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ARTICLE INFO ABSTRACT
Keywords: A novel non-parametric estimator of the correlation between grouped measurements of a quantity
Correlation estimation is proposed in the presence of noise. The main motivation is functional brain network construction
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Spatio-temporal data

Brain functional connectivity

from fMRI data, where brain regions correspond to groups of spatial units, and correlation
between region pairs defines the network. The challenge resides in the fact that both noise
and intra-regional correlation lead to inconsistent inter-regional correlation estimation using
classical approaches. While some existing methods handle either one of these issues, no non-
parametric approaches tackle both simultaneously. To address this problem, a trade-off between
two procedures is proposed: correlating regional averages, which is not robust to intra-regional
correlation; and averaging pairwise inter-regional correlations, which is not robust to noise. To
that end, the data is projected onto a space where Euclidean distance is used as a proxy for
sample correlation. Hierarchical clustering is then leveraged to gather together highly correlated
variables within each region prior to inter-regional correlation estimation. The convergence of
the proposed estimator is analyzed, and the proposed approach is empirically shown to surpass
several other popular methods in terms of quality. Illustrations on real-world datasets that further
demonstrate its effectiveness are provided.

1. Introduction

Correlation estimation is integral to a wide range of applications, and is often the starting point of further analyses. However,
data are often contaminated by noise. If data are additionally inherently divided into separate, and study-relevant groups, inter-
group correlation estimation becomes all the more challenging. Such datasets are often encountered in spatio-temporal studies,
such as single-subject brain functional connectivity network estimation, where voxel-level signals acquired via functional Magnetic
Resonance Imaging (fMRI) are grouped into predefined spatial brain regions (De Vico Fallani et al., 2014). This work is relevant as
well to other fields, such as organizational studies, where individuals are grouped by organization (Ostroff, 1993). As such, the words
group, region, and parcellation will be used interchangeably. In these contexts, measurement replicates of each individual element,
most often collected across time, are available and used to compute the sample correlation between different regions. These elements
are grouped according to a parcellation which is fixed and corresponds to a practical reality, such as anatomical brain regions in
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fMRI studies. As a result, regions could themselves be inhomogeneous. This work hence aims to estimate inter-regional correlation,
later shortened to inter-correlation, no matter the quality of the parcellation.

However, both noise and arbitrary within-region correlation, later called intra-correlation, lead to inconsistent inter-correlation
estimation by Pearson’s correlation coefficient (Ostroff, 1993; Saccenti et al., 2020). Indeed, it has been established in various
contexts that correlation is underestimated in the presence of noise (Ostroff, 1993; Matzke et al., 2017; Saccenti et al., 2020).
Furthermore, data are often high dimensional, which presents a challenge of its own. Hence, in practice, including many fMRI studies,
variables are commonly spatially averaged by region prior to inter-correlation estimation (Achard et al., 2006; De Vico Fallani et
al., 2014). Yet, intra-correlation may be weak, which would lead to overestimation of inter-correlations (Wigley et al., 1984). This
phenomenon may also be compounded by unequal region sizes (Achard et al., 2011). Thus, standard correlation estimators are
not well-suited for the setting of grouped variables under noise contamination. Nonetheless, simultaneously tackling noise and
intra-group dependence structures can be quite difficult, especially in a non-parametric setting. Failing to do so can be especially
problematic for downstream analyses. For instance, in functional connectivity network estimation, a threshold is often applied
to sample inter-correlation coefficients in order to identify edges between brain regions. Under- or over-estimation of the inter-
correlation would then lead to missing or falsely detecting edges.

To address these problems, a non-parametric, data-driven approach with an astute intermediate aggregation is proposed. First,
highly correlated variables within each region are identified and gathered. To this end, variables are projected onto a space where
Euclidean distance can serve as a substitute for the sample correlation, with lower values of the former corresponding to higher
correlations. Hierarchical clustering with Ward’s linkage (Ward, 1963; Murtagh and Legendre, 2014) is then applied to the projected
variables within each region, resulting in intra-regional clusters of highly correlated variables. Within each intra-regional cluster,
these variables are next spatially averaged. For each pair of regions, a sample correlation is then computed for each pair of cluster-
averages from different regions. Hence, the proposed approach provides a distribution of the sample inter-correlations between each
pair of regions, containing as many sample correlations as there are pairs of clusters from the two regions. For a point estimate of the
inter-regional correlation for a given pair of regions, the average of the sample inter-correlation coefficients can then be considered.

The main contributions may be summarized as follows. A novel non-parametric estimator of inter-regional correlation is proposed
that offsets the combined effect of noise and arbitrary intra-correlation by leveraging hierarchical clustering. Based on the properties
of hierarchical clustering with Ward’s linkage, the limiting behavior of the proposed estimator is derived for an appropriate choice
of the cut-off height of the dendrograms thus obtained. These results about the impact of the cut-off height on the quality of
the estimation are then corroborated empirically. The proposed inter-correlation estimator is also shown to outperform popular
estimators in terms of quality, and its effectiveness is illustrated on real brain imaging datasets.

2. Related work

In the context of functional connectivity, the vast majority of papers that build correlation networks first average signals within
each brain region for each time point, before computing Pearson’s correlation across time, possibly after wavelet or other filtering,
e.g., Achard et al. (2006); Bolt et al. (2017); Ogawa (2021); Zhang et al. (2016). Nevertheless, and as mentioned in the previous
section, the correlation of averages overestimates the true correlation when intra-regional correlations are weak, while high noise
may lead to underestimation. It was also empirically observed in fMRI data that the application of spatial smoothing, which is a
common preprocessing step to reduce the effect of noise, causes the inter-regional correlations to be overestimated (Liu et al., 2017).

