high regional inhomogeneity or high noise, and 
uld indicate an issue with the parcellation or data acquisition. The clustering approach can hence help identify problematic datasets 
d thus provide information on the quality of the data.

5. Illustration on real-world data

The proposed estimator will now be applied to real-world fMRI datasets, with the goal of estimating functional connectivity. At 
st, the sample cluster-level inter-correlation and voxel-level intra-correlation of different subjects can be visually inspected. The 
rrelation estimates of three rats, including a dead one, are displayed in Fig. 6, and that of three healthy human subjects (from 
e HCP dataset) are shown in Fig. 8. In brain functional connectivity studies, point estimates for each pair of regions are needed 
 construct a correlation matrix. A thresholding step is then applied to obtain a binary connectivity network where only the edges 
rresponding to the highest correlation values remain. Therefore, regional-level entries of these correlation matrices will primarily 
 evaluated.

5.1. Rat data
ad rats No functional activity should be detected in dead rats, unlike in live rats. Dead rats hence provide experimental data 
here the ground-truth inter-correlation is zero. Therefore, the MSE can be computed across all pairs of regions (each region pair 
a replicate). Additionally, it is expected that the intra-correlation is zero within all regions. In fact, no discernible structure of the 
ad rat’s intra-correlation can be noted in Fig. 6, where motor (M1_l, M1_r) and sensory (S1_l, S1_r) regions are represented. The 
SE of 𝑟𝐶𝐿𝐴

𝐴,𝐵
is found to be slightly higher than that of 𝑟𝐴𝐶

𝐴,𝐵
(cf. Table 3). Nonetheless, they are both very low and several orders of 

agnitude lower than the MSE of 𝑟𝐶𝐴
𝐴,𝐵
. This indicates that for dead rat data, 𝑟𝐶𝐿𝐴

𝐴,𝐵
displays similar quality to 𝑟𝐴𝐶

𝐴,𝐵
, and a considerable 

provement over the standard 𝑟𝐶𝐴
𝐴,𝐵
.

ve rats To further illustrate the advantages of the proposed approach, three live rats under different anesthetics were analyzed. 
like for dead rats, no ground-truth inter-correlation is available. Thus, the values of the estimated inter-correlations were inspected 
rectly. Correlation values were found to be visually very different in live and dead rats. Indeed, both intra- and inter-correlations 
10

e higher in live rats, in addition to displaying an apparent structure (cf. Fig. 6). While 𝑟𝐴𝐶
𝐴,𝐵

could not be clearly demarcated from 
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Table 2

Mean and standard deviation in parentheses of the squared error over 50 replicates for different simulation 
scenarios and different estimators. The inter-correlation 𝜌𝐴,𝐵 is set to 0.3.

Scenarios Estimators

𝜂−
𝐴

𝜂−
𝐵

𝛾2
𝐴
, 𝛾2

𝐵
𝑟𝐴𝐶
𝐴,𝐵

𝑟𝐶𝐿𝐴
𝐴,𝐵

𝑟𝐶𝐴
𝐴,𝐵

1
D
T
o
e
p
li
tz

0.2 0.2 0.5 1.8 × 10−2 (2.8 × 10−3) 𝟐.𝟎× 𝟏𝟎−𝟑 (1.4 × 10−3) 1.5 × 10−1 (1.8 × 10−1)
0.8 0.8 0.5 1.2 × 10−2 (3.7 × 10−3) 𝟏.𝟐× 𝟏𝟎−𝟑 (1.5 × 10−3) 1.0 × 10−1 (1.0 × 10−1)
0.2 0.8 0.5 1.4 × 10−2 (3.0 × 10−3) 𝟏.𝟏× 𝟏𝟎−𝟑 (1.2 × 10−3) 1.0 × 10−1 (1.0 × 10−1)
0.2 0.2 0.1 5.4 × 10−3 (2.0 × 10−3) 𝟏.𝟎× 𝟏𝟎−𝟑 (9.1 × 10−4) 2.3 × 10−1 (2.7 × 10−1)
0.8 0.8 0.1 1.9 × 10−3 (2.0 × 10−3) 𝟔.𝟒× 𝟏𝟎−𝟒 (1.0 × 10−3) 1.2 × 10−1 (1.2 × 10−1)
0.2 0.8 0.1 2.7 × 10−3 (1.7 × 10−3) 𝟒.𝟑× 𝟏𝟎−𝟒 (5.5 × 10−4) 1.4 × 10−1 (1.6 × 10−1)