Several methods tackling the impact of intra-correlation on the estimation of inter-correlation have been proposed in familial
data literature, e.g., Elston (1975); Rosner et al. (1977); Srivastava and Keen (1988); Wilson (2010). These approaches nonetheless
do not address the impact of noise. Moreover, they require normality assumptions on the samples, while the convergence guarantees
provided here for the proposed estimator do not require parametric assumptions on the signal distribution. Bayesian inference
methods have also been proposed to offset the effect of measurement errors (Matzke et al., 2017). However, they require a careful
choice of priors, in addition to only handling pairs of variables, as opposed to groups of variables—which is a primary feature of
interest in this work. Robust correlation estimation has also been extensively investigated but mostly for specific distributions, such
as contaminated normal distributions (Shevlyakov and Smirnov, 2016) or distributions with heavy tails (Lindskog, 2000), whereas
robustness to noise and weak intra-group dependence are the focus in this work. Furthermore, groups of variables are not considered
in these previous robust approaches. Cluster-robust inference in the presence of both noise and within-group correlation has been
studied in the econometric literature (Cameron and Miller, 2015). However, inter-correlation, which is the targeted quantity in this
work, is assumed to be zero. To the best of the authors’ knowledge, the method proposed here is the first to simultaneously tackle
the impact of noise and within-group inhomogeneity to estimate inter-correlation in a non-parametric fashion.

3. Preliminaries

From this point forward, and without loss of generality, focus will be placed on spatio-temporal contexts. In particular, the moti-
vating setting is an application to brain fMRI data where individual observed variables correspond to blood-oxygen-level-dependent
(BOLD) signals that are assigned to voxels, and are grouped by regions. Nonetheless, the following results can be applied to any
dataset of grouped measurements of a quantity. Throughout this paper, two regions will be considered, generically denoted A and
B. In reality, datasets will involve a potentially large number of regions but, for the purpose of correlation network construction, the
correlations can be estimated in a pairwise fashion at the regional-level. Let X4,..., X ,.A, X I?IA denote N, spatially dependent latent

(unobserved) random variables in region A, each variable corresponding to an individual voxel in that region. Let ef, ,eiA, ,eﬁ
A
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represent random noise variables. The latent process X iA at each voxel i is assumed to be contaminated by noise eiA, so that the
observed variables Yl.A in region A are

Y[_A=X’.A+€,.A, i=1,...,Ny,. @)

Within-region homoscedasticity of both signal and noise is assumed, i.e.,

ai:VaI(XiA),yf‘:Var(ef), i=1,...,Ny.

Analogously, define N, X f ) 6}3’ YjB , 6% and 3, for region B and voxels j =1,..., N. The noise variables are assumed to be spatially
uncorrelated both within and across regions, and that they are also uncorrelated to the latent state both within and between regions.

A critical reality of the observed data is the intra-correlation or Pearson’s correlation between any pair of random variables within
a given region A. Denote by ;11_*"’_, the intra-correlation of the latent variables X/, X l_’,‘. No further constraints are placed on the intra-
correlation structure. Similarly, define the inter-correlation as Pearson’s correlation between any pair of random variables from two
distinct regions. For a given pair of distinct regions, A, B, the inter-correlation between any pair of latent random variables X ,.A, X f‘
is assumed to be constant across voxels, and is denoted as p4-B.

Consider now n temporally independent and identically distributed (i.i.d.) samples of all observed signals. That is, for each region
A and voxel i =1,...,N,, n ii.d. observations YiA(t), t=1,...,n, are available, each distributed as in (1) with the same intra- and
inter-correlation properties as those outlined previously. In particular, for any time point =1, ...,n, and voxels i and j from distinct
regions A and B, respectively, Coo(YA(r), YjB(t)) =p*Bo, 0. Denote by Y2 =[YA(1), ..., YA(1), ... YA(n)] the vector of observations for
the i-th voxel of region A.

4. Proposed inter-correlation estimator

After defining the sample correlation coefficient in Section 4.1, Section 4.2 highlights the impact of the combined presence of
noise and intra-correlation, when using popular estimators of inter-correlation. In Section 4.3, a novel inter-correlation estimator is
proposed that limits these effects. Convergence of this estimator is studied in Section 4.4.

4.1. Computing sample correlations

Denote by Cor(-,-) the sample (Pearson’s) correlation between any two equal-length vectors of samples. This corresponds to the
zero-lag empirical cross-correlation in spatio-temporal studies. To be specific, suppose a,b € R" are any vectors of the same length,
andleta=n"'Y"  a, and b=n"! Y., b, be the averages of their elements, respectively. Let 1, be the n-vector of ones, a“=a—al,,
and b¢ =b — b1, their centered versions. With (-,-) and ||-|| being the Euclidean inner product and norm, respectively, define

_ __ _— Cov(a,b
Cov(a,b) =n"(a%,b¢), Var(a)=n""|]a|>, Cor(a,b) = _ Covab) @)
\/Var@Var(b)
Using this notation, the sample correlation between any two voxels i and j in regions A and B is
rP = Cor(Y], Y5). (3)

Observe that this definition applies equally to sample inter-correlations (A # B) as well as intra-correlations (A = B).
4.2. Impact of noise and intra-correlation

Previously, Matzke et al. (2017) showed that the presence of noise attenuates the observed correlation. Indeed, this phenomenon
is captured in the following result. Using (1) and Achard et al. (2023), r,.Aj?B converges almost surely to

Cou(YA, Yl.B) Cou(XA, xf)

C)

V7@ +rh) (@ +rh) @ +rd)

Therefore, if latent signals of distinct regions A, B are contaminated by noise, rj.“j’.B

is not a consistent estimator of true inter-
correlation pA-2 due to the presence of the noise variances in the denominator of (4). Furthermore, in settings where a single point
estimate of the inter-correlation of the unobserved latent signal between two regions is needed, the corresponding pairwise sample

inter-correlation coefficients can be averaged to provide an estimator. Denoted r4C,, it corresponds to the ensemble estimator in

AB’
familial data literature (Rosner et al., 1977):
| N4 Ng
AC _ A.B
Fap = —NA N, Z T (5)

However, the latter is similarly impacted by noise.
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As mentioned in Section 2, one of the most popular estimators in neuroimaging studies consists of spatially averaging the observa-
tion random variables within each distinct region for each time ¢, before computing the sample correlation between these averages.

—A —B
Specifically, define regional (spatial) averages Y = N;l ZZ*} Y‘f“ andY =N El Zj\i"l Yf. Then this estimator is
_~ —A —B
r$4=Cor(Y ,Y ). (6)

Under model (1), and according to results from Achard et al. (2023), together with intra-regional uncorrelatedness between latent
and noise random variables, as well as inter-regional uncorrelatedness of noise, A B converges almost surely to:

AB
oA

, @]

Ny 2 Ng 2

1 A 7 1 B "B

- A 4 — - B+
[Nz RN Nwi] [N% RN
where N Zl ) ;1 ', is the spatial average of the pairwise latent intra-correlation coefficients within region A.

It follows from (7) that intra-correlation and noise both contribute to inconsistency of the inter-correlation estimator (6). Indeed,
both quantities appear in the denominator. It is then apparent that the smaller the regions (smaller N,), the hlgher the impact of
noise on the correlation estimation. Additionally, the weaker the spatial intra-regional dependence (lower r] ., and '1 ,), the larger

the overestimation of the true inter-correlation p4-8. This effect may also be compounded when regions are large, as was observed
by Achard et al. (2011). One would then need to have regions as large as possible, while having an average intra-correlation as close
to 1 as possible in order to offset these biases. However, large regions tend to be inhomogeneous in practical scenarios, and thus tend
to have low intra-correlation.

4.3. A clustering-based inter-correlation estimator

Based on these findings, an inter-correlation estimator is developed, specifically designed to limit the combined effects of noise
and intra-correlation. Instead of aggregating over entire regions, this estimator aggregates over small groups of highly intra-correlated
variables (cf. Steps 1 and 2), before computing the correlation of the corresponding local averages (cf. Step 3).

4.3.1. Step 1: U-scores computation

To facilitate the grouping of the variables within each region, U-scores can be leveraged to project the sample vectors YI.A onto a
space where the Euclidean distance can be used as a proxy for the sample correlations. Any standard clustering algorithm can then
be applied in the U-score space. U-scores are an orthogonal projection of the Z-scores of random variables onto a unit (n — 2)-sphere
centered around 0. The U-score UA of YA is defined by UA HT ZA where HT is a (n—1) x (n — 1) matrix obtained by Gramm-
Schmidt orthogonalization, and ZA the Z-score of YA See Hero and Rajaratnam (201 1) for a full definition. Sample correlations can
then be expressed as an inner product of U-scores: r (UA)TUB 1- U - UB|| /2, where U2, UB are the U-scores of the i-th

and j-th voxels in regions A and B, respectively, and || |2 is the squared Euchdean distance.

4.3.2. Step 2: clustering

Once the U-scores are calculated, any standard clustering algorithm can be applied to obtain homogeneous groups of variables
within each region. Agglomerative hierarchical clustering with Ward’s linkage (Ward, 1963; Murtagh and Legendre, 2014), which
is closely related to the k-means algorithm (Hartigan and Wong, 1979), aims to minimize the intra-cluster variance, which implies
a maximization of the intra-cluster correlation. More specifically, agglomerative hierarchical clustering starts by assigning each
element, e.g., a voxel in our setting, to its own cluster. Then, clusters are iteratively merged according to a predefined rule. Ward’s
linkage specifies that, at each step, the pair of clusters to be merged is chosen to minimize the increase in the combined error sum of
squares. We used the hclust function from the stats R package, with the ward.D2 method and default parameters (Murtagh and
Legendre, 2014). A comparison of different clustering methods, which empirically validates the use of Ward’s linkage in this context,
is presented in Section 5.4. In practice, the number of clusters generally needs to be specified. However, such a strategy, while
often satisfactory in common clustering tasks, such as exploratory analyses, does not provide any obvious theoretical guarantees
on the homogeneity of the clusters, which is the desired outcome of the clustering. Nevertheless, hierarchical clustering outputs a
dendrogram, which indicates the between-cluster distance at which clusters are merged. It can then be cut off at a designated height
to produce a clustering. Therefore, instead of setting a number of clusters, it is proposed that a cut-off height be specified, through
which cluster radii and, by proxy, intra-correlations, can be controlled to a certain extent (cf Theorem 1). The proof can be found in
the appendix.

Theorem 1. For a region A, a fixed cut-off height h,, and all clusters v, thus obtained, the spatial average of the sample intra-cluster
correlation satisfies the bounds

h2
) Y ®)
2 val? e, W

where |v,| is the size of cluster v,.
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Fig. 1. Illustration of the inter-correlation estimation of a pair of regions for different cut-off heights. The top panel shows the dendrograms of the hierarchical
clustering applied to each region. The horizontal line over each dendrogram indicates the cut-off heights h,, h,. The gray crosses in the middle panel correspond to
the random variables inside each regions, and are grouped into the resulting clusters (orange ellipses). The arrows represent the sample inter-correlation between the
average of the variables inside each cluster (some arrows were left out to improve readability). The bottom panel displays the distribution of the pairwise sample
inter-correlation. The true inter-correlation p , ; (solid line) is best approximated by the sample inter-correlation +%* (dotted line) when the cut-off heights are neither
too small nor too large. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Theorem 1 shows that through careful choice of the cut-off heights, clusters of highly correlated variables can be selected within
each region. This choice can be guided by the ensuing observations about the maximum distance between U-scores within a given

region, denoted by A"{®*, which follow immediately from Theorem 1 and the fact that 1 — (h‘/‘;"“‘)2 2= rlnin N r?’_’,A:
ii'=1,..,Ny "