𝜙𝐴,𝐴 𝜙𝐵,𝐵 𝛾2
𝐴
, 𝛾2

𝐵
𝑟𝐴𝐶
𝐴,𝐵

𝑟𝐶𝐿𝐴
𝐴,𝐵

𝑟𝐶𝐴
𝐴,𝐵

A
n
is
o
tr
o
p
ic
M
a
té
rn 0.4 0.4 0.5 1.0 × 10−2 (3.3 × 10−3) 𝟔.𝟏 × 𝟏𝟎−𝟒 (7.5 × 10−4) 8.9 × 10−3 (5.3 × 10−3)

0.8 0.8 0.5 1.1 × 10−2 (4.1 × 10−3) 𝟗.𝟕 × 𝟏𝟎−𝟒 (1.3 × 10−3) 1.3 × 10−3 (2.0 × 10−3)
0.4 0.8 0.5 1.1 × 10−2 (3.3 × 10−3) 𝟔.𝟐 × 𝟏𝟎−𝟒 (9.3 × 10−4) 3.3 × 10−3 (3.1 × 10−3)
0.4 0.4 0.1 1.2 × 10−3 (1.4 × 10−3) 𝟕.𝟗 × 𝟏𝟎−𝟒 (9.8 × 10−4) 9.2 × 10−3 (5.6 × 10−3)
0.8 0.8 0.1 1.7 × 10−3 (2.0 × 10−3) 𝟗.𝟏 × 𝟏𝟎−𝟒 (1.2 × 10−3) 1.4 × 10−3 (2.0 × 10−3)
0.4 0.8 0.1 1.4 × 10−3 (1.4 × 10−3) 𝟓.𝟔 × 𝟏𝟎−𝟒 (9.3 × 10−4) 3.3 × 10−3 (3.3 × 10−3)

𝜙𝐴,𝐴 𝜙𝐵,𝐵 𝛾2
𝐴
, 𝛾2

𝐵
𝑟𝐴𝐶
𝐴,𝐵

𝑟𝐶𝐿𝐴
𝐴,𝐵

𝑟𝐶𝐴
𝐴,𝐵

3
D
S
p
h
e
ri
ca
l 8 8 0.5 1.0 × 10−2 (2.3 × 10−3) 𝟒.𝟔 × 𝟏𝟎−𝟑 (2.4 × 10−3) 8.8 × 10−2 (1.4 × 10−2)

12 12 0.5 1.0 × 10−2 (2.8 × 10−3) 𝟐.𝟒 × 𝟏𝟎−𝟑 (1.9 × 10−3) 2.5 × 10−2 (8.2 × 10−3)
8 12 0.5 9.4 × 10−3 (2.5 × 10−3) 𝟒.𝟐 × 𝟏𝟎−𝟑 (2.3 × 10−3) 5.3 × 10−2 (1.1 × 10−2)
8 8 0.1 𝟗.𝟏 × 𝟏𝟎−𝟒 (7.9 × 10−4) 8.9 × 10−3 (3.8 × 10−3) 9.3 × 10−2 (1.3 × 10−2)
12 12 0.1 𝟏.𝟎 × 𝟏𝟎−𝟑 (1.0 × 10−3) 4.5 × 10−3 (2.8 × 10−3) 2.6 × 10−2 (8.4 × 10−3)
8 12 0.1 𝟕.𝟑 × 𝟏𝟎−𝟒 (7.8 × 10−4) 7.7 × 10−3 (3.3 × 10−3) 5.6 × 10−2 (1.1 × 10−2)

. 6. Sample pairwise correlation matrices for different rats and brain region pairs. Voxels are ordered by clusters. The diagonal blocks correspond to the voxel-to-
xel sample intra-correlation 𝑟𝐴,𝐴

𝑖,𝑖′
, while the off-diagonal blocks correspond to the sample inter-correlation between clusters 𝑟𝐶𝐿𝐴

𝜈𝐴,𝜈𝐵
.