< if hy > AT,

hZ
A AA
== S--rml rii’ < 2 Z 11’ (9)
2 Li'=1,..,.Ny b |VA| =
+ and if hy < AT,
h2
AA A
r 1-—= < . (10)
ii'=1,...N, ii! 2 |VA|2 Z 11’

ii'evy

Therefore, to ensure all clusters contain more than one voxel, the maximum distance between any two clusters of the region (i.e.,
the cut-off height) would need to be larger than the maximum distance between any two voxels within the region (i.e., h'j‘ax).
Thus, setting the cut-off height to A®* would ensure to obtain the smallest possible clusters guaranteed to contain at least two
variables. Moreover, computing 4 is computationally inexpensive. It also does not depend on any ground-truth, which remains
unknown in practice. Empirical comparisons of this data-driven choice with the optimal cut-off heights are made on simulated
data in Section 5.3. As the optimal cut-off heights are not known in practice and cannot be computed from the data, these results
demonstrate the practical effectiveness of setting the cut-off height to A7,

4.3.3. Step 3: clustered correlation estimation

Once clusters are obtained within each region, the inter-correlation is estimated as follows. For two distinct regions A and B,
for fixed cut-off heights h 4, hp, and any two pairs of clusters v,, vy within each of these regions, define the following cluster-level
inter-correlation estimator:

CLA _ — —\/A —\/B
Ve =Cor(Y",Y"), an
where Y* = AR v, Y,’.“, and Y is defined similarly. A distribution of sample inter-correlation coefficients is hence obtained for
this pair of regions, as seen in Fig. 1. As mentioned earlier, if a point estimate is needed, one can then simply average the cluster-level
estimates to derive the following regional-level estimator:

CLA _ 1 ,CLA
A B ~ Nclust . Nclust VA 7: 12)
A B VA-YB
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where N ;"““ is the number of clusters within region A. Algorithm 1 provides a detailed description of the proposed clustering-based
correlation estimation procedure for J regions.

Algorithm 1: Clustering-Based Correlation Estimation.

input : N variables grouped in J regions with n samples each
output: Cluster-level and regional-level inter-correlation estimates

1 > Clustering
2 for each region A do
3 Apply hierarchical clustering to A;
4 Choose the cut-off height A ,;
5 Cut the dendrogram at height 4,;
6 for each cluster v, in A do
7| LY e T, YAl
8 > Correlation of local averages estimation
9 for each pair of regions A, B do
10 for each pair of clusters V4, vg do
1 | ot —Co@ Y
12 A(;IZJA P Z yCLA /Ncluvr Ncluvt

Vave “A Ve

4.4. Convergence of the proposed estimator

The clusters derived in Algorithm 1 are data-driven, and thus random from a probabilistic perspective. To simplify analysis and
facilitate a demonstration of the expected behavior of the proposed estimator as the number of time points n grows, assume that
clusters v, and vy are fixed. Then define the following quantity, which will be used in several of the subsequent results:

pA,B
pCLA — . (1 3)

VAVB
2
1 1
|VA|2. Z VI”/ :|.|:|VB|2. Z ’7

V 'O'
ii'evy ‘ A j.j'€vp

|VB|0

Theorem 2. Under the assumptions of model (1), for a fixed pair of clusters v,,vg, as n tends towards infinity,

CLA %5 CLA
rvA,vB - va,vB' (14)

The proof is detailed in the appendix. Similar results are obtained for the regional-level point estimate rCLA, as a direct conse-

AB’
quence of Theorem 2
Corollary 1. Under the same assumptions as Theorem 2, for two regions A, B, as n tends towards infinity,
CLA &5 1 CLA
i e X Pyyvp )

clust™ " clust VA-VB

Theorem 2 and Corollary 1 emphasize the fact that controlling the denominator of pCLAB is key to obtaining an improved

estimator of p”8. This brings to light the influence of the cut-off height, and thereby the cluster size and intra-cluster correlation, on
the accuracy of the inter-correlation estimate, both at the cluster- and regional-level.

For a pair of regions A, B, as the cut-off heights A ,,hz become larger, the impact of noise diminishes. Moreover, the clusters
increase in size until there is only a single cluster left that corresponds to the entire region. Thus, for h,,hp sufﬁciently large, the
proposed estimator rVCAL‘f‘B, and the corresponding point estimate riLBA are equal to the correlation of averages r¢ U 4 mentioned earlier.
Conversely, as h4, hp become smaller the maximum distance between U-scores within a cluster decreases, hence the minimal intra-
cluster correlation increases (cf. Theorem 1). There are also gradually less variables within each cluster, until they eventually contain
only a single variable. It follows that when h 4, h5 =0, ¢’ corresponds to a correlation estimate with no aggregation 4. This can
be visualized in Fig. 1, where sample correlation distributions are depicted for different cut-off heights.

Therefore, to simultaneously lessen the impact of noise and intra-correlation a trade-off is necessary between a sufficiently high
cut-off height (to decrease the impact of noise), and a low enough height (to decrease the impact of intra-cluster correlation). Thus,
for suitable cut-off heights, we expect the limits of both erAL,\éB and riﬁ;“ to be closer to the population inter-correlation p*# than
that of rCA and rAf‘CB These three estimators are compared empirically in Section 5.4, where the results suggest that the data-driven
cut-off helght does indeed lead to improvement.
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Fig. 2. Sample pairwise correlation matrices (from the 1D Toeplitz model) for different minimum intra-correlation values, with an inter-correlation p*-f = 0.3 and
noise variance y3 = y3 = 0.5. The diagonal blocks correspond to the intra-correlation of the two regions.

5. Experimental results

The proposed inter-correlation estimator will be evaluated on synthetic data, including the empirical determination of an optimal
cut-off height. The proposed approach will also be illustrated on real-world data. The different datasets used are as follows.

5.1. Real-world datasets

5.1.1. Rat brain fMRI dataset

The proposed estimator was applied to fMRI data acquired on both dead and anesthetized rats (Becq et al., 2020a,b). The
following anesthetics were considered: Etomidate (EtoL), Isoflurane (IsoW) and Urethane (UreL). The dataset is freely available at
https://dx.doi.org/10.5281/zenodo.7254133. The scanning duration is 30 min with a time repetition of 0.5 s. After preprocessing
(Becq et al., 2020b), 25 groups of voxels, each associated with its BOLD signal with a number of time points in the order of thousands,
were extracted for each rat. They correspond to rat brain regions defined by an anatomical atlas obtained from a fusion of the Tohoku
and Waxholm atlases (Becq et al., 2020b). Region sizes vary from about 40 up to approximately 200 voxels.

5.1.2. Human connectome project

A dataset consisting in 35 subjects from the Human Connectome Project, WU-Minn Consortium (HCP) was also considered
(Glasser et al., 2013). Subjects were pseudonymized. Two fMRI acquisitions on different days are available for each subject. The
scanning duration is 14 min and 24 s with a time repetition of 720 ms. A modified AAL template was used to parcellate the brain into
89 regions. The details of the pre-processing are available in Termenon et al. (2016). Region sizes are in the order of thousands of
voxels, and number of time points are in the order of thousands.

5.2. Synthetic datasets

Several synthetic datasets were generated to evaluate the proposed estimator. For each simulation, 800 independent samples
of a pair of inter-correlated regions were simultaneously generated, each containing 60 intra-correlated variables that follow a
multivariate normal distribution with a predefined covariance structure contaminated by Gaussian noise. The inter-correlation was
constant across all pairs of voxels. The different parameters were chosen to ensure the population covariance matrix of the two
regions is positive semidefinite. For instance, one cannot generate a covariance matrix where both intra- and inter-correlation values
are low.

5.2.1. Toeplitz covariance structure

First, data were generated with spatial dimension equal to one, using a Toeplitz intra-regional covariance structure (later denoted
1D Toeplitz). For each region, intra-correlation is defined such that it decreases as the distance between two spatial indices increases:
for any voxel i,i’ in region A, Cor(X;“,le‘,‘) =max(l - |’ —i|/30,77), where |i’ —i| is the uniform norm between voxels i and i’, and
n, the minimal population intra-correlation of a region A. Several experimental settings were created by varying the population
intra-correlation, inter-correlation and the variance of the noise. The sample pairwise correlation matrices of the observed signals
are represented in Fig. 2 for a low intra-correlation and a high intra-correlation setting with high noise.

5.2.2. Anisotropic matérn covariance structure

Similarly, data in two spatial dimensions were generated using an anisotropic intra-regional covariance structure that is based on a
Matérn structure (later denoted Anisotropic Matérn) (Ribeiro and Diggle, 2001). The smoothness parameter was set to k4, =k =2.5.
The range parameters ¢4, ¢p and the variance of the noise were also varied. The lower the range parameter, the lower the mean
intra-correlation.


https://dx.doi.org/10.5281/zenodo.7254133

H. Lbath, A. Petersen, W. Meiring et al. Computational Statistics and Data Analysis 191 (2024) 107876

@y, n5 = O.Z,GEA,O'EB =0.5 () my.m =08,0% 0%, =05

ex’ Y ep

Error
0.06

0.05
0.04
0.03
0.02
0.01

D % 045
©ny.np = 0.2,0’§A,0'§B =0.1 ) my,n5 =08, U'EA,OfB =0.1

Fig. 3. Error as a function of the cut-off heights & ,, hy; for a pair of simulated regions for four simulation scenarios, with a true inter-correlation p*# = 0.3. The yellow
diamond represents the error for cut-off heights equal to the maximum distance between U-scores within each region. The orange point corresponds to the minimal
error.

5.2.3. Spherical covariance structure

Data in three spatial dimensions were then generated with a spherical intra-regional covariance structure that also depends on
the Euclidean distance between voxels (later denoted 3D Spherical) (Ribeiro and Diggle, 2001). The range parameters ¢4, ¢p and
the variance of the noise are again varied. The lower the range parameter, the lower the mean intra-correlation.

5.3. Choice of the cut-off heights

The 1D-Toeplitz dataset was used to empirically evaluate the impact of the cut-off heights /4, hz on the proposed clustering-based
correlation estimator. The heuristic to choose optimal cut-off heights that was proposed in Section 4.3.2 was also evaluated.

Different scenarios were considered, including one that loosely matches live rat data settings, where the noise is high and the
intra-correlation low. For each simulated pair of regions, and for various cut-off heights 4 4, h, the squared error of the cluster-level
estimators were computed and then averaged across the different clusters:

ERROR = ———— ! T O GTEL — pr Y (16)
clust™ " clust VA-VB

The resulting surfaces are displayed in Fig. 3. The lower the error, the better the quality of the estimator. As expected from
Theorems 1 and 2, the error is lowest (refer to the orange points in Fig. 3) for cut-off heights that are neither too small nor too large.
Moreover, when both the intra-correlation and the variance of the noise are low, the error is low, even for low cut-off heights, as there
is no need to aggregate the data to obtain a consistent estimator. However, the error is high for large cut-off heights regardless of the
scenario. Indeed, even in the high noise settings, intra-correlation still influences the inter-correlation, and this effect is compounded
by that of the cluster size.

In Section 4.3.2, a computationally cheap heuristic was proposed to determine a suitable cut-off height. Empirically, it seems the
maximum distance between U-scores within a given region A, A"7®*, could indeed be a near optimal cut-off height. It is represented
by a yellow diamond in Fig. 3. In fact, it seems to be located at the bottom of a valley and quite close to the minimal error for all
settings.