𝐿𝐴
,𝐵

using solely the dead rat data, Fig. 7 demonstrates that, for any pair of regions, 𝑟𝐶𝐿𝐴
𝐴,𝐵

is both larger than 𝑟𝐴𝐶
𝐴,𝐵

and further away 
m zero, which corresponds to dead rat connectivity. In the context of functional connectivity, this implies that, when applying a 
11

resholding step, the use of 𝑟𝐶𝐿𝐴
𝐴,𝐵

may increase the number of rightfully detected edges in the corresponding connectivity network.
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Table 3

MSE across all pairs of regions for different dead rats and 
different estimators.
Dead Rat ID 𝑟𝐴𝐶

𝐴,𝐵
𝑟𝐶𝐿𝐴
𝐴,𝐵

𝑟𝐶𝐴
𝐴,𝐵

16 5.2 × 10−6 5.6 × 10−5 1.3 × 10−2

18 4.7 × 10−6 5.4 × 10−5 1.3 × 10−2

9 5.7 × 10−6 6.0 × 10−5 1.3 × 10−2

. 7. Sample inter-correlation coefficients estimated using 𝑟𝐴𝐶
𝐴,𝐵

against our proposed estimator 𝑟𝐶𝐿𝐴
𝐴,𝐵

for three live rats under different anesthetics. Each point 
resents a pair of brain regions.

. 8. Sample pairwise correlation matrices for different HCP subjects and brain region pairs. Voxels are ordered by clusters. The diagonal blocks correspond to the 
xel-to-voxel sample intra-correlation 𝑟𝐴,𝐴

𝑖,𝑖′
, while the off-diagonal blocks correspond to the sample inter-correlation between clusters 𝑟𝐶𝐿𝐴

𝜈𝐴,𝜈𝐵
.

5.2. HCP data
The proposed approach will now be illustrated on human data from healthy live subjects. No ground-truth is available. Fig. 8
owcases sample correlations of the Precentral regions (Pr_l, Pr_r), which are large regions containing about 1700 voxels, and 
schl’s gyri (H_l, H_r), which are ten times smaller. The intra-correlation displays some structure, as in the live rats. Nonetheless, 
erall, subject 2 seems to have both lower sample intra- and inter-correlation values, compared to most other subjects (including 
bjects 1 and 3). Subject 2 has in fact a benign anatomical brain anomaly. The proposed approach hence allowed for an unusual 
12

bject to be identified just by visually inspecting its sample intra- and inter-correlation values.
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ig. 9. Inter-correlation coefficients estimated using 𝑟𝐶𝐴
𝐴,𝐵

against our proposed estimator 𝑟𝐶𝐿𝐴
𝐴,𝐵

for three HCP subjects. Each point represents a pair of brain regions.

g. 10. Inter-correlation coefficients estimated using 𝑟𝐴𝐶
𝐴,𝐵

against our proposed estimator 𝑟𝐶𝐿𝐴
𝐴,𝐵

for three HCP subjects. Each point represents a pair of brain regions.

The empirical distribution of the proposed estimator 𝑟𝐶𝐿𝐴
𝐴,𝐵

was then compared with that of the standard estimator 𝑟𝐶𝐴
𝐴,𝐵

(cf. Fig. 9) 
d of 𝑟𝐴𝐶

𝐴,𝐵
(cf. Fig. 10). Overall, and as expected from equations (4) and (7) and Corollary 1, the correlation of averages 𝑟𝐶𝐴

𝐴,𝐵
values 

higher than that of 𝑟𝐶𝐿𝐴
𝐴,𝐵

, while the sample values of the average of correlations estimator 𝑟𝐴𝐶
𝐴,𝐵

are lower. In terms of functional 
nnectivity, this means using the 𝑟𝐶𝐴

𝐴,𝐵
estimator could lead to falsely detecting edges, while using 𝑟𝐴𝐶

𝐴,𝐵
could lead to missing edges. 

ese results are in accordance with what was observed in the rat data.
Since two separate sessions for each subject are available, the reproducibility of the proposed estimator can be evaluated. To do 
, for each subject, the Concordance Correlation Coefficient (CCC) (Lin, 1989) between the inter-correlations estimates from their 
o sessions was calculated. The CCC is scaled between −1 and 1, with 1 corresponding to a perfect concordance. This means that 
e higher the CCC, the more reproducible the estimator. The estimator 𝑟𝐶𝐿𝐴

𝐴,𝐵
exhibits the highest CCC, with an average (variance) 

ross the 35 subjects of 0.69 (0.03), while that of 𝑟𝐶𝐴
𝐴,𝐵

is 0.63 (0.02) and 𝑟𝐴𝐶
𝐴,𝐵

is 0.67 (0.04). The proposed estimator hence improves 
producibility over existing estimators.

 Conclusion

To conclude, a novel and non-parametric estimator of the correlation between groups of arbitrarily dependent variables in the 
esence of noise has been proposed. A clustering-based approach was devised that simultaneously reduces the impact of noise and 
tra-correlation through judicious aggregation. The convergence of the proposed estimator was analyzed, and a heuristic selection 
 cut-off heights of the dendrograms was provided. Moreover, the method yields both point estimates and a corresponding empirical 
stribution that could be used, for example, for uncertainty quantification. Confidence intervals could also be derived, for instance 
a bootsrapping-based approaches. However, the presence of dependence between estimates would need to be accounted for, and 
atial modeling would probably be needed. Finally, experiments were conducted on synthetic data that showed that the proposed 
timator surpasses popular existing methods in terms of quality, and demonstrated the effectiveness and reproducibility of the 
proach on real-world datasets.
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pendix A. Proof of Theorem 1

The proof follows from the properties of hierarchical clustering. In the context of Ward’s linkage, the distance between two 
13

usters 𝜈1 and 𝜈2 is defined according to Kaufman and Rousseeuw (2005, p. 230) as:
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𝐷(𝜈1, 𝜈2) =

√
2 ⋅ |𝜈1| ⋅ |𝜈2||𝜈1|+ |𝜈2| ⋅ ‖‖‖U𝜈1 −U

𝜈2‖‖‖2, (A.1)

here U
𝜈1
is the centroid and |𝜈1| the cardinality of cluster 𝜈1. Consider a region 𝐴 and fix a cut-off height ℎ𝐴. Then, from properties 

 agglomerative clustering, for any cluster 𝜈𝐴, and for all pairs of U-scores U𝐴
𝑖 , U

𝐴
𝑖′ inside 𝜈𝐴, 𝐷({U𝐴

𝑖 }, {U
𝐴
𝑖′ }) ≤ ℎ𝐴. Therefore, by 

mbining this inequality with properties of the U-scores (Hero and Rajaratnam, 2011), the sample intra-correlation can be lower-
unded by a function of ℎ𝐴:

1 −
ℎ2
𝐴

2
≤ 1 −

‖U𝐴
𝑖 −U𝐴

𝑖′‖2
2

= 𝑟𝐴,𝐴
𝑖,𝑖′

, (A.2)

hich implies the left-hand side of (8). The right-hand side follows from properties of correlation coefficients. This concludes the 
oof.

pendix B. Proof of Theorem 2

For two clusters 𝜈𝐴, 𝜈𝐵 in regions 𝐴, 𝐵, from (11),

𝑟𝐶𝐿𝐴𝜈𝐴,𝜈𝐵
= 𝐶𝑜𝑣(Y

𝜈𝐴
,Y

𝜈𝐵 )√
𝑉 𝑎𝑟(Y

𝜈𝐴 ) ⋅ 𝑉 𝑎𝑟(Y
𝜈𝐵 )

. (B.1)

nce the variables are assumed to be temporally i.i.d., and according to the model definition (cf. Section 3), as 𝑛 tends towards 
finity,

𝐶𝑜𝑣(Y
𝜈𝐴
,Y

𝜈𝐵 )
𝑎.𝑠.
→ 𝐶𝑜𝑣(𝑌

𝜈𝐴 (𝑡), 𝑌
𝜈𝐵 (𝑡)), (B.2)

r any time point 𝑡 and where

𝐶𝑜𝑣(𝑌
𝜈𝐴 (𝑡), 𝑌

𝜈𝐵 (𝑡)) = 1|𝜈𝐴| ⋅ |𝜈𝐵| ∑
𝑖∈𝜈𝐴

∑
𝑗∈𝜈𝐵

𝐶𝑜𝑣(𝑌 𝐴
𝑖 (𝑡), 𝑌 𝐵

𝑗 (𝑡))

= 1|𝜈𝐴| ⋅ |𝜈𝐵| ∑
𝑖∈𝜈𝐴

∑
𝑗∈𝜈𝐵

𝜎𝐴𝜎𝐵𝜌
𝐴,𝐵

= 𝜎𝐴𝜎𝐵𝜌
𝐴,𝐵, (B.3)

d, from equation (1),

𝑉 𝑎𝑟(Y
𝜈𝐴 )

𝑎.𝑠.
→ 𝑉 𝑎𝑟(𝑌

𝜈𝐴 (𝑡)) = 𝜎2
𝐴
⋅

1|𝜈𝐴|2 ⋅
∑

𝑖,𝑖′∈𝜈𝐴

𝜂𝐴
𝑖,𝑖′ +

𝛾2
𝐴|𝜈𝐴| , (B.4)

hich gives (14), and concludes the proof.

pendix C. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .csda .2023 .107876.
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