The proposed optimal cut-off height was then compared, in terms of Mean Squared Error (MSE), to that obtained using a more
standard criterion from the clustering literature: the maximum silhouette score. The Squared Error (SE) of a simulation-specific
correlation estimate riLBA can be defined as

SE= ({5 - p*P). a”
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Fig. 4. MSE (x10), averaged over 50 replicates, for varying intra-correlation values for regions A and B. The true inter-correlation p, , is 0.3 and the noise variance
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Fig. 5. MSE (x100), averaged over 50 replicates, for varying intra-correlation values for regions A and B. The true inter-correlation p, , is 0.1 and the noise variance
2 2
ra=rz=05.

In this section, the MSE is computed by averaging the SEs across 50 replicates. The MSE for varying intra- and inter-correlation
values and a fixed high noise variance are depicted in Figs. 4 and 5. The MSE is lower when using the proposed cut-off heights in all
the considered scenarios. From now on, and unless stated otherwise, the inter-correlation will be estimated using this optimal cut-off
height.

5.4. Comparison with other methods

Next, the choice of clustering method was evaluated and the proposed approach is compared with other estimators in terms of
MSE. First, the performance of hierarchical clustering with Ward’s linkage (the proposed choice and later denoted WardMaxU) was
compared with that of k-means (Hartigan and Wong, 1979) and ClustOfVar (CoV) (Chavent et al., 2012). ClustofVar is a hierarchical
clustering method which is based on a principal component analysis approach, and closely related to works from Dhillon et al. (2003)
and Vigneau et al. (2015). DBSCAN (Ester et al., 1996), which allows for a direct control of the cluster radii, was also considered.
However, it failed to produce any clustering on the high-dimensional data considered here. These clustering methods were also
compared with a random assignment of the voxels into clusters (Random). The cut-off heights required by Ward’s method were
chosen according to the heuristic validated in the previous section, that is, the maximum distance between U-scores. ClustOfVar,
k-means and Random all require a choice of the number of clusters, and not of the cut-off heights. The former was chosen as that
obtained with the proposed method. ClustOfVar was also evaluated with the number of clusters chosen according to the maximum
rand index (randCoV), which is the proposed criterion in (Chavent et al., 2012). Results are presented in Table 1. All methods with
the same number of clusters are similar, with the exception of the random assignment. As expected, the latter displays MSEs an order
of magnitude higher than that of the other clustering techniques, except when both minimal intra-correlations are high. Indeed, in
such cases, the intra-correlation is high enough that the intra-cluster correlation will be high regardless of the choice of clusters. This
demonstrates the importance of constructing clusters with high intra-cluster correlation to correctly estimate the inter-correlation.
The method randCoV showcases the second highest MSE in all scenarios, except when both intra-correlation and noise are high, in
which case its MSE is similar to that of the k-means and CoV. Moreover, the computation of the rand index requires a bootstrapping
step and is thus very computationally expensive. Indeed, the average CPU time of clustering two regions using the method randCov
is in the order of 10 min, while average CPU time is approximately 5 s when using CoV, 300 ms using kmeans, and 30 ms using
WardMaxU. Additionally, neither k-means nor CoV provide any obvious theoretical guarantees on the intra-correlation values within
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Table 1

Mean (x10~3) and standard deviation in parentheses (x10~3) of the squared errors over 50
replicates for different clustering methods and different simulation scenarios from the 1D
Toeplitz model. The inter-correlation is p4- =0.3.

Scenarios Clustering Methods
"y g vi=r3  K-means CoV randCoV  Random  WardMaxU
0.2 0.2 0.5 2.0(1.4) 2.0(1.4) 4.8 (7.8) 15(5.2) 2.0(1.4)
0.8 0.8 0.5 1.2 (1.5) 1.2 (1.5) 1.1 (1.3) 1.0 (1.0) 1.2 (1.5)
0.2 0.8 0.5 1.1(1.2) 1.1(1.2) 2.9 (4.2) 5.0 (3.1) 1.1(1.2)
0.2 0.2 0.1 1.0 (0.9) 1.0 (0.9) 4.6 (10) 26 (8.1) 1.0 (0.9)
0.8 0.8 0.1 0.6 (1.0) 0.6 (1.1) 1.0(14) 1.4 (1.6) 0.6 (1.1)
0.2 0.8 0.1 0.4 (0.6) 0.4 (0.5) 2.7 (4.4) 10 (4.5) 0.4 (0.5)

each cluster. Furthermore, they require one to compute the U-scores, unlike the proposed method. Indeed, the proposed approach
only depends on the distance between U-scores, which can be obtained directly from the sample voxel-to-voxel inter-correlation
coefficients, without transforming the signals into U-scores. This step has a CPU time of about 15 s per region. These methods are
thus much more computationally heavy. This justifies the choice of hierarchical clustering with Ward’s linkage, which will be used
in all subsequent results.

The proposed estimator was then compared with the standard correlation of averages estimator rgf}}, and the average of cor-
relations r (Rosner et al.,, 1977). Comparisons were also made with another inter-correlation estimator from the familial data
literature, Wthh is spec1ﬁcally designed for groups of dependent variables but fails to take into account noise (Elston, 1975). Its
quality is similar to that of r4 o B, and these results are hence included in the supplementary materials. Comparison with other cor-
relation estimators from the literature would not be fair as they either only consider pairs of variables or do not handle arbitrary
inter-correlation. To proceed, the regional-level point estimator rCLA was computed, and the MSE was calculated across 50 simula-
tions. The results obtained for several simulation scenarios are recorded in Table 2. As expected from Theorem 2 and its corollary,
the proposed estimator rgﬁ;‘ outperforms the other estimators for all settings, except the low noise scenarios with 3D Spherical
intra-correlation, where the MSE for r4, is slightly lower. Even in this case, the MSE for rﬁCB and r{! are in the same order of
magnitude. More generally, in all scenarios where the intra-correlation is quite high and the noise Varlance is low, the MSE for these

two estimators are also in the same order of magnitude. Indeed, according to equation (4), Theorem 1, and Corollary 1 r"c and

iLBA would be very similar. Therefore, not only is the quality of the estimation greatly improved in the presence of noise and low

intra-correlation, but it is also not deteriorated when intra-correlation is high and the noise is low. Furthermore, in practice, data are
expected to be quite noisy with a low intra-correlation.

Note that Table 2 does not include scenarios where the intra-correlation is close to zero. Indeed, in such cases no clusters of highly
correlated variables can be found. In practical situations, this could be due to either high regional inhomogeneity or high noise, and
could indicate an issue with the parcellation or data acquisition. The clustering approach can hence help identify problematic datasets
and thus provide information on the quality of the data.

5.5. Illustration on real-world data

The proposed estimator will now be applied to real-world fMRI datasets, with the goal of estimating functional connectivity. At
first, the sample cluster-level inter-correlation and voxel-level intra-correlation of different subjects can be visually inspected. The
correlation estimates of three rats, including a dead one, are displayed in Fig. 6, and that of three healthy human subjects (from
the HCP dataset) are shown in Fig. 8. In brain functional connectivity studies, point estimates for each pair of regions are needed
to construct a correlation matrix. A thresholding step is then applied to obtain a binary connectivity network where only the edges
corresponding to the highest correlation values remain. Therefore, regional-level entries of these correlation matrices will primarily
be evaluated.

5.5.1. Rat data

Dead rats No functional activity should be detected in dead rats, unlike in live rats. Dead rats hence provide experimental data
where the ground-truth inter-correlation is zero. Therefore, the MSE can be computed across all pairs of regions (each region pair
is a replicate). Additionally, it is expected that the intra-correlation is zero within all regions. In fact, no discernible structure of the
dead rat’s intra-correlation can be noted in Fig. 6, where motor (M1, M1_r) and sensory (S1_1, S1_r) regions are represented. The
MSE of rCLA is found to be shghtly hlgher than that of r4 r (cf Table 3). Nonetheless, they are both very low and several orders of
magmtude lower than the MSE of $4,. This indicates that for dead rat data, r{’;* displays similar quality to 4, and a considerable
improvement over the standard ri, B

Live rats To further illustrate the advantages of the proposed approach, three live rats under different anesthetics were analyzed.
Unlike for dead rats, no ground-truth inter-correlation is available. Thus, the values of the estimated inter-correlations were inspected
directly. Correlation values were found to be visually very different in live and dead rats. Indeed both intra- and inter-correlations
are higher in live rats, in addition to displaying an apparent structure (cf. Fig. 6). While r could not be clearly demarcated from

10
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Table 2
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Mean and standard deviation in parentheses of the squared error over 50 replicates for different simulation
scenarios and different estimators. The inter-correlation p*-® is set to 0.3.

Scenarios Estimators
M My Yavp 4% o !
0.2 0.2 0.5 1.8x1072 (2.8x 107) 20x107% (1.4x 107) 1.5x 1071 (1.8x 1071)
B 0.8 0.8 0.5 12x1072 (3.7x 1073) 1.2%1073 (1.5% 1073) 1.0x 107! (1.0x 1071)
qo’% 0.2 0.8 0.5 1.4x1072 (3.0x 1073) 11x1073 (1.2x1073) 1.0x 107! (1.0x 1071)
= 0.2 0.2 0.1 54x107 2.0x 107) 1.0x1073 (9.1x107%) 23x 107 (2.7x107)
a 0.8 0.8 0.1 1.9% 107 (2.0x1073) 6.4x107 (1.0x1073) 12x107! (1.2x107")
02 08 0.1 2.7% 1073 (1.7x 1073) 43x107* (5.5%x 10™) 1.4x107 (1.6x 1071)
[ [ vi.rk fﬁ, filb’\ "iAB
=]
8 0.4 0.4 0.5 1.0x1072 (33x1073)  61x107* (75x10%)  89x 1073 (5.3x1073)
S 0.8 0.8 0.5 LI1x1072 (4.1x1073)  97x107* (1.3x1073)  1.3x 1073 (2.0x 1073)
= 0.4 0.8 0.5 LI1x102(33x1073)  62x107*(93x10%)  33x1072 (3.1x107%)
S 0.4 0.4 0.1 12x1073 (1.4x1073)  79x107* (9.8x10™%)  9.2x107 (5.6x1073)
3 0.8 0.8 0.1 17%1073 20x1073)  91x107* (12x1073)  1.4x 1073 (2.0x 1073)
g 0.4 0.8 0.1 14%x1072 (14x1073)  56x107 (93x10%)  33x107 (3.3x107%)
¢A,A b Vi, VE "ﬁ% ri’}gA ’iﬁ;
_ 8 8 0.5 1.0x1072 (23x1073)  46x1073 (24x1073)  88x 1072 (1.4x1072)
8 12 12 0.5 10x1072 (2.8x1073)  24x1073 (1.9%x107%)  25x 1072 (8.2x107%)
;:’3 8 12 0.5 9.4x1073 (25x1073)  42x1073 23x1073)  53x1072 (1.1x1072)
& 8 8 0.1 9.1x10™* (7.9%x10™*)  89x1073 (3.8x1073)  93x 1072 (1.3x1072)
a 12 12 0.1 1.0x1073 (1.0x107%)  45x1073 (28%x107%)  2.6x1072 (8.4%107%)
8 12 0.1 73x107* (7.8x10™%)  7.7x107 33x1073)  5.6x 1072 (1.1x1072)
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Fig. 6. Sample pairwise correlation matrices for different rats and brain region pairs. Voxels are ordered by clusters. The diagonal blocks correspond to the voxel-to-
voxel sample intra-correlation rl.",f,", while the off-diagonal blocks correspond to the sample inter-correlation between clusters r¢t4
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r using solely the dead rat data, Fig. 7 demonstrates that, for any pair of regions, r

A,B

CLA

%5 is both larger than r

Varvg

AC

/% and further away

from zero, which corresponds to dead rat connectivity. In the context of functional connectivity, this implies that, when applying a

CLA

thresholding step, the use of r%*/

11

may increase the number of rightfully detected edges in the corresponding connectivity network.
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Table 3
MSE across all pairs of regions for different dead rats and
different estimators.

Dead Rat ID % i <
16 5.2%x107° 5.6x107° 1.3x1072
18 4.7x 107 54x107° 1.3x1072
9 5.7x107° 6.0x 1073 1.3x1072
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Q2 Q2
0.1 R ;
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o rom
(a) Rat 24 (IsoW) (b) Rat 4 (UreL) (c) Rat 31 (EtoL)

AC
A.B

CLA

5! for three live rats under different anesthetics. Each point

Fig. 7. Sample inter-correlation coefficients estimated using r4¢ against our proposed estimator r

represents a pair of brain regions.
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Fig. 8. Sample pairwise correlation matrices for different HCP subjects and brain region pairs. Voxels are ordered by clusters. The diagonal blocks correspond to the
voxel-to-voxel sample intra-correlation r:,f,A, while the off-diagonal blocks correspond to the sample inter-correlation between clusters &4

Varvp '

5.5.2. HCP data

The proposed approach will now be illustrated on human data from healthy live subjects. No ground-truth is available. Fig. 8
showcases sample correlations of the Precentral regions (Pr_l, Pr_r), which are large regions containing about 1700 voxels, and
Heschl’s gyri (H_l, H_r), which are ten times smaller. The intra-correlation displays some structure, as in the live rats. Nonetheless,
overall, subject 2 seems to have both lower sample intra- and inter-correlation values, compared to most other subjects (including
subjects 1 and 3). Subject 2 has in fact a benign anatomical brain anomaly. The proposed approach hence allowed for an unusual
subject to be identified just by visually inspecting its sample intra- and inter-correlation values.

12
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Fig. 10. Inter-correlation coefficients estimated using 4%, against our proposed estimator r{%/

for three HCP subjects. Each point represents a pair of brain regions.

CLA
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and of ’AACB (cf. Fig. 10). Overall, and as expected from equations (4) and (7) and Corollary 1, the correlation of averages r%a values
is higher than that of r$L4, while the sample values of the average of correlations estimator r/

CB are lower. In terms of functional
connectivity, this means using the rij‘}g estimator could lead to falsely detecting edges, while using rﬁ% could lead to missing edges.

These results are in accordance with what was observed in the rat data.

Since two separate sessions for each subject are available, the reproducibility of the proposed estimator can be evaluated. To do
so, for each subject, the Concordance Correlation Coefficient (CCC) (Lin, 1989) between the inter-correlations estimates from their
two sessions was calculated. The CCC is scaled between —1 and 1, with 1 corresponding to a perfect concordance. This means that
the higher the CCC, the more reproducible the estimator. The estimator r¢1A exhibits the highest CCC, with an average (variance)

AB
across the 35 subjects of 0.69 (0.03), while that of rﬂ; is 0.63 (0.02) and rﬁCB is 0.67 (0.04). The proposed estimator hence improves
reproducibility over existing estimators.

The empirical distribution of the proposed estimator r was then compared with that of the standard estimator ri"}; (cf. Fig. 9)

6. Conclusion

To conclude, a novel and non-parametric estimator of the correlation between groups of arbitrarily dependent variables in the
presence of noise has been proposed. A clustering-based approach was devised that simultaneously reduces the impact of noise and
intra-correlation through judicious aggregation. The convergence of the proposed estimator was analyzed, and a heuristic selection
of cut-off heights of the dendrograms was provided. Moreover, the method yields both point estimates and a corresponding empirical
distribution that could be used, for example, for uncertainty quantification. Confidence intervals could also be derived, for instance
via bootsrapping-based approaches. However, the presence of dependence between estimates would need to be accounted for, and
spatial modeling would probably be needed. Finally, experiments were conducted on synthetic data that showed that the proposed
estimator surpasses popular existing methods in terms of quality, and demonstrated the effectiveness and reproducibility of the
approach on real-world datasets.
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Appendix A. Proof of Theorem 1

The proof follows from the properties of hierarchical clustering. In the context of Ward’s linkage, the distance between two
clusters v; and v, is defined according to Kaufman and Rousseeuw (2005, p. 230) as:
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2- vl vl .”—w _T (A1)

D(v,, = U
o) =TT

where U is the centroid and |v| the cardinality of cluster v,. Consider a region A and fix a cut-off height 4 ,. Then, from properties
of agglomerative clustering, for any cluster v,, and for all pairs of U-scores UI.A,Ul.’f inside v, D({Uf 1, {Ulf} }) < hy4. Therefore, by
combining this inequality with properties of the U-scores (Hero and Rajaratnam, 2011), the sample intra-correlation can be lower-
bounded by a function of & 4:

Uy ot -ug?
- A <L 1 _ A4 A.2
2 " 2 i A2
which implies the left-hand side of (8). The right-hand side follows from properties of correlation coefficients. This concludes the
proof.

Appendix B. Proof of Theorem 2

For two clusters v, vy in regions A, B, from (11),

Con(Y*,Y"
SCLA _ ou( > ) (B.1)

vavs T~ VA, = ,G'B ’
\VVVar(Y ") -Var(Y 7)

Since the variables are assumed to be temporally i.i.d., and according to the model definition (cf. Section 3), as n tends towards
infinity,

Coo (YY) Cou(Y ™ (1), Y (1)), (B.2)

for any time point t and where

Coo(¥ ' 0.7 )= = ¥ Con(¥ 0. ¥ )

[val-lvgl ievy jevg

=L 3 Y oot

Val vl & &
=O'AO-BpA,B7 (B~3)

and, from equation (1),

2
oy as — %
Tar (¥ S var Y4 @) = o2 - ——. Y ot + (B.4)
A 2 i |V |
|VA| ii'evy A

which gives (14), and concludes the proof.
Appendix C. Supplementary material
Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2023.107876.
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